1
|
Ruzickova E, Lichvarova M, Osickova A, Filipi K, Jurnecka D, Khaliq H, Espinosa-Vinals C, Pompach P, Masin J, Osicka R. Two pairs of back-to-back α-helices of Kingella kingae RtxA toxin are crucial for the formation of a membrane pore. Int J Biol Macromol 2024; 283:137604. [PMID: 39542310 DOI: 10.1016/j.ijbiomac.2024.137604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The RtxA cytotoxin, a member of the RTX (Repeats in ToXin) family of pore-forming toxins, is the primary virulence factor of the paediatric facultative pathogen Kingella kingae. Although structure-function studies of RTX toxins have defined their characteristic domains and features, the exact membrane topology of RTX toxins remains unknown. Here, we used labelling of cell-bound RtxA with a membrane-impermeable, lysine-reactive reagent and subsequent detection of the labelled lysine residues by mass spectrometry, which revealed that most of the membrane-bound toxin is localised extracellularly. A trypsin protection assay with cell-bound RtxA demonstrated that five of seven transmembrane α-helices, predicted by various algorithms within the N-terminal half of the molecule, are irreversibly embedded in the membrane. Structure-function analysis showed that these α-helices, four of which are arranged as two pairs of back-to-back helices, are essential for the formation of an ion-conducting membrane pore. In contrast, the C-terminal half of RtxA is required for the interaction with the cell surface and for the irreversible insertion of the toxin into the membrane via acyl chains covalently linked to the molecule. These findings advance our understanding of the structure-function relationships of RtxA and enable us to propose a membrane topology model of the toxin.
Collapse
Affiliation(s)
- Eliska Ruzickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Lichvarova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Filipi
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Carlos Espinosa-Vinals
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Prague, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Lepesheva A, Grobarcikova M, Osickova A, Jurnecka D, Knoblochova S, Cizkova M, Osicka R, Sebo P, Masin J. Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184311. [PMID: 38570122 DOI: 10.1016/j.bbamem.2024.184311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The acylated pore-forming Repeats in ToXin (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to β2 integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the β2 integrins. We constructed a HlyA1-563/CyaA860-1706 chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.
Collapse
Affiliation(s)
- Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Michaela Grobarcikova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Cané L, Guzmán F, Balatti G, Daza Millone MA, Pucci Molineris M, Maté S, Martini MF, Herlax V. Biophysical Analysis to Assess the Interaction of CRAC and CARC Motif Peptides of Alpha Hemolysin of Escherichia coli with Membranes. Biochemistry 2023. [PMID: 37224476 DOI: 10.1021/acs.biochem.3c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Alpha hemolysin of Escherichia coli (HlyA) is a pore-forming protein, which is a prototype of the "Repeat in Toxins" (RTX) family. It was demonstrated that HlyA-cholesterol interaction facilitates the insertion of the toxin into membranes. Putative cholesterol-binding sites, called cholesterol recognition/amino acid consensus (CRAC), and CARC (analogous to CRAC but with the opposite orientation) were identified in the HlyA sequence. In this context, two peptides were synthesized, one derived from a CARC site from the insertion domain of the toxin (residues 341-353) (PEP 1) and the other one from a CRAC site from the domain between the acylated lysines (residues 639-644) (PEP 2), to study their role in the interaction of HlyA with membranes. The interaction of peptides with membranes of different lipid compositions (pure POPC and POPC/Cho of 4:1 and 2:1 molar ratios) was analyzed by surface plasmon resonance and molecular dynamics simulations. Results demonstrate that both peptides interact preferentially with Cho-containing membranes, although PEP 2 presents a lower KD than PEP 1. Molecular dynamics simulation results indicate that the insertion and interaction of PEP 2 with Cho-containing membranes are more prominent than those caused by PEP 1. The hemolytic activity of HlyA in the presence of peptides indicates that PEP 2 was the only one that inhibits HlyA activity, interfering in the binding between the toxin and cholesterol.
Collapse
Affiliation(s)
- Lucía Cané
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Galo Balatti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes. Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Roque Sáenz Peña 352, Bernal, Buenos Aires 1876, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA). Junín 956, Buenos Aires 1113, Argentina
| | - María Antonieta Daza Millone
- CCT-La Plata, CONICET. Universidad Nacional de La Plata, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Sucursal 4 Casilla de Correo 16, La Plata 1900, Argentina
| | - Melisa Pucci Molineris
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - Sabina Maté
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| | - M Florencia Martini
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA). Junín 956, Buenos Aires 1113, Argentina
- Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
| | - Vanesa Herlax
- CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), 60 y 120, La Plata 1900, Argentina
| |
Collapse
|
4
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
5
|
Lepesheva A, Osickova A, Holubova J, Jurnecka D, Knoblochova S, Espinosa-Vinals C, Bumba L, Skopova K, Fiser R, Osicka R, Sebo P, Masin J. Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins. Sci Rep 2021; 11:19814. [PMID: 34615931 PMCID: PMC8494930 DOI: 10.1038/s41598-021-99112-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022] Open
Abstract
Pore-forming repeats in toxins (RTX) are key virulence factors of many Gram-negative pathogens. We have recently shown that the aromatic side chain of the conserved tyrosine residue 940 within the acylated segment of the RTX adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) plays a key role in target cell membrane interaction of the toxin. Therefore, we used a truncated CyaA-derived RTX719 construct to analyze the impact of Y940 substitutions on functional folding of the acylated segment of CyaA. Size exclusion chromatography combined with CD spectroscopy revealed that replacement of the aromatic side chain of Y940 by the side chains of alanine or proline residues disrupted the calcium-dependent folding of RTX719 and led to self-aggregation of the otherwise soluble and monomeric protein. Intriguingly, corresponding alanine substitutions of the conserved Y642, Y643 and Y639 residues in the homologous RtxA, HlyA and ApxIA hemolysins from Kingella kingae, Escherichia coli and Actinobacillus pleuropneumoniae, affected the membrane insertion, pore-forming (hemolytic) and cytotoxic capacities of these toxins only marginally. Activities of these toxins were impaired only upon replacement of the conserved tyrosines by proline residues. It appears, hence, that the critical role of the aromatic side chain of the Y940 residue is highly specific for the functional folding of the acylated domain of CyaA and determines its capacity to penetrate target cell membrane.
