1
|
Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, Nayara Teixeira K, Souza CL, Oliveira MV. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis. World J Clin Oncol 2022; 13:866-879. [PMID: 36483973 PMCID: PMC9724182 DOI: 10.5306/wjco.v13.i11.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world's population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a "hit-and-run" carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | |
Collapse
|
2
|
Mestre A, Sathiya Narayanan R, Rivas D, John J, Abdulqader MA, Khanna T, Chakinala RC, Gupta S. Role of Probiotics in the Management of Helicobacter pylori. Cureus 2022; 14:e26463. [PMID: 35919364 PMCID: PMC9338786 DOI: 10.7759/cureus.26463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022] Open
Abstract
The global prevalence of Helicobacter pylori (H. pylori) is estimated to be around 4.4 billion, with the majority of individuals affected in developing countries. Chronic infection of the gram-negative bacterium results in several gastrointestinal pathologies such as chronic gastritis, peptic ulcer, and cancer. Probiotics compete directly with H. pylori and help restore the gut microbial environment; these living microorganisms are comparatively more effective than the standard triple antibiotic regimen in the management of symptoms related to the pathogenic bacteria. The need for alternative therapy is better explained by the increasing rate of antibiotic resistance and the lowering of patient compliance to the standard treatment. Adjuvant administration of probiotics to H. pylori eradication therapy is associated with a higher H. pylori eradication rate, decreased diarrhea-related treatment, less common self-reported side effects, and higher treatment compliance. Therefore, with the ongoing and future resistance to antibiotics, this systematic review aims to investigate the use and efficacy of probiotics when used alone or in conjunction with the current guideline treatment. A literature search was conducted using Pubmed, MEDLINE, and Cochrane for peer-reviewed articles published between January 1, 2016 and April 2022. MeSH terms used were: “H. pylori,” “H. pylori and probiotics,” “Probiotics,” “H. pylori treatment,” “Mechanism of Action” with subheadings as “clinical manifestations,” “treatment,” and “diagnosis.” All literature reviews, original papers, and case reports were included. This search strategy aimed to find literature that could describe the transmission and mechanism of action of H. pylori, the current treatment guidelines, and the efficacy of probiotics in eradicating H. pylori.
Collapse
|
3
|
Bioinspired reorientation strategies for application in micro/nanorobotic control. JOURNAL OF MICRO-BIO ROBOTICS 2020. [DOI: 10.1007/s12213-020-00130-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractEngineers have recently been inspired by swimming methodologies of microorganisms in creating micro-/nanorobots for biomedical applications. Future medicine may be revolutionized by the application of these small machines in diagnosing, monitoring, and treating diseases. Studies over the past decade have often concentrated on propulsion generation. However, there are many other challenges to address before the practical use of robots at the micro-/nanoscale. The control and reorientation ability of such robots remain as some of these challenges. This paper reviews the strategies of swimming microorganisms for reorientation, including tumbling, reverse and flick, direction control of helical-path swimmers, by speed modulation, using complex flagella, and the help of mastigonemes. Then, inspired by direction change in microorganisms, methods for orientation control for microrobots and possible directions for future studies are discussed. Further, the effects of solid boundaries on the swimming trajectories of microorganisms and microrobots are examined. In addition to propulsion systems for artificial microswimmers, swimming microorganisms are promising sources of control methodologies at the micro-/nanoscale.
Collapse
|
4
|
Lipa P, Janczarek M. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses. PeerJ 2020; 8:e8466. [PMID: 32095335 PMCID: PMC7020829 DOI: 10.7717/peerj.8466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022] Open
Abstract
Symbiotic bacteria, commonly called rhizobia, lead a saprophytic lifestyle in the soil and form nitrogen-fixing nodules on legume roots. During their lifecycle, rhizobia have to adapt to different conditions prevailing in the soils and within host plants. To survive under these conditions, rhizobia fine-tune the regulatory machinery to respond rapidly and adequately to environmental changes. Symbiotic bacteria play an essential role in the soil environment from both ecological and economical point of view, since these bacteria provide Fabaceae plants (legumes) with large amounts of accessible nitrogen as a result of symbiotic interactions (i.e., rhizobia present within the nodule reduce atmospheric dinitrogen (N2) to ammonia, which can be utilized by plants). Because of its restricted availability in the soil, nitrogen is one of the most limiting factors for plant growth. In spite of its high content in the atmosphere, plants are not able to assimilate it directly in the N2 form. During symbiosis, rhizobia infect host root and trigger the development of specific plant organ, the nodule. The aim of root nodule formation is to ensure a microaerobic environment, which is essential for proper activity of nitrogenase, i.e., a key enzyme facilitating N2 fixation. To adapt to various lifestyles and environmental stresses, rhizobia have developed several regulatory mechanisms, e.g., reversible phosphorylation. This key mechanism regulates many processes in both prokaryotic and eukaryotic cells. In microorganisms, signal transduction includes two-component systems (TCSs), which involve membrane sensor histidine kinases (HKs) and cognate DNA-binding response regulators (RRs). Furthermore, regulatory mechanisms based on phosphoenolopyruvate-dependent phosphotranspherase systems (PTSs), as well as alternative regulatory pathways controlled by Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) play an important role in regulation of many cellular processes in both free-living bacteria and during symbiosis with the host plant (e.g., growth and cell division, envelope biogenesis, biofilm formation, response to stress conditions, and regulation of metabolism). In this review, we summarize the current knowledge of phosphorylation systems in symbiotic nitrogen-fixing bacteria, and their role in the physiology of rhizobial cells and adaptation to various environmental conditions.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Sklodowska University Lublin, Lublin, Poland
| |
Collapse
|
5
|
de Brito BB, da Silva FAF, Soares AS, Pereira VA, Santos MLC, Sampaio MM, Neves PHM, de Melo FF. Pathogenesis and clinical management of Helicobacter pylori gastric infection. World J Gastroenterol 2019; 25:5578-5589. [PMID: 31602159 PMCID: PMC6785516 DOI: 10.3748/wjg.v25.i37.5578] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative bacterium that infects approximately 4.4 billion individuals worldwide. However, its prevalence varies among different geographic areas, and is influenced by several factors. The infection can be acquired by means of oral-oral or fecal-oral transmission, and the pathogen possesses various mechanisms that improve its capacity of mobility, adherence and manipulation of the gastric microenvironment, making possible the colonization of an organ with a highly acidic lumen. In addition, H. pylori presents a large variety of virulence factors that improve its pathogenicity, of which we highlight cytotoxin associated antigen A, vacuolating cytotoxin, duodenal ulcer promoting gene A protein, outer inflammatory protein and gamma-glutamyl transpeptidase. The host immune system, mainly by means of a Th1-polarized response, also plays a crucial role in the infection course. Although most H. pylori-positive individuals remain asymptomatic, the infection predisposes the development of various clinical conditions as peptic ulcers, gastric adenocarcinomas and mucosa-associated lymphoid tissue lymphomas. Invasive and non-invasive diagnostic methods, each of them with their related advantages and limitations, have been applied in H. pylori detection. Moreover, bacterial resistance to antimicrobial therapy is a major challenge in the treatment of this infection, and new therapy alternatives are being tested to improve H. pylori eradication. Last but not least, the development of effective vaccines against H. pylori infection have been the aim of several research studies.
