1
|
Castanheira S, Torronteras S, Cestero JJ, García-del Portillo F. Morphogenetic penicillin-binding proteins control virulence-associated type III secretion systems in Salmonella. Infect Immun 2025; 93:e0055524. [PMID: 39745378 PMCID: PMC11834469 DOI: 10.1128/iai.00555-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 02/19/2025] Open
Abstract
Type III protein secretion systems (T3SSs) function as multiprotein devices that span the envelope of Gram-negative bacteria using the peptidoglycan (PG) layer as scaffold. This spatial arrangement explains why modifications in PG structure can alter T3SS activity. In Salmonella, incorporation of non-canonical D-amino acids in the PG was shown to decrease the activity of the T3SS encoded by the pathogenicity island-1 (SPI-1) without affecting other T3SS, like the flagellum apparatus. Enigmatically, following invasion of host cell Salmonella enterica serovar Typhimurium modifies PG synthesis by upregulating two pathogen-specific enzymes, the penicillin-binding proteins PBP2SAL and PBP3SAL, with roles in cell elongation and division, respectively. In the mouse typhoid model, the amount of PBP2SAL and PBP3SAL produced by the pathogen exceeds by large those of the canonical enzymes PBP2 and PBP3. This change responds to acidity and high osmolarity, the same cues that intra-phagosomal S. Typhimurium perceives to switch the SPI-1 T3SS by that encoded in SPI-2. Using isogenic mutants lacking each of the four morphogenetic PBPs, we tested whether their activities and those of the T3SS encoded by SPI-1 and SPI-2, are interconnected. Our data show that PBP2 is required for proper function of SPI-1 T3SS but dispensable for motility, whereas the lack of any of the morphogenetic PBPs increases SPI-2 T3SS activity. The positive control exerted by PBP2 on SPI-1 takes place via the SPI-1-specific regulators HilA and InvF. To our knowledge, these findings provide the first evidence linking morphogenetic enzymes that synthesize PG with T3SS associated to virulence.
Collapse
Affiliation(s)
- Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Sara Torronteras
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Juan J. Cestero
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | | |
Collapse
|
2
|
Cui X, Wang Y, Liu J, Liu Z, Zhao M, Yu W, Zhu M, Xu H, Lu B, Peng D, Shi J, Liao N, Niu S, Shen J, Qiu J, Yu L. Dietary limonin alleviates Salmonella Typhimurium-induced colitis via dual targeting virulence SopB and SopE2 and inhibiting RAC1/CDC42/Arp2/3 pathway and regulating gut microbiota. Food Funct 2025; 16:1041-1059. [PMID: 39820212 DOI: 10.1039/d4fo02810d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Salmonella enterica serovar Typhimurium (STM) causes severe colitis, necessitating the development of effective drugs. Here, the dockings of limonin with the STM T3SS-1 virulence factor SopB or SopE2 showed strong binding activity in silico and was verified by CETSA and DARTS assays in vitro. Limonin inhibited the enzyme activities and expression of SopB and SopE2 in vitro. Furthermore, we found that limonin treatment significantly reduced the number of STM colony-forming units (CFUs) in infected HeLa and Raw264.7 cells, which resulted in a decrease in the rate of membrane ruffling mediated by SopB-regulated Arf6/Cyth2/Arf1-, RAC1-, and CDC42-driven Arp2/3-dependent actin polymerization and the SopE2-regulated CDC42/Arp2/3 pathway, and the confocal laser scanning microscopy analysis revealed that limonin treatment repressed the recruitment of the Salmonella-containing vacuole (SCV) biomarkers LC3, Rab7, GAL8 and NDP52. Furthermore, limonin treatment ameliorated STM-induced colitis by reducing the disease activity index (DAI), colon shortening, and MPO and EPO activities; mitigating the severity of S. Typhimurium-induced colitis damage; and influencing the levels of inflammatory factors (IL-1β, IL-6, IL-10, TNF-α and IFN-γ) while increasing the levels of colonic epithelial barrier and tight junction genes (Mucin 1, Mucin 2, Occludin, Claudin-3 and ZO-1). A gut microbiota analysis revealed that limonin treatment influenced α- and β-diversity of the flora and increased the counts of the beneficial bacteria Muribaculum and Faecalibaculum to regulate gut microbiota dysbiosis. Finally, colon SCFA measurements revealed that limonin treatment significantly increased acetate, butyrate, propionate and valerate concentrations. Thus, this study is an important reference for the anti-STM effects of limonin on induced colitis.
Collapse
Affiliation(s)
- Xinhua Cui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Yang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jiajia Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Ziyan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Meng Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Wanlu Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Mingmei Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Hongyue Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Baochun Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Danping Peng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jinyang Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Ning Liao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Sijia Niu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Lu Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Figueroa-Bossi N, Fernández-Fernández R, Kerboriou P, Bouloc P, Casadesús J, Sánchez-Romero MA, Bossi L. Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin. Nat Commun 2024; 15:2787. [PMID: 38555352 PMCID: PMC10981669 DOI: 10.1038/s41467-024-47114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
In all living cells, genomic DNA is compacted through interactions with dedicated proteins and/or the formation of plectonemic coils. In bacteria, DNA compaction is achieved dynamically, coordinated with dense and constantly changing transcriptional activity. H-NS, a major bacterial nucleoid structuring protein, is of special interest due to its interplay with RNA polymerase. H-NS:DNA nucleoprotein filaments inhibit transcription initiation by RNA polymerase. However, the discovery that genes silenced by H-NS can be activated by transcription originating from neighboring regions has suggested that elongating RNA polymerases can disassemble H-NS:DNA filaments. In this study, we present evidence that transcription-induced counter-silencing does not require transcription to reach the silenced gene; rather, it exerts its effect at a distance. Counter-silencing is suppressed by introducing a DNA gyrase binding site within the intervening segment, suggesting that the long-range effect results from transcription-driven positive DNA supercoils diffusing toward the silenced gene. We propose a model wherein H-NS:DNA complexes form in vivo on negatively supercoiled DNA, with H-NS bridging the two arms of the plectoneme. Rotational diffusion of positive supercoils generated by neighboring transcription will cause the H-NS-bound negatively-supercoiled plectoneme to "unroll" disrupting the H-NS bridges and releasing H-NS.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Rocío Fernández-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Kerboriou
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Li S, Liu H, Shu J, Li Q, Liu Y, Feng H, Wang J, Deng X, Zhang Y, Guo Z, Qiu J. Fisetin inhibits Salmonella Typhimurium type III secretion system regulator HilD and reduces pathology in vivo. Microbiol Spectr 2024; 12:e0240623. [PMID: 38078719 PMCID: PMC10783070 DOI: 10.1128/spectrum.02406-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Salmonella spp. remains a major worldwide health concern that causes significant morbidity and mortality in both humans and animals. The spread of antimicrobial resistant strains has declined the efficacy of conventional chemotherapy. Thus, novel anti-infection drugs or strategies are needed. Anti-virulence strategy represents one of the promising means for the treatment of bacterial infections. In this study, we found that the natural compound fisetin could inhibit Salmonella invasion of host cells by targeting SPI-1 regulation. Fisetin treatment impaired the interaction of the regulatory protein HilD with the promoters of its target genes, thereby suppressing the expression of T3SS-1 effectors as well as structural proteins. Moreover, fisetin treatment could reduce pathology in the Salmonella murine infection model. Collectively, our results suggest that fisetin may serve as a promising lead compound for the development of anti-Salmonella drugs.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| | - Jingyan Shu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Haihua Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| | - Yong Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| | - Zhimin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University , Changchun, Jilin, China
| |
Collapse
|
5
|
Saleh DO, Horstmann JA, Giralt-Zúñiga M, Weber W, Kaganovitch E, Durairaj AC, Klotzsch E, Strowig T, Erhardt M. SPI-1 virulence gene expression modulates motility of Salmonella Typhimurium in a proton motive force- and adhesins-dependent manner. PLoS Pathog 2023; 19:e1011451. [PMID: 37315106 DOI: 10.1371/journal.ppat.1011451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Both the bacterial flagellum and the evolutionary related injectisome encoded on the Salmonella pathogenicity island 1 (SPI-1) play crucial roles during the infection cycle of Salmonella species. The interplay of both is highlighted by the complex cross-regulation that includes transcriptional control of the flagellar master regulatory operon flhDC by HilD, the master regulator of SPI-1 gene expression. Contrary to the HilD-dependent activation of flagellar gene expression, we report here that activation of HilD resulted in a dramatic loss of motility, which was dependent on the presence of SPI-1. Single cell analyses revealed that HilD-activation triggers a SPI-1-dependent induction of the stringent response and a substantial decrease in proton motive force (PMF), while flagellation remains unaffected. We further found that HilD activation enhances the adhesion of Salmonella to epithelial cells. A transcriptome analysis revealed a simultaneous upregulation of several adhesin systems, which, when overproduced, phenocopied the HilD-induced motility defect. We propose a model where the SPI-1-dependent depletion of the PMF and the upregulation of adhesins upon HilD-activation enable flagellated Salmonella to rapidly modulate their motility during infection, thereby enabling efficient adhesion to host cells and delivery of effector proteins.