Collapse
Affiliation(s)
- Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Skopova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
Sforzi J, Palagi L, Aime S. Liposome-Based Bioassays. BIOLOGY 2020; 9:E202. [PMID: 32752243 PMCID: PMC7466007 DOI: 10.3390/biology9080202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
This review highlights the potential of using liposomes in bioassays. Liposomes consist of nano- or micro-sized, synthetically constructed phospholipid vesicles. Liposomes can be loaded with a number of reporting molecules that allow a dramatic amplification of the detection threshold in bioassays. Liposome-based sensors bind or react with the biological components of targets through the introduction of properly tailored vectors anchored on their external surface. The use of liposome-based formulations allows the set-up of bioassays that are rapid, sensitive, and often suitable for in-field applications. Selected applications in the field of immunoassays, as well as recognition/assessment of corona proteins, nucleic acids, exosomes, bacteria, and viruses are surveyed. The role of magnetoliposomes is also highlighted as an additional tool in the armory of liposome-based systems for bioassays.
Collapse
|
7
|
Masin J, Osickova A, Jurnecka D, Klimova N, Khaliq H, Sebo P, Osicka R. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J Biol Chem 2020; 295:9349-9365. [PMID: 32393579 DOI: 10.1074/jbc.ra120.013630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLβ2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMβ2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400-710 of CyaA as an "AC translocon" sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.
Collapse
Affiliation(s)
- Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Nela Klimova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Humaira Khaliq
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Ostolaza H, González-Bullón D, Uribe KB, Martín C, Amuategi J, Fernandez-Martínez X. Membrane Permeabilization by Pore-Forming RTX Toxins: What Kind of Lesions Do These Toxins Form? Toxins (Basel) 2019; 11:toxins11060354. [PMID: 31216745 PMCID: PMC6628442 DOI: 10.3390/toxins11060354] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
Pore-forming toxins (PFTs) form nanoscale pores across target membranes causing cell death. The pore-forming cytolysins of the RTX (repeats in toxin) family belong to a steadily increasing family of proteins characterized by having in their primary sequences a number of glycine- and aspartate-rich nonapeptide repeats. They are secreted by a variety of Gram-negative bacteria and form ion-permeable pores in several cell types, such as immune cells, epithelial cells, or erythrocytes. Pore-formation by RTX-toxins leads to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. The pores formed in lipid bilayers by the RTX-toxins share some common properties such as cation selectivity and voltage-dependence. Hemolytic and cytolytic RTX-toxins are important virulence factors in the pathogenesis of the producing bacteria. And hence, understanding the function of these proteins at the molecular level is critical to elucidating their role in disease processes. In this review we summarize the current state of knowledge on pore-formation by RTX toxins, and include recent results from our own laboratory regarding the pore-forming activity of adenylate cyclase toxin (ACT or CyaA), a large protein toxin secreted by Bordetella pertussis, the bacterium causative of whooping cough.
Collapse
Affiliation(s)
- Helena Ostolaza
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - David González-Bullón
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - Cesar Martín
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - Jone Amuategi
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| | - Xabier Fernandez-Martínez
- Departamento de Bioquímica y Biología Molecular (UPV/EHU) and Instituto Biofisika (UPV/EHU, CSIC), Aptdo. 644, 48080 Bilbao, Spain.
| |
Collapse
|
9
|
Bulutoglu B, Banta S. Calcium-Dependent RTX Domains in the Development of Protein Hydrogels. Gels 2019; 5:E10. [PMID: 30823512 PMCID: PMC6473919 DOI: 10.3390/gels5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
The RTX domains found in some pathogenic proteins encode repetitive peptide sequences that reversibly bind calcium and fold into the unique the β-roll secondary structure. Several of these domains have been studied in isolation, yielding key insights into their structure/function relationships. These domains are increasingly being used in protein engineering applications, where the calcium-induced control over structure can be exploited to gain new functions. Here we review recent advances in the use of RTX domains in the creation of calcium responsive biomaterials.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
10
|
Söderström CM, Fagerberg SK, Brogaard MB, Leipziger J, Skals M, Praetorius HA. Loop Diuretics Diminish Hemolysis Induced by α-Hemolysin from Escherichia coli. J Membr Biol 2017; 250:301-313. [DOI: 10.1007/s00232-017-9963-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
11
|
Inhibition of P2X Receptors Protects Human Monocytes against Damage by Leukotoxin from Aggregatibacter actinomycetemcomitans and α-Hemolysin from Escherichia coli. Infect Immun 2016; 84:3114-3130. [PMID: 27528275 DOI: 10.1128/iai.00674-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/14/2023] Open
Abstract
α-Hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans are important virulence factors in ascending urinary tract infections and aggressive periodontitis, respectively. The extracellular signaling molecule ATP is released immediately after insertion of the toxins into plasma membranes and, via P2X receptors, is essential for the erythrocyte damage inflicted by these toxins. Moreover, ATP signaling is required for the ensuing recognition and phagocytosis of damaged erythrocytes by the monocytic cell line THP-1. Here, we investigate how these toxins affect THP-1 monocyte function. We demonstrate that both toxins trigger early ATP release and a following increase in the intracellular Ca2+ concentration ([Ca2+]i) in THP-1 monocytes. The HlyA- and LtxA-induced [Ca2+]i response is diminished by the P2 receptor antagonist in a pattern that fits the functional P2 receptor expression in these cells. Both toxins are capable of lysing THP-1 cells, with LtxA being more aggressive. Either desensitization or blockage of P2X1, P2X4, or P2X7 receptors markedly reduces toxin-induced cytolysis. This pattern is paralleled in freshly isolated human monocytes from healthy volunteers. Interestingly, only a minor fraction of the toxin-damaged THP-1 monocytes eventually lyse. P2X7 receptor inhibition generally prevents cell damage, except from a distinct cell shrinkage that prevails in response to the toxins. Moreover, we find that preexposure to HlyA preserves the capacity of THP-1 monocytes to phagocytose damaged erythrocytes and may induce readiness to discriminate between damaged and healthy erythrocytes. These findings suggest a new pharmacological target for protecting monocytes during exposure to pore-forming cytolysins during infection or injury.