Collapse
Affiliation(s)
- Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Aline Silva Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Vinícius Afonso Pereira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Miranda Sampaio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Pedro Henrique Moreira Neves
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
6
|
Li H, Martin FL, Jones KC, Zhang D. Interrogating the Transient Selectivity of Bacterial Chemotaxis-Driven Affinity and Accumulation of Carbonaceous Substances via Raman Microspectroscopy. Front Microbiol 2019; 10:2215. [PMID: 31636611 PMCID: PMC6787638 DOI: 10.3389/fmicb.2019.02215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Carbonaceous substances are fundamental organic nutrients for microbial metabolism and catabolism in natural habitats. Microbial abilities to sense, accumulate, and utilize organic carbonaceous substances in the complex nutrient environment are important for their growth and ecological functions. Bacterial chemotaxis is an effective mechanism for microbial utilization of carbonaceous substances under nutrient depletion conditions. Although bacterial accumulation and utilization to individual carbonaceous substance in long-term cultivation has been well studied, their selective affinity of mixed carbonaceous substances remains to be investigated, primarily because of technical limitations of conventional methods. Herein, we applied Raman microspectroscopy to identify chemotaxis-driven affinity and accumulation of four organic carbonaceous substances (glucose, succinate, acetate, and salicylate) by three bacterial strains (Acinetobacter baylyi, Pseudomonas fluorescence, and Escherichia coli). A. baylyi exhibited strong binding affinity toward glucose and succinate, whereas P. fluorescence and E. coli were preferentially responsive to glucose and acetate. For the first time, bacterial transient selectivity of carbonaceous substances was studied via interrogating Raman spectral alterations. Post-exposure to carbonaceous-substance mixtures, the three bacterial strains showed distinct selective behaviors. Stronger selective affinity enhanced the chemotaxis-related signal transduction in A. baylyi cells, whereas the carbonaceous substance signal transduction in E. coli was decreased by higher selective affinity. In P. fluorescence, there was no specific effect of selective affinity on signal transduction. Our study suggests that Raman microspectroscopy can successfully investigate and distinguish different scenarios of bacterial competitive and transient unitization of organic carbonaceous substances.
Collapse
Affiliation(s)
- Hanbing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.,Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Lee YH, Kim JH. Direct interaction between the transcription factors CadC and OmpR involved in the acid stress response of Salmonella enterica. J Microbiol 2017; 55:966-972. [DOI: 10.1007/s12275-017-7410-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023]
|
8
|
Greenswag AR, Muok A, Li X, Crane BR. Conformational Transitions that Enable Histidine Kinase Autophosphorylation and Receptor Array Integration. J Mol Biol 2015; 427:3890-907. [PMID: 26522934 PMCID: PMC4721237 DOI: 10.1016/j.jmb.2015.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 01/07/2023]
Abstract
During bacterial chemotaxis, transmembrane chemoreceptor arrays regulate autophosphorylation of the dimeric histidine kinase CheA. The five domains of CheA (P1-P5) each play a specific role in coupling receptor stimulation to CheA activity. Biochemical and X-ray scattering studies of thermostable CheA from Thermotoga maritima determine that the His-containing substrate domain (P1) is sequestered by interactions that depend upon P1 of the adjacent subunit. Non-hydrolyzable ATP analogs (but not ATP or ADP) release P1 from the protein core (domains P3P4P5) and increase its mobility. Detachment of both P1 domains or removal of one within a dimer increases net autophosphorylation substantially at physiological temperature (55°C). However, nearly all activity is lost without the dimerization domain (P3). The linker length between P1 and P3 dictates intersubunit (trans) versus intrasubunit (cis) autophosphorylation, with the trans reaction requiring a minimum length of 47 residues. A new crystal structure of the most active dimerization-plus-kinase unit (P3P4) reveals trans directing interactions between the tether connecting P3 to P2-P1 and the adjacent ATP-binding (P4) domain. The orientation of P4 relative to P3 in the P3P4 structure supports a planar CheA conformation that is required by membrane array models, and it suggests that the ATP lid of CheA may be poised to interact with receptors and coupling proteins. Collectively, these data suggest that the P1 domains are restrained in the off-state as a result of cross-subunit interactions. Perturbations at the nucleotide-binding pocket increase P1 mobility and access of the substrate His to P4-bound ATP.
Collapse
|
9
|
Wright E, Neethirajan S, Weng X. Microfluidic wound model for studying the behaviors of Pseudomonas aeruginosa in polymicrobial biofilms. Biotechnol Bioeng 2015; 112:2351-9. [PMID: 25994926 DOI: 10.1002/bit.25651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/02/2015] [Accepted: 05/11/2015] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa is a particularly problematic opportunistic pathogen due to its capacity to form recalcitrant biofilm structures, while cohabiting with other harmful/pathogenic species and harboring the capability to release toxins that cause tissue necrosis. Although it is now recognized that the majority of biofilm infections are polymicrobial, little is known about the complex interactions that occur within polymicrobial communities and few tools exist for studying these interactions. In this study, we have designed a microfluidic model that mimics the relevant physiological properties of wound microenvironment, while incorporating materials present in the human extracellular matrix/wound environment. Using microfluidics combined with imaging techniques, we have validated the robustness of our model comparing traditional GFP-tagging to new fluorescent staining techniques to visualize/resolve individual species within a polymicrobial habitat. We have also demonstrated that chemotactic stimuli may be incorporated into our model through specialized ports in our chamber. Our system is specifically designed for use with high resolution imaging techniques, allowing for data collection throughout the life of the biofilm and in real-time. Ultimately, this model can be used to investigate the spatio-temporal mechanobiological structures of the wound environment, and the response of the bacteria to the drug transport which will significantly contribute to our understanding of the development and progression of polymicrobial biofilm infections.