Collapse
Affiliation(s)
- Doaa Osama Saleh
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Julia A Horstmann
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - María Giralt-Zúñiga
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Willi Weber
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eugen Kaganovitch
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Abilash Chakravarthy Durairaj
- Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Enrico Klotzsch
- Institute for Biology, Experimental Biophysics/Mechanobiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| |
Collapse
|
6
|
Construction of a constitutively active type III secretion system for heterologous protein secretion. Appl Microbiol Biotechnol 2023; 107:1785-1800. [PMID: 36786917 DOI: 10.1007/s00253-023-12411-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Proteins comprise a multibillion-dollar industry in enzymes and therapeutics, but bacterial protein production can be costly and inefficient. Proteins of interest (POIs) must be extracted from lysed cells and inclusion bodies, purified, and resolubilized, which adds significant time and cost to the protein-manufacturing process. The Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS) has been engineered to address these problems by secreting soluble, active proteins directly into the culture media, reducing the number of purification steps. However, the current best practices method of T3SS pathway activation is not ideal for industrial scaleup. Previously, the T3SS was activated by plasmid-based overexpression of the T3SS transcriptional regulator, hilA, which requires the addition of a small molecule inducer (IPTG) to the culture media. IPTG adds significant cost to production and plasmid-based expression is subject to instability in large-scale fermentation. Here, we modulate the upstream transcriptional regulator, hilD, to activate the T3SS via three distinct methods. In doing so, we develop a toolbox of T3SS activation methods and construct constitutively active T3SS strains capable of secreting a range of heterologous proteins at titers comparable to plasmid-based hilA overexpression. We also explore how each activation method in our toolbox impacts the SPI-1 regulatory cascade and discover an epistatic relationship between T3SS regulators, hilE and the hilD 3' untranslated region (hilD 3'UTR). Together, these findings further our goal of making an industrially competitive protein production strain that reduces the challenges associated with plasmid induction and maintenance. KEY POINTS: • Characterized 3 new type III secretion system (T3SS) activation methods for heterologous protein secretion, including 2 constitutive activation methods. • Eliminated the need for a second plasmid and a small molecule inducer to activate the system, making it more suitable for industrial production. • Discovered new regulatory insights into the SPI-1 T3SS, including an epistatic relationship between regulators hilE and the hilD 3' untranslated region.
Collapse
|
7
|
Tarverdizadeh Y, Khalili M, Esmaeili S, Ahmadian G, Golchin M, Hajizade A. Targeted gene inactivation in Salmonella Typhi by CRISPR/Cas9-assisted homologous recombination. World J Microbiol Biotechnol 2022; 39:58. [PMID: 36572753 DOI: 10.1007/s11274-022-03504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Targeted gene inactivation (TGI) is a widely used technique for the study of genes' functions. There are many different methods for TGI, however, most of them are so complicated and time-consuming. New promising genetic engineering tools are developing for this purpose. In the present study, for the first time we disrupted a virulence gene from Salmonella enterica serovar Typhi (S. Typhi), located in the bacterial chromosome using CRISPR/Cas9 system and homology directed repair (HDR). METHODS For this aim, pCas9 plasmid containing Cas9 enzyme and required proteins for homology directed recombination was transferred to S. Typhi by electroporation. On the other hand, a specific guide RNA (gRNA) was designed using CRISPOR online tool. Synthetic gRNA was cloned into pTargetF plasmid. Also, a DNA fragment (HDR fragment) was designed to incorporate into the bacterial chromosome following the cleavage of the bacterial genome by Cas9 enzyme. pTargetF containing gRNA and HDR fragment were co-transferred to S. Typhi containing pcas9 plasmid. The transformed bacteria were screened for recombination using PCR, restriction digestion and sequencing. RESULTS The results of PCR, restriction digestion and sequencing showed the successful recombination of S. Typhi, in which the gidA gene is disrupted. CONCLUSION In the present study we aimed to develop a rapid and robust method for targeted gene inactivation in a bacterial species, S. Typhi. This procedure can be exploited for disruption of other Salmonella as well as other bacteria's genes.
Collapse
Affiliation(s)
- Yousof Tarverdizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Khalili
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saber Esmaeili
- Department of Epidemiology and Biostatics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Golchin
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abbas Hajizade
- Biology Research Center, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| |
Collapse
|
8
|
Figueroa-Bossi N, Sánchez-Romero MA, Kerboriou P, Naquin D, Mendes C, Bouloc P, Casadesús J, Bossi L. Pervasive transcription enhances the accessibility of H-NS-silenced promoters and generates bistability in Salmonella virulence gene expression. Proc Natl Acad Sci U S A 2022; 119:e2203011119. [PMID: 35858437 PMCID: PMC9335307 DOI: 10.1073/pnas.2203011119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/01/2022] [Indexed: 01/21/2023] Open
Abstract
In Escherichia coli and Salmonella, many genes silenced by the nucleoid structuring protein H-NS are activated upon inhibiting Rho-dependent transcription termination. This response is poorly understood and difficult to reconcile with the view that H-NS acts mainly by blocking transcription initiation. Here we have analyzed the basis for the up-regulation of H-NS-silenced Salmonella pathogenicity island 1 (SPI-1) in cells depleted of Rho-cofactor NusG. Evidence from genetic experiments, semiquantitative 5' rapid amplification of complementary DNA ends sequencing (5' RACE-Seq), and chromatin immunoprecipitation sequencing (ChIP-Seq) shows that transcription originating from spurious antisense promoters, when not stopped by Rho, elongates into a H-NS-bound regulatory region of SPI-1, displacing H-NS and rendering the DNA accessible to the master regulator HilD. In turn, HilD's ability to activate its own transcription triggers a positive feedback loop that results in transcriptional activation of the entire SPI-1. Significantly, single-cell analyses revealed that this mechanism is largely responsible for the coexistence of two subpopulations of cells that either express or do not express SPI-1 genes. We propose that cell-to-cell differences produced by stochastic spurious transcription, combined with feedback loops that perpetuate the activated state, can generate bimodal gene expression patterns in bacterial populations.
Collapse
Affiliation(s)
- Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Kerboriou
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Clara Mendes
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Philippe Bouloc
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Lionello Bossi
- Université Paris-Saclay, CEA, CNRS, Institut de Biologie Intégrative de la Cellule (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Sobota M, Rodilla Ramirez PN, Cambré A, Rocker A, Mortier J, Gervais T, Haas T, Cornillet D, Chauvin D, Hug I, Julou T, Aertsen A, Diard M. The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. PLoS Biol 2022; 20:e3001608. [PMID: 35389980 PMCID: PMC9017878 DOI: 10.1371/journal.pbio.3001608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 04/19/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Virulence gene expression can represent a substantial fitness cost to pathogenic bacteria. In the model entero-pathogen Salmonella Typhimurium (S.Tm), such cost favors emergence of attenuated variants during infections that harbor mutations in transcriptional activators of virulence genes (e.g., hilD and hilC). Therefore, understanding the cost of virulence and how it relates to virulence regulation could allow the identification and modulation of ecological factors to drive the evolution of S.Tm toward attenuation. In this study, investigations of membrane status and stress resistance demonstrate that the wild-type (WT) expression level of virulence factors embedded in the envelope increases membrane permeability and sensitizes S.Tm to membrane stress. This is independent from a previously described growth defect associated with virulence gene expression in S.Tm. Pretreating the bacteria with sublethal stress inhibited virulence expression and increased stress resistance. This trade-off between virulence and stress resistance could explain the repression of virulence expression in response to harsh environments in S.Tm. Moreover, we show that virulence-associated stress sensitivity is a burden during infection in mice, contributing to the inherent instability of S.Tm virulence. As most bacterial pathogens critically rely on deploying virulence factors in their membrane, our findings could have a broad impact toward the development of antivirulence strategies.
Collapse
Affiliation(s)
| | | | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Théo Gervais
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | | | - Dany Chauvin
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Isabelle Hug
- Biozentrum, University of Basel, Basel, Switzerland
| | - Thomas Julou
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
10
|
Cohn AR, Orsi RH, Carroll LM, Chen R, Wiedmann M, Cheng RA. Characterization of Basal Transcriptomes Identifies Potential Metabolic and Virulence-Associated Adaptations Among Diverse Nontyphoidal Salmonella enterica Serovars. Front Microbiol 2021; 12:730411. [PMID: 34721328 PMCID: PMC8552914 DOI: 10.3389/fmicb.2021.730411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
The zoonotic pathogen Salmonella enterica includes >2,600 serovars, which differ in the range of hosts they infect and the severity of disease they cause. To further elucidate the mechanisms behind these differences, we performed transcriptomic comparisons of nontyphoidal Salmonella (NTS) serovars with the model for NTS pathogenesis, S. Typhimurium. Specifically, we used RNA-seq to characterize the understudied NTS serovars S. Javiana and S. Cerro, representing a serovar frequently attributed to human infection via contact with amphibians and reptiles, and a serovar primarily associated with cattle, respectively. Whole-genome sequence (WGS) data were utilized to ensure that strains characterized with RNA-seq were representative of their respective serovars. RNA extracted from representative strains of each serovar grown to late exponential phase in Luria-Bertani (LB) broth showed that transcript abundances of core genes were significantly higher (p<0.001) than those of accessory genes for all three serovars. Inter-serovar comparisons identified that transcript abundances of genes in Salmonella Pathogenicity Island (SPI) 1 were significantly higher in both S. Javiana and S. Typhimurium compared to S. Cerro. Together, our data highlight potential transcriptional mechanisms that may facilitate S. Cerro and S. Javiana survival in and adaptation to their respective hosts and impact their ability to cause disease in others. Furthermore, our analyses demonstrate the utility of omics approaches in advancing our understanding of the diversity of metabolic and virulence mechanisms of different NTS serovars.
