1
|
Andreas MP, Giessen TW. The biosynthesis of the odorant 2-methylisoborneol is compartmentalized inside a protein shell. Nat Commun 2024; 15:9715. [PMID: 39521781 PMCID: PMC11550324 DOI: 10.1038/s41467-024-54175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Terpenoids are the largest class of natural products, found across all domains of life. One of the most abundant bacterial terpenoids is the volatile odorant 2-methylisoborneol (2-MIB), partially responsible for the earthy smell of soil and musty taste of contaminated water. Many bacterial 2-MIB biosynthetic gene clusters were thought to encode a conserved transcription factor, named EshA in the model soil bacterium Streptomyces griseus. Here, we revise the function of EshA, now referred to as Sg Enc, and show that it is a Family 2B encapsulin shell protein. Using cryo-electron microscopy, we find that Sg Enc forms an icosahedral protein shell and encapsulates 2-methylisoborneol synthase (2-MIBS) as a cargo protein. Sg Enc contains a cyclic adenosine monophosphate (cAMP) binding domain (CBD)-fold insertion and a unique metal-binding domain, both displayed on the shell exterior. We show that Sg Enc CBDs do not bind cAMP. We find that 2-MIBS cargo loading is mediated by an N-terminal disordered cargo-loading domain and that 2-MIBS activity and Sg Enc shell structure are not modulated by cAMP. Our work redefines the function of EshA and establishes Family 2B encapsulins as cargo-loaded protein nanocompartments involved in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Andreas MP, Giessen TW. The biosynthesis of the odorant 2-methylisoborneol is compartmentalized inside a protein shell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590730. [PMID: 38712110 PMCID: PMC11071394 DOI: 10.1101/2024.04.23.590730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Terpenoids are the largest class of natural products, found across all domains of life. One of the most abundant bacterial terpenoids is the volatile odorant 2-methylisoborneol (2-MIB), partially responsible for the earthy smell of soil and musty taste of contaminated water. Many bacterial 2-MIB biosynthetic gene clusters were thought to encode a conserved transcription factor, named EshA in the model soil bacterium Streptomyces griseus. Here, we revise the function of EshA, now referred to as Sg Enc, and show that it is a Family 2B encapsulin shell protein. Using cryo-electron microscopy, we find that Sg Enc forms an icosahedral protein shell and encapsulates 2-methylisoborneol synthase (2-MIBS) as a cargo protein. Sg Enc contains a cyclic adenosine monophosphate (cAMP) binding domain (CBD)-fold insertion and a unique metal-binding domain, both displayed on the shell exterior. We show that Sg Enc CBDs do not bind cAMP. We find that 2-MIBS cargo loading is mediated by an N-terminal disordered cargo-loading domain and that 2-MIBS activity and Sg Enc shell structure are not modulated by cAMP. Our work redefines the function of EshA and establishes Family 2B encapsulins as cargo-loaded protein nanocompartments involved in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Chmelyuk NS, Oda VV, Gabashvili AN, Abakumov MA. Encapsulins: Structure, Properties, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2023; 88:35-49. [PMID: 37068871 PMCID: PMC9937530 DOI: 10.1134/s0006297923010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In 1994 a new class of prokaryotic compartments was discovered, collectively called "encapsulins" or "nanocompartments". Encapsulin shell protomer proteins self-assemble to form icosahedral structures of various diameters (24-42 nm). Inside of nanocompartments shells, one or several cargo proteins, diverse in their functions, can be encapsulated. In addition, non-native cargo proteins can be loaded into nanocompartments, and shell surfaces can be modified via various compounds, which makes it possible to create targeted drug delivery systems, labels for optical and MRI imaging, and to use encapsulins as bioreactors. This review describes a number of strategies of encapsulins application in various fields of science, including biomedicine and nanobiotechnologies.
Collapse
Affiliation(s)
- Nelly S Chmelyuk
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117977, Russia
| | - Vera V Oda
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Anna N Gabashvili
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117977, Russia
| |
Collapse
|
4
|
Abstract
Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.
