1
|
Guo WH, Zhu YJ, Haimiti G, Xie XR, Niu C, Li M, Shi J, Yin ZW, Yu MK, Ding JB, Zhang FB. Bioinformatics-based design of a fusion vaccine with CTLA-4 variable region to combat Brucella. Braz J Med Biol Res 2023; 56:e12938. [PMID: 37493775 PMCID: PMC10361638 DOI: 10.1590/1414-431x2023e12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Brucellosis has become a global zoonotic disease, seriously endangering the health of people all over the world. Vaccination is an effective strategy for protection against Brucella infection in livestock in developed countries. However, current vaccines are pathogenic to humans and pregnant animals, which limits their use. Therefore, it is very important to improve the safety and immune protection of Brucella vaccine. In this study, different bioinformatics approaches were carried out to predict the physicochemical properties, T/B epitope, and tertiary structure of Omp2b and Omp31. Then, these two proteins were sequentially linked, and the Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) variable region was fused to the N-terminal of the epitope sequence. In addition, molecular docking was performed to show that the structure of the fusion protein vaccine had strong affinity with B7 (B7-1, B7-2). This study showed that the designed vaccine containing CTLA-4 had high potency against Brucella, which could provide a reference for the future development of efficient brucellosis vaccines.
Collapse
Affiliation(s)
- W H Guo
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Y J Zhu
- Department of Reproductive Assistance, Center for Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - G Haimiti
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - X R Xie
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - C Niu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - M Li
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - J Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Z W Yin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - M K Yu
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - J B Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - F B Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Wu Q, Yuan L, Guo X, Sun M, Yao M, Yin D. Study on antigenic protein Omp2b in combination with Omp31 and BP26 for serological detection of human brucellosis. J Microbiol Methods 2023; 205:106663. [PMID: 36592896 DOI: 10.1016/j.mimet.2022.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brucellosis is a very common zoonosis in certain localized areas worldwide, with a high prevalence in most developing countries. The detection of brucellosis still faces many challenges such as the need for more sensitive and specific diagnostic antigens. METHODS To evaluate the efficacy of Brucella outer membrane proteins (Omps) Omp2b in combination with omp31 and BP26 as diagnostic antigens for the serological detection of human brucellosis, these proteins were prepared by a prokaryotic expression system. Human brucellosis-positive and-negative sera were collected, and the detection effects of the diagnostic antigens were evaluated using an established indirect ELISA (iELISA) method. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC), true positives, true negatives, false positives, false negatives, accuracy, positive predictive value, negative predictive value, analytical specificity, and sensitivity were obtained to evaluate the effectiveness of Omp2b and antigen combinations. RESULTS The iELISA results showed that the AUC of the antigenic proteins was 0.9100, 0.9387, 0.9343, and 0.9448, respectively, and that the combination of Omp31 and BP26 improved the accuracy and was superior to that of Omp2b alone. Analysis at the determined cut-off values showed that the analytical sensitivity of the assay was 0.8739 (95% CI:0.7974-0.9293) and the analytical specificity was 0.8539 (95% CI:0.7632-0.9199) when using Omp2b alone and 0.8649 when using the combination of Omp2b + BP26 (95% CI:0.7869-0.9223) with an analytical specificity of 0.9213 (95% CI:0.8446-0.9678) and 0.8468 (95% CI:0.7662-0.9082) and an analytical sensitivity of 0.9101 (95% CI:0.8305-0.9604). When Omp2b + Omp31 + BP26 was combined, the analytical sensitivity and specificity were 0.8559 (95% CI:0.7765-0.9153) and 0.9326 (95% CI:0.8590-0.9749), respectively. Protein antigens, including antigen combinations, did not cross-react with Yersinia enterocolitica O9 and E. coli O157: H7, indicating that their specificity was better than that of lipopolysaccharide (LPS). CONCLUSIONS Compared with individual Omp2b, antigen combinations improved the effectiveness in detecting brucellosis, but were still not as effective as LPS antigen. Omp2b, combined with Omp31 and BP26 as diagnostic antigens, can be used to detect human brucellosis.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaohan Guo
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Mingjun Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Meixue Yao
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Dehui Yin
- Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
3
|
The Retrospective on Atypical Brucella Species Leads to Novel Definitions. Microorganisms 2022; 10:microorganisms10040813. [PMID: 35456863 PMCID: PMC9025488 DOI: 10.3390/microorganisms10040813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Collapse
|
4
|
Paci V, Visciano P, Krasteva I, Di Febo T, Perletta F, Di Pancrazio C, D’Onofrio F, Schirone M, Tittarelli M, Luciani M. Identification of Immunogenic Candidate for New Serological Tests for Brucella melitensis by a Proteomic Approach. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The diagnosis of brucellosis by serological tests is based on antigen suspensions derived from smooth lipopolysaccharide extracts, which can give false positive results linked to cross-reactivity with other Gram-negative microorganisms, especially Yersinia enterocolitica O:9 and Escherichia coli O157:H7.