Collapse
|
12
|
Peraro MD, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2015; 14:77-92. [DOI: 10.1038/nrmicro.2015.3] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:526-37. [PMID: 26523409 DOI: 10.1016/j.bbamem.2015.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022]
Abstract
The pore-forming cytolysins of the RTX-toxin (Repeats in ToXin) family are a relatively small fraction of a steadily increasing family of proteins that contain several functionally important glycine-rich and aspartate containing nonapeptide repeats. These cytolysins produced by a variety of Gram-negative bacteria form ion-permeable channels in erythrocytes and other eukaryotic cells. Hemolytic and cytolytic RTX-toxins represent pathogenicity factors of the toxin-producing bacteria and are very often important key factors in pathogenesis of the bacteria. Channel formation by RTX-toxins lead to the dissipation of ionic gradients and membrane potential across the cytoplasmic membrane of target cells, which results in cell death. Here we discuss channel formation and channel properties of some of the best known RTX-toxins, such as α-hemolysin (HlyA) of Escherichia coli and the uropathogenic EHEC strains, the adenylate cyclase toxin (ACT, CyaA) of Bordetella pertussis and the RTX-toxins (ApxI, ApxII and ApxIII) produced by different strains of Actinobacillus pleuropneumoniae. The channels formed by these RTX-toxins in lipid bilayers share some common properties such as cation selectivity and voltage-dependence. Furthermore the channels are transient and show frequent switching between different ion-conducting states. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
14
|
Benz R, Maier E, Bauer S, Ludwig A. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands. PLoS One 2014; 9:e112248. [PMID: 25463653 PMCID: PMC4251834 DOI: 10.1371/journal.pone.0112248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/08/2014] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli α-hemolysin (HlyA) is a pore-forming protein of 110 kDa belonging to the family of RTX toxins. A hydrophobic region between the amino acid residues 238 and 410 in the N-terminal half of HlyA has previously been suggested to form hydrophobic and/or amphipathic α-helices and has been shown to be important for hemolytic activity and pore formation in biological and artificial membranes. The structure of the HlyA transmembrane channel is, however, largely unknown. For further investigation of the channel structure, we deleted in HlyA different stretches of amino acids that could form amphipathic β-strands according to secondary structure predictions (residues 71–110, 158–167, 180–203, and 264–286). These deletions resulted in HlyA mutants with strongly reduced hemolytic activity. Lipid bilayer measurements demonstrated that HlyAΔ71–110 and HlyAΔ264–286 formed channels with much smaller single-channel conductance than wildtype HlyA, whereas their channel-forming activity was virtually as high as that of the wildtype toxin. HlyAΔ158–167 and HlyAΔ180–203 were unable to form defined channels in lipid bilayers. Calculations based on the single-channel data indicated that the channels generated by HlyAΔ71–110 and HlyAΔ264–286 had a smaller size (diameter about 1.4 to 1.8 nm) than wildtype HlyA channels (diameter about 2.0 to 2.6 nm), suggesting that in these mutants part of the channel-forming domain was removed. Osmotic protection experiments with erythrocytes confirmed that HlyA, HlyAΔ71–110, and HlyAΔ264–286 form defined transmembrane pores and suggested channel diameters that largely agreed with those estimated from the single-channel data. Taken together, these results suggest that the channel-forming domain of HlyA might contain β-strands, possibly in addition to α-helical structures.
