1
|
Zhao X, Qiu Y, Jiang A, Huang Y, Ma P, Yuan B, Chen L, Zhang C. Transcription Activator FgDDT Interacts With FgISW1 to Regulate Fungal Development and Pathogenicity in the Global Pathogen Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2025; 26:e70076. [PMID: 40151047 PMCID: PMC11950633 DOI: 10.1111/mpp.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Several DNA-binding homeobox and different transcription factor (DDT)-domain proteins form stable remodelling complexes with imitation switch (ISWI) chromatin remodelling factors. ISWI complexes have been reported to be involved in various biological processes in many eukaryotic species. However, in phytopathogenic fungi, the regulatory mechanisms underlying the functions of DDT-domain proteins in ISWI complexes remain unclear. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) assays were used to demonstrate that FgDDT from Fusarium graminearum was enriched within the promoter regions of genes associated with metabolic and MAPK signalling pathways, thereby activating their expression. Moreover, two additional ISWI genes, FgISW1 and FgISW2, were identified and characterised, with subsequent analyses indicating that the ISWI components FgISW1 and FgDDT are essential for fungal development and pathogenicity rather than FgISW2. Further experiments revealed that FgDDT binds to FgISW1 to form an ISWI complex that activates the expression of functional genes in F. graminearum, consequently contributing to its pathogenicity and development. FgDDT was also observed as highly conserved in Fusarium species but exhibits low similarity to homologues in Homo sapiens and Arabidopsis thaliana, suggesting that functional studies of FgDDT are crucial to uncover its unique role within Fusarium. These findings provide a basis for further understanding the molecular mechanisms by which ISWI complexes function in fungi and contribute to their pathogenicity.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Yuxin Qiu
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Aning Jiang
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Yan Huang
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Peixue Ma
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of EducationNanjingChina
| | - Li Chen
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| | - Chengqi Zhang
- School of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Key Laboratory of Agri‐Products Quality and Biosafety (Anhui Agricultural University)Ministry of EducationHefeiChina
| |
Collapse
|
2
|
Meng Y, Ni Y, Li Z, Jiang T, Sun T, Li Y, Gao X, Li H, Suo C, Li C, Yang S, Lan T, Liao G, Liu T, Wang P, Ding C. Interplay between acetylation and ubiquitination of imitation switch chromatin remodeler Isw1 confers multidrug resistance in Cryptococcus neoformans. eLife 2024; 13:e85728. [PMID: 38251723 PMCID: PMC10834027 DOI: 10.7554/elife.85728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/21/2024] [Indexed: 01/23/2024] Open
Abstract
Cryptococcus neoformans poses a threat to human health, but anticryptococcal therapy is hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase, functions as a master modulator of genes responsible for in vivo and in vitro multidrug resistance in C. neoformans. Cells with the disrupted ISW1 gene exhibited profound resistance to multiple antifungal drugs. Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting that an interplay between these two modification events exists to govern Isw1 function. Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of Isw1K97 coordinates with its ubiquitination processes at Isw1K113 and Isw1K441 through modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates of C. neoformans overexpressing the degradation-resistant ISW1K97Q allele showed impaired drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-ubiquitination regulation axis that controls multidrug resistance in C. neoformans.
Collapse
Affiliation(s)
- Yang Meng
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Yue Ni
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Zhuoran Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tianhang Jiang
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tianshu Sun
- Department of Scientific Research, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Xindi Gao
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology, The First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Chenhao Suo
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Chao Li
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Sheng Yang
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Tian Lan
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| | - Guojian Liao
- College of Pharmaceutical Sciences, Southwest UniversityChongqingChina
| | - Tongbao Liu
- Medical Research Institute, Southwest UniversityChongqingChina
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New OrleansNew OrleansUnited States
| | - Chen Ding
- College of Life and Health Sciences, Northeastern UniversityShenyangChina
| |
Collapse
|
3
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Newman M, Li G, Martínez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. J Fungi (Basel) 2023; 9:359. [PMID: 36983527 PMCID: PMC10056406 DOI: 10.3390/jof9030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
Affiliation(s)
- Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hunter Lynch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sawyer Andersen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Domingo Martínez-Soto
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shira Milo-Cochavi
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Li G, Mart Nez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527873. [PMID: 36798233 PMCID: PMC9934661 DOI: 10.1101/2023.02.09.527873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspected global transcription factor profiles (TFomes) and their potential roles in coordinating CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, we found a clear positive correlation between the sizes of TFome and proteome of an organism, and FOSC TFomes are larger due to the acquisition of ACs. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls are highly conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are most significantly expanded to 671 and 167 genes per family, including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3%, including a disordered protein Ren1. Expression profiles revealed a steady expression of conserved TF families and specific activation of AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
|
5
|
Lin A, Du Y, Xiao W. Yeast chromatin remodeling complexes and their roles in transcription. Curr Genet 2020; 66:657-670. [PMID: 32239283 DOI: 10.1007/s00294-020-01072-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
The nucleosome is a small unit of chromatin, which is dynamic in eukaryotes. Chromatin conformation and post-translational modifications affect nucleosome dynamics under certain conditions, playing an important role in the epigenetic regulation of transcription, replication and reprogramming. The Snf2 remodeling family is one of the crucial remodeling complexes that tightly regulate chromatin structure and affect nucleosome dynamics. This family alters nucleosome positioning, exchanges histone variants, and assembles and disassembles nucleosomes at certain locations. Moreover, the Snf2 family, in conjunction with other co-factors, regulates gene expression in Saccharomyces cerevisiae. Here we first review recent findings on the Snf2 family remodeling complexes and then use some examples to illustrate the cooperation between different members of Snf2 family, and the cooperation between Snf2 family and other co-factors in gene regulation especially during transcription initiation.
