1
|
Guan Y, Wang D, Lin X, Li X, Lv C, Wang D, Zhang L. Unveiling a Novel Role of Cdc42 in Pyruvate Metabolism Pathway to Mediate Insecticidal Activity of Beauveria bassiana. J Fungi (Basel) 2022; 8:jof8040394. [PMID: 35448625 PMCID: PMC9031566 DOI: 10.3390/jof8040394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The small GTPase Cdc42 acts as a molecular switch essential for cell cycles and polar growth in model yeast, but has not been explored in Beaurveria bassiana, an insect-pathogenic fungus serving as a main source of fungal formulations against arthropod pests. Here, we show the indispensability of Cdc42 for fungal insecticidal activity. Deletion of cdc42 in B. bassiana resulted in a great loss of virulence to Galleria mellonella, a model insect, via normal cuticle infection as well as defects in conidial germination, radial growth, aerial conidiation, and conidial tolerance to heat and UVB irradiation. The deleted mutant’s hyphae formed fewer or more septa and produced unicellular blastospores with disturbed cell cycles under submerged-culture conditions. Transcriptomic analysis revealed differential expression of 746 genes and dysregulation of pyruvate metabolism and related pathways, which were validated by marked changes in intracellular pyruvate content, ATP content, related enzyme activities, and in extracellular beauvericin content and Pr1 protease activity vital for fungal virulence. These findings uncover a novel role for Cdc42 in the pathways of pyruvate metabolism and the pyruvate-involved tricarboxylic acid cycle (TCA cycle) and a linkage of the novel role with its indispensability for the biological control potential of B. bassiana against arthropod pests.
Collapse
Affiliation(s)
- Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
- Correspondence: (Y.G.); (L.Z.)
| | - Donghuang Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Xiaofeng Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Xin Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Chao Lv
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Dingyi Wang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China;
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
- Correspondence: (Y.G.); (L.Z.)
| |
Collapse
|
2
|
Talaromyces marneffei Infection: Virulence, Intracellular Lifestyle and Host Defense Mechanisms. J Fungi (Basel) 2022; 8:jof8020200. [PMID: 35205954 PMCID: PMC8880324 DOI: 10.3390/jof8020200] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
Talaromycosis (Penicilliosis) is an opportunistic mycosis caused by the thermally dimorphic fungus Talaromyces (Penicillium) marneffei. Similar to other major causes of systemic mycoses, the extent of disease and outcomes are the results of complex interactions between this opportunistic human pathogen and a host’s immune response. This review will highlight the current knowledge regarding the dynamic interaction between T. marneffei and mammalian hosts, particularly highlighting important aspects of virulence factors, intracellular lifestyle and the mechanisms of immune defense as well as the strategies of the pathogen for manipulating and evading host immune cells.
Collapse
|
3
|
Transcriptomic Analysis Reveals That Rho GTPases Regulate Trap Development and Lifestyle Transition of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0175921. [PMID: 35019695 PMCID: PMC8754127 DOI: 10.1128/spectrum.01759-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nematode-trapping (NT) fungi can form unique infection structures (traps) to capture and kill free-living nematodes and, thus, can play a potential role in the biocontrol of nematodes. Arthrobotrys oligospora is a representative species of NT fungi. Here, we performed a time course transcriptome sequencing (RNA-seq) analysis of transcriptomes to understand the global gene expression levels of A. oligospora during trap formation and predation. We identified 5,752 unique differentially expressed genes, among which the rac gene was significantly upregulated. Alternative splicing events occurred in 2,012 genes, including the rac and rho2 gene. Furthermore, we characterized three Rho GTPases (Rho2, Rac, and Cdc42) in A. oligospora using gene disruption and multiphenotypic analysis. Our analyses showed that AoRac and AoCdc42 play an important role in mycelium growth, lipid accumulation, DNA damage, sporulation, trap formation, pathogenicity, and stress response in A. oligospora. AoCdc42 and AoRac specifically interacted with components of the Nox complex, thus regulating the production of reactive oxygen species. Moreover, the transcript levels of several genes associated with protein kinase A, mitogen-activated protein kinase, and p21-activated kinase were also altered in the mutants, suggesting that Rho GTPases might function upstream from these kinases. This study highlights the important role of Rho GTPases in A. oligospora and provides insights into the regulatory mechanisms of signaling pathways in the trap morphogenesis and lifestyle transition of NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are widely distributed in terrestrial and aquatic ecosystems. Their broad adaptability and flexible lifestyles make them ideal agents for controlling pathogenic nematodes. Arthrobotrys oligospora is a model species employed for understanding the interaction between fungi and nematodes. Here, we revealed that alternative splicing events play a crucial role in the trap development and lifestyle transition in A. oligospora. Furthermore, Rho GTPases exert differential effects on the growth, development, and pathogenicity of A. oligospora. In particular, AoRac is required for sporulation and trap morphogenesis. In addition, our analysis showed that Rho GTPases regulate the production of reactive oxygen species and function upstream from several kinases. Collectively, these results expand our understanding of gene expression and alternative splicing events in A. oligospora and the important roles of Rho GTPases in NT fungi, thereby providing a foundation for exploring their potential application in the biocontrol of pathogenic nematodes.
Collapse
|
4
|
Weerasinghe H, Bugeja HE, Andrianopoulos A. The novel Dbl homology/BAR domain protein, MsgA, of Talaromyces marneffei regulates yeast morphogenesis during growth inside host cells. Sci Rep 2021; 11:2334. [PMID: 33504839 PMCID: PMC7840665 DOI: 10.1038/s41598-020-79593-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Hayley E Bugeja
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
5
|
The bZIP transcription factor FpAda1 is essential for fungal growth and conidiation in Fusarium pseudograminearum. Curr Genet 2019; 66:507-515. [PMID: 31696258 PMCID: PMC7198649 DOI: 10.1007/s00294-019-01042-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
Abstract
Fusarium pseudograminearum is an important pathogen of Fusarium crown rot and Fusarium head blight, which is able to infect wheat and barley worldwide, causing great economic losses. Transcription factors (TFs) of the basic leucine zipper (bZIP) protein family control important processes in all eukaryotes. In this study, we identified a gene, designated FpAda1, encoding a bZIP TF in F. pseudograminearum. The homolog of FpAda1 is also known to affect hyphal growth in Neurospora crassa. Deletion of FpAda1 in F. pseudograminearum resulted in defects in hyphal growth, mycelial branching and conidia formation. Pathogenicity assays showed that virulence of the Δfpada1 mutant was dramatically decreased on wheat coleoptiles and barley leaves. However, wheat coleoptile inoculation assay showed that Δfpada1 could penetrate and proliferate in wheat cells. Moreover, the FpAda1 was required for abnormal nuclear morphology in conidia and transcription of FpCdc2 and FpCdc42. Taken together, these results indicate that FpAda1 is an important transcription factor involved in growth and development in F. pseudograminearum.
Collapse
|
6
|
Tsang CC, Lau SKP, Woo PCY. Sixty Years from Segretain’s Description: What Have We Learned and Should Learn About the Basic Mycology of Talaromyces marneffei? Mycopathologia 2019; 184:721-729. [DOI: 10.1007/s11046-019-00395-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Wang X, Xu X, Liang Y, Wang Y, Tian C. A Cdc42 homolog in Colletotrichum gloeosporioides regulates morphological development and is required for ROS-mediated plant infection. Curr Genet 2018; 64:1153-1169. [PMID: 29700579 DOI: 10.1007/s00294-018-0833-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023]
Abstract
The Rho GTPase Cdc42 is conserved in fungi and plays a key role in regulating polarity establishment, morphogenesis and differentiation. In this study, we identified an ortholog of Cdc42, CgCdc42, and functionally characterized it to determine the role of Cdc42 in the development and pathogenicity of Colletotrichum gloeosporioides, a causal agent of poplar anthracnose. Targeted deletion of CgCdc42 resulted in reduced vegetative growth and dramatic morphological defects, including the formation of elongated conidia and abnormally shaped appressoria. Moreover, CgCdc42 deletion mutants were less virulent on poplar leaves than were wild type. Appressoria formed by ΔCgCdc42 mutants were morphologically abnormal and present in lower numbers on poplar leaves than were those formed by wild type. However, an ROS scavenging assay indicated that the ΔCgCdc42 mutants maintained wild type pathogenicity in the absence of ROS despite having fewer appressoria than wild type, suggesting that the ΔCgCdc42 mutants were deficient in their tolerance of ROS. Additionally, we also found that the distribution of ROS was different after the deletion of CgCdc42, the ΔCgCdc42 mutants were hypersensitive to H2O2, and transcriptional analysis revealed that CgCdc42 is involved in the regulation of ROS-related genes. Furthermore, loss of CgCdc42 caused defects in cell wall integrity and an uneven distribution of chitin. These data collectively suggest that CgCdc42 plays an important role in the regulation of vegetative growth, morphological development, cell wall integrity and ROS-mediated plant infection in C. gloeosporioides.