Collapse
Affiliation(s)
- Roland Benz
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail:
| | - Elke Maier
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
| | - Susanne Bauer
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
| | - Albrecht Ludwig
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, Würzburg, Germany
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Thomas S, Smits SHJ, Schmitt L. A simple in vitro acylation assay based on optimized HlyA and HlyC purification. Anal Biochem 2014; 464:17-23. [PMID: 25016191 DOI: 10.1016/j.ab.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
Abstract
HlyA is a toxin secreted by uropathogenic Escherichia coli strains. HlyA belongs to the repeats in the toxin protein family and needs (i) a posttranslational, fatty acylation at two internal lysines by the acyltransferase HlyC and (ii) extracellular ion binding to achieve its active conformation. Both processes are not fully understood and experiments are often limited due to the low amounts of protein available. Here, we present an optimized purification protocol for the proteins involved in HlyA activation as well as a quick and nonradioactive assay for in vitro HlyA acylation. These may simplify future experiments, e.g., activity scanning and characterization of HlyA or HlyC mutants as demonstrated with single and double HlyA lysine mutants.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Thomas S, Bakkes PJ, Smits SHJ, Schmitt L. Equilibrium folding of pro-HlyA from Escherichia coli reveals a stable calcium ion dependent folding intermediate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1500-10. [PMID: 24865936 DOI: 10.1016/j.bbapap.2014.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/17/2022]
Abstract
HlyA from Escherichia coli is a member of the repeats in toxin (RTX) protein family, produced by a wide range of Gram-negative bacteria and secreted by a dedicated Type 1 Secretion System (T1SS). RTX proteins are thought to be secreted in an unfolded conformation and to fold upon secretion by Ca(2+) binding. However, the exact mechanism of secretion, ion binding and folding to the correct native state remains largely unknown. In this study we provide an easy protocol for high-level pro-HlyA purification from E. coli. Equilibrium folding studies, using intrinsic tryptophan fluorescence, revealed the well-known fact that Ca(2+) is essential for stability as well as correct folding of the whole protein. In the absence of Ca(2+), pro-HlyA adopts a non-native conformation. Such molecules could however be rescued by Ca(2+) addition, indicating that these are not dead-end species and that Ca(2+) drives pro-HlyA folding. More importantly, pro-HlyA unfolded via a two-state mechanism, whereas folding was a three-state process. The latter is indicative of the presence of a stable folding intermediate. Analysis of deletion and Trp mutants revealed that the first folding transition, at 6-7M urea, relates to Ca(2+) dependent structural changes at the extreme C-terminus of pro-HlyA, sensed exclusively by Trp914. Since all Trp residues of HlyA are located outside the RTX domain, our results demonstrate that Ca(2+) induced folding is not restricted to the RTX domain. Taken together, Ca(2+) binding to the pro-HlyA RTX domain is required to drive the folding of the entire protein to its native conformation.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Patrick J Bakkes
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
17
|
Sialic acid residues are essential for cell lysis mediated by leukotoxin from Aggregatibacter actinomycetemcomitans. Infect Immun 2014; 82:2219-28. [PMID: 24643533 DOI: 10.1128/iai.01647-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leukotoxin (LtxA) from Aggregatibacter actinomycetemcomitans is known to target and lyse β2-integrin-expressing cells such as polymorphonuclear leukocytes and macrophages. LtxA is an important virulence factor that facilitates chronic inflammation and is strongly associated with a fast-progressing form of periodontitis caused by the JP2 clone of the bacterium. Here, we show that sialic acid residues are important for LtxA-induced cell lysis, regardless of whether the cell express β2-integrin or not. Clearly, removal of sialic acid groups significantly reduces a β2-integrin-specific LtxA-induced lysis. Moreover, sialic acid presented on alternative proteins, such as, for instance, on erythrocytes that do not express β2-integrin, also makes the cells more sensitive to LtxA. The data also illustrate the importance of the negative charge in order for the sialic acid to associate LtxA with the membrane. Removal of sialic acid is in itself sufficient to significantly reduce the negative charge on the erythrocytes. Moreover, we found that on human erythrocytes there is a positive association between the sensitivity to LtxA and the amount of negative charge caused by sialic acid. Interestingly, these features are not shared by all RTX toxins, since α-hemolysin from Escherichia coli induced cell lysis of both β2-integrin-expressing and nonexpressing cells and this lysis is independent of the presence of sialic acid residues. In conclusion, LtxA not only is cytotoxic to β2-integrin-expressing cells but can potentially initiate cell lysis in all cells that present a sufficient density of sialic acid groups on their plasma membrane.
Collapse
|
18
|
Novel evidence for the specific interaction between cholesterol and α-haemolysin of Escherichia coli. Biochem J 2014; 458:481-9. [DOI: 10.1042/bj20131432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study shows, for the first time, the interaction of HlyA with cholesterol. This interaction seems to favour a conformational state of the protein that allows its correct insertion into the membrane and its further oligomerization to form pores.
Collapse
|
19
|
Acyl Transfer from Membrane Lipids to Peptides Is a Generic Process. J Mol Biol 2013; 425:4379-87. [DOI: 10.1016/j.jmb.2013.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/24/2013] [Accepted: 07/10/2013] [Indexed: 12/24/2022]
|
20
|
Thomas S, Holland IB, Schmitt L. The Type 1 secretion pathway - the hemolysin system and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1629-41. [PMID: 24129268 DOI: 10.1016/j.bbamcr.2013.09.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022]
Abstract
Type 1 secretion systems (T1SS) are wide-spread among Gram-negative bacteria. An important example is the secretion of the hemolytic toxin HlyA from uropathogenic strains. Secretion is achieved in a single step directly from the cytosol to the extracellular space. The translocation machinery is composed of three indispensable membrane proteins, two in the inner membrane, and the third in the outer membrane. The inner membrane proteins belong to the ABC transporter and membrane fusion protein families (MFPs), respectively, while the outer membrane component is a porin-like protein. Assembly of the three proteins is triggered by accumulation of the transport substrate (HlyA) in the cytoplasm, to form a continuous channel from the inner membrane, bridging the periplasm and finally to the exterior. Interestingly, the majority of substrates of T1SS contain all the information necessary for targeting the polypeptide to the translocation channel - a specific sequence at the extreme C-terminus. Here, we summarize our current knowledge of regulation, channel assembly, translocation of substrates, and in the case of the HlyA toxin, its interaction with host membranes. We try to provide a complete picture of structure function of the components of the translocation channel and their interaction with the substrate. Although we will place the emphasis on the paradigm of Type 1 secretion systems, the hemolysin A secretion machinery from E. coli, we also cover as completely as possible current knowledge of other examples of these fascinating translocation systems. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Sabrina Thomas
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr, 1, 40225 Düsseldorf, Germany
| | - I Barry Holland
- Institute of Genetics and Microbiology, CNRS UMR 8621, University Paris-Sud XI, Building 409, 91405 Orsay Cedex, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr, 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
21
|
Wiles TJ, Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives. Future Microbiol 2013; 8:73-84. [PMID: 23252494 DOI: 10.2217/fmb.12.131] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is often encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host-pathogen interactions have led to novel findings concerning the consequences of pore formation during host-pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation.