Collapse
Affiliation(s)
- Aiyang Lin
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ying Du
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada. .,College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
6
|
McCarthy L, Bentley‐DeSousa A, Denoncourt A, Tseng Y, Gabriel M, Downey M. Proteins required for vacuolar function are targets of lysine polyphosphorylation in yeast. FEBS Lett 2019; 594:21-30. [DOI: 10.1002/1873-3468.13588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Liam McCarthy
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Amanda Bentley‐DeSousa
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Yi‐Chieh Tseng
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Matthew Gabriel
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine University of Ottawa Canada
- Ottawa Institute of Systems Biology University of Ottawa Canada
| |
Collapse
|
7
|
Bui TT, Harting R, Braus-Stromeyer SA, Tran VT, Leonard M, Höfer A, Abelmann A, Bakti F, Valerius O, Schlüter R, Stanley CE, Ambrósio A, Braus GH. Verticillium dahliae transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease. THE NEW PHYTOLOGIST 2019; 221:2138-2159. [PMID: 30290010 DOI: 10.1111/nph.15514] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Verticillium dahliae nuclear transcription factors Som1 and Vta3 can rescue adhesion in a FLO8-deficient Saccharomyces cerevisiae strain. Som1 and Vta3 induce the expression of the yeast FLO1 and FLO11 genes encoding adhesins. Som1 and Vta3 are sequentially required for root penetration and colonisation of the plant host by V. dahliae. The SOM1 and VTA3 genes were deleted and their functions in fungus-induced plant pathogenesis were studied using genetic, cell biology, proteomic and plant pathogenicity experiments. Som1 supports fungal adhesion and root penetration and is required earlier than Vta3 in the colonisation of plant root surfaces and tomato plant infection. Som1 controls septa positioning and the size of vacuoles, and subsequently hyphal development including aerial hyphae formation and normal hyphal branching. Som1 and Vta3 control conidiation, microsclerotia formation, and antagonise in oxidative stress responses. The molecular function of Som1 is conserved between the plant pathogen V. dahliae and the opportunistic human pathogen Aspergillus fumigatus. Som1 controls genes for initial steps of plant root penetration, adhesion, oxidative stress response and VTA3 expression to allow subsequent root colonisation. Both Som1 and Vta3 regulate developmental genetic networks required for conidiation, microsclerotia formation and pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Tri-Thuc Bui
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Susanna A Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
- Department of Microbiology, Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, 100000, Hanoi, Vietnam
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Annalena Höfer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Anja Abelmann
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, D-17489, Greifswald, Germany
| | - Claire E Stanley
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Alinne Ambrósio
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| |
Collapse
|
8
|
Sugiyama M, Baek SY, Takashima S, Miyashita N, Ishida K, Mun J, Yeo SH. Overexpression of PkINO1 improves ethanol resistance of Pichia kudriavzevii N77-4 isolated from the Korean traditional fermentation starter nuruk. J Biosci Bioeng 2018; 126:682-689. [PMID: 30401451 DOI: 10.1016/j.jbiosc.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 12/21/2022]
Abstract
The yeast Pichia kudriavzevii N77-4 was isolated from the Korean traditional fermentation starter nuruk. In this study, fermentation performance and stress resistance ability of N77-4 was analyzed. N77-4 displayed superior thermotolerance (up to 44°C) in addition to enhanced acetic acid resistance compared to Saccharomyces cerevisiae. Moreover, N77-4 produced 7.4 g/L of ethanol with an overall production yield of 0.37 g/g glucose in 20 g/L glucose medium. However, in 250 g/L glucose medium the growth of N77-4 slowed down when the concentration of ethanol reached 14 g/L or more and ethanol production yield also decreased to 0.30 g/g glucose. An ethanol sensitivity test indicated that N77-4 was sensitive to the presence of 1% ethanol, which was not the case for S. cerevisiae. Furthermore, N77-4 displayed a severe growth defect in the presence of 6% ethanol. Because inositol biosynthesis is critical for ethanol resistance, expression levels of the PkINO1 encoding a key enzyme for inositol biosynthesis was analyzed under ethanol stress conditions. We found that ethanol stress clearly repressed PkINO1 expression in a dose-dependent manner and overexpression of PkINO1 improved the growth of N77-4 by 19% in the presence of 6% ethanol. Furthermore, inositol supplementation also enhanced the growth by 13% under 6% ethanol condition. These findings indicate that preventing downregulation in PkINO1 expression caused by ethanol stress improves ethanol resistance and enhances the utility of P. kudriavzevii N77-4 in brewing and fermentation biotechnology.
Collapse
Affiliation(s)
- Minetaka Sugiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Seong Yeol Baek
- Department of Agro-food Resources, National Institute of Agricultural Science, RDA, 166 Nongsaengmyeong-ro, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
| | - Shohei Takashima
- Department of Bioengineering, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Natsumi Miyashita
- Department of Bioengineering, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kei Ishida
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jiyoung Mun
- Department of Agro-food Resources, National Institute of Agricultural Science, RDA, 166 Nongsaengmyeong-ro, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
| | - Soo-Hwan Yeo
- Department of Agro-food Resources, National Institute of Agricultural Science, RDA, 166 Nongsaengmyeong-ro, Wanju-Gun, Jeollabuk-do 55365, Republic of Korea
| |
Collapse
|
9
|
Li D, Liu J, Liu W, Li G, Yang Z, Qin P, Xu L. The ISWI remodeler in plants: protein complexes, biochemical functions, and developmental roles. Chromosoma 2017; 126:365-373. [PMID: 28213686 DOI: 10.1007/s00412-017-0626-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/15/2017] [Accepted: 01/26/2017] [Indexed: 12/01/2022]
Abstract
Imitation Switch (ISWI) is a member of the ATP-dependent chromatin remodeling factor family, whose members move or restructure nucleosomes using energy derived from ATP hydrolysis. ISWI proteins are conserved in eukaryotes and usually form complexes with DDT (DNA-binding homeobox and different transcription factors)-domain proteins. Here, we review recent research on ISWI in the model plant Arabidopsis thaliana (AtISWI). AtISWI forms complexes with AtDDT-domain proteins, many of which have domain structures that differ from those of DDT-domain proteins in yeast and animals. This might suggest that plant ISWI complexes have unique roles. In vivo studies have shown that AtISWI is involved in the formation of the evenly spaced pattern of nucleosome arrangement in gene bodies-this pattern is associated with high transcriptional levels of genes. In addition, AtISWI and the AtDDT-domain protein RINGLET (RLT) are involved in many developmental processes in A. thaliana, including meristem fate transition and organ formation. Studies on the functions of AtISWI may shed light on how chromatin remodeling functions in plants and also provide new information about the evolution of ISWI remodeling complexes in eukaryotes.