Collapse
Affiliation(s)
- Evan Wright
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, Canada, N1G 2W1
| | - Suresh Neethirajan
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, Canada, N1G 2W1.
| | - Xuan Weng
- BioNano Laboratory, School of Engineering, University of Guelph, Guelph, Canada, N1G 2W1
| |
Collapse
|
10
|
Greenswag AR, Li X, Borbat PP, Samanta D, Watts K, Freed JH, Crane BR. Preformed Soluble Chemoreceptor Trimers That Mimic Cellular Assembly States and Activate CheA Autophosphorylation. Biochemistry 2015; 54:3454-68. [PMID: 25967982 PMCID: PMC4772074 DOI: 10.1021/bi501570n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 05/12/2015] [Indexed: 12/13/2022]
Abstract
Bacterial chemoreceptors associate with the histidine kinase CheA and coupling protein CheW to form extended membrane arrays that receive and transduce environmental signals. A receptor trimers-of-dimers resides at each vertex of the hexagonal protein lattice. CheA is fully activated and regulated when it is integrated into the receptor assembly. To mimic these states in solution, we have engineered chemoreceptor cytoplasmic kinase-control modules (KCMs) based on the Escherichia coli aspartate receptor Tar that are covalently fused and trimerized by a foldon domain (Tar(FO)). Small-angle X-ray scattering, multi-angle light scattering, and pulsed-dipolar electron spin resonance spectroscopy of spin-labeled proteins indicate that the Tar(FO) modules assemble into homogeneous trimers wherein the protein interaction regions closely associate at the end opposite to the foldon domains. The Tar(FO) variants greatly increase the saturation levels of phosphorylated CheA (CheA-P), indicating that the association with a trimer of receptor dimers changes the fraction of active kinase. However, the rate constants for CheA-P formation with the Tar variants are low compared to those for autophosphorylation by free CheA, and net phosphotransfer from CheA to CheY does not increase commensurately with CheA autophosphorylation. Thus, the Tar variants facilitate slow conversion to an active form of CheA that then undergoes stable autophosphorylation and is capable of subsequent phosphotransfer to CheY. Free CheA is largely incapable of phosphorylation but contains a small active fraction. Addition of Tar(FO) to CheA promotes a planar conformation of the regulatory domains consistent with array models for the assembly state of the ternary complex and different from that observed with a single inhibitory receptor. Introduction of Tar(FO) into E. coli cells activates endogenous CheA to produce increased clockwise flagellar rotation, with the effects increasing in the presence of the chemotaxis methylation system (CheB/CheR). Overall, the Tar(FO) modules demonstrate that trimerized signaling tips self-associate, bind CheA and CheW, and facilitate conversion of CheA to an active conformation.
Collapse
Affiliation(s)
- Anna R. Greenswag
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Xiaoxiao Li
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Peter P. Borbat
- Center
for Advanced ESR Studies, Cornell University, Ithaca, New York 14853, United States
| | - Dipanjan Samanta
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Kylie
J. Watts
- Division
of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Jack H. Freed
- Center
for Advanced ESR Studies, Cornell University, Ithaca, New York 14853, United States
| | - Brian R. Crane
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| |
Collapse
|
11
|
Camelo M, Vera SP, Bonilla RR. Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. ACTA ACUST UNITED AC 2011. [DOI: 10.21930/rcta.vol12_num2_art:227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
La dinámica poblacional de la especie humana ha llevado a que la explotación de los recursos naturales, en búsqueda de suplir las necesidades alimenticias de los miles de millones de personas que habitan el planeta. Esta necesidad ha llevado a la utilización de materiales de alta eficiencia en la agricultura, variedades vegetales resistentes a plagas y enfermedades con ciclos de producción más cortos, agroquímicos que surten las necesidades nutricionales y provean protección frente factores bióticos adversos (plagas y enfermedades). Sin embargo, estas estrategias utilizadas en la agricultura moderna han generado impactos ambientales negativos que aún no comprendemos. La contaminación de aguas freáticas, eutrofización, aumento de gases de invernadero y acumulación de sustancias toxicas en la cadena trófica, son algunos de los graves problemas que se presentan por el uso indiscriminado de agroquímicos. Como alternativa a la utilización de estas sustancias, se ha propuesto el uso de bacterias rizosféricas que tienen reconocida acción sobre el crecimiento y desarrollo vegetal (PGPR, por sus siglas en ingles). Estas bacterias son capaces de estimular el desarrollo de las plantas de manera directa e indirecta y poseen una serie de mecanismos complejos que interactúan entre sí para establecer relaciones benéficas, especialmente con las raíces de las plantas objetivo. El estudio y entendimiento de las PGPR han sido temas de gran importancia en muchas investigaciones a nivel mundial, por esta razón esta revisión tiene por objetivo hacer una revisión parcial para dar a conocer los mecanismos que poseen las rizobacterias promotoras del crecimiento vegetal en el desarrollo de las plantas, así como el papel que desempeñan en el ciclaje de nutrientes.
Collapse
|
12
|
Chen Z, Xu X. DnaJ-like protein gene sll1384 is involved in phototaxis in Synechocystis sp. PCC 6803. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0674-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Arribas-Bosacoma R, Kim SK, Ferrer-Orta C, Blanco AG, Pereira PJ, Gomis-Rüth FX, Wanner BL, Coll M, Solà M. The X-ray crystal structures of two constitutively active mutants of the Escherichia coli PhoB receiver domain give insights into activation. J Mol Biol 2007; 366:626-41. [PMID: 17182055 PMCID: PMC1855202 DOI: 10.1016/j.jmb.2006.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 11/22/2022]
Abstract
The PhoR/PhoB two-component system is a key regulatory protein network enabling Escherichia coli to respond to inorganic phosphate (Pi) starvation conditions by turning on Pho regulon genes for more efficient Pi uptake and use of alternative phosphorus sources. Under environmental Pi depletion, the response regulator (RR) component, PhoB, is phosphorylated at the receiver domain (RD), a process that requires Mg(2+) bound at the active site. Phosphorylation of the RD relieves the inhibition of the PhoB effector domain (ED), a DNA-binding region that binds to Pho regulon promoters to activate transcription. The molecular details of the activation are proposed to involve dimerization of the RD and a conformational change in the RD detected by the ED. The structure of the PhoB RD shows a symmetrical interaction involving alpha1, loop beta5alpha5 and N terminus of alpha5 elements, also seen in the complex of PhoB RD with Mg(2+), in which helix alpha4 highly increases its flexibility. PhoB RD in complex with Mg(2+) and BeF(3) (an emulator of the phosphate moiety) undergoes a dramatic conformational change on helix alpha4 and shows another interaction involving alpha4, beta5 and alpha5 segments. We have selected a series of constitutively active PhoB mutants (PhoB(CA)) that are able to turn on the Pho regulon promoters in the absence phosphorylation and, as they cannot be inactivated, should therefore mimic the active RD state of PhoB and its functional oligomerisation. We have analysed the PhoB(CA) RD crystal structures of two such mutants, Asp53Ala/Tyr102Cys and Asp10Ala/Asp53Glu. Interestingly, both mutants reproduce the homodimeric arrangement through the symmetric interface encountered in the unbound and magnesium-bound wild-type PhoB RD structures. Besides, the mutant RD structures show a modified active site organization as well as changes at helix alpha4 that correlate with repositioning of surrounding residues, like the active-site events indicator Trp54, putatively redifining the interaction with the ED in the full-length protein.