Objective:
The objective of the present study was the characterization by proteomic analysis of specific immunogenic proteins not associated with smooth lipopolysaccharide to improve the diagnostic tests used in the ovine brucellosis eradication programs.
Methods:
The serum from a sheep positive to Brucella melitensis was treated to eliminate all antibodies against such lipopolysaccharide and highlight the reaction towards the immunoreactive proteins in Western Blotting.
Results:
The immunoreactive bands were identified by nLC-MS/MS and through bioinformatic tools, it was possible to select 12 potential candidates as protein antigens specific for Brucella melitensis.
Conclusion:
The detection of new antigens not subjected to cross-reactivity with other Gram-negative microorganisms can offer an additional tool for the serological diagnosis of such disease.
Collapse
|
5
|
Puiggalí-Jou A, Molina BG, Lopes-Rodrigues M, Michaux C, Perpète EA, Zanuy D, Alemán C. Self-standing, conducting and capacitive biomimetic hybrid nanomembranes for selective molecular ion separation. Phys Chem Chem Phys 2021; 23:16157-16164. [PMID: 34297025 DOI: 10.1039/d1cp01840j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid free-standing biomimetic materials are developed by integrating the VDAC36 β-barrel protein into robust and flexible three-layered polymer nanomembranes. The first and third layers are prepared by spin-coating a mixture of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA). PVA nanofeatures are transformed into controlled nanoperforations by solvent-etching. The two nanoperforated PLA layers are separated by an electroactive layer, which is successfully electropolymerized by introducing a conducting sacrificial substrate under the first PLA nanosheet. Finally, the nanomaterial is consolidated by immobilizing the VDAC36 protein, active as an ion channel, into the nanoperforations of the upper layer. The integration of the protein causes a significant reduction of the material resistance, which decreases from 21.9 to 3.9 kΩ cm2. Electrochemical impedance spectroscopy studies using inorganic ions and molecular metabolites (i.e.l-lysine and ATP) not only reveal that the hybrid films behave as electrochemical supercapacitors but also indicate the most appropriate conditions to obtain selective responses against molecular ions as a function of their charge. The combination of polymers and proteins is promising for the development of new devices for engineering, biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Edif. I2, 08019, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhu L, Wang Q, Wang Y, Xu Y, Peng D, Huang H, Hu L, Wei K, Zhu R. Comparison of Immune Effects Between Brucella Recombinant Omp10-Omp28-L7/L12 Proteins Expressed in Eukaryotic and Prokaryotic Systems. Front Vet Sci 2020; 7:576. [PMID: 33195494 PMCID: PMC7531237 DOI: 10.3389/fvets.2020.00576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
Brucella, a genus of bacteria that causes brucellosis, infects and threatens domestic animals, and humans in endemic areas. Presently, some live attenuated vaccines of Brucella are used to immunize livestock; however, these vaccines are pathogenic to humans, can provoke abortion when administered to pregnant livestock, and induce antibodies in vaccinated livestock that affect the diagnosis of field infection. It is, therefore, very important for improving the safety and immune protection effects of Brucella vaccine. Currently, recombinant protein-based subunit vaccines are considered promising safe and effective alternatives against brucellosis. Here, we separately expressed the recombinant Omp10-Omp28-L7/L12 proteins of Brucella using eukaryotic and prokaryotic expression systems, which were then used as immunogens for evaluating their immune responses. Taishan Pinus massoniana pollen polysaccharides (TPPPS), an already verified natural adjuvant, was utilized to evaluate the immune conditioning effect on the recombinant proteins. Antibody levels, spleen lymphocyte proliferation, percentages of CD4+ and CD8+ T cells, and cytokine secretion in mice were examined after three successive immunizations. The protective effects against Brucella challenge were also evaluated in mice, and used a live vaccine as a positive control. The results indicated that the immune responses of the recombinant Omp10-Omp28-L7/L12 protein groups were significantly higher than those of the PBS control group. The recombinant Omp10-Omp28-L7/L12 protein expressed in Pichia pastoris (P. pastoris) exhibited a slightly higher expression level and immunogenicity than that expressed in Escherichia coli (E. coli), and the Omp10-Omp28-L7/L12 (P. pastoris) + TPPPS group provided the most pronounced immune effect. The protective results showed that the recombinant Omp10-Omp28-L7/L12 proteins expressed in the two expression systems had significantly better protective effects against Brucella melitensis challenge compared with the negative control, and the addition of TPPPS adjuvant could significantly improve the protective effects of subunit vaccines. However, we also noticed that all of the evaluated subunit vaccines induced less protection than the B. melitensis M5 live vaccine. These results indicate that the combination of recombinant Omp10-Omp28-L7/L12 antigen and TPPPS adjuvant shows potential as an effective brucellosis subunit vaccine, and P. pastoris is a preferred expression system to prepare this recombinant subunit antigen.