Collapse
Affiliation(s)
- Travis J Wiles
- Division of Microbiology & Immunology, Pathology Department, University of Utah, 15 North Medical Drive East #2100, Salt Lake City, UT 84112-0565, USA
| | | |
Collapse
|
22
|
Dickenson NE, Choudhari SP, Adam PR, Kramer RM, Joshi SB, Middaugh CR, Picking WL, Picking WD. Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon. Protein Sci 2013; 22:614-27. [PMID: 23456854 DOI: 10.1002/pro.2245] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/10/2013] [Accepted: 02/22/2013] [Indexed: 11/06/2022]
Abstract
The Shigella flexneri Type III secretion system (T3SS) senses contact with human intestinal cells and injects effector proteins that promote pathogen entry as the first step in causing life threatening bacillary dysentery (shigellosis). The Shigella Type III secretion apparatus (T3SA) consists of an anchoring basal body, an exposed needle, and a temporally assembled tip complex. Exposure to environmental small molecules recruits IpaB, the first hydrophobic translocator protein, to the maturing tip complex. IpaB then senses contact with a host cell membrane, forming the translocon pore through which effectors are delivered to the host cytoplasm. Within the bacterium, IpaB exists as a heterodimer with its chaperone IpgC; however, IpaB's structural state following secretion is unknown due to difficulties isolating stable protein. We have overcome this by coexpressing the IpaB/IpgC heterodimer and isolating IpaB by incubating the complex in mild detergents. Interestingly, preparation of IpaB with n-octyl-oligo-oxyethylene (OPOE) results in the assembly of discrete oligomers while purification in N,N-dimethyldodecylamine N-oxide (LDAO) maintains IpaB as a monomer. In this study, we demonstrate that IpaB tetramers penetrate phospholipid membranes to allow a size-dependent release of small molecules, suggesting the formation of discrete pores. Monomeric IpaB also interacts with liposomes but fails to disrupt them. From these and additional findings, we propose that IpaB can exist as a tetramer having inherent flexibility, which allows it to cooperatively interact with and insert into host cell membranes. This event may then lay the foundation for formation of the Shigella T3SS translocon pore.
Collapse
Affiliation(s)
- Nicholas E Dickenson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
P2X receptor-dependent erythrocyte damage by α-hemolysin from Escherichia coli triggers phagocytosis by THP-1 cells. Toxins (Basel) 2013; 5:472-87. [PMID: 23462688 PMCID: PMC3705273 DOI: 10.3390/toxins5030472] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/06/2013] [Accepted: 02/18/2013] [Indexed: 01/05/2023] Open
Abstract
The pore-forming exotoxin α-hemolysin from E.coli causes a significant volume reduction of human erythrocytes that precedes the ultimate swelling and lysis. This shrinkage results from activation of Ca2+-sensitive K+ (KCa3.1) and Cl− channels (TMEM16A) and reduced functions of either of these channels potentiate the HlyA-induced hemolysis. This means that Ca2+-dependent activation of KCa3.1 and TMEM16A protects the cells against early hemolysis. Simultaneous to the HlyA-induced shrinkage, the erythrocytes show increased exposure of phosphatidylserine (PS) in the outer plasma membrane leaflet, which is known to be a keen trigger for phagocytosis. We hypothesize that exposure to HlyA elicits removal of the damaged erythrocytes by phagocytic cells. Cultured THP-1 cells as a model for erythrocytal phagocytosis was verified by a variety of methods, including live cell imaging. We consistently found the HlyA to very potently trigger phagocytosis of erythrocytes by THP-1 cells. The HlyA-induced phagocytosis was prevented by inhibition of KCa3.1, which is known to reduce PS-exposure in human erythrocytes subjected to both ionomycin and HlyA. Moreover, we show that P2X receptor inhibition, which prevents the cell damages caused by HlyA, also reduced that HlyA-induced PS-exposure and phagocytosis. Based on these results, we propose that erythrocytes, damaged by HlyA-insertion, are effectively cleared from the blood stream. This mechanism will potentially reduce the risk of intravascular hemolysis.
Collapse
|
24
|
Aulik NA, Atapattu DN, Czuprynski CJ, McCaslin DR. Brief heat treatment causes a structural change and enhances cytotoxicity of theEscherichia coliα-hemolysin. Immunopharmacol Immunotoxicol 2012; 35:15-27. [DOI: 10.3109/08923973.2012.723009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Larsen CK, Skals M, Wang T, Cheema MU, Leipziger J, Praetorius HA. Python erythrocytes are resistant to α-hemolysin from Escherichia coli. J Membr Biol 2011; 244:131-40. [PMID: 22064954 DOI: 10.1007/s00232-011-9406-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/20/2011] [Indexed: 11/28/2022]
Abstract
α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.
Collapse
Affiliation(s)
- Casper K Larsen
- Department of Biomedicine, Aarhus University, Ole Worms Alle 4, Build 1160, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Skals M, Leipziger J, Praetorius HA. Haemolysis induced by α-toxin from Staphylococcus aureus requires P2X receptor activation. Pflugers Arch 2011; 462:669-79. [PMID: 21847558 DOI: 10.1007/s00424-011-1010-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 11/26/2022]
Abstract
Recently, it was documented that α-haemolysin (HlyA) from Escherichia coli uses erythrocyte P2 receptors cause lysis. This finding was surprising as it appeared firmly established that HlyA-dependent pore formation per se is sufficient for full cell lysis. We discovered that HlyA induced a sequential process of shrinkage and swelling and that the final haemolysis is completely prevented by blockers of P2X receptors and pannexin channels. This finding has potential clinical relevance as it may offer specific pharmacological interference to ameliorate haemolysis inflicted by pore-forming bacterial toxins. In this context, it is essential to know whether this is specific to HlyA-induced cell damage or if other bacterial pore-forming toxins involve purinergic signals to orchestrate haemolysis. Here, we investigate if the haemolysis produced by α-toxin from Staphylococcus aureus involves P2 receptor activation. We observed that α-toxin-induced haemolysis is completely blocked by the unselective P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid. Moreover, several selective blockers of P2X(1) and P2X(7) ionotropic receptors abolished haemolysis in murine and equine erythrocytes. Inhibitors of pannexin channels partially reduced the α-toxin induced lysis. Thus, we conclude that α-toxin, similar to HlyA from E. coli produces cell damage by specific activation of a purinergic signalling cascade. These data indicate that pore-forming toxins in general require purinergic signalling to elicit their toxicity.