Collapse
Affiliation(s)
- Raquel Arribas-Bosacoma
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Soo-Ki Kim
- Department of Biological Sciences; Purdue University; West Lafayette; Indiana 47907 USA
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Alexandre G. Blanco
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Pedro J.B. Pereira
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - F. Xavier Gomis-Rüth
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Barry L. Wanner
- Department of Biological Sciences; Purdue University; West Lafayette; Indiana 47907 USA
| | - Miquel Coll
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Maria Solà
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Orme R, Douglas CWI, Rimmer S, Webb M. Proteomic analysis of Escherichia coli biofilms reveals the overexpression of the outer membrane protein OmpA. Proteomics 2006; 6:4269-77. [PMID: 16888722 DOI: 10.1002/pmic.200600193] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacterial colonisation and biofilm formation on the surface of urinary catheters is a common cause of nosocomial infection, and as such is a major impediment to their long-term use. Understanding the mechanisms of biofilm formation on urinary catheters is critical to their control and will aid the future development of materials used in their manufacture. In this report we have used proteomic analysis coupled with immunoassays to show that the major outer membrane protein (OmpA) of Escherichia coli is overexpressed during biofilm formation. A series of synthetic hydrogels being developed for potential use as catheter coatings were used as the substrata and OmpA expression was increased in biofilms on all these surfaces, as well as being a feature of both a laboratory and a clinical strain of E. coli. Up-regulation of OmpA may, therefore, be a common feature of E. coli biofilms. These findings present OmpA as a potential target for biofilm inhibition and may contribute to the rational design of biofilm inhibiting hydrogel coatings for urinary catheters.
Collapse
Affiliation(s)
- Rowan Orme
- University of Manchester, Faculty of Medicine and Human Health, Centre for Molecular Medicine, Department of Medical Genetics, Manchester, UK
| | | | | | | |
Collapse
|
15
|
Sousa EHS, Gonzalez G, Gilles-Gonzalez MA. Oxygen blocks the reaction of the FixL-FixJ complex with ATP but does not influence binding of FixJ or ATP to FixL. Biochemistry 2006; 44:15359-65. [PMID: 16285740 DOI: 10.1021/bi051661h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RmFixL-RmFixJ oxygen signal transduction system ensures that a cascade of the Sinorhizobium meliloti nitrogen fixation genes is induced as the concentration of O2 drops below 50 microM in symbiotic nodules. Deoxy-RmFixL is a histidine protein kinase that catalyzes a phosphoryl transfer from ATP to the aspartate 54 residue of RmFixJ; RmFixJ is a response regulator that becomes activated as a transcription factor by phosphorylation. Association of O2 with a heme-binding domain in RmFixL triggers a conformational change that inhibits its kinase activity. Here we consider whether this inhibition is achieved by disrupting binding of either of the substrates, i.e., RmFixJ or ATP, to the RmFixL kinase. The ATP affinities of the oxy and deoxy states were compared via competition of ATP against TNP-nucleotide fluorophores. The influence of O2 on formation of the RmFixL-RmFixJ complex was investigated by fluorescence polarization. Oxygen dramatically inhibited the reaction of the RmFixL-RmFixJ complex with ATP but affected neither ATP binding (Kd approximately 100 microM) nor RmFixL-RmFixJ complex formation (Kd approximately 4 microM), indicating that inhibition of the kinase by the oxy-heme in RmFixL is achieved by inactivating the catalytic site, rather than by blocking the association of this enzyme with either of its substrates. An 8-fold enhancement of the rate of reaction of RmFixL with ATP in a deoxy-RmFixL-D54N RmFixJ complex, compared to that in isolated deoxy-RmFixL, exposes the strength of the allosteric effect of RmFixJ on the reaction. These results clarify the mechanistic roles of the signal and regulatory partner in this signal transduction system.
Collapse
Affiliation(s)
- Eduardo Henrique Silva Sousa
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, USA
| | | | | |
Collapse
|
16
|
Law AMJ, Aitken MD. Continuous-flow capillary assay for measuring bacterial chemotaxis. Appl Environ Microbiol 2005; 71:3137-43. [PMID: 15933013 PMCID: PMC1151859 DOI: 10.1128/aem.71.6.3137-3143.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/04/2005] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemotaxis may have a significant impact on the structure and function of bacterial communities. Quantification of chemotactic motion is necessary to identify chemoeffectors and to determine the bacterial transport parameters used in predictive models of chemotaxis. When the chemotactic bacteria consume the chemoeffector, the chemoeffector gradient to which the bacteria respond may be significantly perturbed by the consumption. Therefore, consumption of the chemoeffector can confound chemotaxis measurements if it is not accounted for. Current methods of quantifying chemotaxis use bacterial concentrations that are too high to preclude chemoeffector consumption or involve ill-defined conditions that make quantifying chemotaxis difficult. We developed a method of quantifying bacterial chemotaxis at low cell concentrations ( approximately 10(5) CFU/ml), so metabolism of the chemoeffector is minimized. The method facilitates quantification of bacterial-transport parameters by providing well-defined boundary conditions and can be used with volatile and semivolatile chemoeffectors.
Collapse
Affiliation(s)
- Aaron M J Law
- Department of Environmental Sciences and Engineering, CB 7431, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7431, USA.
| | | |
Collapse
|
17
|
Kneuper H, Janausch IG, Vijayan V, Zweckstetter M, Bock V, Griesinger C, Unden G. The Nature of the Stimulus and of the Fumarate Binding Site of the Fumarate Sensor DcuS of Escherichia coli. J Biol Chem 2005; 280:20596-603. [PMID: 15781452 DOI: 10.1074/jbc.m502015200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DcuS is a membrane-associated sensory histidine kinase of Escherichia coli specific for C(4) -dicarboxylates. The nature of the stimulus and its structural prerequisites were determined by measuring the induction of DcuS-dependent dcuB'-'lacZ gene expression. C(4)-dicarboxylates without or with substitutions at C2/C3 by hydrophilic (hydroxy, amino, or thiolate) groups stimulated gene expression in a similar way. When one carboxylate was replaced by sulfonate, methoxy, or nitro groups, only the latter (3-nitropropionate) was active. Thus, the ligand of DcuS has to carry two carboxylate or carboxylate/nitro groups 3.1-3.8 A apart from each other. The effector concentrations for half-maximal induction of dcuB'-'lacZ expression were 2-3 mm for the C(4)-dicarboxylates and 0.5 mm for 3-nitropropionate or d-tartrate. The periplasmic domain of DcuS contains a conserved cluster of positively charged or polar amino acid residues (Arg(107)-X(2)-His(110)-X(9)-Phe(120)-X(26)-Arg(147)-X-Phe(149)) that were essential for fumarate-dependent transcriptional regulation. The presence of fumarate or d-tartrate caused sharpening of peaks or chemical shift changes in HSQC NMR spectra of the isolated C(4)-dicarboylate binding domain. The amino acid residues responding to fumarate or d-tartrate were in the region comprising residues 89-150 and including the supposed binding site. DcuS(R147A) mutant with an inactivated binding site was isolated and reconstituted in liposomes. The protein showed the same (activation-independent) kinase activity as DcuS, but autophosphorylation of DcuS was no longer stimulated by C(4)-dicarboxylates. Therefore, the R147A mutation affected signal perception and transfer to the kinase but not the kinase activity per se.