Collapse
Affiliation(s)
- Dongjie Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.,College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jie Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Guang Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Peng Qin
- Department of Instrumentation Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
10
|
Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae. Genetics 2016; 203:1693-707. [PMID: 27317677 DOI: 10.1534/genetics.116.189506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/27/2016] [Indexed: 01/23/2023] Open
Abstract
Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation-phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability.
Collapse
|
11
|
Dong J, Gao Z, Liu S, Li G, Yang Z, Huang H, Xu L. SLIDE, the protein interacting domain of Imitation Switch remodelers, binds DDT-domain proteins of different subfamilies in chromatin remodeling complexes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:928-937. [PMID: 23691993 DOI: 10.1111/jipb.12069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
The Imitation Switch (ISWI) type adenosine triphosphate (ATP)-dependent chromatin remodeling factors are conserved proteins in eukaryotes, and some of them are known to form stable remodeling complexes with members from a family of proteins, termed DDT-domain proteins. Although it is well documented that ISWIs play important roles in different biological processes in many eukaryotic species, the molecular basis for protein interactions in ISWI complexes has not been fully addressed. Here, we report the identification of interaction domains for both ISWI and DDT-domain proteins. By analyzing CHROMATIN REMODELING11 (CHR11) and RINGLET1 (RLT1), an Arabidopsis thaliana ISWI (AtISWI) and AtDDT-domain protein, respectively, we show that the SLIDE domain of CHR11 and the DDT domain together with an adjacent sequence of RLT1 are responsible for their binding. The Arabidopsis genome contains at least 12 genes that encode DDT-domain proteins, which could be grouped into five subfamilies based on the sequence similarity. The SLIDE domain of AtISWI is able to bind members from different AtDDT subfamilies. Moreover, a human ISWI protein SNF2H is capable of binding AtDDT-domain proteins through its SLIDE domain, suggesting that binding to DDT-domain proteins is a conserved biochemical function for the SLIDE domain of ISWIs in eukaryotes.
Collapse
Affiliation(s)
- Jiaqiang Dong
- National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Shetty A, Swaminathan A, Lopes JM. Transcription Regulation of a Yeast Gene from a Downstream Location. J Mol Biol 2013; 425:457-65. [DOI: 10.1016/j.jmb.2012.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/26/2012] [Accepted: 11/13/2012] [Indexed: 11/29/2022]
|
13
|
Kim SR, Ha SJ, Kong II, Jin YS. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 2012; 14:336-43. [PMID: 22521925 DOI: 10.1016/j.ymben.2012.04.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/20/2012] [Accepted: 04/05/2012] [Indexed: 01/02/2023]
Abstract
The traditional ethanologenic yeast Saccharomyces cerevisiae cannot metabolize xylose, which is an abundant sugar in non-crop plants. Engineering this yeast for a practicable fermentation of xylose will therefore improve the economics of bioconversion for the production of fuels and chemicals such as ethanol. One of the most widely employed strategies is to express XYL1, XYL2, and XYL3 genes derived from Scheffersomyces stipitis (formerly Pichia stiptis) in S. cerevisiae. However, the resulting engineered strains have been reported to exhibit large variations in xylitol accumulation and ethanol yields, generating many hypotheses and arguments for elucidating these phenomena. Here we demonstrate that low expression levels of the XYL2 gene, coding for xylitol dehydrogenase (XDH), is a major bottleneck in efficient xylose fermentation. Through an inverse metabolic engineering approach using a genomic library of S. cerevisiae, XYL2 was identified as an overexpression target for improving xylose metabolism. Specifically, we performed serial subculture experiments after transforming a genomic library of wild type S. cerevisiae into an engineered strain harboring integrated copies of XYL1, XYL2 and XYL3. Interestingly, the isolated plasmids from efficient xylose-fermenting transformants contained XYL2. This suggests that the integrated XYL2 migrated into a multi-copy plasmid through homologous recombination. It was also found that additional overexpression of XYL2 under the control of strong constitutive promoters in a xylose-fermenting strain not only reduced xylitol accumulation, but also increased ethanol yields. As the expression levels of XYL2 increased, the ethanol yields gradually improved from 0.1 to 0.3g ethanol/g xylose, while the xylitol yields significantly decreased from 0.4 to 0.1g xylitol/g xylose. These results suggest that strong expression of XYL2 is a necessary condition for developing efficient xylose-fermenting strains.
Collapse
Affiliation(s)
- Soo Rin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
14
|
Derepression of INO1 transcription requires cooperation between the Ino2p-Ino4p heterodimer and Cbf1p and recruitment of the ISW2 chromatin-remodeling complex. EUKARYOTIC CELL 2010; 9:1845-55. [PMID: 20935143 DOI: 10.1128/ec.00144-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Saccharomyces cerevisiae INO1 gene encodes the structural enzyme inositol-3-phosphate synthase for the synthesis de novo of inositol and inositol-containing phospholipids. The transcription of INO1 is completely derepressed in the absence of inositol and choline (I(-) C(-)). Derepression requires the binding of the Ino2p-Ino4p basic helix-loop-helix (bHLH) heterodimer to the UAS(INO) promoter element. We report here the requirement of a third bHLH protein, centromere-binding factor 1 (Cbf1p), for the complete derepression of INO1 transcription. We found that Cbf1p regulates INO1 transcription by binding to sites distal to the INO1 promoter and encompassing the upstream SNA3 open reading frame (ORF) and promoter. The binding of Cbf1p requires Ino2p-Ino4p binding to the UAS(INO) sites in the INO1 promoter and vice versa, suggesting a cooperative mechanism. Furthermore, Cbf1p binding to the upstream sites was required for the binding of the ISW2 chromatin-remodeling complex to the Ino2p-Ino4p-binding sites on the INO1 promoter. Consistent with this, ISW2 was also required for the complete derepression of INO1 transcription.