Collapse
Affiliation(s)
- Lin Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Qiuju Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yujian Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yulin Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - He Huang
- Shandong New Hope Liuhe Co., Ltd., New Hope Group, Qingdao, China
| | - Liping Hu
- Animal Disease Prevention and Control Center of Shandong Province, Animal Husbandry and Veterinary Bureau of Shandong Province, Jinan, China
| | - Kai Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ruiliang Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
7
|
Cloeckaert A, Vergnaud G, Zygmunt MS. Omp2b Porin Alteration in the Course of Evolution of Brucella spp. Front Microbiol 2020; 11:284. [PMID: 32153552 PMCID: PMC7050475 DOI: 10.3389/fmicb.2020.00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
The genus Brucella comprises major pathogenic species causing disease in livestock and humans, e.g. B. melitensis. In the past few years, the genus has been significantly expanded by the discovery of phylogenetically more distant lineages comprising strains from diverse wildlife animal species, including amphibians and fish. The strains represent several potential new species, with B. inopinata as solely named representative. Being genetically more distant between each other, relative to the “classical” Brucella species, they present distinct atypical phenotypes and surface antigens. Among surface protein antigens, the Omp2a and Omp2b porins display the highest diversity in the classical Brucella species. The genes coding for these proteins are closely linked in the Brucella genome and oriented in opposite directions. They share between 85 and 100% sequence identity depending on the Brucella species, biovar, or genotype. Only the omp2b gene copy has been shown to be expressed and genetic variation is extensively generated by gene conversion between the two copies. In this study, we analyzed the omp2 loci of the non-classical Brucella spp. Starting from two distinct ancestral genes, represented by Australian rodent strains and B. inopinata, a stepwise nucleotide reduction was observed in the omp2b gene copy. It consisted of a first reduction affecting the region encoding the surface L5 loop of the porin, previously shown to be critical in sugar permeability, followed by a nucleotide reduction in the surface L8 loop-encoding region. It resulted in a final omp2b gene size shared between two distinct clades of non-classical Brucella spp. (African bullfrog isolates) and the group of classical Brucella species. Further evolution led to complete homogenization of both omp2 gene copies in some Brucella species such as B. vulpis or B. papionis. The stepwise omp2b deletions seemed to be generated through recombination with the respective omp2a gene copy, presenting a conserved size among Brucella spp., and may involve short direct DNA repeats. Successive Omp2b porin alteration correlated with increasing porin permeability in the course of evolution of Brucella spp. They possibly have adapted their porin to survive environmental conditions encountered and to reach their final status as intracellular pathogen.
Collapse
Affiliation(s)
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | | |
Collapse
|
8
|
Rezaei M, Rabbani-Khorasgani M, Zarkesh-Esfahani SH, Emamzadeh R, Abtahi H. Prediction of the Omp16 Epitopes for the Development of an Epitope-based Vaccine Against Brucellosis. Infect Disord Drug Targets 2019; 19:36-45. [PMID: 29984663 DOI: 10.2174/1871526518666180709121653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/07/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Brucellosis is an infectious disease caused by Brucella bacteria that cause disease in animals and humans. Brucellosis is one of the most common zoonotic diseases transmitted from animals-to-human through direct contact with infected animals and also consumption of unpasteurized dairy products. Due to the wide incidence of brucellosis in Iran and economical costs in industrial animal husbandry, Vaccination is the best way to prevent this disease. All of the available commercial vaccines against brucellosis are derived from live attenuated strains of Brucella but because of the disadvantage of live attenuated vaccines, protective subunit vaccine against Brucella may be a good candidate for the production of new recombinant vaccines based on Brucella Outer Membrane Protein (OMP) antigens. In the present study, comprehensive bioinformatics analysis has been conducted on prediction software to predict T and B cell epitopes, the secondary and tertiary structures and antigenicity of Omp16 antigen and the validation of used software confirmed by experimental results. CONCLUSION The final epitope prediction results have proposed that the three epitopes were predicted for the Omp16 protein with antigenicity ability. We hypothesized that these epitopes likely have the protective capacity to stimulate both the B-cell and T-cell mediated immune responses and so may be effective as an immunogenic candidate for the development of an epitope-based vaccine against brucellosis.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | | | | | - Rahman Emamzadeh
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Science, Arak, Iran
| |
Collapse
|
9
|
Vassen V, Valotteau C, Feuillie C, Formosa-Dague C, Dufrêne YF, De Bolle X. Localized incorporation of outer membrane components in the pathogen Brucella abortus. EMBO J 2019; 38:e100323. [PMID: 30635335 PMCID: PMC6396147 DOI: 10.15252/embj.2018100323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
The zoonotic pathogen Brucella abortus is part of the Rhizobiales, which are alpha-proteobacteria displaying unipolar growth. Here, we show that this bacterium exhibits heterogeneity in its outer membrane composition, with clusters of rough lipopolysaccharide co-localizing with the essential outer membrane porin Omp2b, which is proposed to allow facilitated diffusion of solutes through the porin. We also show that the major outer membrane protein Omp25 and peptidoglycan are incorporated at the new pole and the division site, the expected growth sites. Interestingly, lipopolysaccharide is also inserted at the same growth sites. The absence of long-range diffusion of main components of the outer membrane could explain the apparent immobility of the Omp2b clusters, as well as unipolar and mid-cell localizations of newly incorporated outer membrane proteins and lipopolysaccharide. Unipolar growth and limited mobility of surface structures also suggest that new surface variants could arise in a few generations without the need of diluting pre-existing surface antigens.