Collapse
Affiliation(s)
- Holger Kneuper
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Eggenhofer E, Haslbeck M, Scharf B. MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti. Mol Microbiol 2004; 52:701-12. [PMID: 15101977 DOI: 10.1111/j.1365-2958.2004.04022.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The flagella of Sinorhizobium meliloti rotate solely clockwise and vary their rotary speed to provoke changes in the swimming path. This mode of motility control has its molecular corollary in two novel motility proteins, MotC and MotD, present in addition to the ubiquitous MotA/MotB energizing proton channel. MotC binds to the periplasmic portion of MotB, whereas MotD interacts with FliM at the cytoplasmic face of the rotor. We report here the assignment and analysis of a fifth motility protein, MotE. Deletion of motE resulted in aggregation and decay of the periplasmic MotC protein and, as a consequence, in paralysis of the cell. The 179-residue MotE protein bears an N-terminal signal peptide and is rapidly secreted to the periplasm, where it forms stable dimers that are linked by a disulphide bridge between the cysteine 53 residues. Both, the monomeric and the dimeric MotE bind to MotC, and dimerization is essential for MotE stability in the periplasm. We conclude that MotE is a periplasmic chaperone specific for MotC being responsible for its proper folding and stability. We also propose that the MotE dimer serves as a shuttle to target MotC to its binding site at MotB.
Collapse
Affiliation(s)
- Elke Eggenhofer
- Lehrstuhl für Genetik, Universität Regensburg, D-93040 Regensburg, Germany
| | | | | |
Collapse
|
19
|
Janausch IG, Garcia-Moreno I, Lehnen D, Zeuner Y, Unden G. Phosphorylation and DNA binding of the regulator DcuR of the fumarate-responsive two-component system DcuSR of Escherichia coli. MICROBIOLOGY-SGM 2004; 150:877-883. [PMID: 15073297 DOI: 10.1099/mic.0.26900-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The function of the response regulator DcuR of the DcuSR fumarate two-component sensory system of Escherichia coli was analysed in vitro. Isolated DcuR protein was phosphorylated by the sensory histidine kinase, DcuS, and ATP, or by acetyl phosphate. In gel retardation assays with target promoters (frdA, dcuB, dctA), phosphoryl DcuR (DcuR-P) formed a high-affinity complex, with an apparent K(D) (app. K(D)) of 0.2-0.3 microM DcuR-P, and a low-affinity (app. K(D) 0.8-2 microM) complex. The high-affinity complex was formed only with promoters transcriptionally-regulated by DcuSR, whereas low-affinity binding was seen also with some DcuSR-independent promoters. The binding site of DcuR-P at the dcuB promoter was determined by DNase I footprinting. One binding site of 42-52 nt (position -359 to -400/-410 nt upstream of the transcriptional start) was identified in the presence of low and high concentrations of DcuR-P. Non-phosphorylated DcuR, or DcuR-D56N mutated in the phosphoryl-accepting Asp56 residue, showed low-affinity binding to target promoters. DcuR-D56N was still able to interact with DcuS. DcuR-D56N increased the phosphorylation of DcuS and competitively inhibited phosphoryl transfer to wild-type DcuR.
Collapse
Affiliation(s)
- Ingo G Janausch
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| | - Inma Garcia-Moreno
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| | - Daniela Lehnen
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| | - Yvonne Zeuner
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| | - Gottfried Unden
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55 099 Mainz, Germany
| |
Collapse
|
20
|
Wurgler-Murphy SM, King DM, Kennelly PJ. The Phosphorylation Site Database: A guide to the serine-, threonine-, and/or tyrosine-phosphorylated proteins in prokaryotic organisms. Proteomics 2004; 4:1562-70. [PMID: 15174126 DOI: 10.1002/pmic.200300711] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Phosphorylation Site Database [http://vigen.biochem.vt.edu/xpd/xpd.htm] provides ready access to information from the primary scientific literature concerning those proteins from prokaryotic organisms, i.e., the members of the domains Archaea and Bacteria, that have been reported to undergo covalent phosphorylation on the hydroxyl side chains of serine, threonine, and/or tyrosine residues. Where known, the sequence of the site(s) of phosphorylation and the functional consequences of phosphorylation also are included. Active links enable users to quickly access further information concerning the phosphoprotein of interest from PubMed, GenBank, SWISS-PROT, and PIR.
Collapse
Affiliation(s)
- Susannah M Wurgler-Murphy
- Department of Biochemistry and Virginia Institute for Genomics, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | |
Collapse
|
21
|
Soutourina OA, Bertin PN. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 2003; 27:505-23. [PMID: 14550943 DOI: 10.1016/s0168-6445(03)00064-0] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flagellar motility helps bacteria to reach the most favourable environments and to successfully compete with other micro-organisms. These complex organelles also play an important role in adhesion to substrates, biofilm formation and virulence process. In addition, because their synthesis and functioning are very expensive for the cell (about 2% of biosynthetic energy expenditure in Escherichia coli) and may induce a strong immune response in the host organism, the expression of flagellar genes is highly regulated by environmental conditions. In the past few years, many data have been published about the regulation of motility in polarly and laterally flagellated bacteria. However, the mechanism of motility control by environmental factors and by some regulatory proteins remains largely unknown. In this respect, recent experimental data suggest that the master regulatory protein-encoding genes at the first level of the cascade are the main target for many environmental factors. This mechanism might require DNA topology alterations of their regulatory regions. Finally, despite some differences the polar and lateral flagellar cascades share many functional similarities, including a similar hierarchical organisation of flagellar systems. The remarkable parallelism in the functional organisation of flagellar systems suggests an evolutionary conservation of regulatory mechanisms in Gram-negative bacteria.