Collapse
|
15
|
Deregulation of DSE1 gene expression results in aberrant budding within the birth scar and cell wall integrity pathway activation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2009; 8:586-94. [PMID: 19252124 DOI: 10.1128/ec.00376-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strains of Saccharomyces cerevisiae lacking Isw2, the catalytic subunit of the Isw2 chromatin remodeling complex, show the mating type-independent activation of the cell wall integrity (CWI) signaling pathway. Since the CWI pathway activation usually reflects cell wall defects, we searched for the cell wall-related genes changed in expression. The genes DSE1, CTS1, and CHS1 were upregulated as a result of the absence of Isw2, according to previously published gene expression profiles (I. Frydlova, M. Basler, P. Vasicova, I. Malcova, and J. Hasek, Curr. Genet. 52:87-95, 2007). Western blot analyses of double deletion mutants, however, did not indicate the contribution of the chitin metabolism-related genes CTS1 and CHS1 to the CWI pathway activation. Nevertheless, the deletion of the DSE1 gene encoding a daughter cell-specific protein with unknown function suppressed CWI pathway activation in isw2Delta cells. In addition, the deletion of DSE1 also abolished the budding-within-the-birth-scar phenotype of isw2Delta cells. The plasmid-driven overexpression proved that the deregulation of Dse1 synthesis was also responsible for CWI pathway activation and manifestation of the budding-within-the-birth-scar phenotype in wild-type cells. The overproduced Dse1-green fluorescent protein localized to both sides of the septum and persisted in unbudded cells. Although the exact cellular role of this daughter cell-specific protein has to be elucidated, our data point to the involvement of Dse1 in bud site selection in haploid cells.
Collapse
|
16
|
Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, Widom J, Brickner JH. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 2007; 5:e81. [PMID: 17373856 PMCID: PMC1828143 DOI: 10.1371/journal.pbio.0050081] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 01/17/2007] [Indexed: 01/05/2023] Open
Abstract
Many genes are recruited to the nuclear periphery upon transcriptional activation. The mechanism and functional significance of this recruitment is unclear. We find that recruitment of the yeast INO1 and GAL1 genes to the nuclear periphery is rapid and independent of transcription. Surprisingly, these genes remain at the periphery for generations after they are repressed. Localization at the nuclear periphery serves as a form of memory of recent transcriptional activation, promoting reactivation. Previously expressed GAL1 at the nuclear periphery is activated much more rapidly than long-term repressed GAL1 in the nucleoplasm, even after six generations of repression. Localization of INO1 at the nuclear periphery is necessary and sufficient to promote more rapid activation. This form of transcriptional memory is chromatin based; the histone variant H2A.Z is incorporated into nucleosomes within the recently repressed INO1 promoter and is specifically required for rapid reactivation of both INO1 and GAL1. Furthermore, H2A.Z is required to retain INO1 at the nuclear periphery after repression. Therefore, H2A.Z-mediated localization of recently repressed genes at the nuclear periphery represents an epigenetic state that confers memory of transcriptional activation and promotes reactivation. Eukaryotic cells control the spatial arrangement of chromosomes; the localization of genes can both reflect and contribute to their transcriptional state. A number of genes in the simple eukaryote brewer's yeast are “recruited” to the nuclear periphery through interactions with the nuclear pore complex when they are expressed. The functional significance of peripheral recruitment is unclear. Here, we show that recruited genes are actively retained at the periphery for generations after transcription is repressed. This suggests that localization at the nuclear periphery represents a novel inherited state that might allow simple eukaryotic organisms to “remember” previous transcriptional activation. This type of memory allows for more robust reactivation of genes, suggesting that it is adaptive. Finally, both retention at the nuclear periphery and rapid reactivation require a variant form of histone H2A. Adaptive memory is distinct from other types of transcriptional memory. In developmental memory, transcriptional states established by transcriptional regulators early in embryogenesis are propagated long after these regulators have disappeared. Adaptive memory does not propagate a state, but represents a novel state that serves as a source of information. In this way, it resembles a rudimentary form of cellular learning that allows cells to benefit from recent experience. Recruitment of active genes to the periphery of the yeast nucleus does not require concurrent transcription.
Collapse
Affiliation(s)
- Donna Garvey Brickner
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Ivelisse Cajigas
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Yvonne Fondufe-Mittendorf
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Sara Ahmed
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Pei-Chih Lee
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
| | - Jason H Brickner
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois, United States of America
- * To whom correspondence should be addressed.
| |
Collapse
|
17
|
Mueller JE, Li C, Bryk M. Isw2 regulates gene silencing at the ribosomal DNA locus in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2007; 361:1017-21. [PMID: 17689493 PMCID: PMC2083704 DOI: 10.1016/j.bbrc.2007.07.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022]
Abstract
Three heterochromatin-like domains have been identified in Saccharomyces cerevisiae that are refractory to transcription by Pol II, the silent mating-type loci, telomeres and the ribosomal DNA. Previous work has shown that chromatin remodelers can regulate silent chromatin. Here, we report the findings of an investigation into the role of ISW2 in transcriptional silencing at the rDNA. We show that the levels of retrotransposition and mRNA from a genetically marked Ty1 element located in the rDNA were increased significantly in isw2Delta cells, while transcript levels from Ty1 elements outside of the rDNA were not increased in cells lacking ISW2. Additionally, we show that Isw2 is not required for silencing at a telomere. Our findings demonstrate that Isw2 is required for transcriptional silencing at the rDNA and emphasize the differences in the regulation of transcriptional silencing at silent loci in S. cerevisiae.