Collapse
Affiliation(s)
- Alexa R Cohn
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Laura M Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruixi Chen
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Long-Distance Effects of H-NS Binding in the Control of hilD Expression in the Salmonella SPI1 Locus. J Bacteriol 2021; 203:e0030821. [PMID: 34424033 DOI: 10.1128/jb.00308-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium utilizes a type three secretion system (T3SS) carried on the Salmonella pathogenicity island 1 (SPI1) to invade intestinal epithelial cells and induce inflammatory diarrhea. HilA activates expression of the T3SS structural genes. Expression of hyper invasion locus A (hilA) is controlled by the transcription factors HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. The nucleoid-associated protein H-NS is a xenogeneic silencer that has a major effect on SPI1 expression. In this work, we use genetic techniques to show that disruptions of the chromosomal region surrounding hilD have a cis effect on H-NS-mediated repression of the hilD promoter; this effect occurs asymmetrically over ∼4 kb spanning the prgH-hilD intergenic region. CAT cassettes inserted at various positions in this region are also silenced in relation to the proximity to the hilD promoter. We identify a putative H-NS nucleation site, and its mutation results in derepression of the locus. Furthermore, we genetically show that HilD abrogates H-NS-mediated silencing to activate the hilD promoter. In contrast, H-NS-mediated repression of the hilA promoter, downstream of hilD, is through its control of HilD, which directly activates hilA transcription. Likewise, activation of the prgH promoter, although in a region silenced by H-NS, is strictly dependent on HilA. In summary, we propose a model in which H-NS nucleates within the hilD promoter region to polymerize and exert its repressive effect. Thus, H-NS-mediated repression of SPI1 is primarily through the control of hilD expression, with HilD capable of overcoming H-NS to autoactivate. IMPORTANCE Members of the foodborne pathogen Salmonella rely on a type III secretion system to invade intestinal epithelial cells and initiate infection. This system was acquired through horizontal gene transfer, essentially creating the Salmonella genus. Expression of this critical virulence factor is controlled by a complex regulatory network. The nucleoid protein H-NS is a global repressor of horizontally acquired genomic loci. Here, we identify the critical site of H-NS regulation in this system and show that alterations to the DNA over a surprisingly large region affect this regulation, providing important information regarding the mechanism of H-NS action.
Collapse
|
12
|
Wu Y, Yang X, Zhang D, Lu C. Myricanol Inhibits the Type III Secretion System of Salmonella enterica Serovar Typhimurium by Interfering With the DNA-Binding Activity of HilD. Front Microbiol 2020; 11:571217. [PMID: 33101243 PMCID: PMC7546796 DOI: 10.3389/fmicb.2020.571217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/04/2020] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system (T3SS) consists of a syringe-like export machine injecting effectors from the bacterial cytosol directly into host cells to establish infection. This mechanism is widely distributed in gram-negative bacteria and can be targeted as an innovative strategy for the developing of anti-virulence drugs. In this study, we present an effective T3SS inhibitor, myricanol, inspired by the use of folk medicinal plants traditionally used against infections. Myricanol is a cyclic diarylheptanoid isolated from the medicinal plant Myrica nagi, which is found in South and East Asia. Bioassay-guided fractionation revealed that myricanol inhibited not only the secretion of type III effector proteins of Salmonella enterica serovar Typhimurium UK-1 χ8956 (S. Typhimurium) but also the invasion of S. Typhimurium into mammalian cells, but showed no toxicity to bacterial growth or the host cells. RNA-Seq data analysis showed that the transcription of the pathogenesis-related SPI-1 gene was significantly inhibited by myricanol. Further study demonstrated that myricanol binds physically to HilD and interferes with its DNA-binding activity to the promoters of the hilA and invF genes. In conclusion, we propose that myricanol is responsible for the anti-infectious properties of M. nagi and is a novel T3SS inhibitor of S. Typhimurium through a previously unappreciated mechanism of action.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dongdong Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Zhi Y, Lin SM, Ahn KB, Ji HJ, Guo HC, Ryu S, Seo HS, Lim S. ptsI gene in the phosphotransfer system is a potential target for developing a live attenuated Salmonella vaccine. Int J Mol Med 2020; 45:1327-1340. [PMID: 32323733 PMCID: PMC7138283 DOI: 10.3892/ijmm.2020.4505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 11/15/2022] Open
Abstract
Salmonella enterica serovar Typhimurium causes invasive non-typhoidal Salmonella diseases in animals and humans, resulting in a high mortality rate and huge economic losses globally. As the prevalence of antibiotic-resistant Salmonella has been increasing, vaccination is thought to be the most effective and economical strategy to manage salmonellosis. The present study aimed to investigate whether dysfunction in the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS), which is critical for carbon uptake and survival in macrophages, may be adequate to generate Salmonella-attenuated vaccine strains. A Salmonella strain (KST0555) was generated by deleting the ptsI gene from the PTS and it was revealed that this auxotrophic mutant was unable to efficiently utilize predominant carbon sources during infection (glucose and glycerol), reduced its invasion and replication capacity in macrophages, and significantly (P=0.0065) lowered its virulence in the setting of a mouse colitis model, along with a substantially decreased intestinal colonization and invasiveness compared with its parent strain. The reverse transcription-quantitative PCR results demonstrated that the virulence genes in Salmonella pathogenicity island-1 (SPI-1) and -2 (SPI-2) and the motility of KST0555 were all downregulated compared with its parent strain. Finally, it was revealed that when mice were immunized orally with live KST0555, Salmonella-specific humoral and cellular immune responses were effectively elicited, providing protection against Salmonella infection. Thus, the present promising data provides a strong rationale for the advancement of KST0555 as a live Salmonella vaccine candidate and ptsI as a potential target for developing a live attenuated bacterial vaccine strain.
Collapse
Affiliation(s)
- Yong Zhi
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Shun Mei Lin
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Ki Bum Ahn
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Hyun Jung Ji
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730049, P.R. China
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Seong Seo
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| | - Sangyong Lim
- Radiation Science Division, Korea Atomic Energy Research Institute, Jeongeup, Jeollabookdo 56212, Republic of Korea
| |
Collapse
|
14
|
Site-specific acylation of a bacterial virulence regulator attenuates infection. Nat Chem Biol 2019; 16:95-103. [PMID: 31740807 PMCID: PMC8439376 DOI: 10.1038/s41589-019-0392-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
Abstract
Microbiota generates millimolar concentrations of short-chain fatty acids (SCFAs) that can modulate host metabolism, immunity and susceptibility to infection. Butyrate in particular can function as a carbon source and anti-inflammatory metabolite, but the mechanism by which it inhibits pathogen virulence has been elusive. Using chemical proteomics, we discovered that several virulence factors encoded by Salmonella pathogenicity island-1 (SPI-1) are acylated by SCFAs. Notably, a transcriptional regulator of SPI-1, HilA, was acylated on several key lysine residues. Subsequent incorporation of stable butyryl-lysine analogs using CRISPR-Cas9 gene editing and unnatural amino acid mutagenesis revealed that site-specific modification of HilA impacts its genomic occupancy, expression of SPI-1 genes and attenuates Salmonella enterica serovar Typhimurium invasion of epithelial cells as well as dissemination in vivo. Moreover, a multiple-site HilA lysine-acylation mutant strain of S. Typhimurium was resistant to butyrate-mediated suppression in vivo. Our results suggest prominent microbiota-derived metabolites may directly acylate virulence factors to inhibit microbial pathogenesis in vivo.