Collapse
Affiliation(s)
- Marianne Skals
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, build. 1160, 8000, Aarhus C, Denmark
| | | | | |
Collapse
|
27
|
Assumpção TCF, Charneau S, Santiago PBM, Francischetti IMB, Meng Z, Araújo CN, Pham VM, Queiroz RML, de Castro CN, Ricart CA, Santana JM, Ribeiro JMC. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res 2011; 10:669-79. [PMID: 21058630 PMCID: PMC3035102 DOI: 10.1021/pr100866h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipetalogaster maxima is a blood-sucking Hemiptera that inhabits sylvatic areas in Mexico. It usually takes its blood meal from lizards, but following human population growth, it invaded suburban areas, feeding also on humans and domestic animals. Hematophagous insect salivary glands produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. To obtain further insight into the salivary biochemical and pharmacologic complexity of this insect, a cDNA library from its salivary glands was randomly sequenced. Salivary proteins were also submitted to one- and two-dimensional gel electrophoresis (1DE and 2DE) followed by mass spectrometry analysis. We present the analysis of a set of 2728 cDNA sequences, 1375 of which coded for proteins of a putative secretory nature. The saliva 2DE proteome displayed approximately 150 spots. The mass spectrometry analysis revealed mainly lipocalins, pallidipins, antigen 5-like proteins, and apyrases. The redundancy of sequence identification of saliva-secreted proteins suggests that proteins are present in multiple isoforms or derive from gene duplications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jaime M. Santana
- To whom correspondence should be addressed. J.M.C.R. Phone: 301.496.9389. Fax: 301.480.2571. ; J.M.S. Phone: 61 31073055. Fax: 61 31072904.
| | - José M. C. Ribeiro
- To whom correspondence should be addressed. J.M.C.R. Phone: 301.496.9389. Fax: 301.480.2571. ; J.M.S. Phone: 61 31073055. Fax: 61 31072904.
| |
Collapse
|
28
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jumpertz T, Chervaux C, Racher K, Zouhair M, Blight MA, Holland IB, Schmitt L. Mutations affecting the extreme C terminus of Escherichia coli haemolysin A reduce haemolytic activity by altering the folding of the toxin. Microbiology (Reading) 2010; 156:2495-2505. [DOI: 10.1099/mic.0.038562-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli haemolysin A (HlyA), an RTX toxin, is secreted probably as an unfolded intermediate, by the type I (ABC transporter-dependent) pathway, utilizing a C-terminal secretion signal. However, the mechanism of translocation and post-translocation folding is not understood. We identified a mutation (hlyA99) at the extreme C terminus, which is dominant in competition experiments, blocking secretion of the wild-type toxin co-expressed in the same cell. This suggests that unlike recessive mutations which affect recognition of the translocation machinery, the hlyA99 mutation interferes with some later step in secretion. Indeed, the mutation reduced haemolytic activity of the toxin and the activity of β-lactamase when the latter was fused to a C-terminal 23 kDa fragment of HlyA carrying the hlyA99 mutation. A second mutant (hlyAdel6), lacking the six C-terminal residues of HlyA, also showed reduced haemolytic activity and neither mutant protein regained normal haemolytic activity in in vitro unfolding/refolding experiments. Tryptophan fluorescence spectroscopy indicated differences in structure between the secreted forms of wild-type HlyA and the HlyA Del6 mutant. These results suggested that the mutations affected the correct folding of both HlyA and the β-lactamase fusion. Thus, we propose a dual function for the HlyA C terminus involving an important role in post-translocation folding as well as targeting HlyA for secretion.
Collapse
Affiliation(s)
- Thorsten Jumpertz
- Institute of Biochemistry, Heinrich Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | | | - Kathleen Racher
- Water Resources, Indian and Northern Affairs (INAC-AINC), Canada
| | - Maria Zouhair
- Institut de Génetique et Microbiologie, URA 1354, Université Paris Sud, Bâtiment 409, 91405 Orsay Cedex, France
| | - Mark A. Blight
- Institut de Génetique et Microbiologie, URA 1354, Université Paris Sud, Bâtiment 409, 91405 Orsay Cedex, France
| | - I. Barry Holland
- Institut de Génetique et Microbiologie, URA 1354, Université Paris Sud, Bâtiment 409, 91405 Orsay Cedex, France
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| |
Collapse
|
30
|
Herlax V, Maté S, Rimoldi O, Bakás L. Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J Biol Chem 2009; 284:25199-210. [PMID: 19596862 DOI: 10.1074/jbc.m109.009365] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
alpha-Hemolysin (HlyA) is an exotoxin secreted by some pathogenic strains of Escherichia coli that causes lysis of several mammalian cells, including erythrocytes of different species. HlyA is synthesized as a protoxin, pro-HlyA, which is activated by acylation at two internal lysines Lys-563 and Lys-689. It has been proposed that pore formation is the mechanism of cytolytic activity for this toxin, as shown in experiments with whole cells, planar lipid membranes, and liposomes, but these experiments have yielded conflicting results about the structure of the pore. In this study, HlyA cysteine replacement mutant proteins of amino acids have been labeled with Alexa-488 and Alexa-546. Fluorescence resonance energy transfer measurements, employing labeled toxin bound to sheep ghost erythrocytes, have demonstrated that HlyA oligomerizes on erythrocyte membranes. As the cytotoxic activity is absolutely dependent on acylation, we have studied the role of acylation in the oligomerization, demonstrating that fatty acids are essential in this process. On the other hand, fluorescence resonance energy transfer and the hemolytic activity decrease when the erythrocyte ghosts are cholesterol-depleted, hence indicating the role of membrane microdomains in the clustering of HlyA. Simultaneously, HlyA was found in detergent-resistant membranes. Pro-HlyA has also been found in detergent-resistant membranes, thus demonstrating that the importance of acyl chains in toxin oligomerization is the promotion of protein-protein interaction. These results change the concept of the main role assigned to acyl chain in the targeting of proteins to membrane microdomains.