Collapse
Affiliation(s)
- John E Mueller
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
18
|
Ford J, Odeyale O, Eskandar A, Kouba N, Shen CH. A SWI/SNF- and INO80-dependent nucleosome movement at the INO1 promoter. Biochem Biophys Res Commun 2007; 361:974-9. [PMID: 17681272 PMCID: PMC2034749 DOI: 10.1016/j.bbrc.2007.07.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 07/20/2007] [Indexed: 01/27/2023]
Abstract
Transcriptional activation in yeast INO1 chromatin was studied using the indirect end-labeling technique. INO1 chromatin is organized into an ordered, overlapping nucleosomal array under repressing conditions. Nucleosome positions were only disrupted at the promoter region under inducing conditions in the presence of SWI/SNF and INO80. Mutants lacking either remodeler demonstrated identical positioning patterns as the wild type under repressing conditions. This indicates that these two remodelers are responsible and essential for local nucleosomal mobilization at the INO1 promoter. The area of local nucleosome movement is consistent with the previously identified region of histone deacetylation activity. In light of these findings, we suggest that nucleosomes subject to local mobilization are also targets for local histone modifications.
Collapse
Affiliation(s)
- Jason Ford
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
| | - Oluwafemi Odeyale
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
| | - Antonious Eskandar
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
| | - Nafila Kouba
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
| | - Chang-Hui Shen
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York 10314, USA
- Institute for Macromolecular Assemblies, City University of New York, Staten Island, New York 10314, USA
- To whom correspondence should be addressed. Phone: 718-982-3998. Fax: (718) 982-3852. E-mail:
| |
Collapse
|
19
|
Frýdlová I, Basler M, Vasicová P, Malcová I, Hasek J. Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae. Curr Genet 2007; 52:87-95. [PMID: 17639399 DOI: 10.1007/s00294-007-0141-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/22/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
The ability to invade a solid substrate is an important phenomenon due to its connection with pathogenic activity of fungi. We report here on invasion displayed by MATalpha cells of Saccharomyces cerevisiae lacking Isw2p, a subunit of the ISW2 chromatin remodelling complex. We found that on minimal medium, where the isw2Delta MATalpha mutant is not invasive, additional absence of another ISW2 complex subunit, Dls1p or Dpb4p, promoted invasion. Our microarray data showed that derepression of MAT a-specific genes caused by absence of Isw2p is very low. Their expression is increased only by the autocrine activation of the mating pathway. Invasion of isw2Delta MATalpha cells thus resembles the pheromone-induced invasion, including dependence on Fig2p. We show here that another pheromone-induced protein, mating agglutinin Aga1p, can play a role in the agar adhesion necessary for invasion. In contrast with MAT a-cells invading agar under low alpha-pheromone concentration, the invasive growth of isw2Delta cells specifically requires Fus3 kinase. Its function in the invasion of isw2Delta MATalpha cells cannot be completely substituted by Kss1 kinase, which plays a basic role in invasive growth signalling. We suggest that partial dependence of the isw2Delta MATalpha invasion on Fus3p and Aga1p corresponds to a weaker pheromone response of this mutant.
Collapse
Affiliation(s)
- Ivana Frýdlová
- Institute of Microbiology of AS CR, v.v.i, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
20
|
Chen M, Hancock LC, Lopes JM. Transcriptional regulation of yeast phospholipid biosynthetic genes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:310-21. [PMID: 16854618 DOI: 10.1016/j.bbalip.2006.05.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 12/26/2022]
Abstract
The last several years have been witness to significant developments in understanding transcriptional regulation of the yeast phospholipid structural genes. The response of most phospholipid structural genes to inositol is now understood on a mechanistic level. The roles of specific activators and repressors are also well established. The knowledge of specific regulatory factors that bind the promoters of phospholipid structural genes serves as a foundation for understanding the role of chromatin modification complexes. Collectively, these findings present a complex picture for transcriptional regulation of the phospholipid biosynthetic genes. The INO1 gene is an ideal example of the complexity of transcriptional control and continues to serve as a model for studying transcription in general. Furthermore, transcription of the regulatory genes is also subject to complex and essential regulation. In addition, databases resulting from a plethora of genome-wide studies have identified regulatory signals that control one of the essential phospholipid biosynthetic genes, PIS1. These databases also provide significant clues for other regulatory signals that may affect phospholipid biosynthesis. Here, we have tried to present a complete summary of the transcription factors and mechanisms that regulate the phospholipid biosynthetic genes.
Collapse
Affiliation(s)
- Meng Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | |
Collapse
|
21
|
Abstract
The imitation switch (ISWI) family of chromatin remodelling ATPases is found in organisms ranging from yeast to mammals. ISWI ATPases assemble chromatin and slide and space nucleosomes, making the chromatin template fluid and allowing appropriate regulation of events such as transcription, DNA replication, recombination and repair. The site of action of the ATPases is determined, in part by the tissue type in which the enzyme is expressed and in part by the nature of the proteins associated with the enzyme. The ISWI complexes are generally conserved in composition and function across species. Roles in gene expression and DNA replication in heterochromatin, gene activation and repression in euchromatin, and functions related to maintaining chromosome architecture are associated with different complexes. Defects in ISWI-associated proteins may be associated with neurodegenerative disease, anencephaly, William's syndrome and melanotic tumours. Finally, the mechanism by which yeast Isw Ib influences gene transcription is discussed.