Collapse
|
15
|
PhoP-Mediated Repression of the SPI1 Type 3 Secretion System in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00264-19. [PMID: 31182495 DOI: 10.1128/jb.00264-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
Salmonella must rapidly adapt to various niches in the host during infection. Relevant virulence factors must be appropriately induced, and systems that are detrimental in a particular environment must be turned off. Salmonella infects intestinal epithelial cells using a type 3 secretion system (T3SS) encoded on Salmonella pathogenicity island 1 (SPI1). The system is controlled by three AraC-like regulators, HilD, HilC, and RtsA, which form a complex feed-forward loop to activate expression of hilA, encoding the main transcriptional regulator of T3SS structural genes. This system is tightly regulated, with many of the activating signals acting at the level of hilD translation or HilD protein activity. Once inside the phagosomes of epithelial cells, or in macrophages during systemic stages of disease, the SPI1 T3SS is no longer required or expressed. Here, we show that the PhoPQ two-component system, critical for intracellular survival, appears to be the primary mechanism by which Salmonella shuts down the SPI1 T3SS. PhoP negatively regulates hilA through multiple distinct mechanisms: direct transcriptional repression of the hilA promoter, indirect transcriptional repression of both the hilD and rtsA promoters, and activation of the small RNA (sRNA) PinT. Genetic analyses and electrophoretic mobility shift assays suggest that PhoP specifically binds the hilA promoter to block binding of activators HilD, HilC, and RtsA as a mechanism of repression.IMPORTANCE Salmonella is one of the most common foodborne pathogens, causing an estimated 1.2 million illnesses per year in the United States. A key step in infection is the activation of the bacterial invasion machinery, which induces uptake of the bacterium into epithelial cells and leads to induction of inflammatory diarrhea. Upon entering the vacuolar compartments of host cells, Salmonella senses an environmental transition and represses the invasion machinery with a two-component system relevant for survival within the vacuole. This adaptation to specific host niches is an important example of how signals are integrated for survival of the pathogen.
Collapse
|
16
|
Methylthioadenosine Suppresses Salmonella Virulence. Infect Immun 2018; 86:IAI.00429-18. [PMID: 29866910 PMCID: PMC6105896 DOI: 10.1128/iai.00429-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/01/2023] Open
Abstract
In order to deploy virulence factors at appropriate times and locations, microbes must rapidly sense and respond to various metabolite signals. Previously, we showed a transient elevation of the methionine-derived metabolite methylthioadenosine (MTA) concentration in serum during systemic Salmonella enterica serovar Typhimurium infection. Here we explored the functional consequences of increased MTA concentrations on S Typhimurium virulence. We found that MTA, but not other related metabolites involved in polyamine synthesis and methionine salvage, reduced motility, host cell pyroptosis, and cellular invasion. Further, we developed a genetic model of increased bacterial endogenous MTA production by knocking out the master repressor of the methionine regulon, metJ Like MTA-treated S Typhimurium, the ΔmetJ mutant displayed reduced motility, host cell pyroptosis, and invasion. These phenotypic effects of MTA correlated with suppression of flagellar and Salmonella pathogenicity island 1 (SPI-1) networks. S Typhimurium ΔmetJ had reduced virulence in oral and intraperitoneal infection of C57BL/6J mice independently of the effects of MTA on SPI-1. Finally, ΔmetJ bacteria induced a less severe inflammatory cytokine response in a mouse sepsis model. Together, these data indicate that exposure of S Typhimurium to MTA or disruption of the bacterial methionine metabolism pathway suppresses S Typhimurium virulence.
Collapse
|
17
|
HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells. Sci Rep 2018; 8:4841. [PMID: 29555922 PMCID: PMC5859253 DOI: 10.1038/s41598-018-23068-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.
Collapse
|
18
|
Martínez-Flores I, Pérez-Morales D, Sánchez-Pérez M, Paredes CC, Collado-Vides J, Salgado H, Bustamante VH. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD. Sci Rep 2016; 6:37858. [PMID: 27886269 PMCID: PMC5122947 DOI: 10.1038/srep37858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023] Open
Abstract
A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes.
Collapse
Affiliation(s)
- Irma Martínez-Flores
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Mishael Sánchez-Pérez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Claudia C Paredes
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
19
|
Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection. Antonie van Leeuwenhoek 2016; 109:1503-1512. [PMID: 27549210 DOI: 10.1007/s10482-016-0752-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.
Collapse
|
20
|
Intestinal Long-Chain Fatty Acids Act as a Direct Signal To Modulate Expression of the Salmonella Pathogenicity Island 1 Type III Secretion System. mBio 2016; 7:e02170-15. [PMID: 26884427 PMCID: PMC4752608 DOI: 10.1128/mbio.02170-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica serovar Typhimurium uses the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS) to induce inflammatory diarrhea and bacterial uptake into intestinal epithelial cells. The expression of hilA, encoding the transcriptional activator of the T3SS structural genes, is directly controlled by three AraC-like regulators, HilD, HilC, and RtsA, each of which can activate hilD, hilC, rtsA, and hilA genes, forming a complex feed-forward regulatory loop. Expression of the SPI1 genes is tightly controlled by numerous regulatory inputs to ensure proper timing in production of the T3SS apparatus. Loss of FadD, an acyl coenzyme A (acyl-CoA) synthetase required for degradation of long-chain fatty acids (LCFAs), was known to decrease hilA expression. We show that free external LCFAs repress expression of hilA independently of FadD and the LCFA degradation pathway. Genetic and biochemical evidence suggests that LCFAs act directly to block primarily HilD activity. Further analyses show that in the absence of FadD, hilA expression is downregulated due to endogenous production of free LCFAs, which are excreted into the culture medium via TolC and then transported back into the bacterial cell via FadL. A fadL mutant is more virulent than the wild-type strain in mouse oral competition assays independently of LCFA degradation, showing that, in the host, dietary LCFAs serve as a signal for proper regulation of SPI1 expression, rather than an energy source. To cause disease, Salmonella must respond to diverse environmental cues to express its invasion machinery at the appropriate location in the host intestine. We show that host intestinal free long-chain fatty acids (LCFAs) affect Salmonella invasion by reducing expression of the SPI1 type III secretion system, acting primarily via the AraC-like activator HilD. Degradation of LCFAs is not required for this regulation, showing that free LCFAs serve as a cue to proper intestinal localization to invade host epithelial cells and not as a nutrient source.
Collapse
|
21
|
De la Cruz MA, Pérez-Morales D, Palacios IJ, Fernández-Mora M, Calva E, Bustamante VH. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD. Front Microbiol 2015; 6:807. [PMID: 26300871 PMCID: PMC4526804 DOI: 10.3389/fmicb.2015.00807] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/22/2015] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella.
Collapse
Affiliation(s)
- Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XX1-IMSSMéxico DF, Mexico
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - Irene J. Palacios
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - Marcos Fernández-Mora
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - Edmundo Calva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, Morelos, Mexico
| |
Collapse
|
22
|
Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 2015; 79:193-224. [PMID: 25833324 PMCID: PMC4394879 DOI: 10.1128/mmbr.00052-14] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens.
Collapse
Affiliation(s)
- Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anastasia H Potts
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
23
|
Lv S, Si W, Yu S, Li Z, Wang X, Chen L, Zhang W, Liu S. Characteristics of invasion-reduced hilA gene mutant of Salmonella Enteritidis in vitro and in vivo. Res Vet Sci 2015; 101:63-8. [PMID: 26267091 DOI: 10.1016/j.rvsc.2015.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/30/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) is a facultative intracellular pathogen that causes huge losses in poultry industry and also food poisoning in humans due to its being a food-borne pathogen. Functions of Invasion-related genes need to be explored, as invasion is a key step for Salmonella infection. In this study, a transposon mutant library of Salmonella Enteritidis isolate SM6 was constructed and screened for the invasion-related genes via incubation with Caco-2 cells. Three stably attenuated mutants were identified for significantly reduced invasion with insertions all in hilA (hyperinvasive locus A) gene. We constructed and evaluated the hilA deletion mutant in vivo and in vitro. SM6△hilA showed significantly reduced ability to invade Caco-2 cells and decreased pathogenicity in chicks. However, the bacterial load and pathological damage in the cecum were significantly higher than those in the SM6 in vivo. Present results provide new evidences for pathogenicity research on Salmonella Enteritidis.
Collapse
Affiliation(s)
- Shuang Lv
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Wei Si
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Shenye Yu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Zhaoli Li
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Xiumei Wang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Disease of Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin 150001, China.
| |
Collapse
|
24
|
Using transcriptional control to increase titers of secreted heterologous proteins by the type III secretion system. Appl Environ Microbiol 2014; 80:5927-34. [PMID: 25038096 DOI: 10.1128/aem.01330-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) encoded at the Salmonella pathogenicity island 1 (SPI-1) locus secretes protein directly from the cytosol to the culture media in a concerted, one-step process, bypassing the periplasm. While this approach is attractive for heterologous protein production, product titers are too low for many applications. In addition, the expression of the SPI-1 gene cluster is subject to native regulation, which requires culturing conditions that are not ideal for high-density growth. We used transcriptional control to increase the amount of protein that is secreted into the extracellular space by the T3SS of Salmonella enterica. The controlled expression of the gene encoding SPI-1 transcription factor HilA circumvents the requirement of endogenous induction conditions and allows for synthetic induction of the secretion system. This strategy increases the number of cells that express SPI-1 genes, as measured by promoter activity. In addition, protein secretion titer is sensitive to the time of addition and the concentration of inducer for the protein to be secreted and SPI-1 gene cluster. Overexpression of hilA increases secreted protein titer by >10-fold and enables recovery of up to 28±9 mg/liter of secreted protein from an 8-h culture. We also demonstrate that the protein beta-lactamase is able to adopt an active conformation after secretion, and the increase in secreted titer from hilA overexpression also correlates to increased enzyme activity in the culture supernatant.