Collapse
Affiliation(s)
- Victoria Vassen
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Cécile Formosa-Dague
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms (URBM), Narilis University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
10
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
11
|
Puiggalí-Jou A, Pérez-Madrigal MM, Del Valle LJ, Armelin E, Casas MT, Michaux C, Perpète EA, Estrany F, Alemán C. Confinement of a β-barrel protein in nanoperforated free-standing nanomembranes for ion transport. NANOSCALE 2016; 8:16922-16935. [PMID: 27714137 DOI: 10.1039/c6nr04948f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bioinspired free-standing nanomembranes (FSNMs) for selective ion transport have been tailored by immobilizing the Omp2a β-barrel membrane protein inside nanoperforations created in flexible poly(lactic acid) (PLA) nanomembranes. Perforated PLA FSNMs have been prepared by spin-coating a 99 : 1 PLA : poly(vinyl alcohol) mixture, and through a phase segregation process nanofeatures with dimensions similar to the entire nanomembrane thickness (∼110 nm) were induced. These nanofeatures have subsequently been transformed into nanoperforations (diameter: ∼51 nm) by selective solvent etching. The protein confined inside the nanopores of PLA FSNMs preserves the β-barrel structure and organizes in ovoid aggregates. The transport properties of Na+, K+, and Ca2+ across non-perforated PLA, nanoperforated PLA, and Omp2a-filled nanoperforated PLA have been monitored by measuring the nanomembrane resistance with electrochemical impedance spectroscopy (EIS). The incorporation of nanoperforations enhances the transport of ions across PLA nanomembranes, whereas the functionality of immobilized Omp2a is essential to exhibit effects similar to those observed in biological nanomembranes. Indeed, Omp2a-filled nanoperforated PLA nanomembranes exhibit stronger affinity towards Na+ and Ca2+ ions than towards K+. In summary, this work provides a novel bioinspired strategy to develop mechanically stable and flexible FSNMs with channels for ion transport, which are precisely located inside artificial nanoperforations, thus holding great potential for applications in biofiltration and biosensing.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, Barcelona E-08028, Spain. and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, Barcelona E-08028, Spain. and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, Barcelona E-08028, Spain. and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, Barcelona E-08028, Spain. and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| | - María T Casas
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, Barcelona E-08028, Spain.
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, Unité de Chimie Physique Théorique et Structurale (UCPTS), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Eric A Perpète
- Laboratoire de Chimie Physique des Biomolécules, Unité de Chimie Physique Théorique et Structurale (UCPTS), University of Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Francesc Estrany
- Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain and Departament d'Enginyeria Química, Escola Universitària d'Enginyeria Tècnica Industrial de Barcelona, Universitat Politècnica de Catalunya, Comte d'Urgell 187, 08036 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya, Avda. Diagonal 647, Barcelona E-08028, Spain. and Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C', C/Pasqual i Vila s/n, Barcelona E-08028, Spain
| |
Collapse
|
12
|
Di DD, Jiang H, Tian LL, Kang JL, Zhang W, Yi XP, Ye F, Zhong Q, Ni B, He YY, Xia L, Yu Y, Cui BY, Mao X, Fan WX. Comparative genomic analysis between newly sequenced Brucella suis Vaccine Strain S2 and the Virulent Brucella suis Strain 1330. BMC Genomics 2016; 17:741. [PMID: 27645563 PMCID: PMC5029015 DOI: 10.1186/s12864-016-3076-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/07/2016] [Indexed: 11/16/2022] Open
Abstract
Background Brucellosis is a bacterial disease caused by Brucella infection. In the late fifties, Brucella suis vaccine strain S2 with reduced virulence was obtained by serial transfer of a virulent B. suis biovar 1 strain in China. It has been widely used for vaccination in China since 1971. Until now, the mechanisms underlie virulence attenuation of S2 are still unknown. Results In this paper, the whole genome sequencing of S2 was carried out by Illumina Hiseq2000 sequencing method. We further performed the comparative genomic analysis to find out the differences between S2 and the virulent Brucella suis strain 1330. We found premature stops in outer membrane autotransporter omaA and eryD genes. Single mutations were found in phosphatidylcholine synthase, phosphorglucosamine mutase, pyruvate kinase and FliF, which have been reported to be related to the virulence of Brucella or other bacteria. Of the other different proteins between S2 and 1330, such as Omp2b, periplasmic sugar-binding protein, and oligopeptide ABC transporter, no definitive implications related to bacterial virulence were found, which await further investigation. Conclusions The data presented here provided the rational basis for designing Brucella vaccines that could be used in other strains. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Dong Di
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Li-Li Tian
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jing-Li Kang
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Wen Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xin-Ping Yi
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Feng Ye
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Qi Zhong
- Xinjiang Academy of Animal Science, Institute of Veterinary Research, Urumuqi, Xinjiang, China
| | - Bo Ni
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - You-Yu He
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Lin Xia
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Yao Yu
- ZhongXin Biotechology Shanghai Co, Ltd. 12F, Building 1, 100 Qinzhou Road, Shanghai, China
| | - Bu-Yun Cui
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Beijing, China.