Collapse
Affiliation(s)
- J Mellor
- Department of Biochemistry, Oxford, UK.
| |
Collapse
|
22
|
Dasgupta A, Juedes SA, Sprouse RO, Auble DT. Mot1-mediated control of transcription complex assembly and activity. EMBO J 2005; 24:1717-29. [PMID: 15861138 PMCID: PMC1142579 DOI: 10.1038/sj.emboj.7600646] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 03/14/2005] [Indexed: 11/09/2022] Open
Abstract
Mot1 is an essential Snf2/Swi2-related ATPase and TATA-binding protein (TBP)-associated factor (TAF). In vitro, Mot1 utilizes ATP hydrolysis to disrupt TBP-DNA complexes, but the relationship of this activity to Mot1's in vivo function is unclear. Chromatin immunoprecipitation was used to determine how Mot1 affects the assembly of preinitiation complexes (PICs) at Mot1-controlled promoters in vivo. We find that the Mot1-repressed HSP26 and INO1 promoters are both regulated by TBP recruitment; inactivation of Mot1 leads to increased PIC formation coincident with derepression of transcription. For the Mot1-activated genes BNA1 and URA1, inactivation of Mot1 also leads, remarkably, to increased TBP binding to the promoters, despite the fact that transcription of these genes is obliterated in mot1 cells. In contrast, levels of Taf1, TFIIB, and RNA polymerase II are reduced at Mot1-activated promoters in mot1 cells. These results suggest that Mot1-mediated displacement of TBP underlies its mechanism of repression and activation at these genes. We suggest that at activated promoters, Mot1 disassembles transcriptionally inactive TBP, thereby facilitating the formation of a TBP complex that supports functional PIC assembly.
Collapse
Affiliation(s)
- Arindam Dasgupta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Sarah A Juedes
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - Rebekka O Sprouse
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, 1300 Jefferson Park Avenue, Room 6213, Charlottesville, VA 22908-0733, USA. Tel.: +1 434 243 2629; Fax: +1 434 924 5069; E-mail:
| |
Collapse
|
23
|
Brickner JH, Walter P. Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2004; 2:e342. [PMID: 15455074 PMCID: PMC519002 DOI: 10.1371/journal.pbio.0020342] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Accepted: 08/09/2004] [Indexed: 11/18/2022] Open
Abstract
The spatial arrangement of chromatin within the nucleus can affect reactions that occur on the DNA and is likely to be regulated. Here we show that activation of INO1 occurs at the nuclear membrane and requires the integral membrane protein Scs2. Scs2 antagonizes the action of the transcriptional repressor Opi1 under conditions that induce the unfolded protein response (UPR) and, in turn, activate INO1. Whereas repressed INO1 localizes throughout the nucleoplasm, the gene is recruited to the nuclear periphery upon transcriptional activation. Recruitment requires the transcriptional activator Hac1, which is produced upon induction of the UPR, and is constitutive in a strain lacking Opi1. Artificial recruitment of INO1 to the nuclear membrane permits activation in the absence of Scs2, indicating that the intranuclear localization of a gene can profoundly influence its mechanism of activation. Gene recruitment to the nuclear periphery, therefore, is a dynamic process and appears to play an important regulatory role. A study of the yeast gene INO1 indicates that the recruitment of the gene to the nuclear membrane appears to play an important part in its regulation
Collapse
Affiliation(s)
- Jason H Brickner
- Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA.
| | | |
Collapse
|
24
|
Dai Z, Mao X, Magnuson JK, Lasure LL. Identification of genes associated with morphology in Aspergillus niger by using suppression subtractive hybridization. Appl Environ Microbiol 2004; 70:2474-85. [PMID: 15066846 PMCID: PMC383145 DOI: 10.1128/aem.70.4.2474-2485.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The morphology of citric acid production strains of Aspergillus niger is sensitive to a variety of factors, including the concentration of manganese (Mn(2+)). Upon increasing the Mn(2+) concentration in A. niger (ATCC 11414) cultures to 14 ppb or higher, the morphology switches from pelleted to filamentous, accompanied by a rapid decline in citric acid production. The molecular mechanisms through which Mn(2+) exerts effects on morphology and citric acid production in A. niger cultures have not been well defined, but our use of suppression subtractive hybridization has identified 22 genes responsive to Mn(2+). Fifteen genes were differentially expressed when A. niger was grown in media containing 1,000 ppb of Mn(2+) (filamentous form), and seven genes were expressed in 10 ppb of Mn(2+) (pelleted form). Of the 15 filament-associated genes, seven are novel and eight share 47 to 100% identity with genes from other organisms. Five of the pellet-associated genes are novel, and the other two genes encode a pepsin-type protease and polyubiquitin. All 10 genes with deduced functions are either involved in amino acid metabolism-protein catabolism or cell regulatory processes. Northern blot analysis showed that the transcripts of all 22 genes were rapidly enhanced or suppressed by Mn(2+). Steady-state mRNA levels of six selected filament-associated genes remained high during 5 days of culture in a filamentous state and remained low under pelleted growth conditions. The opposite behavior was observed for four selected pellet-associated genes. The full-length cDNA of the filament-associated clone, Brsa-25, was isolated. Antisense expression of Brsa-25 permitted pelleted growth and increased citrate production at concentrations of Mn(2+) that were higher than the parent strain could tolerate. These results suggest the involvement of the newly isolated genes in the regulation of A. niger morphology.
Collapse
Affiliation(s)
- Ziyu Dai
- Chemical and Biological Processes Development Group, Process Science & Engineering Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
25
|
Trachtulcová P, Frýdlová I, Janatová I, Dorosh A, Hasek J. The W303 genetic background affects the isw2 delta mutant phenotype in Saccharomyces cerevisiae. Folia Microbiol (Praha) 2004; 48:745-53. [PMID: 15058186 DOI: 10.1007/bf02931508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We performed detailed phenotypic analysis of the isw2 delta strains of the W303 genetic background and compared its results with those obtained previously in BY-derived genetic background. Shmoolike morphology was observed in the isw2 delta strain of alpha-mating type of the BY strains, but not in its W303-derived counterpart. On the other hand, derepression of a-specific genes in the isw2 delta (MAT alpha) strain was observed in both genetic backgrounds, although to a different extent. Unlike in BY-derived strain hyperactivation of the Ras2/cAMP pathway reduced invasiveness of the isw2 delta strain (MAT alpha) of the W303 background. Sensitivity to Calcofluor White indicating a cell wall-integrity defect was significantly increased in the isw2 delta strains of the W303 background in contrast to BY-derived strains. Our data indicate that the effects of the isw2 deletion strongly depend on the background in which the deletion, is made.