Collapse
Affiliation(s)
- Vanesa Herlax
- Instituto de Investigaciones Bioquímicas La Plata, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, 1900 La Plata, Argentina.
| | | | | | | |
Collapse
|
31
|
Valeva A, Siegel I, Wylenzek M, Wassenaar TM, Weis S, Heinz N, Schmitt R, Fischer C, Reinartz R, Bhakdi S, Walev I. Putative identification of an amphipathic alpha-helical sequence in hemolysin of Escherichia coli (HlyA) involved in transmembrane pore formation. Biol Chem 2008; 389:1201-7. [PMID: 18713007 DOI: 10.1515/bc.2008.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Escherichia coli hemolysin is a pore-forming protein belonging to the RTX toxin family. Cysteine scanning mutagenesis was performed to characterize the putative pore-forming domain of the molecule. A single cysteine residue was introduced at 48 positions within the sequence spanning residues 170-400 and labeled with the polarity-sensitive dye badan. Spectrofluorimetric analyses indicated that several amino acids in this domain are inserted into the lipid bilayer during pore formation. An amphipathic alpha-helix spanning residues 272-298 was identified that may line the aqueous pore. The importance of this sequence was highlighted by the introduction of two prolines at positions 284 and 287. Disruption of the helix structure did not affect binding properties, but totally abolished the hemolytic activity of the molecule.
Collapse
Affiliation(s)
- Angela Valeva
- Institute of Medical Microbiology and Hygiene, University of Mainz, D-55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Assumpção TCF, Francischetti IMB, Andersen JF, Schwarz A, Santana JM, Ribeiro JMC. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:213-32. [PMID: 18207082 PMCID: PMC2262853 DOI: 10.1016/j.ibmb.2007.11.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 05/09/2023]
Abstract
Triatoma infestans is a hemiptera, vector of Chagas' disease that feeds exclusively on vertebrate blood in all life stages. Hematophagous insects' salivary glands (SG) produce potent pharmacological compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. To obtain a further insight into the salivary biochemical and pharmacological complexity of this insect, a cDNA library from its SG was randomly sequenced. Also, salivary proteins were submitted to two-dimensional gel (2D-gel) electrophoresis followed by MS analysis. We present the analysis of a set of 1534 (SG) cDNA sequences, 645 of which coded for proteins of a putative secretory nature. Most salivary proteins described as lipocalins matched peptide sequences obtained from proteomic results.
Collapse
Affiliation(s)
- Teresa C F Assumpção
- Laboratory of Host-Parasite Interface, University of Brasília, Brasília-DF 70.910-900, Brazil.
| | | | | | | | | | | |
Collapse
|
33
|
Sánchez-Magraner L, Viguera AR, García-Pacios M, Garcillán MP, Arrondo JLR, de la Cruz F, Goñi FM, Ostolaza H. The Calcium-binding C-terminal Domain of Escherichia coli α-Hemolysin Is a Major Determinant in the Surface-active Properties of the Protein. J Biol Chem 2007; 282:11827-35. [PMID: 17324923 DOI: 10.1074/jbc.m700547200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Hemolysin (HlyA) from Escherichia coli is a protein toxin (1024 amino acids) that targets eukaryotic cell membranes, causing loss of the permeability barrier. HlyA consists of two main regions, an N-terminal domain rich in amphipathic helices, and a C-terminal Ca(2+)-binding domain containing a Gly- and Asp-rich nonapeptide repeated in tandem 11-17 times. The latter is called the RTX domain and gives its name to the RTX protein family. It had been commonly assumed that membrane interaction occurred mainly if not exclusively through the amphipathic helix domain. However, we have cloned and expressed the C-terminal region of HlyA, containing the RTX domain plus a few stabilizing sequences, and found that it is a potent surface-active molecule. The isolated domain binds Ca(2+) with about the same affinity (apparent K(0.5) approximately 150 microM) as the parent protein HlyA, and Ca(2+) binding induces in turn a more compact folding with an increased proportion of beta-sheet structure. Both with and without Ca(2+) the C-terminal region of HlyA can interact with lipid monolayers spread at an air-water interface. However, the C-terminal domain by itself is devoid of membrane lytic properties. The present results can be interpreted in the light of our previous studies that involved in receptor binding a peptide in the C-terminal region of HlyA. We had also shown experimentally the distinction between reversible membrane adsorption and irreversible lytic insertion of the toxin. In this context, the present data allow us to propose that both major domains of HlyA are directly involved in membrane-toxin interaction, the nonapeptide repeat, calcium-binding RTX domain being responsible for the early stages of HlyA docking to the target membrane.