| | - Xiang Mao
- Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, Shanghai, China.
| | - Wei-Xing Fan
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Yin D, Li L, Song D, Liu Y, Ju W, Song X, Wang J, Pang B, Xu K, Li J. A novel recombinant multi-epitope protein against Brucella melitensis infection. Immunol Lett 2016; 175:1-7. [DOI: 10.1016/j.imlet.2016.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
|
14
|
Yin D, Li L, Song X, Li H, Wang J, Ju W, Qu X, Song D, Liu Y, Meng X, Cao H, Song W, Meng R, Liu J, Li J, Xu K. A novel multi-epitope recombined protein for diagnosis of human brucellosis. BMC Infect Dis 2016; 16:219. [PMID: 27206475 PMCID: PMC4875615 DOI: 10.1186/s12879-016-1552-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/07/2016] [Indexed: 01/18/2023] Open
Abstract
Background In epidemic regions of the world, brucellosis is a reemerging zoonosis with minimal mortality but is a serious public hygiene problem. Currently, there are various methods for brucellosis diagnosis, however few of them are available to be used to diagnose, especially for serious cross-reaction with other bacteria. Method To overcome this disadvantage, we explored a novel multi-epitope recombinant protein as human brucellosis diagnostic antigen. We established an indirect enzyme-linked immunosorbent assay (ELISA) based on this recombinant protein. 248 sera obtained from three different groups including patients with brucellosis (146 samples), non-brucellosis patients (82 samples), and healthy individuals (20 samples) were tested by indirect ELISA. To evaluate the assay, a receiver-operating characteristic (ROC) analysis and immunoblotting were carried out using these characterized serum samples. Results For this test, the area under the ROC curve was 0.9409 (95 % confidence interval, 0.9108 to 0.9709), and a sensitivity of 88.89 % and a specificity of 85.54 % was given with a cutoff value of 0.3865 from this ROC analysis. The Western blot results indicate that it is feasible to differentiate human brucellosis and non-brucellosis with the newly established method based on this recombinant protein. Conclusion Our results obtained high diagnostic accuracy of the ELISA assay which encourage the use of this novel recombinant protein as diagnostic antigen to implement serological diagnosis of brucellosis. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1552-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dehui Yin
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Li Li
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Xiuling Song
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Han Li
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China.,Department of Infection Control, First Hospital of Jilin University, Changchun, China
| | - Juan Wang
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Wen Ju
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Xiaofeng Qu
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Dandan Song
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Yushen Liu
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Xiangjun Meng
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Hongqian Cao
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Weiyi Song
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China
| | - Rizeng Meng
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China.,Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, China
| | - Jinhua Liu
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, China
| | - Juan Li
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China.
| | - Kun Xu
- Department of Health Laboratory, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Reddy BL, Saier MH. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins. PLoS One 2016; 11:e0152733. [PMID: 27064789 PMCID: PMC4827864 DOI: 10.1371/journal.pone.0152733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications.
Collapse
Affiliation(s)
- Bhaskara L. Reddy
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Golshani M, Vaeznia N, Sahmani M, Bouzari S. In silico analysis of Brucella abortus Omp2b and in vitro expression of SOmp2b. Clin Exp Vaccine Res 2016; 5:75-82. [PMID: 26866027 PMCID: PMC4742603 DOI: 10.7774/cevr.2016.5.1.75] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/22/2015] [Accepted: 12/07/2015] [Indexed: 11/15/2022] Open
Abstract
PURPOSE At present, there is no vaccine available for the prevention of human brucellosis. Brucella outer membrane protein 2b (Omp2b) is a 36 kD porin existed in common Brucella pathogens and it is considered as priority antigen for designing a new subunit vaccine. MATERIALS AND METHODS In the current study, we aimed to predict and analyze the secondary and tertiary structures of the Brucella abortus Omp2b protein, and to predict T-cell and B-cell epitopes with the help of bioinformatics tools. Subsequently, cloning and expression of the short form of Omp2b (SOmp2b) was performed using pET28a expression vector and Escherichia coli BL21 host, respectively. The recombinant SOmp2b (rSOmp2b) was purified with Ni-NTA column. RESULTS The recombinant protein was successfully expressed in E. coli host and purified under denaturation conditions. The yield of the purified rSOmp2b was estimated by Bradford method and found to be 220 µg/mL of the culture. CONCLUSION Our results indicate that Omp2b protein has a potential to induce both B-cell- and T-cell-mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Nafise Vaeznia
- Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Sahmani
- Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
17
|
Goolab S, Roth RL, van Heerden H, Crampton MC. Analyzing the molecular mechanism of lipoprotein localization in Brucella. Front Microbiol 2015; 6:1189. [PMID: 26579096 PMCID: PMC4623201 DOI: 10.3389/fmicb.2015.01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 01/18/2023] Open
Abstract
Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria are well characterized and may be useful to infer a solution to better understand the translocation process in Brucella.