Collapse
Affiliation(s)
- Xiaolian Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Xin Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Yingmei Liang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
8
|
Weerasinghe H, Payne M, Beard S, Andrianopoulos A. Organism-wide studies into pathogenicity and morphogenesis in Talaromyces marneffei. Future Microbiol 2016; 11:511-26. [PMID: 27073980 DOI: 10.2217/fmb.16.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Organism-wide approaches examining the genetic mechanisms controlling growth and proliferation have proven to be a powerful tool in the study of pathogenic fungi. For many fungal pathogens techniques to study transcription and protein expression are particularly useful, and offer insights into infection processes by these species. Here we discuss the use of approaches such as differential display, suppression subtractive hybridization, microarray, RNA-seq, proteomics, genetic manipulation and infection models for the AIDS-defining pathogen Talaromyces marneffei. Together these methods have broadened our understanding of the biological processes, and genes that underlie them, which are involved in switching between the saprophytic and pathogenic states of T. marneffei, the maintenance of these two specialized cell types and its ability to cause disease.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Michael Payne
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Sally Beard
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics & Development, School of BioSciences, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Boyce KJ, Andrianopoulos A. Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host. FEMS Microbiol Rev 2015; 39:797-811. [DOI: 10.1093/femsre/fuv035] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/19/2023] Open
|
10
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Sil A, Andrianopoulos A. Thermally Dimorphic Human Fungal Pathogens--Polyphyletic Pathogens with a Convergent Pathogenicity Trait. Cold Spring Harb Perspect Med 2014; 5:a019794. [PMID: 25384771 PMCID: PMC4526722 DOI: 10.1101/cshperspect.a019794] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fungi are adept at changing their cell shape and developmental program in response to signals in their surroundings. Here we focus on a group of evolutionarily related fungal pathogens of humans known as the thermally dimorphic fungi. These organisms grow in a hyphal form in the environment but shift their morphology drastically within a mammalian host. Temperature is one of the main host signals that initiates their conversion to the "host" form and is sufficient in the laboratory to trigger establishment of this host-adapted developmental program. Here we discuss the major human pathogens in this group, which are Blastomyces dermatiditis, Coccidioides immitis/posadasii, Histoplasma capsulatum, Paracoccidioides brasiliensis/lutzii, Sporothrix schenckii, and Talaromyces marneffei (formerly known as Penicillium marneffei). The majority of these organisms are primary pathogens, with the ability to cause disease in healthy humans who encounter them in endemic areas.
Collapse
Affiliation(s)
- Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Alex Andrianopoulos
- Department of Genetics, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
12
|
Jiang SS, Yin YP, Song ZY, Zhou GL, Wang ZK. RacA and Cdc42 regulate polarized growth and microsclerotium formation in the dimorphic fungus Nomuraea rileyi. Res Microbiol 2014; 165:233-42. [PMID: 24657749 DOI: 10.1016/j.resmic.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/08/2014] [Indexed: 11/30/2022]
Abstract
Small GTPases, RacA and Cdc42, act as molecular switches in fungi, regulating cell signaling, cytoskeletal organization, polar growth and reactive oxygen species (ROS) generation, the latter by influencing the activity of the NADPH oxidase complex. In this study, the racA and cdc42 genes from Nomuraea rileyi were cloned and shown to encode 218 and 184 amino acid proteins, respectively. To determine the functions of racA and cdc42, gene-silencing mutants (racARM, cdc42RM and racA&cdc42RM, respectively) were generated using RNA silencing technology. In racARM and cdc42RM, the conidial and microsclerotium (MS) yields, ROS production and virulence were reduced, the hyphal extension rate was decreased and the dimorphic switch was delayed. On the other hand, the double-silencing mutants showed growth retardation and virtually no conidia, MS or ROS production. The transcription levels of the noxA and noxR genes that regulate ROS generation were reduced in the three RNAi-silenced strains. Interestingly, when compared with the controls, racARM exhibited thicker hyphae and bigger conidia; moreover, the MS produced by racARM were bigger than those of the control and smaller than those of cdc42RM. Thus RacA and Cdc42 appear to share some essential functions in N. rileyi, including hyphal growth, conidiation, MS formation, ROS generation and virulence. Yet RacA appears to play a more pivotal role in the polar growth of N. rileyi.
Collapse
Affiliation(s)
- Sha-sha Jiang
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| | - You-ping Yin
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| | - Zhang-yong Song
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| | - Gui-lin Zhou
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| | - Zhong-kang Wang
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
13
|
Small-GTPase-associated signaling by the guanine nucleotide exchange factors CpDock180 and CpCdc24, the GTPase effector CpSte20, and the scaffold protein CpBem1 in Claviceps purpurea. EUKARYOTIC CELL 2014; 13:470-82. [PMID: 24489041 DOI: 10.1128/ec.00332-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.
Collapse
|
14
|
Ballou ER, Selvig K, Narloch JL, Nichols CB, Alspaugh JA. Two Rac paralogs regulate polarized growth in the human fungal pathogen Cryptococcus neoformans. Fungal Genet Biol 2013; 57:58-75. [PMID: 23748012 PMCID: PMC3742549 DOI: 10.1016/j.fgb.2013.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/11/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022]
Abstract
A genome wide analysis of the human fungal pathogen Cryptococcus neoformans var. grubii has revealed a number of duplications of highly conserved genes involved in morphogenesis. Previously, we reported that duplicate Cdc42 paralogs provide C. neoformans with niche-specific responses to environmental stresses: Cdc42 is required for thermotolerance, while Cdc420 supports the formation of titan cells. The related Rho-GTPase Rac1 has been shown in C. neoformans var. neoformans to play a major role in filamentation and to share Cdc42/Cdc420 binding partners. Here we report the characterization of a second Rac paralog in C. neoformans, Rac2, and describe its overlapping function with the previously described CnRac, Rac1. Further, we demonstrate that the Rac paralogs play a primary role in polarized growth via the organization of reactive oxygen species and play only a minor role in the organization of actin. Finally, we provide preliminary evidence that pharmacological inhibitors of Rac activity and actin stability have synergistic activity.
Collapse
Affiliation(s)
- Elizabeth Ripley Ballou
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyla Selvig
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jessica L. Narloch
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Connie B. Nichols
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
15
|
Unraveling the molecular basis of temperature-dependent genetic regulation in Penicillium marneffei. EUKARYOTIC CELL 2013; 12:1214-24. [PMID: 23851338 DOI: 10.1128/ec.00159-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Penicillium marneffei is an opportunistic fungal pathogen endemic in Southeast Asia, causing lethal systemic infections in immunocompromised patients. P. marneffei grows in a mycelial form at the ambient temperature of 25°C and transitions to a yeast form at 37°C. The ability to alternate between the mycelial and yeast forms at different temperatures, namely, thermal dimorphism, has long been considered critical for the pathogenicity of P. marneffei, yet the underlying genetic mechanisms remain elusive. Here we employed high-throughput sequencing to unravel global transcriptional profiles of P. marneffei PM1 grown at 25 and 37°C. Among ∼11,000 protein-coding genes, 1,447 were overexpressed and 1,414 were underexpressed at 37°C. Counterintuitively, heat-responsive genes, predicted in P. marneffei through sequence comparison, did not tend to be overexpressed at 37°C. These results suggest that P. marneffei may take a distinct strategy of genetic regulation at the elevated temperature; the current knowledge concerning fungal heat response, based on studies of model fungal organisms, may not be applicable to P. marneffei. Our results further showed that the tandem repeat sequences (TRSs) are overrepresented in coding regions of P. marneffei genes, and TRS-containing genes tend to be overexpressed at 37°C. Furthermore, genomic sequences and expression data were integrated to characterize gene clusters, multigene families, and species-specific genes of P. marneffei. In sum, we present an integrated analysis and a comprehensive resource toward a better understanding of temperature-dependent genetic regulation in P. marneffei.