Collapse
Affiliation(s)
- Tobias W. Giessen
- Departments of Biomedical Engineering and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Exploratory Growth in Streptomyces venezuelae Involves a Unique Transcriptional Program, Enhanced Oxidative Stress Response, and Profound Acceleration in Response to Glycerol. J Bacteriol 2022; 204:e0062321. [PMID: 35254103 DOI: 10.1128/jb.00623-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exploration is a recently discovered mode of growth and behavior exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signaling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in the expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source, and this response is broadly conserved across other exploration-competent species. IMPORTANCE Exploration represents an alternative growth strategy for Streptomyces bacteria and is initiated in response to other microbes or specific environmental conditions. Here, we show that entry into exploration involves comprehensive transcriptional reprogramming, with an emphasis on changes in primary metabolism and regulatory/signaling functions. Intriguingly, a number of transcription factor classes were downregulated upon entry into exploration. In contrast, respiration-associated genes were strongly induced, and this was accompanied by an enhanced oxidative stress response. Notably, our transcriptional analyses suggested that glycerol may play a role in exploration, and we found that glycerol supplementation dramatically enhanced the exploration response in many streptomycetes. This work sheds new light on the regulatory and metabolic cues that influence a fascinating new microbial behavior.
Collapse
|
6
|
Gabashvili AN, Chmelyuk NS, Efremova MV, Malinovskaya JA, Semkina AS, Abakumov MA. Encapsulins-Bacterial Protein Nanocompartments: Structure, Properties, and Application. Biomolecules 2020; 10:biom10060966. [PMID: 32604934 PMCID: PMC7355545 DOI: 10.3390/biom10060966] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, a new class of prokaryotic compartments, collectively called encapsulins or protein nanocompartments, has been discovered. The shell proteins of these structures self-organize to form icosahedral compartments with a diameter of 25-42 nm, while one or more cargo proteins with various functions can be encapsulated in the nanocompartment. Non-native cargo proteins can be loaded into nanocompartments and the surface of the shells can be further functionalized, which allows for developing targeted drug delivery systems or using encapsulins as contrast agents for magnetic resonance imaging. Since the genes encoding encapsulins can be integrated into the cell genome, encapsulins are attractive for investigation in various scientific fields, including biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Anna N. Gabashvili
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
| | - Nelly S. Chmelyuk
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
| | - Maria V. Efremova
- Department of Nuclear Medicine, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Institute of Biological and Medical Imaging and Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Alevtina S. Semkina
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
| | - Maxim A. Abakumov
- Laboratory “Biomedical Nanomaterials”, National University of Science and Technology “MISiS”, Leninskiy Prospect, 4, 119049 Moscow, Russia; (A.N.G.); (N.S.C.)
- Department of Medical Nanobiotechnoilogy, Pirogov Russian National Research Medical University, Ostrovityanova st, 1, 117997 Moscow, Russia;
- Correspondence: ; Tel.: +7-903-586-4777
| |
Collapse
|
7
|
Wu Y, Kang Q, Zhang LL, Bai L. Subtilisin-Involved Morphology Engineering for Improved Antibiotic Production in Actinomycetes. Biomolecules 2020; 10:biom10060851. [PMID: 32503302 PMCID: PMC7356834 DOI: 10.3390/biom10060851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
In the submerged cultivation of filamentous microbes, including actinomycetes, complex morphology is one of the critical process features for the production of secondary metabolites. Ansamitocin P-3 (AP-3), an antitumor agent, is a secondary metabolite produced by Actinosynnema pretiosum ATCC 31280. An excessive mycelial fragmentation of A. pretiosum ATCC 31280 was observed during the early stage of fermentation. Through comparative transcriptomic analysis, a subtilisin-like serine peptidase encoded gene APASM_4178 was identified to be responsible for the mycelial fragmentation. Mutant WYT-5 with the APASM_4178 deletion showed increased biomass and improved AP-3 yield by 43.65%. We also found that the expression of APASM_4178 is specifically regulated by an AdpA-like protein APASM_1021. Moreover, the mycelial fragmentation was alternatively alleviated by the overexpression of subtilisin inhibitor encoded genes, which also led to a 46.50 ± 0.79% yield increase of AP-3. Furthermore, APASM_4178 was overexpressed in salinomycin-producing Streptomyces albus BK 3-25 and validamycin-producing S. hygroscopicus TL01, which resulted in not only dispersed mycelia in both strains, but also a 33.80% yield improvement of salinomycin to 24.07 g/L and a 14.94% yield improvement of validamycin to 21.46 g/L. In conclusion, our work elucidates the involvement of a novel subtilisin-like serine peptidase in morphological differentiation, and modulation of its expression could be an effective strategy for morphology engineering and antibiotic yield improvement in actinomycetes.
