1
|
Muprints and Whole Genome Insertion Scans: Methods for Investigating Chromosome Accessibility and DNA Dynamics using Bacteriophage Mu. Methods Mol Biol 2017. [PMID: 29134604 DOI: 10.1007/978-1-4939-7343-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bacteriophage Mu infects a broad range of gram-negative bacteria. After infection, Mu amplifies its DNA through a coupled transposition/replication cycle that inserts copies of Mu throughout all domains of the folded chromosome. Mu has the most relaxed target specificity of the known transposons (Manna et al., J Bacteriol 187: 3586-3588, 2005) and the Mu DNA packaging process, called "headful packaging", incorporates 50-150 bp of host sequences covalently bound to its left end and 2 kb of host DNA linked to its right end into a viral capsid. The combination of broad insertion coverage and easy phage purification makes Mu ideal for analyzing chromosome dynamics and DNA structure inside living cells. "Mu printing" (Wang and Higgins, Mol Microbiol 12: 665-677, 1994; Manna et al., J Bacteriol 183: 3328-3335, 2001) uses the polymerase chain reaction (PCR) to generate a quantitative fine structure map of Mu insertion sites within specific regions of a bacterial chromosome or plasmid. A complementary technique uses microarray platforms to provide quantitative insertion patterns covering a whole bacterial genome (Manna et al., J Bacteriol 187: 3586-3588, 2005; Manna et al., Proc Natl Acad Sci U S A 101: 9780-9785, 2004). These two methods provide a powerful complementary system to investigate chromosome structure inside living cells.
Collapse
|
2
|
High-throughput mutation, selection, and phenotype screening of mutant methanogenic archaea. J Microbiol Methods 2016; 131:113-121. [DOI: 10.1016/j.mimet.2016.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 01/21/2023]
|
3
|
Higgins NP. Species-specific supercoil dynamics of the bacterial nucleoid. Biophys Rev 2016; 8:113-121. [PMID: 28510215 PMCID: PMC5425795 DOI: 10.1007/s12551-016-0207-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
Bacteria organize DNA into self-adherent conglomerates called nucleoids that are replicated, transcribed, and partitioned within the cytoplasm during growth and cell division. Three classes of proteins help condense nucleoids: (1) DNA gyrase generates diffusible negative supercoils that help compact DNA into a dynamic interwound and multiply branched structure; (2) RNA polymerase and abundant small basic nucleoid-associated proteins (NAPs) create constrained supercoils by binding, bending, and forming cooperative protein-DNA complexes; (3) a multi-protein DNA condensin organizes chromosome structure to assist sister chromosome segregation after replication. Most bacteria have four topoisomerases that participate in DNA dynamics during replication and transcription. Gyrase and topoisomerase I (Topo I) are intimately involved in transcription; Topo III and Topo IV play critical roles in decatenating and unknotting DNA during and immediately after replication. RNA polymerase generates positive (+) supercoils downstream and negative (-) supercoils upstream of highly transcribed operons. Supercoil levels vary under fast versus slow growth conditions, but what surprises many investigators is that it also varies significantly between different bacterial species. The MukFEB condensin is dispensable in the high supercoil density (σ) organism Escherichia coli but is essential in Salmonella spp. which has 15 % fewer supercoils. These observations raise two questions: (1) How do different species regulate supercoil density? (2) Why do closely related species evolve different optimal supercoil levels? Control of supercoil density in E. coli and Salmonella is largely determined by differences encoded within the gyrase subunits. Supercoil differences may arise to minimalize toxicity of mobile DNA elements in the genome.
Collapse
Affiliation(s)
- N Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Kaul Human Genetics Bldg. 524a, Birmingham, AL, 35233, USA.
| |
Collapse
|
4
|
Abstract
Transposable phage Mu has played a major role in elucidating the mechanism of movement of mobile DNA elements. The high efficiency of Mu transposition has facilitated a detailed biochemical dissection of the reaction mechanism, as well as of protein and DNA elements that regulate transpososome assembly and function. The deduced phosphotransfer mechanism involves in-line orientation of metal ion-activated hydroxyl groups for nucleophilic attack on reactive diester bonds, a mechanism that appears to be used by all transposable elements examined to date. A crystal structure of the Mu transpososome is available. Mu differs from all other transposable elements in encoding unique adaptations that promote its viral lifestyle. These adaptations include multiple DNA (enhancer, SGS) and protein (MuB, HU, IHF) elements that enable efficient Mu end synapsis, efficient target capture, low target specificity, immunity to transposition near or into itself, and efficient mechanisms for recruiting host repair and replication machineries to resolve transposition intermediates. MuB has multiple functions, including target capture and immunity. The SGS element promotes gyrase-mediated Mu end synapsis, and the enhancer, aided by HU and IHF, participates in directing a unique topological architecture of the Mu synapse. The function of these DNA and protein elements is important during both lysogenic and lytic phases. Enhancer properties have been exploited in the design of mini-Mu vectors for genetic engineering. Mu ends assembled into active transpososomes have been delivered directly into bacterial, yeast, and human genomes, where they integrate efficiently, and may prove useful for gene therapy.