Collapse
|
25
|
Ahn J, Almario JA, Salaheen S, Biswas D. Physicochemical, mechanical, and molecular properties of nonlysogenic and p22-lysogenic Salmonella typhimurium treated with citrus oil. J Food Prot 2014; 77:758-64. [PMID: 24780330 DOI: 10.4315/0362-028x.jfp-13-449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate the phenotypic and genotypic properties of nonlysogenic Salmonella Typhimurium (ST(P22-)) and lysogenic Salmonella Typhimurium (ST(P22+)) in the presence of sublethal concentrations (SLC2D) of citrus essential oils (CEOs), which were used to evaluate antimicrobial susceptibility, cell surface hydrophobicity, autoaggregation ability, bacterial motility, lysogenic conversion, gene expression patterns, and antibiofilm formation. The SLC2D values of non-heat-treated (N-CEO) and heat-treated (H-CEO) CEO in an autoclave at 121°C for 20 min were 2.0 to 2.1 mg/ml against ST(P22-) and 1.7 to 1.9 mg/ml against STP(22+). The rates of injured ST(P22-) and ST(P22+) cells treated with SLC2D of N-CEO and H-CEO ranged from 67 to 83%. The hydrophobicity and autoaggregation were decreased to 2.5 and 19.5% for ST(P22-) and 4.7 and 21.7% for ST(P22+), respectively, in the presence of N-CEO. A noticeable reduction in the swarming motility was observed in ST(P22-) with N-CEO (14.5%) and H-CEO (13.3%). The numbers of CEO-induced P22 were 5.40 log PFU/ml for N-CEO and 5.65 log PFU/ml for H-CEO. The relative expression of hilA, hilC, hilD, invA, invC, invE, invF, sirA, and sirB was down-regulated in ST(P22-) and ST(P22+) with N-CEO and H-CEO. The numbers of adherent ST(P22-) and ST(P22+) were effectively reduced by more than 1 log in the presence of CEO. These results suggest that CEO has potential to be used to control bacterial attachment, colonization, and invasion.
Collapse
Affiliation(s)
- Juhee Ahn
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| | - Jose Alejandro Almario
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Serajus Salaheen
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
26
|
Mebrhatu MT, Cenens W, Aertsen A. An overview of the domestication and impact of the Salmonella mobilome. Crit Rev Microbiol 2013; 40:63-75. [PMID: 23356413 DOI: 10.3109/1040841x.2012.755949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salmonella spp. are accountable for a large fraction of the global infectious disease burden, with most of their infections being food- or water-borne. The phenotypic features and adaptive potential of Salmonella spp. appear to be driven to a large extent by mobile or laterally acquired genetic elements. A better understanding of the conduct and diversification of these important pathogens consequently requires a more profound insight into the different mechanisms by which these pivotal elements establish themselves in the cell and affect its behavior. This review, therefore, provides an overview of the physiological impact and domestication of the Salmonella mobilome.
Collapse
Affiliation(s)
- Mehari Tesfazgi Mebrhatu
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven , Leuven , Belgium
| | | | | |
Collapse
|
27
|
Prajapat MK, Saini S. Interplay between Fur and HNS in controlling virulence gene expression in Salmonella typhimurium. Comput Biol Med 2012; 42:1133-40. [PMID: 23040276 DOI: 10.1016/j.compbiomed.2012.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/08/2012] [Accepted: 09/11/2012] [Indexed: 01/04/2023]
Abstract
Salmonella enterica is responsible for a large number of diseases in a wide-range of hosts. Two of the global regulators involved in controlling gene expression during the infection cycle of the bacterium are Fur and HNS. In this paper, we demonstrate computationally that Fur and HNS have disproportionately high density of binding sites in the Pathogenicity Islands on the Salmonella chromosome. Moreover, the frequency of binding sites for the two proteins is correlated throughout the genome of the organism. These results indicate a complex interplay between Fur and HNS in regulating cellular global behavior.
Collapse
Affiliation(s)
- Mahendra Kumar Prajapat
- Chemical Engineering, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad, Gujarat 382424, India
| | | |
Collapse
|
28
|
Obacunone represses Salmonella pathogenicity islands 1 and 2 in an envZ-dependent fashion. Appl Environ Microbiol 2012; 78:7012-22. [PMID: 22843534 DOI: 10.1128/aem.01326-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obacunone belongs to a class of unique triterpenoids called limonoids, present in Citrus species. Previous studies from our laboratory suggested that obacunone possesses antivirulence activity and demonstrates inhibition of cell-cell signaling in Vibrio harveyi and Escherichia coli O157:H7. The present work sought to determine the effect of obacunone on the food-borne pathogen Salmonella enterica serovar Typhimurium LT2 by using a cDNA microarray. Transcriptomic studies indicated that obacunone represses Salmonella pathogenicity island 1 (SPI1), the maltose transporter, and the hydrogenase operon. Furthermore, phenotypic data for the Caco-2 infection assay and maltose utilization were in agreement with microarray data suggesting repression of SPI1 and maltose transport. Further studies demonstrated that repression of SPI1 was plausibly mediated through hilA. Additionally, obacunone seems to repress SPI2 under SPI2-inducing conditions as well as in Caco-2 infection models. Furthermore, obacunone seems to repress hilA in an EnvZ-dependent fashion. Altogether, the results of the study seems to suggest that obacunone exerts an antivirulence effect on S. Typhimurium and may serve as a lead compound for development of antivirulence strategies for S. Typhimurium.
Collapse
|
29
|
Lim S, Lee B, Kim M, Kim D, Yoon H, Yong K, Kang DH, Ryu S. Analysis of HilC/D-dependent invF promoter expression under different culture conditions. Microb Pathog 2012; 52:359-66. [PMID: 22480973 DOI: 10.1016/j.micpath.2012.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 03/07/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022]
Abstract
In Salmonella enterica serovar Typhimurium, many of the genes required for intestinal penetration and invasion of host cells are encoded within the Salmonella pathogenicity island 1 (SPI1). The expression of invF, which is a positive transcriptional activator of SPI1, is controlled by HilA-dependent (invF-1) and HilC/D-dependent (invF-2) promoters. Transcriptional analysis of invF revealed that the invF-2 promoter (P(invF-2)) was not activated when cells were grown in standing culture conditions (which are known to induce SPI1) and that hilD mutation decreased the expression of P(invF-2) only in shaking culture conditions. In the absence of invF-1 promoter (P(invF-1)), P(invF-2) promoted InvF production and sipC expression (which is regulated by InvF) in shaking culture conditions. An analysis of the transcription patterns of plasmids harboring the lacZY reporter gene under various P(invF-2) derivatives with truncations or mutations revealed that the downstream region of the P(invF-2) transcription start site (i.e., +148 to +363) plays a role in repressing P(invF-2) in standing culture and in HilD-dependent activation of P(invF-2) in shaking culture conditions. The expression of invH overlaps with P(invF-2), but they are transcribed in opposite directions. However, invH expression did not influence P(invF-2) activity. This suggests that independent regulation of the two invF promoters allows Salmonella to respond quickly to environmental changes.
Collapse
Affiliation(s)
- Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Marathe SA, Chowdhury R, Bhattacharya R, Nagarajan AG, Chakravortty D. Direct detection of Salmonella without pre-enrichment in milk, ice-cream and fruit juice by PCR against hilA gene. Food Control 2012; 23:559-563. [DOI: 10.1016/j.foodcont.2011.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
Eakley NM, Bochsler PN, Gopal Reddy P, Fadl AA. Biological and virulence characteristics of the YqhC mutant of Salmonella. Microbiol Immunol 2011; 55:830-40. [DOI: 10.1111/j.1348-0421.2011.00387.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Integrating global regulatory input into the Salmonella pathogenicity island 1 type III secretion system. Genetics 2011; 190:79-90. [PMID: 22021388 DOI: 10.1534/genetics.111.132779] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salmonella enterica serovar Typhimurium uses the Salmonella pathogenicity island 1 (SPI1) type III secretion system to induce inflammatory diarrhea and bacterial uptake into intestinal epithelial cells. The expression of hilA, encoding the transcriptional activator of the SPI1 structural genes, is directly controlled by three AraC-like regulators, HilD, HilC, and RtsA, each of which can activate the hilD, hilC, rtsA, and hilA genes, forming a complex feed-forward regulatory loop. A large number of factors and environmental signals have been implicated in SPI1 regulation. We have developed a series of genetic tests that allows us to determine where these factors feed into the SPI1 regulatory circuit. Using this approach, we have grouped 21 of the known SPI1 regulators and environmental signals into distinct classes on the basis of observed regulatory patterns, anchored by those few systems where the mechanism of regulation is best understood. Many of these factors are shown to work post-transcriptionally at the level of HilD, while others act at the hilA promoter or affect all SPI1 promoters. Analysis of the published transcriptomic data reveals apparent coregulation of the SPI1 and flagellar genes in various conditions. However, we show that in most cases, the factors that affect both systems control SPI1 independently of the flagellar protein FliZ, despite its role as an important SPI1 regulator and coordinator of the two systems. These results provide a comprehensive model for SPI1 regulation that serves as a framework for future molecular analyses of this complex regulatory network.