Collapse
|
16
|
Bugeja HE, Hynes MJ, Andrianopoulos A. HgrA is necessary and sufficient to drive hyphal growth in the dimorphic pathogen Penicillium marneffei. Mol Microbiol 2013; 88:998-1014. [PMID: 23656348 DOI: 10.1111/mmi.12239] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2013] [Indexed: 12/17/2022]
Abstract
Fungi produce multiple morphological forms as part of developmental programs or in response to changing, often stressful, environmental conditions. An opportunistic pathogen of humans, Penicillium marneffei displays multicellular hyphal growth and asexual development (conidiation) in the environment at 25°C and unicellular yeast growth in macrophages at 37°C. We characterized the transcription factor, hgrA, which contains a C(2)H(2) DNA binding domain closely related to that of the stress-response regulators Msn2/4 of Saccharomyces cerevisiae. Northern hybridization analysis demonstrated that hgrA expression is specific to hyphal growth, and its constitutive overexpression prevents conidiation and yeast growth, even in the presence of inductive cues, and causes apical hyperbranching during hyphal growth. Consistent with its expression pattern, deletion of hgrA causes defects in hyphal morphogenesis and the dimorphic transition from yeast cells to hyphae. Specifically, loss of HgrA causes cell wall defects, reduced expression of cell wall biosynthetic enzymes and increased sensitvity to cell wall, oxidative, but not osmotic stress agents. These data suggest that HgrA does not have a direct role in the response to stress but is an inducer of the hyphal growth program and its activity must be downregulated to allow alternative developmental programs, including the morphogenesis of yeast cells in macrophages.
Collapse
Affiliation(s)
- Hayley E Bugeja
- Department of Genetics, University of Melbourne, Melbourne, Vic., 3010, Australia
| | | | | |
Collapse
|
17
|
Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei. EUKARYOTIC CELL 2012. [PMID: 23204189 DOI: 10.1128/ec.00234-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Penicillium marneffei is an emerging human-pathogenic fungus endemic to Southeast Asia. Like a number of other fungal pathogens, P. marneffei exhibits temperature-dependent dimorphic growth and grows in two distinct cellular morphologies, hyphae at 25°C and yeast cells at 37°C. Hyphae can differentiate to produce the infectious agents, asexual spores (conidia), which are inhaled into the host lung, where they are phagocytosed by pulmonary alveolar macrophages. Within macrophages, conidia germinate into unicellular yeast cells, which divide by fission. This minireview focuses on the current understanding of the genes required for the morphogenetic control of conidial germination, hyphal growth, asexual development, and yeast morphogenesis in P. marneffei.
Collapse
|
18
|
Soukup AA, Farnoodian M, Berthier E, Keller NP. NosA, a transcription factor important in Aspergillus fumigatus stress and developmental response, rescues the germination defect of a laeA deletion. Fungal Genet Biol 2012; 49:857-65. [PMID: 23022264 DOI: 10.1016/j.fgb.2012.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Aspergillus fumigatus is an increasingly serious pathogen of immunocompromised patients, causing the often fatal disease invasive aspergillosis (IA). One A. fumigatus virulence determinant of IA is LaeA, a conserved virulence factor in pathogenic fungi. To further understand the role of LaeA in IA, the expression profile of ΔlaeA was compared to wild type, and several transcription factors were found significantly misregulated by LaeA loss. One of the transcription factors up-regulated over 4-fold in the ΔlaeA strain was Afu4g09710, similar in sequence to Aspergillus nidulans NosA, which is involved in sexual development. Here we assessed loss of nosA (ΔnosA) and overexpression of nosA (OE::nosA) on A. fumigatus in both a wild type and ΔlaeA background. Based on the multiple alterations of physiological development of single and double mutants, we suggest that NosA mediates the decreased radial growth and delayed conidial germination observed in ΔlaeA strains, the former in a light dependent manner. The ΔnosA mutant showed increased virulence in the Galleria mellonella larvae model of disseminated aspergillosis, potentially due to its increased growth and germination rate. Furthermore, the A. fumigatus nosA allele was able to partially remediate sexual development in an A. nidulans ΔnosA background. Likewise, the A. nidulans nosA allele was able to restore the menadione sensitivity defect of the A. fumigatus ΔnosA strain, suggesting conservation of function of the NosA protein in these two species.
Collapse
Affiliation(s)
- Alexandra A Soukup
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
19
|
Raudaskoski M, Kothe E, Fowler TJ, Jung EM, Horton JS. Ras and Rho small G proteins: insights from the Schizophyllum commune genome sequence and comparisons to other fungi. Biotechnol Genet Eng Rev 2012; 28:61-100. [PMID: 22616482 DOI: 10.5661/bger-28-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Unlike in animal cells and yeasts, the Ras and Rho small G proteins and their regulators have not received extensive research attention in the case of the filamentous fungi. In an effort to begin to rectify this deficiency, the genome sequence of the basidiomycete mushroom Schizophyllum commune was searched for all known components of the Ras and Rho signalling pathways. The results of this study should provide an impetus for further detailed investigations into their role in polarized hyphal growth, sexual reproduction and fruiting body development. These processes have long been the targets for genetic and cell biological research in this fungus.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Department of Biology, University of Turku, Biocity A, Tykistökatu 6A, FI-20520 Turku, Finland
| | | | | | | | | |
Collapse
|
20
|
Boyce KJ, Andrianopoulos A. Ste20-related kinases: effectors of signaling and morphogenesis in fungi. Trends Microbiol 2011; 19:400-10. [PMID: 21640592 DOI: 10.1016/j.tim.2011.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 11/17/2022]
Abstract
The family of Ste20-related kinases is conserved from yeast to mammals and includes the p21 activated kinases (PAKs) and germinal centre kinases (GCKs). These kinases have been shown to be involved in signaling through mitogen activated protein kinase (MAPK) pathways and in morphogenesis through the regulation of cytokinesis and actin-dependent polarized growth. This review concentrates on the role of Ste20-related kinases in fungi where recent research has revealed roles for both PAKs and GCKs in the regulation of cytokinesis and in previously unidentified roles in promoting hyphal growth and differentiation of asexual development structures. In particular, the importance of PAKs during pathogenesis will be examined.
Collapse
Affiliation(s)
- Kylie J Boyce
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
21
|
Boyce KJ, Schreider L, Kirszenblat L, Andrianopoulos A. The two-component histidine kinases DrkA and SlnA are required for in vivo growth in the human pathogen Penicillium marneffei. Mol Microbiol 2011; 82:1164-84. [PMID: 22059885 DOI: 10.1111/j.1365-2958.2011.07878.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In order to cause disease fungal pathogens must be capable of evading or tolerating the host immune defence system. One commonly utilized evasion mechanism is the ability to continually reside within macrophages of the innate immune system and survive subsequent phagocytic destruction. For intracellular growth to occur, fungal pathogens which typically grow in a filamentous hyphal form in the environment must be able to switch growth to a unicellular yeast growth form in a process known as dimorphic switching. The cue to undergo dimorphic switching relies on the recognition of, and response to, the intracellular host environment. Two-component signalling systems are utilized by eukaryotes to sense and respond to changes in the external environment. This study has investigated the role of the hybrid histidine kinase components encoded by drkA and slnA, in the dimorphic pathogen Penicillium marneffei. Both SlnA and DrkA are required for stress adaptation but are uniquely required for different aspects of asexual development, hyphal morphogenesis and cell wall integrity. Importantly, slnA and drkA are both essential for the generation of yeast cells in vivo, with slnA required for the germination of conidia and drkA required for dimorphic switching during macrophage infection.