Collapse
Affiliation(s)
- Olga A Soutourina
- Laboratoire de Biochimie, UMR 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
22
|
Lower BH, Kennelly PJ. Open reading frame sso2387 from the archaeon Sulfolobus solfataricus encodes a polypeptide with protein-serine kinase activity. J Bacteriol 2003; 185:3436-45. [PMID: 12754243 PMCID: PMC155377 DOI: 10.1128/jb.185.11.3436-3445.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 03/21/2003] [Indexed: 11/20/2022] Open
Abstract
The predicted polypeptide product of open reading frame sso2387 from the archaeon Sulfolobus solfataricus, SsoPK2, displayed several of the sequence features conserved among the members of the "eukaryotic" protein kinase superfamily. sso2387 was cloned, and its polypeptide product was expressed in Escherichia coli. The recombinant protein, rSsoPK2, was recovered in insoluble aggregates that could be dispersed by using high concentrations (5 M) of urea. The solubilized polypeptide displayed the ability to phosphorylate itself as well as several exogenous proteins, including mixed histones, casein, bovine serum albumin, and reduced carboxyamidomethylated and maleylated lysozyme, on serine residues. The source of this activity resided in that portion of the protein displaying homology to the catalytic domain of eukaryotic protein kinases. By use of mass spectrometry, the sites of autophosphorylation were found to be located in two areas, one immediately N terminal to the region corresponding to subdomain I of eukaryotic protein kinases, and the second N terminal to the presumed activation loop located between subdomains VII and VIII. Autophosphorylation of rSsoPK2 could be uncoupled from the phosphorylation of exogenous proteins by manipulation of the temperature or mutagenic alteration of the enzyme. Autophosphorylation was detected only at temperatures >or=60 degrees C, whereas phosphorylation of exogenous proteins was detectable at 37 degrees C. Similarly, replacement of one of the potential sites of autophosphorylation, Ser(548), with alanine blocked autophosphorylation but not phosphorylation of an exogenous protein, casein.
Collapse
Affiliation(s)
- Brian H Lower
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
23
|
Thar R, Kuhl M. Bacteria are not too small for spatial sensing of chemical gradients: an experimental evidence. Proc Natl Acad Sci U S A 2003; 100:5748-53. [PMID: 12719518 PMCID: PMC156272 DOI: 10.1073/pnas.1030795100] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By analyzing the chemotactic behavior of a recently described marine bacterial species, we provide experimental evidence that bacteria are not too small for sensing chemical gradients spatially. The bipolar flagellated vibrioid bacteria (typical size 2 x 6 microm) exhibit a unique motility pattern as they translate along as well as rotate around their short axis, i.e., the pathways of the cell poles describe a double helix. The natural habitat of the bacteria is characterized by steep oxygen gradients where they accumulate in a band at their preferred oxygen concentration of approximately 2 microM. Single cells leaving the band toward the oxic region typically return to the band within 16 s following a U-shaped track. A detailed analysis of the tracks reveals that the cells must be able to sense the oxygen gradient perpendicular to their swimming direction. Thus, they can detect oxygen gradients along a distance of approximately 5 microm corresponding to the extension of their long axis. The observed behavior can be explained by the presence of two independent sensor regions at either cell pole that modulate the rotation speed of the polar flagellar bundles, i.e., the flagellar bundle at the cell pole exposed to higher oxygen concentration is rotating faster than the other bundle. A mathematical model based on these assumptions reproduces the observed swimming behavior of the bacteria.
Collapse
Affiliation(s)
- Roland Thar
- Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | | |
Collapse
|
24
|
Kennelly PJ. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 2003; 370:373-89. [PMID: 12444920 PMCID: PMC1223194 DOI: 10.1042/bj20021547] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 11/20/2002] [Accepted: 11/22/2002] [Indexed: 01/25/2023]
Abstract
Protein phosphorylation/dephosphorylation has long been considered a recent addition to Nature's regulatory arsenal. Early studies indicated that this molecular regulatory mechanism existed only in higher eukaryotes, suggesting that protein phosphorylation/dephosphorylation had emerged to meet the particular signal-transduction requirements of multicellular organisms. Although it has since become apparent that simple eukaryotes and even bacteria are sites of protein phosphorylation/dephosphorylation, the perception widely persists that this molecular regulatory mechanism emerged late in evolution, i.e. after the divergence of the contemporary phylogenetic domains. Only highly developed cells, it was reasoned, could afford the high 'overhead' costs inherent in the acquisition of dedicated protein kinases and protein phosphatases. The advent of genome sequencing has provided an opportunity to exploit Nature's phylogenetic diversity as a vehicle for critically examining this hypothesis. In tracing the origins and evolution of protein phosphorylation/dephosphorylation, the members of the Archaea, the so-called 'third domain of life', will play a critical role. Whereas several studies have demonstrated that archaeal proteins are subject to modification by covalent phosphorylation, relatively little is known concerning the identities of the proteins affected, the impact on their functional properties, or the enzymes that catalyse these events. However, examination of several archaeal genomes has revealed the widespread presence of several ostensibly 'eukaryotic' and 'bacterial' protein kinase and protein phosphatase paradigms. Similar findings of 'phylogenetic trespass' in members of the Eucarya (eukaryotes) and the Bacteria suggest that this versatile molecular regulatory mechanism emerged at an unexpectedly early point in development of 'life as we know it'.
Collapse
Affiliation(s)
- Peter J Kennelly
- Department of Biochemistry - 0308, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
25
|
Shitashiro M, Kato J, Fukumura T, Kuroda A, Ikeda T, Takiguchi N, Ohtake H. Evaluation of bacterial aerotaxis for its potential use in detecting the toxicity of chemicals to microorganisms. J Biotechnol 2003; 101:11-8. [PMID: 12523965 DOI: 10.1016/s0168-1656(02)00285-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bacterial aerotaxis (the movement of a cell toward oxygen) was evaluated for its potential use in detecting the toxicity of chemicals to microorganisms. The level of toxicity was determined by the concentration of test chemicals resulting in a 50% inhibition of aerotaxis of Pseudomonas aeruginosa PAO1 after 40 min of exposure. The aerotactic responses of P. aeruginosa were measured by using chemotaxis well chambers. Each clear acrylic chamber had a lower and upper well separated by a polycarbonate filter with a uniform pore size of 8.0 microm. To automatically detect bacterial cells that crossed the filter in response to a gradient of oxygen, P. aeruginosa PAO1 was marked with green fluorescent protein (GFP), and the GFP fluorescence intensity in the upper well was continuously monitored by using a fluorescence spectrometer. By using this technique, volatile chlorinated aliphatic compounds, including trichloroethylene (TCE), trichloroethane, and tetrachloroethylene, were found to be inhibitory to bacterial aerotaxis, suggesting their possible toxicity to microorganisms. We also examined more than 20 potential toxicants for their ability to inhibit the aerotaxis of P. aeruginosa. Based on these experimental results, we concluded that bacterial aerotaxis has potential for use as a fast and reliable indicator in assessing the toxicity of chemicals to microorganisms.
Collapse
Affiliation(s)
- Maiko Shitashiro
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Banerjee R, Das S, Mukhopadhyay K, Nag S, Chakrabortty A, Chaudhuri K. Involvement of in vivo induced cheY-4 gene of Vibrio cholerae in motility, early adherence to intestinal epithelial cells and regulation of virulence factors. FEBS Lett 2002; 532:221-6. [PMID: 12459494 DOI: 10.1016/s0014-5793(02)03678-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using a global transcription profile approach cheY-4 of Vibrio cholerae was identified as an in vivo induced gene. In the present study, duplication of the gene in the chromosome resulted in increased motility, increased chemotactic response towards isolated intestinal mucus layer and stronger adhesion to human intestinal epithelial cell line at an early phase of infection compared to wild type and a null mutant strain. In contrast to the cheY-4 null mutant, duplication of cheY-4 gene resulted in increased expression of ctxAB and tcpA, the two major virulence genes of V. cholerae.