Collapse
|
5
|
Hall RN, Meers J, Mitter N, Fowler EV, Mahony TJ. The Meleagrid herpesvirus 1 genome is partially resistant to transposition. Avian Dis 2013; 57:380-6. [PMID: 23901750 DOI: 10.1637/10339-082912-reg.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
Collapse
Affiliation(s)
- Robyn N Hall
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | | | | | | | | |
Collapse
|
6
|
Ge J, Lou Z, Harshey RM. Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein. Mob DNA 2010; 1:8. [PMID: 20226074 PMCID: PMC2837660 DOI: 10.1186/1759-8753-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 02/01/2010] [Indexed: 01/11/2023] Open
Abstract
We describe a new immunity mechanism that protects actively replicating/transposing Mu from self-integration. We show that this mechanism is distinct from the established cis-immunity mechanism, which operates by removal of MuB protein from DNA adjacent to Mu ends. MuB normally promotes integration into DNA to which it is bound, hence its removal prevents use of this DNA as target. Contrary to what might be expected from a cis-immunity mechanism, strong binding of MuB was observed throughout the Mu genome. We also show that the cis-immunity mechanism is apparently functional outside Mu ends, but that the level of protection offered by this mechanism is insufficient to explain the protection seen inside Mu. Thus, both strong binding of MuB inside and poor immunity outside Mu testify to a mechanism of immunity distinct from cis-immunity, which we call 'Mu genome immunity'. MuB has the potential to coat the Mu genome and prevent auto-integration as previously observed in vitro on synthetic A/T-only DNA, where strong MuB binding occluded the entire bound region from Mu insertions. The existence of two rival immunity mechanisms within and outside the Mu genome, both employing MuB, suggests that the replicating Mu genome must be segregated into an independent chromosomal domain. We propose a model for how formation of a 'Mu domain' may be aided by specific Mu sequences and nucleoid-associated proteins, promoting polymerization of MuB on the genome to form a barrier against self-integration.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
7
|
Crénès G, Moundras C, Demattei MV, Bigot Y, Petit A, Renault S. Target site selection by the mariner-like element, Mos1. Genetica 2009; 138:509-17. [PMID: 19629719 DOI: 10.1007/s10709-009-9387-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/07/2009] [Indexed: 12/18/2022]
Abstract
The eukaryotic transposon Mos1 is a class-II transposable element that moves using a "cut-and-paste" mechanism in which the transposase is the only protein factor required. The formation of the excision complex is well documented, but the integration step has so far received less investigation. Like all mariner-like elements, Mos1 was thought to integrate into a TA dinucleotide without displaying any other target selection preferences. We set out to synthesize what is currently known about Mos1 insertion sites, and to define the characteristics of Mos1 insertion sequences in vitro and in vivo. Statistical analysis can be used to identify the TA dinucleotides that are non-randomly targeted for transposon integration. In vitro, no specific feature determining target choice other than the requirement for a TA dinucleotide has been identified. In vivo, data were obtained from two previously reported integration hotspots: the bacterial cat gene and the Caenorhabditis elegans rDNA locus. Analysis of these insertion sites revealed a preference for TA dinucleotides that are included in TATA or TA x TA motifs, or located within AT-rich regions. Analysis of the physical properties of sequences obtained in vitro and in vivo do not help to explain Mos1 integration preferences, suggesting that other characteristics must be involved in Mos1 target choice.