Collapse
Affiliation(s)
- Kylie J Boyce
- Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Fungal Genet Biol 2011; 48:1012-9. [PMID: 21839848 DOI: 10.1016/j.fgb.2011.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 01/14/2023]
Abstract
The small GTPase Cdc42 plays a central role in various processes in eukaryotic cells including growth, differentiation and cytoskeleton organization. Whereas it is essential in the yeast Saccharomyces cerevisiae, its role in filamentous fungi differs, due to the complementing, partly overlapping function of Rac. We analyzed the role of the Cdc42 homologue in the necrotrophic, broad host range pathogen Botrytis cinerea. Deletion mutants of bccdc42 showed various growth abnormalities; the mutants had reduced growth rate and hyphal branching, they produced fewer conidia, which were enlarged and misshapen and had germination defects. Additionally, the mutants were impaired in sclerotia development. Cytological studies indicate that at least part of this phenotype could be attributed to disturbed control of nuclear division: conidia and hyphae of the mutant showed twofold higher nucleus/cytoplasm ratio compared to wild type cells. Apart from these effects on vegetative growth and differentiation, Δbccdc42 strains were attenuated in penetration and colonization of host tissue, confirming that BcCdc42 - though being not essential like in yeast - is involved in important developmental processes in B. cinerea.
Collapse
|
23
|
Deng S, van den Ende AHGG, Ram AFJ, Arentshorst M, Gräser Y, Hu H, de Hoog GS. Evolution of CDC42, a putative virulence factor triggering meristematic growth in black yeasts. Stud Mycol 2011; 61:121-9. [PMID: 19287534 PMCID: PMC2610298 DOI: 10.3114/sim.2008.61.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The cell division cycle gene (CDC42) controlling cellular
polarization was studied in members of Chaetothyriales. Based on
ribosomal genes, ancestral members of the order exhibit meristematic growth in
view of their colonization of inert surfaces such as rock, whereas in derived
members of the order the gene is a putative virulence factor involved in
expression of the muriform cell, the invasive phase in human
chromoblastomycosis. Specific primers were developed to amplify a portion of
the gene of 32 members of the order with known position according to ribosomal
phylogeny. Phylogeny of CDC42 proved to be very different. In all
members of Chaetohyriales the protein sequence is highly conserved.
In most species, distributed all over the phylogenetic tree, introns and
3rd codon positions are also invariant. However, a number of
species had paralogues with considerable deviation in non-coding exon
positions, and synchronous variation in introns, although non-synonomous
variation had remained very limited. In some strains both orthologues and
paralogues were present. It is concluded that CDC42 does not show any
orthologous evolution, and that its paralogues haves the same function but are
structurally relaxed. The variation or absence thereof could not be linked to
ecological changes, from rock-inhabiting to pathogenic life style. It is
concluded that eventual pathogenicity in Chaetothyriales is not
expressed at the DNA level in CDC42 evolution.
Collapse
Affiliation(s)
- S Deng
- Department of Dermatology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Xie Z, Feng P, Zhang J, Li X, Sun J, Lu C, Huang H, Xi L. Molecular cloning, characterization and differential expression of Cdc42 in Fonsecaea monophora. Mol Biol Rep 2011; 39:839-44. [PMID: 21573800 DOI: 10.1007/s11033-011-0806-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 04/30/2011] [Indexed: 11/28/2022]
Abstract
The cell divisions cycle 42 (Cdc42) gene has been characterized in the fungi, such as Candida albicans, Penicillium marneffei, and Wangiella (Exophiala) dermatitidis, which plays important roles during growth and development. The partial cDNA sequence of Cdc42 of Fonsecaea monophora (F. monophora), designated FmCdc42, was obtained using degenerate primers based on the conserved domain of the other fungi Cdc42. Then the complete cDNA sequence of FmCdc42 was obtained by 5' and 3' RACE. The full-length cDNA is 1,510 bp in size which had an open reading frame (ORF) of 582 bp, encoding 193 amino acid residues. The predicted molecular mass of FmCdc42 is 21.5 kDa with an estimated theoretical isoelectric point of 5.67. The deduced amino acid sequence of FmCdc42 shows 99% identity to that of Wangiella (Exophiala) dermatitidis. 5 exons and 4 introns are identified within the 1,617 bp FmCdc42 genomic DNA sequence of F. monophora. The ORF could be subcloned into the pCDNA6/myc-His B expression vector. The recombinant protein about 27.5 kD infusion protein had high expression level in Vero cells with SDS-PAGE and Western blot analysis. Quantitative real time RT-PCR revealed that FmCdc42 was the highest expression in the sclerotic bodies' stage compared with that in the mycelia and conidia stages, which indicated that the FmCdc42 may be involved in formation of F. monophora sclerotic bodies.
Collapse
Affiliation(s)
- Zhi Xie
- Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 107 West Yanjiang Road, Guangzhou 510120, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
The fungal type II myosin in Penicillium marneffei, MyoB, is essential for chitin deposition at nascent septation sites but not actin localization. EUKARYOTIC CELL 2010; 10:302-12. [PMID: 21131434 DOI: 10.1128/ec.00201-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinesis is essential for proliferative growth but also plays equally important roles during morphogenesis and development. The human pathogen Penicillium marneffei is capable of dimorphic switching in response to temperature, growing in a multicellular filamentous hyphal form at 25°C and in a unicellular yeast form at 37°C. P. marneffei also undergoes asexual development at 25°C to produce multicellular differentiated conidiophores. Thus, P. marneffei exhibits cell division with and without cytokinesis and division by budding and fission, depending on the cell type. The type II myosin gene, myoB, from P. marneffei plays important roles in the morphogenesis of these cell types. Deletion of myoB leads to chitin deposition defects at sites of cell division without perturbing actin localization. In addition to aberrant hyphal cells, distinct conidiophore cell types are lacking due to malformed septa and nuclear division defects. At 37°C, deletion of myoB prevents uninucleate yeast cell formation, instead producing long filaments resembling hyphae at 25°C. The ΔmyoB cells also often lyse due to defects in cell wall biogenesis. Thus, MyoB is essential for correct morphogenesis of all cell types regardless of division mode (budding or fission) and defines differences between the different types of growth.
Collapse
|
27
|
Almeida A, Cunha C, Carmona J, Sampaio-Marques B, Carvalho A, Malavazi I, Steensma H, Johnson D, Leão C, Logarinho E, Goldman G, Castro A, Ludovico P, Rodrigues F. Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. Fungal Genet Biol 2009; 46:919-26. [DOI: 10.1016/j.fgb.2009.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 01/25/2023]
|
28
|
Boyce KJ, Schreider L, Andrianopoulos A. In vivo yeast cell morphogenesis is regulated by a p21-activated kinase in the human pathogen Penicillium marneffei. PLoS Pathog 2009; 5:e1000678. [PMID: 19956672 PMCID: PMC2777384 DOI: 10.1371/journal.ppat.1000678] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 10/30/2009] [Indexed: 11/18/2022] Open
Abstract
Pathogens have developed diverse strategies to infect their hosts and evade the host defense systems. Many pathogens reside within host phagocytic cells, thus evading much of the host immune system. For dimorphic fungal pathogens which grow in a multicellular hyphal form, a central attribute which facilitates growth inside host cells without rapid killing is the capacity to switch from the hyphal growth form to a unicellular yeast form. Blocking this transition abolishes or severely reduces pathogenicity. Host body temperature (37°C) is the most common inducer of the hyphal to yeast transition in vitro for many dimorphic fungi, and it is often assumed that this is the inducer in vivo. This work describes the identification and analysis of a new pathway involved in sensing the environment inside a host cell by a dimorphic fungal pathogen, Penicillium marneffei. The pakB gene, encoding a p21-activated kinase, defines this pathway and operates independently of known effectors in P. marneffei. Expression of pakB is upregulated in P. marneffei yeast cells isolated from macrophages but absent from in vitro cultured yeast cells produced at 37°C. Deletion of pakB leads to a failure to produce yeast cells inside macrophages but no effect in vitro at 37°C. Loss of pakB also leads to the inappropriate production of yeast cells at 25°C in vitro, and the mechanism underlying this requires the activity of the central regulator of asexual development. The data shows that this new pathway is central to eliciting the appropriate morphogenetic response by the pathogen to the host environment independently of the common temperature signal, thus clearly separating the temperature- and intracellular-dependent signaling systems. Dimorphic fungal pathogens pose significant health and agricultural problems worldwide. These fungi have the capacity to switch between a multicellular hyphal growth form and a unicellular yeast growth form. Often one form is pathogenic, found in infected hosts, and the other is not. Many dimorphic fungal pathogens of humans produce the yeast form during infection and this form resides within host phagocytic immune cells, where it can tolerate killing by these cells and is not exposed to the acquired immune system. Inhibiting the pathogen's ability to switch growth forms has been shown to block pathogenicity. This study identifies a pathway used by the fungal pathogen to sense the host and switch to the appropriate growth form. This study provides new insights into the molecular mechanisms which are important for pathogenicity and may identify factors which can be targeted to block the ability of the pathogen to successfully reside within host cells.