Collapse
Affiliation(s)
- Rajat Banerjee
- Biophysics Division, Indian Institute of Chemical Biology 4, Raja S.C. Mullick Road, Jadavpur, Calcutta-700 032, India
| | | | | | | | | | | |
Collapse
|
27
|
de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1173-1180. [PMID: 12423023 DOI: 10.1094/mpmi.2002.15.11.1173] [Citation(s) in RCA: 294] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Motility is a major trait for competitive tomato root-tip colonization by Pseudomonas fluorescens. To test the hypothesis that this role of motility is based on chemotaxis toward exudate components, cheA mutants that were defective in flagella-driven chemotaxis but retained motility were constructed in four P. fluorescens strains. After inoculation of seedlings with a 1:1 mixture of wild-type and nonmotile mutants all mutants had a strongly reduced competitive root colonizing ability after 7 days of plant growth, both in a gnotobiotic sand system as well as in nonsterile potting soil. The differences were significant on all root parts and increased from root base to root tip. Significant differences at the root tip could already be detected after 2 to 3 days. These experiments show that chemotaxis is an important competitive colonization trait. The best competitive root-tip colonizer, strain WCS365, was tested for chemotaxis toward tomato root exudate and its major identified components. A chemotactic response was detected toward root exudate, some organic acids, and some amino acids from this exudate but not toward its sugars. Comparison of the minimal concentrations required for a chemotactic response with concentrations estimated for exudates suggested that malic acid and citric acid are among major chemo-attractants for P. fluorescens WCS365 cells in the tomato rhizosphere.
Collapse
Affiliation(s)
- Sandra de Weert
- Leiden University, Institute of Molecular Plant Sciences, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Scharf B. Real-time imaging of fluorescent flagellar filaments of Rhizobium lupini H13-3: flagellar rotation and pH-induced polymorphic transitions. J Bacteriol 2002; 184:5979-86. [PMID: 12374832 PMCID: PMC135403 DOI: 10.1128/jb.184.21.5979-5986.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30 degrees, a pitch of 1.36 micro m, and a helical diameter of 0.50 micro m. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations.
Collapse
Affiliation(s)
- Birgit Scharf
- Lehrstuhl für Genetik, Universität Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
29
|
Janausch IG, Garcia-Moreno I, Unden G. Function of DcuS from Escherichia coli as a fumarate-stimulated histidine protein kinase in vitro. J Biol Chem 2002; 277:39809-14. [PMID: 12167640 DOI: 10.1074/jbc.m204482200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two-component regulatory system DcuSR of Escherichia coli controls the expression of genes of C(4)-dicarboxylate metabolism in response to extracellular C(4)- dicarboxylates such as fumarate or succinate. DcuS is a membrane-integral sensor kinase, and the sensory and kinase domains are located on opposite sides of the cytoplasmic membrane. The intact DcuS protein (His(6)-DcuS) was overproduced and isolated in detergent containing buffer. His(6)-DcuS was reconstituted into liposomes made from E. coli phospholipids. Reconstituted His(6)-DcuS catalyzed, in contrast to the detergent-solubilized sensor, autophosphorylation by [gamma-(33)P]ATP with an approximate K(D) of 0.16 mm for ATP. Up to 7% of the reconstituted DcuS was phosphorylated. Phosphorylation was stimulated up to 5.9-fold by C(4)-dicarboxylates, but not by other carboxylates. The phosphoryl group of DcuS was rapidly transferred to the response regulator DcuR. Upon phosphorylation, DcuR bound specifically to dcuB promoter DNA. The reconstituted DcuSR system therefore represents a defined in vitro system, which is capable of the complete transmembrane signal transduction by the DcuSR two-component system from the stimulus (fumarate) to the DNA, including signal transfer across the phospholipid membrane.
Collapse
Affiliation(s)
- Ingo G Janausch
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55099 Mainz, Germany
| | | | | |
Collapse
|
30
|
Yoshihara S, Geng X, Ikeuchi M. pilG Gene cluster and split pilL genes involved in pilus biogenesis, motility and genetic transformation in the cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2002; 43:513-21. [PMID: 12040098 DOI: 10.1093/pcp/pcf061] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The unicellular motile cyanobacterium Synechocystis sp. PCC 6803 exhibits phototactic motility that depends on the type IV-like thick pilus structure. By gene disruption analysis, we showed that a gene cluster of slr1041, slr1042, slr1043 and slr1044, whose predicted products are homologous to PatA, CheY, CheW and MCP, respectively, was more or less required for pilus assembly, motility and natural transformation competency with extraneous DNA. By sequence homology, the missing cheA-like gene in this cluster was identified as novel split genes, slr0073 and slr0322, at separate loci on the genome. This was confirmed by non-motile phenotype of their disruptants. Unique hyperpiliation was observed in the slr1042 and slr0073 disruptants, suggestive of their specific interaction with pilT1. The genes, thus identified as pil genes in this study, were designated pilG (slr1041), pilH (slr1042), pilI (slr1043), pilJ (slr1044), pilL-N (slr0073) and pilL-C (slr0322).
Collapse
Affiliation(s)
- Shizue Yoshihara
- Department of Life Sciences (Biology), University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
| | | | | |
Collapse
|
31
|
Clegg S, Hughes KT. FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J Bacteriol 2002; 184:1209-13. [PMID: 11807085 PMCID: PMC134799 DOI: 10.1128/jb.184.4.1209-1213.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium produces two types of filamentous appendages on its surface. Fimbriae mediate adherence to tissues and cells via receptor-specific interactions, and flagella are the organelles of motility. These appendages play a role in colonization and dissemination, respectively, from infected surfaces and may be important components of bacterial survival. Increased expression of FimZ in serovar Typhimurium resulted in bacteria which were hyperfimbriated but were nonmotile in soft agar. This lack of motility was associated with down regulation of the flhDC master flagellar operon. Therefore, FimZ represents a molecular connection between flagella and fimbrial formation in serovar Typhimurium, indicating that the synthesis of flagella and fimbriae are oppositely controlled.