Collapse
Affiliation(s)
- Gwénaelle Crénès
- Université François Rabelais de Tours, GICC, Parc de Grandmont, 37200 Tours, France
| | | | | | | | | | | |
Collapse
|
8
|
Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery. Proc Natl Acad Sci U S A 2008; 105:12101-7. [PMID: 18719126 DOI: 10.1073/pnas.0805868105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collaboration between MuA transposase and its activator protein, MuB, is essential for properly regulated transposition. MuB activates MuA catalytic activity, selects target DNA, and stimulates transposition into the selected target site. Selection of appropriate target DNA requires ATP hydrolysis by the MuB ATPase. By fusing MuB to a site-specific DNA-binding protein, the Arc repressor, we generated a MuB variant that could select target DNA independently of ATP. This Arc-MuB fusion protein allowed us to test whether ATP binding and hydrolysis by MuB are necessary for stimulation of transposition into selected DNA, a process termed target delivery. We find that with the fusion proteins, MuB-dependent target delivery occurs efficiently under conditions where ATP hydrolysis is prevented by mutation or use of ADP. In contrast, no delivery was detected in the absence of nucleotide. These data indicate that the ATP- and MuA-regulated DNA-binding activity of MuB is not essential for target delivery but that activation of MuA by MuB strictly requires nucleotide-bound MuB. Furthermore, we find that the fusion protein directs transposition to regions of the DNA within 40-750 bp of its own binding site. Taken together, these results suggest that target delivery by MuB occurs as a consequence of the ability of MuB to stimulate MuA while simultaneously tethering MuA to a selected target DNA. This tethered-activator model provides an attractive explanation for other examples of protein-stimulated control of target site selection.
Collapse
|
9
|
Ge J, Harshey RM. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration. J Mol Biol 2008; 380:598-607. [PMID: 18556020 DOI: 10.1016/j.jmb.2008.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
Abstract
Phage Mu transposes promiscuously, employing protein MuB for target capture. MuB forms stable filaments on A/T-rich DNA, and a correlation between preferred MuB binding and Mu integration has been observed. We have investigated the relationship between MuB-binding and Mu insertion into hot and cold Mu targets within the Escherichia coli genome. Although higher binding of MuB to select hot versus cold genes was seen in vivo, the hot genes had an average A/T content and were less preferred targets in vitro, whereas cold genes had higher A/T values and were more efficient targets in vitro. These data suggest that A/T-rich regions are unavailable for MuB binding, and that A/T content is not a good predictor of Mu behavior in vivo. Insertion patterns within two hot genes in vivo could be superimposed on those obtained in vitro in reactions employing purified MuA transposase and MuB, ruling out the contribution of a special DNA structure or additional host factors to the hot behavior of these genes. While A/T-rich DNA is a preferred target in vitro, a fragment made up exclusively of A/T was an extremely poor target. A continuous MuB filament assembled along the A/T region likely protects it against the action of MuA. Our results suggest that MuB binds E. coli DNA in an interspersed manner utilizing local A/T richness, and facilitates capture of these bound regions by the transpososome. Actual integration events are then directed to sites that are in proximity to MuB filaments but are themselves free of MuB.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
10
|
Manna D, Porwollik S, McClelland M, Tan R, Higgins NP. Microarray analysis of Mu transposition in Salmonella enterica, serovar Typhimurium: transposon exclusion by high-density DNA binding proteins. Mol Microbiol 2007; 66:315-28. [PMID: 17850262 DOI: 10.1111/j.1365-2958.2007.05915.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All organisms contain transposons with the potential to disrupt and rearrange genes. Despite the presence of these destabilizing sequences, some genomes show remarkable stability over evolutionary time. Do bacteria defend the genome against disruption by transposons? Phage Mu replicates by transposition and virtually all genes are potential insertion targets. To test whether bacteria limit Mu transposition to specific parts of the chromosome, DNA arrays of Salmonella enterica were used to quantitatively measure target site preference and compare the data with Escherichia coli. Essential genes were as susceptible to transposon disruption as non-essential ones in both organisms, but the correlation of transposition hot spots among homologous genes was poor. Genes in highly transcribed operons were insulated from transposon mutagenesis in both organisms. A 10 kb cold spot on the pSLT plasmid was near parS, a site to which the ParB protein binds and spreads along DNA. Deleting ParB erased the plasmid cold spot, and an ectopic parS site placed in the Salmonella chromosome created a new cold spot in the presence of ParB. Our data show that competition between cellular proteins and transposition proteins on plasmids and the chromosome is a dominant factor controlling the genetic footprint of transposons in living cells.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL-35294, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Tn10 is a bacterial transposon that transposes through a non-replicative mechanism. This mode of DNA transposition is widely used in bacteria and is also used by "DNA-based" transposons in eukaryotes. Tn10 has served as a paradigm for this mode of transposition and continues to provide novel insights into how steps in transposition reactions occur and how these steps are regulated. A common feature of transposition reactions is that they require the formation of a higher order protein-DNA complex called a transpososome. A major objective in the last few years has been to better understand the dynamics of transpososome assembly and progression through the course of transposition reactions. This problem is particularly interesting in the Tn10 system because two important host proteins, IHF and H-NS, have been implicated in regulating transpososome assembly and/or function. Interestingly, H-NS is an integral part of stress response pathways in bacteria, and its function is known to be sensitive to changes in environmental conditions. Consequently, H-NS may provide a means of allowing Tn10 to responed to changing environmental conditions. The current review focuses on the roles of both IHF and H-NS on Tn10 transposition.