Collapse
Affiliation(s)
- Yuanting Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Li Zhang
- College of Life Science, Tarim University, Alar 843300, China;
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200204, China; (Y.W.); (Q.K.)
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Tarim University, Alar 843300, China;
- Correspondence:
| |
Collapse
|
8
|
Planckaert S, Jourdan S, Francis IM, Deflandre B, Rigali S, Devreese B. Proteomic Response to Thaxtomin Phytotoxin Elicitor Cellobiose and to Deletion of Cellulose Utilization Regulator CebR in Streptomyces scabies. J Proteome Res 2018; 17:3837-3852. [DOI: 10.1021/acs.jproteome.8b00528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sören Planckaert
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Samuel Jourdan
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Isolde M. Francis
- Department of Biology, California State University Bakersfield, Bakersfield, California 93311-1022, United States
| | - Benoit Deflandre
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Sébastien Rigali
- InBioS − Center for Protein Engineering, University of Liège, Institut de Chimie, B-4000 Liège, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
9
|
Nichols RJ, Cassidy-Amstutz C, Chaijarasphong T, Savage DF. Encapsulins: molecular biology of the shell. Crit Rev Biochem Mol Biol 2017. [DOI: 10.1080/10409238.2017.1337709] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert J. Nichols
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA, USA
| | | | | | - David F. Savage
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA, USA
- Department of Chemistry, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
10
|
van Dissel D, Claessen D, van Wezel GP. Morphogenesis of Streptomyces in submerged cultures. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:1-45. [PMID: 25131399 DOI: 10.1016/b978-0-12-800259-9.00001-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the genus Streptomyces are mycelial bacteria that undergo a complex multicellular life cycle and propagate via sporulation. Streptomycetes are important industrial microorganisms, as they produce a plethora of medically relevant natural products, including the majority of clinically important antibiotics, as well as a wide range of enzymes with industrial application. While development of Streptomyces in surface-grown cultures is well studied, relatively little is known of the parameters that determine morphogenesis in submerged cultures. Here, growth is characterized by the formation of mycelial networks and pellets. From the perspective of industrial fermentations, such mycelial growth is unattractive, as it is associated with slow growth, heterogeneous cultures, and high viscosity. Here, we review the current insights into the genetic and environmental factors that determine mycelial growth and morphology in liquid-grown cultures. The genetic factors include cell-matrix proteins and extracellular polymers, morphoproteins with specific roles in liquid-culture morphogenesis, with the SsgA-like proteins as well-studied examples, and programmed cell death. Environmental factors refer in particular to those dictated by process engineering, such as growth media and reactor set-up. These insights are then integrated to provide perspectives as to how this knowledge can be applied to improve streptomycetes for industrial applications.