Collapse
Affiliation(s)
- Kylie J. Boyce
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | - Lena Schreider
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | - Alex Andrianopoulos
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
29
|
Zheng W, Zhao Z, Chen J, Liu W, Ke H, Zhou J, Lu G, Darvill AG, Albersheim P, Wu S, Wang Z. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea. Fungal Genet Biol 2009; 46:450-60. [PMID: 19298860 DOI: 10.1016/j.fgb.2009.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/27/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Cdc42, a member of the Rho-family small GTP-binding proteins, is a pivotal signaling switch that cycles between active GTP-bound and inactive GDP-bound forms, controlling actin cytoskeleton organization and cell polarity. In this report, we show that MgCdc42, a Cdc42 ortholog in Magnaporthe grisea, is required for its plant penetration. Consequently, the deletion mutants show dramatically decreased virulence to rice due to the arrest of penetration and infectious growth, which may be attributed to the defect of turgor and superoxide generation during the appressorial development in Mgcdc42 deletion mutants. In addition, the mutants also exhibit pleotropic defects including gherkin-shaped conidia, delayed germination as well as decreased sporulation. Furthermore, dominant negative mutation leads to a similar phenotype to that of the deletion mutants, lending further support to the conclusion that MgCdc42 is required for the penetration and virulence of M. grisea.
Collapse
Affiliation(s)
- Wu Zheng
- The Key Laboratory for Bio-pesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Banuett F, Quintanilla RH, Reynaga-Peña CG. The machinery for cell polarity, cell morphogenesis, and the cytoskeleton in the Basidiomycete fungus Ustilago maydis-a survey of the genome sequence. Fungal Genet Biol 2008; 45 Suppl 1:S3-S14. [PMID: 18582586 DOI: 10.1016/j.fgb.2008.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 11/26/2022]
Abstract
Ustilago maydis, a Basidiomycete fungus that infects maize, exhibits two basic morphologies, a yeast-like and a filamentous form. The yeast-like cell is elongated, divides by budding, and the bud grows by tip extension. The filamentous form divides at the apical cell and grows by tip extension. The repertoire of morphologies is increased during interaction with its host, suggesting that plant signals play an important role in generation of additional morphologies. We have used Saccharomyces cerevisiae and Schizosaccharomyces pombe genes known to play a role in cell polarity and morphogenesis, and in the cytoskeleton as probes to survey the U. maydis genome. We have found that most of the yeast machinery is conserved in U. maydis, albeit the degree of similarity varies from strong to weak. The U. maydis genome contains the machinery for recognition and interpretation of the budding yeast axial and bipolar landmarks; however, genes coding for some of the landmark proteins are absent. Genes coding for cell polarity establishment, exocytosis, actin and microtubule organization, microtubule plus-end associated proteins, kinesins, and myosins are also present. Genes not present in S. cerevisiae and S. pombe include a homolog of mammalian Rac, a hybrid myosin-chitin synthase, and several kinesins that exhibit more similarity to their mammalian counterparts. We also used the U. maydis genes identified in this analysis to search other fungal and other eukaryotic genomes to identify the closest homologs. In most cases, not surprisingly, the closest homolog is among filamentous fungi, not the yeasts, and in some cases it is among mammals.
Collapse
Affiliation(s)
- Flora Banuett
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA.
| | | | | |
Collapse
|
31
|
|
32
|
Tanaka A, Takemoto D, Hyon GS, Park P, Scott B. NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 2008; 68:1165-78. [PMID: 18399936 DOI: 10.1111/j.1365-2958.2008.06217.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small GTPases of the Rac group play a key regulatory role in NADPH oxidase catalysed production of reactive oxygen species (ROS) in mammals and plants, but very little evidence is available for a corresponding role in fungi. We recently showed that ROS produced by a specific fungal NADPH oxidase isoform, NoxA, are crucial in regulating hyphal morphogenesis and growth in the mutualistic symbiotic interaction between Epichloë festucae and perennial ryegrass. We demonstrate here that E. festucae RacA is required for NoxA activation and regulated production of ROS to maintain a symbiotic interaction. Deletion of racA resulted in decreased ROS production, reduction of radial growth and hyper-branching of the hyphae in culture. In contrast, in planta the racA mutant showed extensive colonization of the host plant, resulting in stunting and precocious senescence of the host plants. Strains expressing a dominant active (DA) allele of RacA had increased ROS production, increased aerial hyphae and reduced radial growth. These results demonstrate that RacA plays a crucial role in regulating ROS production by NoxA, in order to control hyphal morphogenesis and growth of the endophyte in planta.
Collapse
Affiliation(s)
- Aiko Tanaka
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | | | | | | | | |
Collapse
|
33
|
Cooper CR, Vanittanakom N. Insights into the pathogenicity of Penicillium marneffei. Future Microbiol 2008; 3:43-55. [PMID: 18230033 DOI: 10.2217/17460913.3.1.43] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Penicillium marneffei is a significant pathogen of AIDS patients in Southeast Asia. This fungus is unique in that it is the only dimorphic member of the genus. Pathogenesis of P. marneffei requires the saprobic mold form to undergo a morphological change upon tissue invasion. The in vivo form of this fungus reproduces as a fission yeast that capably evades the host immune system. The processes that control these morphological changes, better termed as phase transition, can be replicated in vitro by incubation of the mold form at 37 degrees C. The unidentified molecular mechanisms regulating phase transition in this fungus are now being uncovered using modern methodologies and novel strategies. A better comprehension of these underlying regulatory pathways will provide insight into eukaryotic cellular development as well as the potential factors responsible for infections caused by P. marneffei and other fungi. Such knowledge may lead to better chemotherapeutic interventions of fungal diseases.
Collapse
Affiliation(s)
- Chester R Cooper
- Department of Biological Sciences, Youngstown State University, 1 University Plaza, Youngstown, OH 44555, USA.
| | | |
Collapse
|
34
|
Boyce KJ, Andrianopoulos A. A p21-activated kinase is required for conidial germination in Penicillium marneffei. PLoS Pathog 2008; 3:e162. [PMID: 17983267 PMCID: PMC2048533 DOI: 10.1371/journal.ppat.0030162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 09/19/2007] [Indexed: 11/18/2022] Open
Abstract
Asexual spores (conidia) are the infectious propagules of many pathogenic fungi, and the capacity to sense the host environment and trigger conidial germination is a key pathogenicity determinant. Germination of conidia requires the de novo establishment of a polarised growth axis and consequent germ tube extension. The molecular mechanisms that control polarisation during germination are poorly understood. In the dimorphic human pathogenic fungus Penicillium marneffei, conidia germinate to produce one of two cell types that have very different fates in response to an environmental cue. At 25 degrees C, conidia germinate to produce the saprophytic cell type, septate, multinucleate hyphae that have the capacity to undergo asexual development. At 37 degrees C, conidia germinate to produce the pathogenic cell type, arthroconidiating hyphae that liberate uninucleate yeast cells. This study shows that the p21-activated kinase pakA is an essential component of the polarity establishment machinery during conidial germination and polarised growth of yeast cells at 37 degrees C but is not required for germination or polarised growth at 25 degrees C. Analysis shows that the heterotrimeric G protein alpha subunit GasC and the CDC42 orthologue CflA lie upstream of PakA for germination at both temperatures, while the Ras orthologue RasA only functions at 25 degrees C. These findings suggest that although some proteins that regulate the establishment of polarised growth in budding yeast are conserved in filamentous fungi, the circuitry and downstream effectors are differentially regulated to give rise to distinct cell types.