Collapse
|
33
|
Martínez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, Bustamante VH. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 2011; 80:1637-56. [PMID: 21518393 PMCID: PMC3116662 DOI: 10.1111/j.1365-2958.2011.07674.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events.
Collapse
Affiliation(s)
- Luary C. Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Martha I. Camacho
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F. 04510, Mexico
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F. 04510, Mexico
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - José L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
34
|
Shippy DC, Eakley NM, Bochsler PN, Chopra AK, Fadl AA. Biological and virulence characteristics of Salmonella enterica serovar Typhimurium following deletion of glucose-inhibited division (gidA) gene. Microb Pathog 2011; 50:303-13. [PMID: 21320585 DOI: 10.1016/j.micpath.2011.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/29/2011] [Accepted: 02/04/2011] [Indexed: 01/03/2023]
Abstract
Salmonella enterica serovar Typhimurium is a frequent cause of enteric disease due to the consumption of contaminated food. Identification and characterization of bacterial factors involved in Salmonella pathogenesis would help develop effective strategies for controlling salmonellosis. To investigate the role of glucose-inhibited division gene (gidA) in Salmonella virulence, we constructed a Salmonella mutant strain in which gidA was deleted. Deletion of gidA rendered Salmonella deficient in the invasion of intestinal epithelial cells, bacterial motility, intracellular survival, and induction of cytotoxicity in host cells. Deletion of gidA rendered the organism to display a filamentous morphology compared to the normal rod-shaped nature of Salmonella. Furthermore, a significant attenuation in the induction of inflammatory cytokines and chemokines, histopathological lesions, and systemic infection was observed in mice infected with the gidA mutant. Most importantly, a significant increase in LD(50) was observed in mice infected with the gidA mutant, and mice immunized with the gidA mutant were able to survive a lethal dose of wild-type Salmonella. Additionally, deletion of gidA significantly altered the expression of several bacterial factors associated with pathogenesis as indicated by global transcriptional and proteomic profiling. Taken together, our data indicate GidA as a potential regulator of Salmonella virulence genes.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, United States
| | | | | | | | | |
Collapse
|
35
|
FliZ regulates expression of the Salmonella pathogenicity island 1 invasion locus by controlling HilD protein activity in Salmonella enterica serovar typhimurium. J Bacteriol 2010; 192:6261-70. [PMID: 20889744 DOI: 10.1128/jb.00635-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A prerequisite for Salmonella enterica to cause both intestinal and systemic disease is the direct injection of effector proteins into host intestinal epithelial cells via a type three secretion system (T3SS); the T3SS genes are carried on Salmonella pathogenicity island 1 (SPI1). These effector proteins induce inflammatory diarrhea and bacterial invasion. Expression of the SPI1 T3SS is tightly regulated in response to environmental signals through a variety of global regulatory systems. We have previously shown that three AraC-like regulators, HilD, HilC, and RtsA, act in a complex feed-forward regulatory loop to control the expression of the hilA gene, which encodes the direct regulator of the SPI1 structural genes. In this work, we characterize a major positive regulator of this system, the flagellar protein FliZ. Through genetic and biochemical analyses, we show that FliZ posttranslationally controls HilD to positively regulate hilA expression. This mechanism is independent of other flagellar components and is not mediated through the negative regulator HilE or through FliZ-mediated RpoS regulation. We demonstrate that FliZ controls HilD protein activity and not stability. FliZ regulates HilD in the absence of Lon protease, previously shown to degrade HilD. Indeed, it appears that FliZ, rather than HilD, is the most relevant target of Lon as it relates to SPI1 expression. Mutants lacking FliZ are significantly attenuated in their ability to colonize the intestine but are unaffected during systemic infection. The intestinal attenuation is partially dependent on SPI1, but FliZ has additional pleiotropic effects.
Collapse
|
36
|
Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol 2010; 192:5767-77. [PMID: 20833811 DOI: 10.1128/jb.00624-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica, a common food-borne pathogen, differentially regulates the expression of multiple genes during the infection cycle. These genes encode systems related to motility, adhesion, invasion, and intestinal persistence. Key among them is a type three secretion system (T3SS) encoded within Salmonella pathogenicity island 1 (SPI1). In addition to the SPI1 T3SS, other systems, including flagella and type 1 fimbriae, have been implicated in Salmonella pathogenesis. In this study, we investigated the dynamic expression of the flagellar, SPI1, and type 1 fimbrial genes. We demonstrate that these genes are expressed in a temporal hierarchy, beginning with the flagellar genes, followed by the SPI1 genes, and ending with the type 1 fimbrial genes. This hierarchy could mirror the roles of these three systems during the infection cycle. As multiple studies have shown that extensive regulatory cross talk exists between these three systems, we also tested how removing different regulatory links between them affects gene expression dynamics. These results indicate that cross talk is critical for regulating gene expression during transitional phases in the gene expression hierarchy. In addition, we identified a novel regulatory link between flagellar and type 1 fimbrial gene expression dynamics, where we found that the flagellar regulator, FliZ, represses type 1 fimbrial gene expression through the posttranscriptional regulation of FimZ. The significance of these results is that they provide the first systematic study of the effect of regulatory cross talk on the expression dynamics of flagellar, SPI1, and type 1 fimbrial genes.
Collapse
|
37
|
SprB is the molecular link between Salmonella pathogenicity island 1 (SPI1) and SPI4. J Bacteriol 2010; 192:2459-62. [PMID: 20190046 DOI: 10.1128/jb.00047-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella pathogenicity island 1 (SPI1) and SPI4 have previously been shown to be jointly regulated. We report that SPI1 and SPI4 gene expression is linked through a transcriptional activator, SprB, encoded within SPI1 and regulated by HilA. SprB directly activates SPI4 gene expression and weakly represses SPI1 gene expression through HilD.
Collapse
|
38
|
Daly RA, Lostroh CP. Genetic analysis of the Salmonella transcription factor HilA. Can J Microbiol 2009; 54:854-60. [PMID: 18923554 DOI: 10.1139/w08-075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HilA, a Salmonella transcription factor, activates the invF-1 and prgH promoters through binding to the HilA box, which contains 2 copies of a TTKHAT motif separated by a T centered at -45 relative to the start sites of transcription. The N-terminal 112 amino acids of HilA are similar to winged helix-turn-helix DNA binding/transcription activation domains (wHTH DBDs). The remaining 441 amino acids are not similar in sequence to any other well-characterized transcription factors. Here, we report that the wHTH DBD is essential for activation of both promoters, but amino acids 113-554 are only required for normal activation of invF-1. Some alanine substitutions in the putative alpha loop, which connects the recognition and positioning helices in wHTH DBDs, cause a loss-of-activation phenotype. A hilA allele encoding a protein with an alanine substituted for arginine at position 71 in the alpha loop has a loss-of-activation defect exclusively at the prgH promoter. The results suggest distinct roles for one or more domains formed by amino acids 113-554 and for arginine 71 in activation of the 2 promoters.
Collapse
Affiliation(s)
- Rebecca A Daly
- Department of Biology, Colorado College, 14 E Cache La Poudre Avenue, Colorado Springs, CO 80903, USA
| | | |
Collapse
|
39
|
The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect Immun 2008; 77:667-75. [PMID: 19001074 DOI: 10.1128/iai.01027-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Potassium (K(+)) is the most abundant intracellular cation and is essential for many physiological functions of all living organisms; however, its role in the pathogenesis of human pathogens is not well understood. In this study, we characterized the functions of the bacterial Trk K(+) transport system and external K(+) in the pathogenesis of Salmonella enterica, a major food-borne bacterial pathogen. Here we report that Trk is important for Salmonella to invade and grow inside epithelial cells. It is also necessary for the full virulence of Salmonella in an animal infection model. Analysis of proteins of Salmonella indicated that Trk is involved in the expression and secretion of effector proteins of the type III secretion system (TTSS) encoded by Salmonella pathogenicity island 1 (SPI1) that were previously shown to be necessary for Salmonella invasion. In addition to the role of the Trk transporter in the pathogenesis of Salmonella, we discovered that external K(+) modulates the pathogenic properties of Salmonella by increasing the expression and secretion of effector proteins of the SPI1-encoded TTSS and by enhancing epithelial cell invasion. Our studies demonstrated that K(+) is actively involved in the pathogenesis of Salmonella and indicated that Salmonella may take advantage of the high K(+) content inside host cells and in the intestinal fluid during diarrhea to become more virulent.