Collapse
Affiliation(s)
- P Trachtulcová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia
| | | | | | | | | |
Collapse
|
26
|
McConnell AD, Gelbart ME, Tsukiyama T. Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo. Mol Cell Biol 2004; 24:2605-13. [PMID: 15024052 PMCID: PMC371119 DOI: 10.1128/mcb.24.7.2605-2613.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We report the identification of two new subunits of the Isw2 chromatin-remodeling complex in Saccharomyces cerevisiae. Both proteins, Dpb4p and Yjl065cp (named Dls1p), contain histone fold motifs and are homologous to the two smallest subunits of ISWI-containing CHRAC complexes in higher eukaryotes. Dpb4p is also a subunit of the DNA polymerase epsilon (polepsilon) complex, and Dls1p is homologous to another polepsilon subunit, Dpb3p. Therefore, these small histone fold proteins may fulfill functions that are required for both polepsilon and Isw2 complexes. We characterized the role of Dls1p in known roles of the Isw2 complex in vivo. Transcriptional analyses reveal that the Isw2 complex requires Dls1p to various degrees at a wide variety of loci in vivo. Consistent with this, Dls1p is required for Isw2-dependent chromatin remodeling in vivo, although the requirement for this protein varies among Isw2 targets. Dls1p is likely required for functions of the Isw2 complex at steps subsequent to its interaction with chromatin, since a dls1 mutation does not affect cross-linking of Isw2 with chromatin.
Collapse
Affiliation(s)
- Audrey D McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
27
|
Mellor J, Morillon A. ISWI complexes in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 1677:100-12. [PMID: 15020051 DOI: 10.1016/j.bbaexp.2003.10.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/23/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022]
Abstract
The imitation switch (ISWI) class of chromatin remodeling ATPase is ubiquitous in eukaryotes. It is becoming clear that these enzymes exist as part of larger complexes and the nature of the associated proteins dictate the function associated with a complex both in biochemical assays and in the cell. Much progress has been made in understanding these relationships in the budding yeast Saccharomyces cerevisiae, containing two ATPases, Isw1p and Isw2p. This has been aided by the ease of genetic manipulation, by a number of systematic screens designed to specifically detect ISWI function and by the plethora of data generated from a number of global screens for function. At present, many functions for yeast Isw1p and Isw2p are related to effects on RNA levels and are associated with the controlled repression of gene expression that crudely fall into three types: displacement of the basal transcription machinery to repress or silence transcription of genes (Isw2 complex and Isw1/Ioc3 complex); control of the activation of expression leading to coordination of transcription elongation; and efficient termination of transcription (Isw1/Ioc4/Ioc2 complex). The latter two functions are regulated by specific phosphorylation of residues within the carboxy terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII). Other functions may relate to the ability of ISWI complex to displace transcription factors or enzymes from the template. Other ISWI-containing complexes that have yet to be characterized indicate that much remains to be learnt about yeast ISWI itself and importantly, how the various forms cooperate with different classes of chromatin remodeling ATPase, complexes containing histone acetylases, deacetylases, methylases and both DNA and RNA polymerases.
Collapse
Affiliation(s)
- Jane Mellor
- Department of Biochemistry, Microbiology Unit, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | |
Collapse
|
28
|
Zhang Z, Reese JC. Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. EMBO J 2004; 23:2246-57. [PMID: 15116071 PMCID: PMC419907 DOI: 10.1038/sj.emboj.7600227] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 04/08/2004] [Indexed: 12/30/2022] Open
Abstract
The Imitation SWItch (ISWI) chromatin remodeling factors have been implicated in nucleosome positioning. In vitro, they can mobilize nucleosomes bi-directionally, making it difficult to envision how they can establish precise translational positioning of nucleosomes in vivo. It has been proposed that they require other cellular factors to do so, but none has been identified thus far. Here, we demonstrate that both ISW2 and TUP1 are required to position nucleosomes across the entire coding sequence of the DNA damage-inducible gene RNR3. The chromatin structure downstream of the URS is indistinguishable in Deltaisw2 and Deltatup1 mutants, and the crosslinking of Tup1 and Isw2 to RNR3 is independent of each other, indicating that both complexes are required to maintain repressive chromatin structure. Furthermore, Tup1 repressed RNR3 and blocked preinitiation complex formation in the Deltaisw2 mutant, even though nucleosome positioning was completely disrupted over the promoter and ORF. Our study has revealed a novel collaboration between two nucleosome-positioning activities in vivo, and suggests that disruption of nucleosome positioning is insufficient to cause a high level of transcription.
Collapse
Affiliation(s)
- Zhengjian Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 203 Althouse Laboratory, University Park, Pennsylvania, PA 16802, USA. Tel.: +1 814 865 1976; Fax: +1 814 863 7024; E-mail:
| |
Collapse
|
29
|
Iida T, Araki H. Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:217-27. [PMID: 14673157 PMCID: PMC303358 DOI: 10.1128/mcb.24.1.217-227.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relocation of euchromatic genes near the heterochromatin region often results in mosaic gene silencing. In Saccharomyces cerevisiae, cells with the genes inserted at telomeric heterochromatin-like regions show a phenotypic variegation known as the telomere-position effect, and the epigenetic states are stably passed on to following generations. Here we show that the epigenetic states of the telomere gene are not stably inherited in cells either bearing a mutation in a catalytic subunit (Pol2) of replicative DNA polymerase epsilon (Pol epsilon) or lacking one of the nonessential and histone fold motif-containing subunits of Pol epsilon, Dpb3 and Dpb4. We also report a novel and putative chromatin-remodeling complex, ISW2/yCHRAC, that contains Isw2, Itc1, Dpb3-like subunit (Dls1), and Dpb4. Using the single-cell method developed in this study, we demonstrate that without Pol epsilon and ISW2/yCHRAC, the epigenetic states of the telomere are frequently switched. Furthermore, we reveal that Pol epsilon and ISW2/yCHRAC function independently: Pol epsilon operates for the stable inheritance of a silent state, while ISW2/yCHRAC works for that of an expressed state. We therefore propose that inheritance of specific epigenetic states of a telomere requires at least two counteracting regulators.