Collapse
Affiliation(s)
- Kylie J Boyce
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
35
|
Characterisation of Aspergillus nidulans polarisome component BemA. Fungal Genet Biol 2007; 45:897-911. [PMID: 18234530 DOI: 10.1016/j.fgb.2007.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/30/2007] [Accepted: 12/03/2007] [Indexed: 11/22/2022]
Abstract
BemA, the orthologue of Saccharomyces cerevisiae Bem1p, was identified through genome sequence comparison. We have shown that it plays a similar role to Bem1p in yeast, acting as a cell growth protein. Deletion of the gene produced a moderately abnormal hyphal tip morphology, and had an extremely detrimental effect on conidiospore production, with development stalling after conidiophore vesicle production. It was also shown that BemA is required for vacuole fusion, similar to Bem1p. This role is dependent on the first SH3 domain of the protein, whose deletion has no detectable effect on cell growth. Localisation studies showed that BemA formed a clear cap at hyphal tips, analogous to the S. cerevisiae polarisome. The relationship between BemA and SepA, a spitzenkörper protein, was investigated. It was found that localisation of the proteins were interdependent, and a conditional double mutant was inviable.
Collapse
|
36
|
Virag A, Lee MP, Si H, Harris SD. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol 2007; 66:1579-96. [PMID: 18005099 DOI: 10.1111/j.1365-2958.2007.06021.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability of filamentous fungi to form hyphae requires the establishment and maintenance of a stable polarity axis. Based on studies in yeasts and animals, the GTPases Cdc42 and Rac1 are presumed to play a central role in organizing the morphogenetic machinery to enable axis formation and stabilization. Here, we report that Cdc42 (ModA) and Rac1 (RacA) share an overlapping function required for polarity establishment in Aspergillus nidulans. Nevertheless, Cdc42 appears to have a more important role in hyphal morphogenesis in that it alone is required for the timely formation of lateral branches. In addition, we provide genetic evidence suggesting that the polarisome components SepA and SpaA function downstream of Cdc42 in a pathway that may regulate microfilament formation. Finally, we show that microtubules become essential for the establishment of hyphal polarity when the function of either Cdc42 or SepA is compromised. Our results are consistent with the action of parallel Cdc42 and microtubule-based pathways in regulating the formation of a stable axis of hyphal polarity in A. nidulans.
Collapse
Affiliation(s)
- Aleksandra Virag
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660, USA
| | | | | | | |
Collapse
|
37
|
A Rho3 homolog is essential for appressorium development and pathogenicity of Magnaporthe grisea. EUKARYOTIC CELL 2007; 6:2240-50. [PMID: 17933908 DOI: 10.1128/ec.00104-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The small GTPase Rho3 is conserved in fungi and plays a key role in the control of cell polarity and exocytosis in yeast. In this report, we show that a Rho3 homolog, MgRho3, is dispensable for polarized hyphal growth in the rice blast fungus Magnaporthe grisea. However, MgRho3 is required for plant infection. Appressoria formed by the Mgrho3 deletion mutants are morphologically abnormal and defective in plant penetration. Conidia of the Mgrho3 deletion mutants are narrower than those of the wild-type strain and delayed in germination. Transformants expressing a dominant negative Mgrho3 allele exhibit similar phenotypes as the Mgrho3 deletion mutant, while transformants expressing a constitutively active allele of MgRho3 can produce normal conidia but remain defective in appressorium formation and plant infection. In contrast, overexpression of wild-type MgRho3 increases the infectivity of M. grisea. Our results reveal a new role for the conserved Rho3 as a critical regulator of developmental processes and pathogenicity of M. grisea.
Collapse
|
38
|
Nichols CB, Perfect ZH, Alspaugh JA. A Ras1-Cdc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 2007; 63:1118-30. [PMID: 17233829 DOI: 10.1111/j.1365-2958.2006.05566.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathogenic microorganisms must precisely regulate morphogenesis to survive and proliferate within an infected host. This regulation is often controlled by conserved signal transduction pathways that direct morphological changes in varied species. One such pathway, whose components include Ras proteins and the PAK kinase Ste20, allows the human fungal pathogen Cryptococcus neoformans to grow at high temperature. Previously, we found that Ras1 signalling is required for differentiation, thermotolerance and pathogenesis in C. neoformans. We show here that the guanine nucleotide exchange factor Cdc24 is a Ras1 effector in C. neoformans to mediate the ability of this fungus to grow at high temperature and to cause disease. In addition, we provide evidence that the Ras1-Cdc24 signalling cascade functions specifically through one of the three Cdc42/Rac1 homologues in C. neoformans. In conclusion, our studies illustrate how components of conserved signalling cascades can be specialized for different downstream functions, such as pathogenesis.
Collapse
Affiliation(s)
- Connie B Nichols
- Department of Medicine, Duke University Medical CenterDurham, NC 27710, USA
| | | | | |
Collapse
|
39
|
Virag A, Harris SD. Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Spa2 and Bud6. EUKARYOTIC CELL 2006; 5:881-95. [PMID: 16757736 PMCID: PMC1489272 DOI: 10.1128/ec.00036-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 04/12/2006] [Indexed: 11/20/2022]
Abstract
The importance of polarized growth for fungi has elicited significant effort directed at better understanding underlying mechanisms of polarization, with a focus on yeast systems. At sites of tip growth, multiple protein complexes assemble and coordinate to ensure that incoming building material reaches the appropriate destination sites, and polarized growth is maintained. One of these complexes is the polarisome that consists of Spa2, Bud6, Pea2, and Bni1 in Saccharomyces cerevisiae. Filamentous hyphae differ in their development and life style from yeasts and likely regulate polarized growth in a different way. This is expected to reflect on the composition and presence of protein complexes that assemble at the hyphal tip. In this study we searched for polarisome homologues in the model filamentous fungus Aspergillus nidulans and characterized the S. cerevisiae Spa2 and Bud6 homologues, SpaA and BudA. Compared to the S. cerevisiae Spa2, SpaA lacks domain II but has three additional domains that are conserved within filamentous fungi. Gene replacement strains and localization studies show that SpaA functions exclusively at the hyphal tip, while BudA functions at sites of septum formation and possibly at hyphal tips. We show that SpaA is not required for the assembly or maintenance of the Spitzenkörper. We propose that the core function of the polarisome in polarized growth is maintained but with different contributions of polarisome components to the process.
Collapse
Affiliation(s)
- Aleksandra Virag
- Plant Science Initiative, and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660, USA
| | | |
Collapse
|
40
|
Vanittanakom N, Cooper CR, Fisher MC, Sirisanthana T. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 2006; 19:95-110. [PMID: 16418525 PMCID: PMC1360277 DOI: 10.1128/cmr.19.1.95-110.2006] [Citation(s) in RCA: 365] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillium marneffei infection is an important emerging public health problem, especially among patients infected with human immunodeficiency virus in the areas of endemicity in southeast Asia, India, and China. Within these regions, P. marneffei infection is regarded as an AIDS-defining illness, and the severity of the disease depends on the immunological status of the infected individual. Early diagnosis by serologic and molecular assay-based methods have been developed and are proving to be important in diagnosing infection. The occurrence of natural reservoirs and the molecular epidemiology of P. marneffei have been studied; however, the natural history and mode of transmission of the organism remain unclear. Soil exposure, especially during the rainy season, has been suggested to be a critical risk factor. Using a highly discriminatory molecular technique, multilocus microsatellite typing, to characterize this fungus, several isolates from bamboo rats and humans were shown to share identical multilocus genotypes. These data suggest either that transmission of P. marneffei may occur from rodents to humans or that rodents and humans are coinfected from common environmental sources. These putative natural cycles of P. marneffei infection need further investigation. Studies on the fungal genetics of P. marneffei have been focused on the characterization of genetic determinants that may play important roles in asexual development, mycelial-to-yeast phase transition, and the expression of antigenic determinants. Molecular studies have identified several genes involved in germination, hyphal development, conidiogenesis, and yeast cell polarity. A number of functionally important genes, such as the malate synthase- and catalase-peroxidase protein-encoding genes, have been identified as being upregulated in the yeast phase. Future investigations pertaining to the roles of these genes in host-fungus interactions may provide the key knowledge to understanding the pathogenicity of P. marneffei.