Collapse
Affiliation(s)
- David B Haniford
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
12
|
Twiss E, Coros AM, Tavakoli NP, Derbyshire KM. Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress. Mol Microbiol 2005; 57:1593-607. [PMID: 16135227 DOI: 10.1111/j.1365-2958.2005.04794.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of host factors in regulating bacterial transposition has never been comprehensively addressed, despite the potential consequences of transposition. Here, we describe a screen for host factors that influence transposition of IS903, and the effect of these mutations on two additional transposons, Tn10 and Tn552. Over 20,000 independent insertion mutants were screened in two strains of Escherichia coli; from these we isolated over 100 mutants that altered IS903 transposition. These included mutations that increased or decreased the extent of transposition and also altered the timing of transposition during colony growth. The large number of gene products affecting transposition, and their diverse functions, indicate that the overall process of transposition is modulated at many different steps and by a range of processes. Previous work has suggested that transposition is triggered by cellular stress. We describe two independent mutations that are in a gene required for fermentative metabolism during anaerobic growth, and that cause transposition to occur earlier than normal during colony development. The ability to suppress this phenotype by the addition of fumarate therefore provides direct evidence that transposition occurs in response to nutritional stress. Other mutations that altered transposition disrupted genes normally associated with DNA metabolism, intermediary metabolism, transport, cellular redox, protein folding and proteolysis and together these define a network of host proteins that could potentially allow readout of the cell's environmental and nutritional status. In summary, this work identifies a collection of proteins that allow the host to modulate transposition in response to cell stress.
Collapse
Affiliation(s)
- Erin Twiss
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, NY, USA
| | | | | | | |
Collapse
|
13
|
Abstract
During a normal cell cycle, chromosomes are exposed to many biochemical reactions that require specific types of DNA movement. Separation forces move replicated chromosomes into separate sister cell compartments during cell division, and the contemporaneous acts of DNA replication, RNA transcription and cotranscriptional translation of membrane proteins cause specific regions of DNA to twist, writhe and expand or contract. Recent experiments indicate that a dynamic and stochastic mechanism creates supercoil DNA domains soon after DNA replication. Domain structure is subsequently reorganized by RNA transcription. Examples of transcription-dependent chromosome remodelling are also emerging from eukaryotic cell systems.
Collapse
Affiliation(s)
| | | | - N. Patrick Higgins
- *For correspondence. E-mail; Tel. (+1) 205 934 3299; Fax (+1) 205 975 5955
| |
Collapse
|
14
|
Coros AM, Twiss E, Tavakoli NP, Derbyshire KM. Genetic evidence that GTP is required for transposition of IS903 and Tn552 in Escherichia coli. J Bacteriol 2005; 187:4598-606. [PMID: 15968071 PMCID: PMC1151752 DOI: 10.1128/jb.187.13.4598-4606.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surprisingly little is known about the role of host factors in regulating transposition, despite the potentially deleterious rearrangements caused by the movement of transposons. An extensive mutant screen was therefore conducted to identify Escherichia coli host factors that regulate transposition. An E. coli mutant library was screened using a papillation assay that allows detection of IS903 transposition events by the formation of blue papillae on a colony. Several host mutants were identified that exhibited a unique papillation pattern: a predominant ring of papillae just inside the edge of the colony, implying that transposition was triggered within these cells based on their spatial location within the colony. These mutants were found to be in pur genes, whose products are involved in the purine biosynthetic pathway. The transposition ring phenotype was also observed with Tn552, but not Tn10, establishing that this was not unique to IS903 and that it was not an artifact of the assay. Further genetic analyses of purine biosynthetic mutants indicated that the ring of transposition was consistent with a GTP requirement for IS903 and Tn552 transposition. Together, our observations suggest that transposition occurs during late stages of colony growth and that transposition occurs inside the colony edge in response to both a gradient of exogenous purines across the colony and the developmental stage of the cells.