Collapse
|
40
|
Temme K, Salis H, Tullman-Ercek D, Levskaya A, Hong SH, Voigt CA. Induction and relaxation dynamics of the regulatory network controlling the type III secretion system encoded within Salmonella pathogenicity island 1. J Mol Biol 2007; 377:47-61. [PMID: 18242639 DOI: 10.1016/j.jmb.2007.12.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 12/14/2007] [Accepted: 12/18/2007] [Indexed: 12/30/2022]
Abstract
Bacterial pathogenesis requires the precise spatial and temporal control of gene expression, the dynamics of which are controlled by regulatory networks. A network encoded within Salmonella Pathogenicity Island 1 controls the expression of a type III protein secretion system involved in the invasion of host cells. The dynamics of this network are measured in single cells using promoter-green fluorescent protein (gfp) reporters and flow cytometry. During induction, there is a temporal order of gene expression, with transcriptional inputs turning on first, followed by structural and effector genes. The promoters show varying stochastic properties, where graded inputs are converted into all-or-none and hybrid responses. The relaxation dynamics are measured by shifting cells from inducing to noninducing conditions and by measuring fluorescence decay. The gfp expressed from promoters controlling the transcriptional inputs (hilC and hilD) and structural genes (prgH) decay exponentially, with a characteristic time of 50-55 min. In contrast, the gfp expressed from a promoter controlling the expression of effectors (sicA) persists for 110+/-9 min. This promoter is controlled by a genetic circuit, formed by a transcription factor (InvF), a chaperone (SicA), and a secreted protein (SipC), that regulates effector expression in response to the secretion capacity of the cell. A mathematical model of this circuit demonstrates that the delay is due to a split positive feedback loop. This model is tested in a DeltasicA knockout strain, where sicA is complemented with and without the feedback loop. The delay is eliminated when the feedback loop is deleted. Furthermore, a robustness analysis of the model predicts that the delay time can be tuned by changing the affinity of SicA:InvF multimers for an operator in the sicA promoter. This prediction is used to construct a targeted library, which contains mutants with both longer and shorter delays. This combination of theory and experiments provides a platform for predicting how genetic perturbations lead to changes in the global dynamics of a regulatory network.
Collapse
Affiliation(s)
- Karsten Temme
- UCSF/UCB Joint Graduate Group in Bioengineering, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Coordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium. Infect Immun 2007; 76:1024-35. [PMID: 18160484 DOI: 10.1128/iai.01224-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium harbors five pathogenicity islands (SPI) required for infection in vertebrate hosts. Although the role of SPI1 in promoting epithelial invasion and proinflammatory cell death has been amply documented, SPI4 has only more recently been implicated in Salmonella virulence. SPI4 is a 24-kb pathogenicity island containing six open reading frames, siiA to siiF. Secretion of the 595-kDa SiiE protein requires a type I secretory system encoded by siiC, siiD, and siiF. An operon polarity suppressor (ops) sequence within the 5' untranslated region upstream of siiA is required for optimal SPI4 expression and predicted to bind the antiterminator RfaH. SiiE concentrations are decreased in a SPI1 mutant strain, suggesting that SPI1 and SPI4 may have common regulatory inputs. SPI1 gene expression is positively regulated by the transcriptional activators HilA, HilC, and HilD, encoded within SPI1, and negatively regulated by the regulators HilE and PhoP. Here, we show that mutations in hilA, hilC, or hilD similarly reduce expression of siiE, and mutations in hilE or phoP enhance siiE expression. Individual overexpression of HilA, HilC, or HilD in the absence of SPI1 cannot activate siiE expression, suggesting that these transcriptional regulators act in concert or in combination with additional SPI1-encoded regulatory loci to activate SPI4. HilA is no longer required for siiE expression in an hns mutant strain, suggesting that HilA promotes SPI4 expression by antagonizing the global transcriptional silencer H-NS. Coordinate regulation suggests that SPI1 and SPI4 play complementary roles in the interaction of S. enterica serovar Typhimurium with the host intestinal mucosa.
Collapse
|
42
|
Thijs IMV, De Keersmaecker SCJ, Fadda A, Engelen K, Zhao H, McClelland M, Marchal K, Vanderleyden J. Delineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. J Bacteriol 2007; 189:4587-96. [PMID: 17483226 PMCID: PMC1913449 DOI: 10.1128/jb.00178-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Salmonella enterica serovar Typhimurium HilA protein is the key regulator for the invasion of epithelial cells. By a combination of genome-wide location and transcript analysis, the HilA-dependent regulon has been delineated. Under invasion-inducing conditions, HilA binds to most of the known target genes and a number of new target genes. The sopB, sopE, and sopA genes, encoding effector proteins secreted by the type III secretion system on Salmonella pathogenicity island 1 (SPI-1), were identified as being both bound by HilA and differentially regulated in an HilA mutant. This suggests a cooperative role for HilA and InvF in the regulation of SPI-1-secreted effectors. Also, siiA, the first gene of SPI-4, is both bound by HilA and differentially regulated in an HilA mutant, thus linking this pathogenicity island to the invasion key regulator. Finally, the interactions of HilA with the SPI-2 secretion system gene ssaH and the flagellar gene flhD imply a repressor function for HilA under invasion-inducing conditions.
Collapse
Affiliation(s)
- Inge M V Thijs
- Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lim S, Yun J, Yoon H, Park C, Kim B, Jeon B, Kim D, Ryu S. Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression. Nucleic Acids Res 2007; 35:1822-32. [PMID: 17329372 PMCID: PMC1874608 DOI: 10.1093/nar/gkm060] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The global regulator Mlc is a repressor of several genes and operons that are involved in sugar uptake and metabolism. A Salmonella enterica serovar Typhimurium mlc mutant showed reduced levels of invasion and cytotoxicity compared to the wild-type, and exhibited reduced expression levels of hilD, hilA and invF, which are regulatory genes in the Salmonella pathogenicity island 1 (SPI1). However, the effects of Mlc on hilD expression and bacterial invasiveness were not seen in the hilE mutant, and hilE expression was increased in the mlc mutant, which suggests that Mlc exerts positive effects on the expression of SPI1 genes by reducing the expression of HilE, which is known to down-regulate the expression of SPI1 genes through direct interaction with HilD. We found that the two known promoters of hilE were not modulated by Mlc, and we identified a third promoter, designated P3, which was repressed by Mlc. The gel mobility shift assay and footprinting analysis revealed that Mlc repressed hilE in a direct manner by binding to two distinct sites in the hilE P3 promoter region. The specific down-regulation of hilD observed in the presence of Mlc regulon-inducible sugars, such as glucose and mannose, could not be detected in the mlc mutant. Based on these results, we propose that Mlc functions to sense the availability of sugars and is linked to virulence gene regulation by its ability to control hilE expression in Salmonella.
Collapse
Affiliation(s)
- Sangyong Lim
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Jiae Yun
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Hyunjin Yoon
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Chehwee Park
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Boowon Kim
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Byeonghwa Jeon
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Dongho Kim
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921, Republic of Korea and Radiation Application Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Republic of Korea
- *To whom correspondence should be addressed. 82 2 880 485682 2 873 5095
| |
Collapse
|
44
|
Ellermeier JR, Slauch JM. Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 2007; 10:24-9. [PMID: 17208038 DOI: 10.1016/j.mib.2006.12.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 12/18/2006] [Indexed: 11/28/2022]
Abstract
Salmonella enterica invades the intestinal epithelium of the host using a type III secretion system encoded on Salmonella pathogenicity island 1 (SPI1). The bacteria integrate environmental signals from a variety of global regulatory systems to precisely induce transcription of SPI1. The regulatory circuit converges on expression of HilA, which directly regulates transcription of the SPI1 apparatus genes. Transcription of hilA is controlled by a complex feed-forward loop. Regulatory signals feed into the system through post-transcriptional and post-translational control of HilD, which in turn activates HilC and RtsA. These three regulators act in concert to control hilA transcription. The system acts as a switch, ensuring that SPI1 is fully on at the appropriate time.
Collapse
Affiliation(s)
- Jeremy R Ellermeier
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, Urbana, IL 61801, USA
| | | |
Collapse
|
45
|
Aguirre A, Cabeza ML, Spinelli SV, McClelland M, García Véscovi E, Soncini FC. PhoP-induced genes within Salmonella pathogenicity island 1. J Bacteriol 2006; 188:6889-98. [PMID: 16980492 PMCID: PMC1595516 DOI: 10.1128/jb.00804-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The invasive pathogen Salmonella enterica has evolved a sophisticated device that allows it to enter nonphagocytic host cells. This process requires the expression of Salmonella pathogenicity island 1 (SPI-1), which encodes a specialized type III protein secretion system (TTSS). This TTSS delivers a set of effectors that produce a marked rearrangement of the host cytoskeleton, generating a profuse membrane ruffling at the site of interaction, driving bacterial entry. It has been shown that the PhoP/PhoQ two-component system represses the expression of the SPI-1 machinery by down-regulating the transcription of its master regulator, HilA. In this work, we reveal the presence of a PhoP-activated operon within SPI-1. This operon is composed of the orgB and orgC genes, which encode a protein that interacts with the InvC ATPase and a putative effector protein of the TTSS, respectively. Under PhoP-inducing conditions, expression of this operon is directly activated by the phosphorylated form of the response regulator, which recognizes a PhoP box located at the -35 region relative to the transcription start site. Additionally, under invasion-inducing conditions, orgBC expression is driven both by the prgH promoter, induced by the SPI-1 master regulator HilA, and by the directly controlled PhoP/PhoQ promoter. Together, these results indicate that in contrast to the rest of the genes encompassed in the SPI-1 locus, orgBC is expressed during and after Salmonella entry into its host cell, and they suggest a role for the products of this operon after host cell internalization.