Collapse
Affiliation(s)
- Dino van Dissel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Nindita Y, Nishikawa T, Arakawa K, Wang G, Ochi K, Qin Z, Kinashi H. Chromosomal circularization of the model Streptomyces species, Streptomyces coelicolor A3(2). FEMS Microbiol Lett 2013; 347:149-55. [PMID: 23915258 DOI: 10.1111/1574-6968.12228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/10/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022] Open
Abstract
Streptomyces linear chromosomes frequently cause deletions at both ends spontaneously or by various mutagenic treatments, leading to chromosomal circularization and arm replacement. However, chromosomal circularization has not been confirmed at a sequence level in the model species, Streptomyces coelicolor A3(2). In this work, we have cloned and sequenced a fusion junction of a circularized chromosome in an S. coelicolor A3(2) mutant and found a 6-bp overlap between the left and right deletion ends. This result shows that chromosomal circularization occurred by nonhomologous recombination of the deletion ends in this species, too. At the end of the study, we discuss on stability and evolution of Streptomyces chromosomes.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Tian Y, Fowler K, Findlay K, Tan H, Chater KF. An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor. J Bacteriol 2007; 189:2873-85. [PMID: 17220225 PMCID: PMC1855786 DOI: 10.1128/jb.01615-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WhiI, a regulator required for efficient sporulation septation in the aerial mycelium of Streptomyces coelicolor, resembles response regulators of bacterial two-component systems but lacks some conserved features of typical phosphorylation pockets. Four amino acids of the abnormal "phosphorylation pocket" were changed by site-directed mutagenesis. Unlike whiI null mutations, these point mutations did not interfere with sporulation septation but had various effects on spore maturation. Transcriptome analysis was used to compare gene expression in the wild-type strain, a D27A mutant (pale gray spores), a D69E mutant (wild-type spores), and a null mutant (white aerial mycelium, no spores) (a new variant of PCR targeting was used to introduce the point mutations into the chromosomal copy of whiI). The results revealed 45 genes that were affected by the deletion of whiI. Many of these showed increased expression in the wild type at the time when aerial growth and development were taking place. About half of them showed reduced expression in the null mutant, and about half showed increased expression. Some, but not all, of these 45 genes were also affected by the D27A mutation, and a few were affected by the D69E mutation. The results were consistent with a model in which WhiI acts differently at sequential stages of development. Consideration of the functions of whiI-influenced genes provides some insights into the physiology of aerial hyphae. Mutation of seven whiI-influenced genes revealed that three of them play roles in spore maturation.
Collapse
Affiliation(s)
- Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Saito N, Xu J, Hosaka T, Okamoto S, Aoki H, Bibb MJ, Ochi K. EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). J Bacteriol 2006; 188:4952-61. [PMID: 16788203 PMCID: PMC1483009 DOI: 10.1128/jb.00343-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin production in the eshA disruptant was restored by expression of a truncated relA gene, which increased the ppGpp level to the level in the wild-type strain, indicating that the reduced ppGpp accumulation in the eshA mutant was solely responsible for the loss of antibiotic production. Antibiotic production was also restored in the eshA mutant by introducing mutations into rpoB (encoding the RNA polymerase beta subunit) that bypassed the requirement for ppGpp, which is consistent with a role for EshA in modulating ppGpp levels. EshA contains a cyclic nucleotide-binding domain that is essential for its role in triggering actinorhodin production. EshA may provide new insights and opportunities to unravel the molecular signaling events that occur during physiological differentiation in streptomycetes.
Collapse
Affiliation(s)
- Natsumi Saito
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Filippova SN, Gorbatyuk EV, Poglazova MN, Soina VS, Kuznetsov VD, El’-Registan GI. Endospore formation by Streptomyces avermitilis in submerged culture. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0048-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K. Ribosome Engineering and Secondary Metabolite Production. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:155-84. [PMID: 15566979 DOI: 10.1016/s0065-2164(04)56005-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kozo Ochi
- National Food Research Institute Ibaraki 305-8642, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Paradkar A, Trefzer A, Chakraburtty R, Stassi D. Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 2003; 23:1-27. [PMID: 12693442 DOI: 10.1080/713609296] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Streptomycetes are gram-positive, soil-inhabiting bacteria of the order Actinomycetales. These organisms exhibit an unusual, developmentally complex life cycle and produce many economically important secondary metabolites, such as antibiotics, immunosuppressants, insecticides, and anti-tumor agents. Streptomyces species have been the subject of genetic investigation for over 50 years, with many studies focusing on the developmental cycle and the production of secondary metabolites. This information provides a solid foundation for the application of structural and functional genomics to the actinomycetes. The complete DNA sequence of the model organism, Streptomyces coelicolor M145, has been published recently, with others expected to follow soon. As more genomic sequences become available, the rational genetic manipulation of these organisms to elucidate metabolic and regulatory networks, to increase the production of commercially important compounds, and to create novel secondary metabolites will be greatly facilitated. This review presents the current state of the field of genomics as it is being applied to the actinomycetes.