Collapse
Affiliation(s)
- Abbie M Coros
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Target specificity for bacteriophage Mu was studied using a new phage derivative that enabled cloning of Mu-host junctions from phage DNA. Insertions distributed throughout the chromosome showed no orientation bias with respect to transcription or replication polarity. Genes with a high frequency of the triplet CGG were preferred targets.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
16
|
Manna D, Breier AM, Higgins NP. Microarray analysis of transposition targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci U S A 2004; 101:9780-5. [PMID: 15210965 PMCID: PMC470751 DOI: 10.1073/pnas.0400745101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Indexed: 11/18/2022] Open
Abstract
Transposable elements have influenced the genetic and physical composition of all modern organisms. Defining how different transposons select target sites is critical for understanding the biochemical mechanism of this type of recombination and the impact of mobile genes on chromosome structure and function. Phage Mu replicates in Gram-negative bacteria using an extremely efficient transposition reaction. Replicated copies are excised from the chromosome and packaged into virus particles. Each viral genome plus several hundred base pairs of host DNA covalently attached to the prophage right end is packed into a virion. To study Mu transposition preferences, we used DNA microarray technology to measure the abundance of >4,000 Escherichia coli genes in purified Mu phage DNA. Insertion hot- and cold-spot genes were found throughout the genome, reflecting >1,000-fold variation in utilization frequency. A moderate preference was observed for genes near the origin compared to terminus of replication. Large biases were found at hot and cold spots, which often include several consecutive genes. Efficient transcription of genes had a strong negative influence on transposition. Our results indicate that local chromosome structure is more important than DNA sequence in determining Mu target-site selection.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
17
|
Swingle B, O'Carroll M, Haniford D, Derbyshire KM. The effect of host-encoded nucleoid proteins on transposition: H-NS influences targeting of both IS903 and Tn10. Mol Microbiol 2004; 52:1055-67. [PMID: 15130124 DOI: 10.1111/j.1365-2958.2004.04051.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleoid proteins are small, abundant, DNA-binding proteins that profoundly affect the local and global structure of the chromosome, and play a major role in gene regulation. Although several of these proteins have been shown to enhance assembly of transpososomes before initiating transposition, no systematic survey has been carried out examining the in vivo role(s) of these proteins in transposition. We have examined the requirement of the six most abundant nucleoid proteins in transposition for three different transposons, IS903, Tn10 and Tn552. Most notably, H-NS was required for efficient transposition of all three elements in a papillation assay, suggesting a general role for H-NS in bacterial transposition. Further studies indicated that H-NS was exerting its effect on target capture. Targeting preferences for IS903 into the Escherichia coli chromosome were dramatically altered in the absence of H-NS. In addition, the alterations observed in the IS903 target profile emphasized the important role that H-NS plays in chromosome organization. A defect in target capture was also inferred for Tn10, as an excised transposon fragment, a precursor to target capture, accumulated in in vivo induction assays. Furthermore, a transposase mutant that is known to increase target DNA bending and to relax target specificity eliminated this block to target capture. Together, these results imply a role for H-NS in target capture, either by providing regions of DNA more accessible to transposition or by stabilizing transpososome binding to captured targets immediately before strand transfer.
Collapse
Affiliation(s)
- Bryan Swingle
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | | | | | | |
Collapse
|
18
|
Skelding Z, Queen-Baker J, Craig NL. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition. EMBO J 2003; 22:5904-17. [PMID: 14592987 PMCID: PMC275408 DOI: 10.1093/emboj/cdg551] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Tn7 transposon avoids inserting into a target DNA that contains a pre-existing copy of Tn7. This phenomenon, known as 'target immunity', is established when TnsB, a Tn7 transposase subunit, binds to Tn7 sequences in the target DNA and mediates displacement of TnsC, a critical transposase activator, from the DNA. Paradoxically, TnsB-TnsC interactions are also required to promote transposon insertion. We have probed Tn7 target immunity by isolating TnsB mutants that mediate more frequent insertions into a potentially immune target DNA because they fail to provoke dissociation of TnsC from the DNA. We show that a single region of TnsB mediates the TnsB-TnsC interaction that underlies both target immunity and transposition, but that TnsA, the other transposase subunit, channels the TnsB-TnsC interaction toward transposition.
Collapse
Affiliation(s)
- Zachary Skelding
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
19
|
Greene EC, Mizuuchi K. Direct observation of single MuB polymers: evidence for a DNA-dependent conformational change for generating an active target complex. Mol Cell 2002; 9:1079-89. [PMID: 12049743 DOI: 10.1016/s1097-2765(02)00514-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MuB, an ATP-dependent DNA binding protein, is critical for selection of target sites on the host chromosome during Mu transposition. We have developed a system for observing the behavior of single MuB polymers bound to an immobilized molecule of DNA. We show that the individual polymers display a broad distribution of disassembly rates and exhibit regional variations in DNA binding. Additionally, ATP hydrolysis was obligatorily coupled to dissociation of MuB subunits from the DNA during polymer disassembly. We propose a model in which the formation of an active target complex is mediated by a conformational change within the MuB polymer that is influenced by the sequence of the DNA.
Collapse
Affiliation(s)
- Eric C Greene
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|