Collapse
Affiliation(s)
- Tetsushi Iida
- Division of Microbial Genetics, National Institute of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
30
|
Lee K, Neigeborn L, Kaufman RJ. The unfolded protein response is required for haploid tolerance in yeast. J Biol Chem 2003; 278:11818-27. [PMID: 12560331 DOI: 10.1074/jbc.m210475200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HAC1 encodes a transcription factor that mediates the unfolded protein response (UPR) in Saccharomyces cerevisiae. We characterized hac1Delta mutants in the sporulation-proficient SK1 genetic background and found a novel function for HAC1 in haploid tolerance. hac1Delta spore clones contain a diploid DNA content as determined by fluorescence-activated cell sorting and genetic analyses. Autodiploidization of hac1 spore clones occurred after germination; hac1 spores were born haploid, but efficiently generated diploid progeny during the subsequent mitotic division. Once the hac1 mutant acquired a diploid DNA content, no further ploidy increase was observed. Interestingly, the increase in genome content following meiosis was not a general property associated with hac1 spore clones; instead, it was restricted to an inability to tolerate the haploid state. Genetic analyses involving the UPR target gene KAR2 and the UPR regulator IRE1 revealed that autodiploidization associated with hac1 mutants is a consequence of its role in the UPR pathway. Inhibition of the UPR pathway induces autodiploidization, and constitutive activation of UPR target genes suppresses this response.
Collapse
Affiliation(s)
- Kyungho Lee
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
31
|
Ruiz C, Escribano V, Morgado E, Molina M, Mazón MJ. Cell-type-dependent repression of yeast a-specific genes requires Itc1p, a subunit of the Isw2p-Itc1p chromatin remodelling complex. MICROBIOLOGY (READING, ENGLAND) 2003; 149:341-351. [PMID: 12624196 DOI: 10.1099/mic.0.25920-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Saccharomyces cerevisiae MATa haploid cells, the a-specific genes are expressed, whereas in the MATalpha haploid and MATa/alpha diploid cell types their transcription is repressed. It is shown in this report that Itc1p, a component of the ATP-dependent Isw2p-Itc1p chromatin remodelling complex, is required for the repression of a-specific genes. It has previously been reported that disruption of the ITC1 gene leads, in MATalpha cells, to an aberrant cell morphology resembling the polarized mating projection of cells responding to pheromone. The activation of the pheromone signalling pathway in itc1 mutants of both mating types was examined and found to be constitutively active in MATalpha itc1 but not in MATa itc1 cells. Furthermore, unlike the wild-type, MATalpha itc1 and MATa/alpha itc1/itc1 cells secrete a-factor and express significant levels of other a-specific genes. The results indicate that the inappropriate a-factor production in a MATalpha context, due to the derepression of the a-specific genes, produces an autocrine signalling loop that leads to the aberrant morphology displayed by MATalpha itc1 cells. It is suggested that the Isw2p-Itc1p complex contributes to maintain the repressive chromatin structure described for the asg operator present in the promoters of a-specific genes.
Collapse
Affiliation(s)
- Cristina Ruiz
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria Escribano
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Eulalia Morgado
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Mazón
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
32
|
Conde R, Pablo G, Cueva R, Larriba G. Screening for new yeast mutants affected in mannosylphosphorylation of cell wall mannoproteins. Yeast 2003; 20:1189-211. [PMID: 14587103 DOI: 10.1002/yea.1032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have carried out a screen of 622 deletion strains generated during the EUROFAN B0 project to identify non-essential genes related to the mannosylphosphate content of the cell wall. By examining the affinity of the deletants for the cationic dye alcian blue and the ion exchanger QAE-Sephadex, we have selected 50 strains. On the basis on their reactivity (blue colour intensity) in the alcian blue assay, mutants with a lower phosphate content than wild-type cells were then arranged in groups defined by previously characterized mutants, as follows: group I (mnn6), group II (between mnn6 and mnn9) and group III (mnn9). Similarly, strains that behaved like mnn1 (i.e. a blue colour deeper than wild-type) were included in group VI. To confirm the association between the phenotype and a specific mutation, strains were complemented with clones or subjected to tetrad analysis. Selected strains were further tested for extracellular invertase and exoglucanase. Within groups I, II and III, we found some genes known to be involved in oligosaccharide biosynthesis (ALG9, ALG12, HOC1), secretion (BRE5, COD4/COG5, VPS53), transcription (YOL072w/THP1, ELP2, STB1, SNF11), cell polarity (SEP7, RDG1), mitochondrial function (YFH1), cell metabolism, as well as orphan genes. Within group VI, we found genes involved in environmentally regulated transduction pathways (PAL2 and RIM20) as well as others with miscellaneous or unknown functions. We conclude that mannosylphosphorylation is severely impaired in some deletants deficient in specific glycosylation/secretion processes, but many other different pathways may also modulate the amount of mannosylphosphate in the cell wall.
Collapse
Affiliation(s)
- Raúl Conde
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
33
|
Miyashita M, Shugyo M, Nikawa JI. Mutational analysis and localization of the inositol transporters of Saccharomyces cerevisiae. J Biosci Bioeng 2003. [DOI: 10.1016/s1389-1723(03)80196-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Current awareness on yeast. Yeast 2002; 19:91-8. [PMID: 11754486 DOI: 10.1002/yea.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|