Collapse
Affiliation(s)
- Nongnuch Vanittanakom
- Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | |
Collapse
|
41
|
Rasmussen CG, Glass NL. A Rho-type GTPase, rho-4, is required for septation in Neurospora crassa. EUKARYOTIC CELL 2006; 4:1913-25. [PMID: 16278458 PMCID: PMC1287859 DOI: 10.1128/ec.4.11.1913-1925.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins in the Rho family are small monomeric GTPases primarily involved in polarization, control of cell division, and reorganization of cytoskeletal elements. Phylogenetic analysis of predicted fungal Rho proteins suggests that a new Rho-type GTPase family, whose founding member is Rho4 from the archiascomycete Schizosaccharomyces pombe, is involved in septation. S. pombe rho4Delta mutants have multiple, abnormal septa. In contrast to S. pombe rho4Delta mutants, we show that strains containing rho-4 loss-of-function mutations in the filamentous fungus Neurospora crassa lead to a loss of septation. Epitope-tagged RHO-4 localized to septa and to the plasma membrane. In other fungi, the steps required for septation include formin, septin, and actin localization followed by cell wall synthesis and the completion of septation. rho-4 mutants were unable to form actin rings, showing that RHO-4 is required for actin ring formation. Characterization of strains containing activated alleles of rho-4 showed that RHO-4-GTP is likely to initiate new septum formation in N. crassa.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
42
|
Chen C, Ha YS, Min JY, Memmott SD, Dickman MB. Cdc42 is required for proper growth and development in the fungal pathogen Colletotrichum trifolii. EUKARYOTIC CELL 2006; 5:155-66. [PMID: 16400178 PMCID: PMC1360247 DOI: 10.1128/ec.5.1.155-166.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdc42 is a highly conserved small GTP-binding protein that is involved in regulating morphogenesis in eukaryotes. In this study, we isolated and characterized a highly conserved Cdc42 gene from Colletotrichum trifolii (CtCdc42), a fungal pathogen of alfalfa. CtCdc42 is, at least in part, functionally equivalent to Saccharomyces cerevisiae Cdc42p, since it restores the temperature-sensitive phenotype of a yeast Cdc42p mutant. Inhibition of CtCdc42 by expression of an antisense CtCdc42 or a dominant negative form of CtCdc42 (DN Cdc42) resulted in appressorium differentiation under noninductive conditions, suggesting that CtCdc42 negatively regulates pathogenic development in this fungus. We also examined the possible linkage between CtCdc42 and Ras signaling. Expression of a dominant active Cdc42 (DA Cdc42) in C. trifolii leads to aberrant hyphal growth under nutrient-limiting conditions. This phenotype was similar to that of our previously reported dominant active Ras (DA Ras) mutant. Also consistent with our observations of the DA Ras mutant, high levels of reactive oxygen species (ROS) were observed in the DA Cdc42 mutant, and proline restored the wild-type phenotype. Moreover, overexpression of DN Cdc42 resulted in a significant decrease in spore germination, virtually no hyphal branching, and earlier sporulation, again similar to what we observed in a dominant negative Ras (DN Ras) mutant strain. Interestingly, coexpression of DA Cdc42 with DN Ras resulted in germination rates close to wild-type levels, while coexpression of DN Cdc42 with the DA Ras mutant restored the wild-type phenotype. These data suggest that CtCdc42 is positioned as a downstream effector of CtRas to regulate spore germination and pathogenic development.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Plant Pathology, 406 Plant Sciences Hall, University of Nebraska--Lincoln, Lincoln, Nebraska 68583-0722, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The formation of highly polarized hyphae that grow by apical extension is a defining feature of the filamentous fungi. High-resolution microscopy and mathematical modeling have revealed the importance of the cytoskeleton and the Spitzenkorper (an apical vesicle cluster) in hyphal morphogenesis. However, the underlying molecular mechanisms remain poorly characterized. In this review, the pathways and functions known to be involved in polarized hyphal growth are summarized. A central theme is the notion that the polarized growth of hyphae is more complex than in yeast, though similar sets of core pathways are likely utilized. In addition, a model for the establishment and maintenance of hyphal polarity is presented. Key features of the model include the idea that polarity establishment is a stochastic process that occurs independent of internal landmarks. Moreover, the stabilization of nascent polarity axes may be the critical step that permits the emergence of a new hypha.
Collapse
Affiliation(s)
- Steven D Harris
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
44
|
Scheffer J, Chen C, Heidrich P, Dickman MB, Tudzynski P. A CDC42 homologue in Claviceps purpurea is involved in vegetative differentiation and is essential for pathogenicity. EUKARYOTIC CELL 2005; 4:1228-38. [PMID: 16002649 PMCID: PMC1168960 DOI: 10.1128/ec.4.7.1228-1238.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Claviceps purpurea, a biotrophic pathogen of cereals, has developed a unique pathogenic strategy including an extended period of unbranched directed growth in the host's style and ovarian tissue to tap the vascular system. Since the small GTPase Cdc42 has been shown to be involved in cytoskeleton organization and polarity in other fungi, we investigated the role of Cdc42 in the development and pathogenicity of C. purpurea. Expression of heterologous dominant-active (DA) and dominant-negative (DN) alleles of Colletotrichum trifolii in a wild strain of C. purpurea had significant impact on vegetative differentiation: whereas DA Ctcdc42 resulted in loss of conidiation and in aberrant cell shape, expression of DN Ctcdc42 stimulated branching and conidiation. Deletion of the endogenous Cpcdc42 gene was not lethal but led to a phenotype comparable to that of DN Ctcdc42 transformants. DeltaCpcdc42 mutants were nonpathogenic; i.e., they induced no disease symptoms. Cytological analysis (light microscopy and electron microscopy) revealed that the mutants can penetrate and invade the stylar tissue. However, invasive growth was arrested in an early stage, presumably induced by plant defense reactions (necrosis or increased production of reactive oxygen species), which were never observed in wild-type infection. The data show a significant impact of Cpcdc42 on vegetative differentiation and pathogenicity in C. purpurea.
Collapse
Affiliation(s)
- Jan Scheffer
- Institut für Botanik, Westfälische Wilhelms-Universität, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
45
|
Pongsunk S, Andrianopoulos A, Chaiyaroj SC. Conditional lethal disruption of TATA-binding protein gene in Penicillium marneffei. Fungal Genet Biol 2005; 42:893-903. [PMID: 16226907 DOI: 10.1016/j.fgb.2005.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 11/26/2022]
Abstract
Problems can arise in studying the regulation of transcription in fungi if gene disruption is employed to evaluate the role of essential transcription factors. Herein, we have developed a method to characterize the essential genes of Penicillium marneffei. This has been used to examine the significance of P. marneffei TATA-binding protein (TBP) in growth and development. Strains in which the expression of TbpA could be regulated were constructed by placing tbpA under the control of the xylP promoter. The construct was introduced into P. marneffei and the resulting strains were used to produce P. marneffei tbpA deletion strains. Phenotypic examination of growth of the tbpA overexpressing strains revealed that high levels of TbpA expression inhibit fungal growth at conidial germination in both filamentous and yeast forms. Under repressing conditions, the tbpA deletion strains failed to grow at 25 degrees C whilst showing reduced growth at 37 degrees C. The results suggested that TbpA is essential for P. marneffei filamentous growth, but plays a less significant role in growth and development during the yeast phase.