Collapse
Affiliation(s)
- Ashish Paradkar
- Small Molecule Discovery, Diversa Corporation, 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
17
|
Rebets Y, Ostash B, Luzhetskyy A, Hoffmeister D, Brana A, Mendez C, Salas JA, Bechthold A, Fedorenko V. Production of landomycins in Streptomyces globisporus 1912 and S cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 2003; 222:149-53. [PMID: 12757959 DOI: 10.1016/s0378-1097(03)00258-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulatory genes lanI and lndI have been cloned from the landomycin A (LaA) producer Streptomyces cyanogenus S136 and from the landomycin E (LaE) producer Streptomyces globisporus 1912, respectively and both have been sequenced. A culture of S. globisporus I2-1 carrying a disrupted lndI gene did not produce LaE and other related intermediates. Complementation of S. globisporus I2-1 with either the lndI or lanI gene reconstituted LaE production indicating that LanI and LndI are involved in activation of structural genes in the respective clusters. Structural features of these regulatory genes are discussed.
Collapse
Affiliation(s)
- Y Rebets
- Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskyy st 4, L'viv 79005, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Saito N, Matsubara K, Watanabe M, Kato F, Ochi K. Genetic and biochemical characterization of EshA, a protein that forms large multimers and affects developmental processes in Streptomyces griseus. J Biol Chem 2003; 278:5902-11. [PMID: 12488450 DOI: 10.1074/jbc.m208564200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 52-kDa protein, EshA, whose expression is controlled developmentally, is produced during the late growth phase of Streptomyces spp. We found that disruption of the eshA gene, which encodes the EshA protein, abolishes the aerial mycelium formation and streptomycin production in Streptomyces griseus when grown on an agar plate. The eshA disruptant KO-390 demonstrated a reduced amount of expression of the transcriptional activator strR, thus accounting for the failure to produce streptomycin. KO-390 was found to accumulate deoxynucleoside triphosphates at high levels, including dGTP, at late growth phase. The accumulation of dGTP was a cause for the impaired ability of KO-390 to produce aerial mycelium, because the ability to form aerial mycelium was completely repaired by addition of decoyinine, an inhibitor of GMP synthetase. The accumulation of dNTP in KO-390 coincided with a reduced rate of DNA synthesis. The developmental time frame of these phenomena in KO-390 matched a burst of EshA expression in the wild-type strain. In contrast to S. griseus, the eshA disruption did not affect the ability for Streptomyces coelicolor to form aerial mycelium and did not result in the aberrant accumulation of dNTP accompanied by arrest of DNA synthesis, implying qualitative differences in addition to quantitative differences between the two EshA proteins. We propose that the S. griseus EshA protein somehow positively affects (or regulates) the replication of DNA in wild-type cells at late growth phase but leads to aberrant phenotypes in mutant cells due to the disturbed DNA replication. The EshA protein was found to exist as a multimer ( approximately 20-mers) creating a cubic-like structure with a diameter of 27 nm and located predominantly in cytoplasm.