Collapse
Affiliation(s)
- Andrés Aguirre
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
46
|
Olekhnovich IN, Kadner RJ. Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. J Mol Biol 2006; 357:373-86. [PMID: 16443238 DOI: 10.1016/j.jmb.2006.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 12/22/2005] [Accepted: 01/05/2006] [Indexed: 11/17/2022]
Abstract
The hilA gene on the Salmonella enterica pathogenicity island-1 encodes the key transcriptional regulator of host cell invasion. Transcription of hilA is regulated by numerous physiological signals, including repression under low osmolarity conditions. To investigate the osmotic control of hilA transcription, promoter truncations that remove sequences flanking the hilA promoter were examined. Expression of the minimal hilA core promoter (-55 to +90, relative to the transcription start site) was 57-times higher than the intact promoter (-242 to +505) in the absence of osmotic stress. Both flanking sequences contributed to the strong silencing effect, which was greatly relieved by the simultaneous loss of the two nucleoid-structuring proteins, H-NS and Hha. Mobility-shift assays revealed the presence of binding sites for the H-NS and Hha proteins, both upstream and downstream of the promoter. Either flanking region depressed expression when it was placed downstream of the lacUV5 promoter, and this inhibition was increased when the other flanking sequence was present upstream of the promoter. These results show that the hilA promoter is highly active without other transcription regulators. Its high activity is strongly depressed in low osmolarity conditions by the nucleoid-structuring proteins H-NS and Hha, possibly by formation of a repressive DNA loop. The hilA activators, HilD and HilC appear to overcome effects of downstream silencing region and disrupt repressive DNA loop. Action of activators requires contact with RNA polymerase from their DNA binding site, centered at position -77, relative to the hilA transcription start site.
Collapse
Affiliation(s)
- Igor N Olekhnovich
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| | | |
Collapse
|
47
|
Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Hautefort I, Thompson A, Hinton JC, Van Immerseel F. Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol 2006; 72:946-9. [PMID: 16391141 PMCID: PMC1352287 DOI: 10.1128/aem.72.1.946-949.2006] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 10/05/2005] [Indexed: 11/20/2022] Open
Abstract
Invasion of intestinal epithelial cells by Salmonella enterica is decreased after exposure to butyric acid. To understand the molecular mechanisms of this phenomenon, a comparative transcriptomic analysis of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium grown in medium supplemented with butyrate was performed. We found that butyrate down-regulated the expression of 19 genes common to both serovars by a factor of twofold or more, and 17 of these genes localized to the Salmonella pathogenicity island 1 (SPI1). These included the SPI1 regulatory genes hilD and invF. Of the remaining two genes, ampH has 91% homology to an Escherichia coli penicillin-binding protein and sopE2 encodes a type III-secreted effector protein associated with invasion but located at a separate site on the chromosome from SPI1.
Collapse
Affiliation(s)
- I Gantois
- Department of Pathology, Bacteriology and Avian Diseases, Research Group Veterinary Public Health and Zoonoses, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
De Keersmaecker SCJ, Marchal K, Verhoeven TLA, Engelen K, Vanderleyden J, Detweiler CS. Microarray analysis and motif detection reveal new targets of the Salmonella enterica serovar Typhimurium HilA regulatory protein, including hilA itself. J Bacteriol 2005; 187:4381-91. [PMID: 15968047 PMCID: PMC1151768 DOI: 10.1128/jb.187.13.4381-4391.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA regulatory motifs reflect the direct transcriptional interactions between regulators and their target genes and contain important information regarding transcriptional networks. In silico motif detection strategies search for DNA patterns that are present more frequently in a set of related sequences than in a set of unrelated sequences. Related sequences could be genes that are coexpressed and are therefore expected to share similar conserved regulatory motifs. We identified coexpressed genes by carrying out microarray-based transcript profiling of Salmonella enterica serovar Typhimurium in response to the spent culture supernatant of the probiotic strain Lactobacillus rhamnosus GG. Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. They are known to antagonize intestinal pathogens in vivo, including salmonellae. S. enterica serovar Typhimurium causes human gastroenteritis. Infection is initiated by entry of salmonellae into intestinal epithelial cells. The expression of invasion genes is tightly regulated by environmental conditions, as well as by many bacterial factors including the key regulator HilA. One mechanism by which probiotics may antagonize intestinal pathogens is by influencing invasion gene expression. Our microarray experiment yielded a cluster of coexpressed Salmonella genes that are predicted to be down-regulated by spent culture supernatant. This cluster was enriched for genes known to be HilA dependent. In silico motif detection revealed a motif that overlaps the previously described HilA box in the promoter region of three of these genes, spi4_H, sicA, and hilA. Site-directed mutagenesis, beta-galactosidase reporter assays, and gel mobility shift experiments indicated that sicA expression requires HilA and that hilA is negatively autoregulated.
Collapse
|
49
|
Ricke SC, Kundinger MM, Miller DR, Keeton JT. Alternatives to antibiotics: chemical and physical antimicrobial interventions and foodborne pathogen response. Poult Sci 2005; 84:667-75. [PMID: 15844827 DOI: 10.1093/ps/84.4.667] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Successful control of foodborne pathogens requires placement of chemical and physical hurdles in the preharvest and postharvest food production sectors. Pathogens may also encounter indigenous antimicrobials in foods including certain botanical compounds that have historically been used for flavor enhancement as well as preservation. Chemical additives have traditionally included organic acids to control microbial contamination in foods and feeds. However, there is some concern that continuous application of certain chemical antimicrobials can lead to a buildup of microbial resistance. This creates problems if foodborne pathogens survive and develop resistance to a variety of environmental stressors encountered in pre- and postharvest animal production. To expand the diversity of potential antimicrobials that have practical application to food animal production requires exploring the interaction between the food matrix and foodborne pathogens. There is potential for isolating antimicrobial compounds that exhibit mechanisms unrelated to conventional antimicrobial compounds. However, understanding the potential for novel antimicrobial compounds in foods and feeds will require the physiological examination of foodborne pathogen response under experimental conditions comparable to the environment where the pathogen is most likely to occur. Research on foodborne Salmonella pathogenesis is extensive and should provide a model for detailed examination of the factors that influence antimicrobial effectiveness. Analysis of pathogen response to antimicrobials could yield clues for optimizing hurdle technologies to more effectively exploit vulnerabilities of Salmonella and other foodborne pathogens when administering antimicrobials during food and feed production.
Collapse
Affiliation(s)
- S C Ricke
- Department of Poultry Science, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
50
|
Kujat Choy SL, Boyle EC, Gal-Mor O, Goode DL, Valdez Y, Vallance BA, Finlay BB. SseK1 and SseK2 are novel translocated proteins of Salmonella enterica serovar typhimurium. Infect Immun 2004; 72:5115-25. [PMID: 15322005 PMCID: PMC517430 DOI: 10.1128/iai.72.9.5115-5125.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica is a gram-negative, facultative intracellular pathogen that causes disease symptoms ranging from gastroenteritis to typhoid fever. A key virulence strategy is the translocation of bacterial effector proteins into the host cell, mediated by the type III secretion systems (TTSSs) encoded in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. In S. enterica serovar Typhimurium LT2, we identified the protein products of STM4157 and STM2137 as novel candidate secreted proteins by comparison to known secreted proteins from enterohemorrhagic Escherichia coli and Citrobacter rodentium. The STM4157 and STM2137 proteins, which we have designated SseK1 and SseK2, respectively, are 61% identical at the amino acid level and differ mainly in their N termini. Western analysis showed that in vitro accumulation and secretion of these proteins in serovar Typhimurium were affected by mutations in the two-component systems SsrA/B and PhoP/Q, which are key mediators of intracellular growth and survival. SPI-2 TTSS-dependent translocation of recombinant SseK1::Cya was evident at 9 h postinfection of epithelial cells, while translocation of SseK2::Cya was not detected until 21 h. Remarkably, the translocation signal for SseK1 was contained within the N-terminal 32 amino acids. Fractionation of infected epithelial cells revealed that following translocation SseK1 localizes to the host cytosol, which is unusual among the currently known Salmonella effectors. Phenotypic analysis of DeltasseK1, DeltasseK2, and DeltasseK1/DeltasseK2 mutants provided evidence for a role that was not critical during systemic infection. In summary, this work demonstrates that SseK1 and SseK2 are novel translocated proteins of serovar Typhimurium.
Collapse
Affiliation(s)
- Sonya L Kujat Choy
- Biotechnology Laboratory, University of British Columbia, Room 237, Wesbrook Building, 6174 University Blvd., Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|