Collapse
Affiliation(s)
- Steven Clegg
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
32
|
Janausch IG, Zientz E, Tran QH, Kröger A, Unden G. C4-dicarboxylate carriers and sensors in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:39-56. [PMID: 11803016 DOI: 10.1016/s0005-2728(01)00233-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria contain secondary carriers for the uptake, exchange or efflux of C4-dicarboxylates. In aerobic bacteria, dicarboxylate transport (Dct)A carriers catalyze uptake of C4-dicarboxylates in a H(+)- or Na(+)-C4-dicarboxylate symport. Carriers of the dicarboxylate uptake (Dcu)AB family are used for electroneutral fumarate:succinate antiport which is required in anaerobic fumarate respiration. The DcuC carriers apparently function in succinate efflux during fermentation. The tripartite ATP-independent periplasmic (TRAP) transporter carriers are secondary uptake carriers requiring a periplasmic solute binding protein. For heterologous exchange of C4-dicarboxylates with other carboxylic acids (such as citrate:succinate by CitT) further types of carriers are used. The different families of C4-dicarboxylate carriers, the biochemistry of the transport reactions, and their metabolic functions are described. Many bacteria contain membraneous C4-dicarboxylate sensors which control the synthesis of enzymes for C4-dicarboxylate metabolism. The C4-dicarboxylate sensors DcuS, DctB, and DctS are histidine protein kinases and belong to different families of two-component systems. They contain periplasmic domains presumably involved in C4-dicarboxylate sensing. In DcuS the periplasmic domain seems to be essential for direct interaction with the C4-dicarboxylates. In signal perception by DctB, interaction of the C4-dicarboxylates with DctB and the DctA carrier plays an important role.
Collapse
Affiliation(s)
- I G Janausch
- Institut für Mikrobiologie und Weinforschung, Johann Gutenberg-Universität Mainz, Germany
| | | | | | | | | |
Collapse
|
33
|
Abstract
Once cancer cells have spread and formed secondary masses, breast cancers are largely incurable even with state-of-the-art medicine. To improve diagnosis and therapy, better markers are needed to distinguish cells which have a high probability for causing clinically relevant, macroscopic metastases. In this review, we summarize the several genes that regulate breast cancer metastasis. Two categories of genes are presented--metastasis activator (ras, MEK1, mta1, proteinases, adhesion molecules, chemoattractants/receptors, autotaxin, PKC, S100A4, RhoC, osteopontin) and metastasis suppressor (Nm23, E-cadherin, TIMPs, KiSS1, Kai1, Maspin, MKK4, BRMS1). While the mechanisms of action for most of these genes are not fully elucidated, some clues are emerging and are presented.
Collapse
Affiliation(s)
- M T Debies
- Jake Gittlen Cancer Research Institute, College of Medicine, Penn State University, Hershey 17033-0850, USA
| | | |
Collapse
|
34
|
Mourey L, Da Re S, Pédelacq JD, Tolstykh T, Faurie C, Guillet V, Stock JB, Samama JP. Crystal structure of the CheA histidine phosphotransfer domain that mediates response regulator phosphorylation in bacterial chemotaxis. J Biol Chem 2001; 276:31074-82. [PMID: 11387324 DOI: 10.1074/jbc.m101943200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray crystal structure of the P1 or H domain of the Salmonella CheA protein has been solved at 2.1-A resolution. The structure is composed of an up-down up-down four-helix bundle that is typical of histidine phosphotransfer or HPt domains such as Escherichia coli ArcB(C) and Saccharomyces cerevisiae Ypd1. Loop regions and additional structural features distinguish all three proteins. The CheA domain has an additional C-terminal helix that lies over the surface formed by the C and D helices. The phosphoaccepting His-48 is located at a solvent-exposed position in the middle of the B helix where it is surrounded by several residues that are characteristic of other HPt domains. Mutagenesis studies indicate that conserved glutamate and lysine residues that are part of a hydrogen-bond network with His-48 are essential for the ATP-dependent phosphorylation reaction but not for the phosphotransfer reaction with CheY. These results suggest that the CheA-P1 domain may serve as a good model for understanding the general function of HPt domains in complex two-component phosphorelay systems.
Collapse
Affiliation(s)
- L Mourey
- Groupe de Cristallographie Biologique, Centre National de la Recherche Scientifique/Institut de Pharmacologie et de Biologie Structurale, 205 route de Narbonne, 31077 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- S R Lybarger
- Department of Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
36
|
Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA. Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti. J Mol Biol 2001; 308:449-55. [PMID: 11327779 DOI: 10.1006/jmbi.2001.4591] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The FixL/FixJ two-component regulatory system of Sinorhizobium meliloti controls the expression of nitrogen fixation genes in response to O2. When phosphorylated, the transcription factor FixJ binds to the nifA and fixK promoters in S. meliloti and induces expression of the corresponding genes, both of which encode key transcription activators. Phosphorylation of FixJ has been proposed to occur via the following cascade. The sensor kinase FixL reacts with ATP independently of FixJ, transferring a phosphoryl group to one of its own histidine residues. Dissociation of O2 from a heme-binding PAS domain in FixL greatly accelerates the rate of this autophosphorylation. The phosphoryl group is rapidly transferred from phospho-FixL to an aspartate residue on FixJ. The resulting phospho-FixJ is short-lived, due to a FixL-catalyzed hydrolysis of the aspartyl phosphate. Here, we show that phosphorylation of FixLJ, i.e. the complex of FixL with FixJ, is at least tenfold faster than the phosphorylation of FixL without FixJ. We further show that a phospho-FixJ phosphatase, thought to reside in FixL, is absent from this complex. These results indicate that FixLJ reacts with ATP as a unit and much more efficiently than FixL alone, and that autophosphorylation and phosphoryl transfer do not occur independently, in sequence, but rather in a closely coupled processive reaction. These findings highlight the possible influence of synergistic interactions of the regulatory components in two-component-system signal transduction.
Collapse
Affiliation(s)
- J R Tuckerman
- Departments of Biochemistry, Plant Biology, and the Plant Biotechnology Center, The Ohio State University, 1060 Carmack Road, Columbus, OH 43210-1002, USA
| | | | | |
Collapse
|
37
|
Parac TN, Coligaev B, Zientz E, Unden G, Pet W, Griesinger C. Assignment of 1H, 13C and 15N resonances to the sensory domain of the membraneous two-component fumarate sensor (histidine protein kinase) DcuS of Escherichia coli. JOURNAL OF BIOMOLECULAR NMR 2001; 19:91-92. [PMID: 11246864 DOI: 10.1023/a:1008301425100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
38
|
Parales RE, Ditty JL, Harwood CS. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 2000; 66:4098-104. [PMID: 10966434 PMCID: PMC92264 DOI: 10.1128/aem.66.9.4098-4104.2000] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.
Collapse
Affiliation(s)
- R E Parales
- Department of Microbiology and Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
39
|
Cotter DA, Mahadeo DC, Cervi DN, Kishi Y, Gale K, Sands T, Sameshima M. Environmental regulation of pathways controlling sporulation, dormancy and germination utilizes bacterial-like signaling complexes in Dictyostelium discoideum. Protist 2000; 151:111-26. [PMID: 10965951 DOI: 10.1078/1434-4610-00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- D A Cotter
- Department of Biological Sciences, University of Windsor, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|