Collapse
Affiliation(s)
- Shivani Goolab
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Robyn L. Roth
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of PretoriaPretoria, South Africa
| | - Michael C. Crampton
- Protein Technologies, Biosciences, Council for Scientific and Industrial ResearchPretoria, South Africa
| |
Collapse
|
18
|
Pérez-Madrigal MM, del Valle LJ, Armelin E, Michaux C, Roussel G, Perpète EA, Alemán C. Polypyrrole-supported membrane proteins for bio-inspired ion channels. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1632-43. [PMID: 25585165 DOI: 10.1021/am507142f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biomedical platforms constructed by immobilizing membrane proteins in matrixes made of synthetic organic polymers is a challenge because the structure and function of these proteins are affected by environmental conditions. In this work, an operative composite that regulates the diffusion of alkali ions has been prepared by functionalizing a supporting matrix made of poly(N-methylpyrrole) (PNMPy) with a β-barrel membrane protein (Omp2a) that forms channels and pores. The protein has been unequivocally identified in the composite, and its structure has been shown to remain unaltered. The PNMPy-Omp2a platform fulfills properties typically associated with functional bio-interfaces with biomedical applications (e.g., biocompatibility, biodegrabadility, and hydrophilicity). The functionality of the immobilized protein has been examined by studying the passive ion transport response in the presence of electrolytic solutions with Na(+) and K(+) concentrations close to those found in blood. Although the behavior of PNMPy and PNMPy-Omp2a is very similar for solutions with very low concentration, the resistance of the latter decreases drastically when the concentration of ions increases to ∼100 mM. This reduction reflects an enhanced ion exchange between the biocomposite and the electrolytic medium, which is not observed in PNMPy, evidencing that PNMPy-Omp2a is particularly well suited to prepare bioinspired channels and smart biosensors.
Collapse
Affiliation(s)
- Maria M Pérez-Madrigal
- Departament d'Enginyeria Química, ETSEIB, Universitat Politècnica de Catalunya , Avda. Diagonal 647, Barcelona E-08028, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Roussel G, Perpète EA, Matagne A, Tinti E, Michaux C. Towards a universal method for protein refolding: The trimeric beta barrel membrane Omp2a as a test case. Biotechnol Bioeng 2012; 110:417-23. [DOI: 10.1002/bit.24722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/09/2012] [Accepted: 08/20/2012] [Indexed: 12/31/2022]
|
20
|
Comparative genomics of early-diverging Brucella strains reveals a novel lipopolysaccharide biosynthesis pathway. mBio 2012; 3:e00246-12. [PMID: 22930339 PMCID: PMC3445970 DOI: 10.1128/mbio.00246-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1T and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1T and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1T maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. This report examines differences between genomes from four new Brucella strains and those from the classic Brucella spp. Our results show that the four new strains are outliers with respect to the previously known Brucella strains and yet are part of the genus, forming two new clades. The analysis revealed important information about the evolution and survival mechanisms of Brucella species, helping reshape our knowledge of this important zoonotic pathogen. One discovery of special importance is that one of the strains, BO2, produces an O-antigen distinct from any that has been seen in any other Brucella isolates to date.
Collapse
|
21
|
Roussel G, Matagne A, De Bolle X, Perpète E, Michaux C. Purification, refolding and characterization of the trimeric Omp2a outer membrane porin from Brucella melitensis. Protein Expr Purif 2012; 83:198-204. [DOI: 10.1016/j.pep.2012.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
22
|
Hofer E, Revilla-Fernández S, Al Dahouk S, Riehm JM, Nöckler K, Zygmunt MS, Cloeckaert A, Tomaso H, Scholz HC. A potential novel Brucella species isolated from mandibular lymph nodes of red foxes in Austria. Vet Microbiol 2012; 155:93-9. [DOI: 10.1016/j.vetmic.2011.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
|
23
|
Laloux G, Deghelt M, de Barsy M, Letesson JJ, De Bolle X. Identification of the essential Brucella melitensis porin Omp2b as a suppressor of Bax-induced cell death in yeast in a genome-wide screening. PLoS One 2010; 5:e13274. [PMID: 20949000 PMCID: PMC2952587 DOI: 10.1371/journal.pone.0013274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/09/2010] [Indexed: 01/08/2023] Open
Abstract
Background Inhibition of apoptosis is one of the mechanisms selected by numerous intracellular pathogenic bacteria to control their host cell. Brucellae, which are the causative agent of a worldwide zoonosis, prevent apoptosis of infected cells, probably to support survival of their replication niche. Methodology/Principal Findings In order to identify Brucella melitensis anti-apoptotic effector candidates, we performed a genome-wide functional screening in yeast. The B. melitensis ORFeome was screened to identify inhibitors of Bax-induced cell death in S. cerevisiae. B. melitensis porin Omp2b, here shown to be essential, prevents Bax lethal effect in yeast, unlike its close paralog Omp2a. Our results based on Omp2b size variants characterization suggest that signal peptide processing is required for Omp2b effect in yeast. Conclusion/Significance We report here the first application to a bacterial genome-wide library of coding sequences of this “yeast-rescue” screening strategy, previously used to highlight several new apoptosis regulators. Our work provides B. melitensis proteins that are candidates for an anti-apoptotic function, and can be tested in mammalian cells in the future. Hypotheses on possible molecular mechanisms of Bax inhibition by the B. melitensis porin Omp2b are discussed.