Collapse
Affiliation(s)
- Natsumi Saito
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|
19
|
Kwak J, Jiang H, Kendrick KE. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol Lett 2002; 209:243-8. [PMID: 12007812 DOI: 10.1111/j.1574-6968.2002.tb11138.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Streptomyces griseus does not readily take up foreign DNA isolated from other Streptomyces species or Escherichia coli, presumably due to its unique restriction-modification systems that function as a barrier for interspecific DNA transfer. To efficiently transform S. griseus by avoiding the restriction barriers, we methylated incoming DNA in vivo and in vitro and treated protoplasts with heat prior to transformation. Whereas heat treatment of protoplasts or methylation of the E. coli-Streptomyces shuttle vectors (pXE4 and pKK1443) did not prominently improve the transformation efficiency, HpaII methylation of the vectors from any E. coli strains tested in this study highly increased the transformation efficiency. The highest transformation efficiency was observed when the shuttle vectors were isolated from the dam, hsd strain of E. coli (GM161) and methylated by AluI and HpaII methyltransferases, and the efficiency was approximately the same as that of the vectors from S. griseus. We identified several restriction-modification systems that decrease the transformation efficiency. This research also led us to understand methylation profiles and restriction-modification systems in S. griseus.
Collapse
Affiliation(s)
- Jangyul Kwak
- Korea Research Institute of Biology and Biotechnology, 52 Oun-Dong, Yusong-Ku, Taejon 305-333, South Korea.
| | | | | |
Collapse
|
20
|
Kawamoto S, Watanabe M, Saito N, Hesketh A, Vachalova K, Matsubara K, Ochi K. Molecular and functional analyses of the gene (eshA) encoding the 52-kilodalton protein of Streptomyces coelicolor A3(2) required for antibiotic production. J Bacteriol 2001; 183:6009-16. [PMID: 11567001 PMCID: PMC99680 DOI: 10.1128/jb.183.20.6009-6016.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of proteins recovered in the S100 precipitate fraction of Streptomyces griseus after ultracentrifugation led to the identification of a 52-kDa protein which is produced during the late growth phase. The gene (eshA) which codes for this protein was cloned from S. griseus, and then its homologue was cloned from Streptomyces coelicolor A3(2). The protein was deduced to be 471 amino acids in length. The protein EshA is characterized by a central region that shows homology to the eukaryotic-type cyclic nucleotide-binding domains. Significant homology was also found to MMPI in Mycobacterium leprae, a major antigenic protein to humans. The eshA gene mapped near the chromosome end and was not essential for viability, as demonstrated by gene disruption experiments, but its disruption resulted in the abolishment of an antibiotic (actinorhodin but not undecylprodigiosin) production. Aerial mycelium was produced as abundantly as by the parent strain. Expression analysis of the EshA protein by Western blotting revealed that EshA is present only in late-growth-phase cells. The eshA gene was transcribed just preceding intracellular accumulation of the EshA protein, as determined by S1 nuclease protection, indicating that EshA expression is regulated at the transcription level. The expression of EshA was unaffected by introduction of the relA mutation, which blocks ppGpp synthesis.
Collapse
Affiliation(s)
- S Kawamoto
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Kwak J, Dharmatilake AJ, Jiang H, Kendrick KE. Differential regulation of ftsZ transcription during septation of Streptomyces griseus. J Bacteriol 2001; 183:5092-101. [PMID: 11489862 PMCID: PMC95385 DOI: 10.1128/jb.183.17.5092-5101.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces has been known to form two types of septa. The data in this research demonstrated that Streptomyces griseus forms another type of septum near the base of sporogenic hyphae (basal septum). To understand the regulation of the septation machinery in S. griseus, we investigated the expression of the ftsZ gene. S1 nuclease protection assays revealed that four ftsZ transcripts were differentially expressed during morphological differentiation. The vegetative transcript (emanating from P(veg)) is present at a moderate level during vegetative growth, but is switched off within the first 2 h of sporulation. Two sporulation-specific transcripts predominantly accumulated, and the levels increased by approximately fivefold together shortly before sporulation septa begin to form. Consistently, the sporulation-specific transcripts were expressed much earlier and more abundantly in a group of nonsporulating mutants that form their sporulation septa prematurely. Promoter-probe studies with two different reporter systems confirmed the activities of the putative promoters identified from the 5' end point of the transcripts. The levels and expression timing of promoter activities were consistent with the results of nuclease protection assays. The aseptate phenotype of the P(spo) mutant indicated that the increased transcription from P(spo) is required for sporulation septation, but not for vegetative or basal septum formation.
Collapse
Affiliation(s)
- J Kwak
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|