Collapse
Affiliation(s)
- Supinya Pongsunk
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
46
|
Weber M, Salo V, Uuskallio M, Raudaskoski M. Ectopic expression of a constitutively active Cdc42 small GTPase alters the morphology of haploid and dikaryotic hyphae in the filamentous homobasidiomycete Schizophyllum commune. Fungal Genet Biol 2005; 42:624-37. [PMID: 15896990 DOI: 10.1016/j.fgb.2005.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/10/2005] [Accepted: 03/30/2005] [Indexed: 10/25/2022]
Abstract
Cloning of the Cdc42 gene from Schizophyllum commune enabled investigation of the role of ScCdc42 in the regulation of vegetative growth and sexual reproduction in this fungus, which has a well-characterized hyphal cell structure, cytoskeleton, and mating system. Ectopic expression of the constitutively active Sccdc42(G12V) or Sccdc42(Q61L) alleles from native or inducible ScCel1 promoters in haploid hyphae had dramatic effects on hyphal morphology, cytoskeletal structure, and Cdc42 localization. For transformants with constitutively active Sccdc42, polar tip growth of apical cells in the leading hyphae was normal but polar tip growth in side branches was altered, implying different regulation of polarity establishment in the two groups of apical cells. Branch emergence at exceptional sites and isotropic growth of cells near the septum indicated that ScCdc42 regulates branch site selection and subsequent hyphal development. Poor dikaryotization along with irregular clamp connections in mates expressing Sccdc42(G12V) or Sccdc42(Q61L) suggested that Cdc42 also contributes to efficient mating in S. commune.
Collapse
Affiliation(s)
- Marion Weber
- Department of Biological and Environmental Sciences, Plant Biology, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
47
|
Leiter É, Szappanos H, Oberparleiter C, Kaiserer L, Csernoch L, Pusztahelyi T, Emri T, Pócsi I, Salvenmoser W, Marx F. Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 2005; 49:2445-53. [PMID: 15917545 PMCID: PMC1140496 DOI: 10.1128/aac.49.6.2445-2453.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The small, basic, and cysteine-rich antifungal protein PAF is abundantly secreted into the supernatant by the beta-lactam producer Penicillium chrysogenum. PAF inhibits the growth of various important plant and zoopathogenic filamentous fungi. Previous studies revealed the active internalization of the antifungal protein and the induction of multifactorial detrimental effects, which finally resulted in morphological changes and growth inhibition in target fungi. In the present study, we offer detailed insights into the mechanism of action of PAF and give evidence for the induction of a programmed cell death-like phenotype. We proved the hyperpolarization of the plasma membrane in PAF-treated Aspergillus nidulans hyphae by using the aminonaphtylethenylpyridinium dye di-8-ANEPPS. The exposure of phosphatidylserine on the surface of A. nidulans protoplasts by Annexin V staining and the detection of DNA strand breaks by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) gave evidence for a PAF-induced apoptotic-like mechanism in A. nidulans. The localization of reactive oxygen species (ROS) by dichlorodihydrofluorescein diacetate and the abnormal cellular ultrastructure analyzed by transmission electron microscopy suggested that ROS-elicited membrane damage and the disintegration of mitochondria played a major role in the cytotoxicity of PAF. Finally, the reduced PAF sensitivity of A. nidulans strain FGSC1053, which carries a dominant-interfering mutation in fadA, supported our assumption that G-protein signaling was involved in PAF-mediated toxicity.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Henrietta Szappanos
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Christoph Oberparleiter
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Lydia Kaiserer
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - László Csernoch
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Tünde Pusztahelyi
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Tamás Emri
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Willibald Salvenmoser
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
| | - Florentine Marx
- Department of Microbiology and Biotechnology, Faculty of Science, Department of Physiology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria, Institute of Zoology and Limnology, Division of Ultrastructure and Evolutionary Biology, University of Innsbruck, Innsbruck, Austria
- Corresponding author. Mailing address: Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl Strasse 3, A-6020 Innsbruck, Austria. Phone: 43-512-5073607. Fax: 43-512-5079880. E-mail:
| |
Collapse
|
48
|
Boyce KJ, Hynes MJ, Andrianopoulos A. The Ras and Rho GTPases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Mol Microbiol 2005; 55:1487-501. [PMID: 15720555 DOI: 10.1111/j.1365-2958.2005.04485.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ras and Rho GTPases have been examined in a wide variety of eukaryotes and play varied and often overlapping roles in cell polarization and development. Studies in Saccharomyces cerevisiae and mammalian cells have defined some of the central activities of these GTPases. However, these paradigms do not explain the role of these proteins in all eukaryotes. Unlike yeast, but like more complex eukaryotes, filamentous fungi have Rac-like proteins in addition to Ras and Cdc42. To investigate the unique functions of these proteins and determine how they interact to co-ordinately regulate morphogenesis during growth and development we undertook a genetic analysis of GTPase function by generating double mutants of the Rho GTPases cflA and cflB and the newly isolated Ras GTPase rasA from the dimorphic pathogenic fungus, Penicillium marneffei. P. marneffei growth at 25 degrees C is as multinucleate, septate, branched hyphae which are capable of undergoing asexual development (conidiation), while at 37 degrees C, uninucleate pathogenic yeast cells which divide by fission are produced. Here we show that RasA (Ras) acts upstream of CflA (Cdc42) to regulate germination of spores and polarized growth of both hyphal and yeast cells, while also exhibiting CflA-independent activities. CflA (Cdc42) and CflB (Rac) co-ordinately control hyphal cell polarization despite also having unique roles in regulating conidial germination and polarized growth of yeast cells (CflA) and polarized growth of conidiophore cell types and hyphal branching (CflB).
Collapse
Affiliation(s)
- Kylie J Boyce
- Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia 3010
| | | | | |
Collapse
|
49
|
Harris SD, Momany M. Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 2004; 41:391-400. [PMID: 14998522 DOI: 10.1016/j.fgb.2003.11.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 11/13/2003] [Indexed: 10/26/2022]
Abstract
Filamentous fungi grow by the polar extension of hyphae. This polar growth requires the specification of sites of germ tube or branch emergence, followed by the recruitment of the morphogenetic machinery to those sites for localized cell wall deposition. Researchers attempting to understand hyphal morphogenesis have relied upon the powerful paradigm of bud emergence in the yeast Saccharomyces cerevisiae. The yeast paradigm has provided a useful framework, however several features of hyphal morphogenesis, such as the ability to maintain multiple axes of polarity and an extremely rapid extension rate, cannot be explained by simple extrapolation from yeast models. We discuss recent polarity research from filamentous fungi focusing on the position of germ tube emergence, the relaying of positional information via RhoGTPase modules, and the recruitment of morphogenetic machinery components including cytoskeleton, polarisome and ARP2/3 complexes, and the vesicle trafficking system.
Collapse
Affiliation(s)
- Steven D Harris
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA.
| | | |
Collapse
|
50
|
Pearson CL, Xu K, Sharpless KE, Harris SD. MesA, a novel fungal protein required for the stabilization of polarity axes in Aspergillus nidulans. Mol Biol Cell 2004; 15:3658-72. [PMID: 15155805 PMCID: PMC491826 DOI: 10.1091/mbc.e03-11-0803] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Aspergillus nidulans proteome possesses a single formin, SepA, which is required for actin ring formation at septation sites and also plays a role in polarized morphogenesis. Previous observations imply that complex regulatory mechanisms control the function of SepA and ensure its correct localization within hyphal tip cells. To characterize these mechanisms, we undertook a screen for mutations that enhance sepA defects. Of the mutants recovered, mesA1 causes the most dramatic defect in polarity establishment when SepA function is compromised. In a wild-type background, mesA1 mutants undergo aberrant hyphal morphogenesis, whereas septum formation remains unaffected. Molecular characterization revealed that MesA is a novel fungal protein that contains predicted transmembrane domains and localizes to hyphal tips. We show that MesA promotes the localized assembly of actin cables at polarization sites by facilitating the stable recruitment of SepA. We also provide evidence that MesA may regulate the formation or distribution of sterol-rich membrane domains. Our results suggest that these domains may be part of novel mechanism that directs SepA to hyphal tips.
Collapse
Affiliation(s)
- Claire L Pearson
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA
| | | | | | | |
Collapse
|