Collapse
Affiliation(s)
- Géraldine Laloux
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
| | - Michaël Deghelt
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
| | - Marie de Barsy
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
| | - Jean-Jacques Letesson
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Molecular Biology, Department of Biology, University of Namur (FUNDP), Namur, Belgium
- * E-mail:
| |
Collapse
|
24
|
Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Environ Microbiol 2010; 76:5837-45. [PMID: 20639360 DOI: 10.1128/aem.00620-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on the characterization of a group of seven novel Brucella strains isolated in 1964 from three native rodent species in North Queensland, Australia, during a survey of wild animals. The strains were initially reported to be Brucella suis biovar 3 on the basis of microbiological test results. Our results indicated that the rodent strains had microbiological traits distinct from those of B. suis biovar 3 and all other Brucella spp. To reinvestigate these rodent strains, we sequenced the 16S rRNA, recA, and rpoB genes and nine housekeeping genes and also performed multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA). The rodent strains have a unique 16S rRNA gene sequence compared to the sequences of the classical Brucella spp. Sequence analysis of the recA, rpoB, and nine housekeeping genes reveals that the rodent strains are genetically identical to each other at these loci and divergent from any of the currently described Brucella sequence types. However, all seven of the rodent strains do exhibit distinctive allelic MLVA profiles, although none demonstrated an amplicon for VNTR 07, whereas the other Brucella spp. did. Phylogenetic analysis of the MLVA data reveals that the rodent strains form a distinct clade separate from the classical Brucella spp. Furthermore, whole-genome sequence comparison using the maximal unique exact matches index (MUMi) demonstrated a high degree of relatedness of one of the seven rodent Brucella strains (strain NF 2653) to another Australian rodent Brucella strain (strain 83-13). Our findings strongly suggest that this group of Brucella strains isolated from wild Australian rodents defines a new species in the Brucella genus.
Collapse
|
25
|
Tiller RV, Gee JE, Lonsway DR, Gribble S, Bell SC, Jennison AV, Bates J, Coulter C, Hoffmaster AR, De BK. Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia. BMC Microbiol 2010; 10:23. [PMID: 20105296 PMCID: PMC2825194 DOI: 10.1186/1471-2180-10-23] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 01/27/2010] [Indexed: 02/03/2023] Open
Abstract
Background Brucellosis is primarily a zoonotic disease caused by Brucella species. There are currently ten Brucella spp. including the recently identified novel B. inopinata sp. isolated from a wound associated with a breast implant infection. In this study we report on the identification of an unusual Brucella-like strain (BO2) isolated from a lung biopsy in a 52-year-old patient in Australia with a clinical history of chronic destructive pneumonia. Results Standard biochemical profiles confirmed that the unusual strain was a member of the Brucella genus and the full-length 16S rRNA gene sequence was 100% identical to the recently identified B. inopinata sp. nov. (type strain BO1T). Additional sequence analysis of the recA, omp2a and 2b genes; and multiple locus sequence analysis (MLSA) demonstrated that strain BO2 exhibited significant similarity to the B. inopinata sp. compared to any of the other Brucella or Ochrobactrum species. Genotyping based on multiple-locus variable-number tandem repeat analysis (MLVA) established that the BO2 and BO1Tstrains form a distinct phylogenetic cluster separate from the other Brucella spp. Conclusion Based on these molecular and microbiological characterizations, we propose that the BO2 strain is a novel lineage of the newly described B. inopinata species.
Collapse
Affiliation(s)
- Rebekah V Tiller
- Division of Foodborne, Bacterial, and Mycotic Diseases and Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Whatmore AM. Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. INFECTION GENETICS AND EVOLUTION 2009; 9:1168-84. [DOI: 10.1016/j.meegid.2009.07.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/09/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
|
27
|
Visudtiphole V, Thomas M, Chalton D, Lakey J. Refolding of Escherichia coli outer membrane protein F in detergent creates LPS-free trimers and asymmetric dimers. Biochem J 2006; 392:375-81. [PMID: 16153185 PMCID: PMC1316273 DOI: 10.1042/bj20051257] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Escherichia coli OmpF (outer-membrane protein F; matrix porin) is a homotrimeric beta-barrel and a member of the bacterial porin superfamily. It is the best characterized porin protein, but has resisted attempts to refold it efficiently in vitro. In the present paper, we report the discovery of detergent-based folding conditions, including dodecylglucoside, which can create pure samples of trimeric OmpF. Whereas outer membrane LPS (lipopolysaccharide) is clearly required for in vivo folding, the artificially refolded and LPS-free trimer has properties identical with those of the outer-membrane-derived form. Thus LPS is not required either for in vitro folding or for structural integrity. Dimeric forms of OmpF have been observed in vivo and are proposed to be folding intermediates. In vitro, dimers occur transiently in refolding of trimeric OmpF and, in the presence of dodecylmaltoside, pure dimer can be prepared. This form has less beta-structure by CD and shows lower thermal stability than the trimer. Study of these proteins at the single-molecule level is possible because each OmpF subunit forms a distinct ion channel. Whereas each trimer contains three channels of equal conductance, each dimer always contains two distinct channel sizes. This provides clear evidence that the two otherwise identical monomers adopt different structures in the dimer and indicates that the asymmetric interaction, characteristic of C3 symmetry, is formed at the dimer stage. This asymmetric dimer may be generally relevant to the folding of oligomeric proteins with odd numbers of subunits such as aspartate transcarbamoylase.
Collapse
Affiliation(s)
- Virak Visudtiphole
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - Matthew B. Thomas
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - David A. Chalton
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
| | - Jeremy H. Lakey
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE1 7RU, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
Ohishi K, Takishita K, Kawato M, Zenitani R, Bando T, Fujise Y, Goto Y, Yamamoto S, Maruyama T. Chimeric structure of omp2 of Brucella from Pacific common minke whales (Balaenoptera acutorostrata). Microbiol Immunol 2005; 49:789-93. [PMID: 16113508 DOI: 10.1111/j.1348-0421.2005.tb03658.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the Pacific common minke whale (Balaenoptera acutorostrata ), a new variant of Brucella has been detected using the polymerase chain reaction. Detailed analysis of the porin protein genes, omp2a and omp2b from the whale Brucella showed that these two genes have some motifs in common with Atlantic marine strains in the 5'-terminal one-third region. On the other hand, the nucleotide sequences in the 3'-terminal two-thirds region of the two genes were almost identical to the respective genes of terrestrial strains. Thus, Pacific whale Brucella omp2 genes are chimeras between marine and terrestrial strains.
Collapse
Affiliation(s)
- Kazue Ohishi
- Research Program for Marine Biology and Ecology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
30
|
Cloeckaert A, Vizcaíno N, Paquet JY, Bowden RA, Elzer PH. Major outer membrane proteins of Brucella spp.: past, present and future. Vet Microbiol 2002; 90:229-47. [PMID: 12414146 DOI: 10.1016/s0378-1135(02)00211-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The major outer membrane proteins (OMPs) of Brucella spp. were initially identified in the early 1980s and characterised as potential immunogenic and protective antigens. They were classified according to their apparent molecular mass as 36-38 kDa OMPs or group 2 porin proteins and 31-34 and 25-27 kDa OMPs which belong to the group 3 proteins. The genes encoding the group 2 porin proteins were identified in the late 1980s and consist of two genes, omp2a and omp2b, which are closely linked in the Brucella genome, and which share a great degree of identity (>85%). In the 1990s, two genes were identified coding for the group 3 proteins and were named omp25 and omp31. The predicted amino acid sequences of omp25 and omp31 share 34% identity. The recent release of the genome sequence of B. melitensis 16 M has revealed the presence of five additional gene products homologous to Omp25 and Omp31. The use of recombinant protein technology and monoclonal antibodies (MAbs) has shown that the major OMPs appear to be of little relevance as antigens in smooth (S) B. abortus or B. melitensis infections i.e. low or no protective activity in the mouse model of infection and low or no immunogenicity during host infection. However, group 3 proteins, in particular Omp31, appear as immunodominant antigen in the course of rough (R) B. ovis infection in rams and as important protective antigen in the B. ovis mouse model of infection. The major OMP genes display diversity and specific markers have been identified for Brucella species, biovars, and strains, including the recent marine mammal Brucella isolates for which new species names have been proposed. Recently, Omp25 has been shown to be involved in virulence of B. melitensis, B. abortus and B. ovis. Mutants lacking Omp25 are indeed attenuated in animal models of infection, and moreover provide levels of protection similar or better than currently used attenuated vaccine strain B. melitensis Rev.1. Therefore, these mutant strains appear interesting vaccine candidates for the future. The other group 3 proteins identified in the genome merit also further investigation related to the development of new vaccines.
Collapse
Affiliation(s)
- Axel Cloeckaert
- Unité de Pathologie Aviaire et Parasitologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|