Collapse
Affiliation(s)
- Lissete Sánchez-Magraner
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Koschinski A, Repp H, Unver B, Dreyer F, Brockmeier D, Valeva A, Bhakdi S, Walev I. Why Escherichia coli alpha-hemolysin induces calcium oscillations in mammalian cells--the pore is on its own. FASEB J 2006; 20:973-5. [PMID: 16597673 DOI: 10.1096/fj.05-4561fje] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli alpha-hemolysin (HlyA), archetype of a bacterial pore-forming toxin, has been reported to deregulate physiological Ca2+ channels, thus inducing periodic low-frequency Ca2+ oscillations that trigger transcriptional processes in mammalian cells. The present study was undertaken to delineate the mechanisms underlying the Ca2+ oscillations. Patch-clamp experiments were combined with single cell measurements of intracellular Ca2+ and with flowcytometric analyses. Application of HlyA at subcytocidal concentrations provoked Ca2+ oscillations in human renal and endothelial cells. However, contrary to the previous report, the phenomenon could not be inhibited by the Ca2+ channel blocker nifedipine and Ca2+ oscillations showed no constant periodicity at all. Ca2+ oscillations were dependent on the pore-forming activity of HlyA: application of a nonhemolytic but bindable toxin had no effect. Washout experiments revealed that Ca2+ oscillations could not be maintained in the absence of toxin in the medium. Analogously, propidium iodide flux into cells occurred in the presence of HlyA, but cells rapidly became impermeable toward the dye after toxin washout, indicating resealing or removal of the membrane lesions. Finally, patch-clamp experiments revealed temporal congruence between pore formation and Ca2+ influx. We conclude that the nonperiodic Ca2+ oscillations induced by HlyA are not due to deregulation of physiological Ca2+ channels but derive from pulsed influxes of Ca2+ as a consequence of formation and rapid closure of HlyA pores in mammalian cell membranes.
Collapse
Affiliation(s)
- Andreas Koschinski
- Frankfurter Str. 107, Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sánchez-Magraner L, Cortajarena AL, Goñi FM, Ostolaza H. Membrane Insertion of Escherichia coli α-Hemolysin Is Independent from Membrane Lysis. J Biol Chem 2006; 281:5461-7. [PMID: 16377616 DOI: 10.1074/jbc.m512897200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli alpha-hemolysin (HlyA) is a protein exotoxin that binds and lyses eukaryotic cell and model membranes in the presence of calcium. Previous studies have been able to distinguish between reversible toxin binding to the membrane and irreversible insertion into the lipid matrix. Membrane lysis occurs as the combined effect of protein insertion plus a transient perturbation of the membrane bilayer structure. In the past, insertion and bilayer perturbation have not been experimentally dissected. This has now been achieved by studying HlyA penetration into lipid monolayers at the air-water interface, in which three-dimensional effects (of the kind required to break down the bilayer permeability barrier) cannot occur. The study of native HlyA, together with the nonlytic precursor pro-HlyA, and of different mutants demonstrates that although some nonlytic variants (e.g. pro-HlyA) exhibit very low levels of insertion, others (e.g. the nonlytic mutant HlyA H859N) insert even more strongly than the lytic wild type. These results show that insertion does not necessarily lead to membrane lysis, i.e. that insertion and lysis are not "coupled" phenomena. Millimolar levels of Ca(2+), which are essential for the lytic activity, cause an extra degree of insertion but only in the case of the lytic forms of HlyA.
Collapse
Affiliation(s)
- Lissete Sánchez-Magraner
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas, Universidad del País Vasco/Euskal Herriko Unibertsitatea), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
36
|
Hazlett KRO, Cox DL, Decaffmeyer M, Bennett MP, Desrosiers DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, Radolf JD. TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol 2005; 187:6499-508. [PMID: 16159783 PMCID: PMC1236642 DOI: 10.1128/jb.187.18.6499-6508.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Treponema pallidum, the non-cultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning beta-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive beta-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic alpha-helices. Insertion of the recombinant, non-lipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.
Collapse
Affiliation(s)
- Karsten R O Hazlett
- Center for Microbial Pathogenesis, University of Connecticut Health Center, 263 Farmington Ave., Farmington, Connecticut 06030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Valeva A, Walev I, Kemmer H, Weis S, Siegel I, Boukhallouk F, Wassenaar TM, Chavakis T, Bhakdi S. Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J Biol Chem 2005; 280:36657-63. [PMID: 16131494 DOI: 10.1074/jbc.m507690200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of a single cysteine substitution mutant, S177C, allowed Escherichia coli hemolysin (HlyA) to be radioactively labeled with tritiated N-ethylmaleimide without affecting biological activity. It thus became possible to study the binding characteristics of HlyA as well as of toxin mutants in which one or both acylation sites were deleted. All toxins bound to erythrocytes and granulocytes in a nonsaturable manner. Only wild-type toxin and the lytic monoacylated mutant stimulated production of superoxide anions in granulocytes. An oxidative burst coincided with elevation of intracellular Ca(2+), which was likely because of passive influx of Ca(2+) through the toxin pores. Competition experiments showed that binding to the cells was receptor-independent, and preloading of cells with a nonlytic HlyA mutant did not abrogate the respiratory burst provoked by a subsequent application of wild-type HlyA. In contrast to a previous report, expression or activation of the beta(2) integrin lymphocyte function-associated antigen-1 did not affect binding of HlyA. We conclude that HlyA binds nonspecifically to target cells and a receptor is involved neither in causing hemolysis nor in triggering cellular reactions.
Collapse
Affiliation(s)
- Angela Valeva
- Institute of Medical Microbiology and Hygiene, University of Mainz, D-55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rossi C, Homand J, Bauche C, Hamdi H, Ladant D, Chopineau J. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes. Biochemistry 2004; 42:15273-83. [PMID: 14690437 DOI: 10.1021/bi035336a] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, two different types of supported biomimetic membranes were designed to study the membrane binding properties of two different proteins that both interact with cellular membranes in a calcium-dependent manner. The first one, neurocalcin, is a member of a subfamilly of EF-hand calcium-binding proteins that exhibit a calcium-myristoyl switch. The second protein is a bacterial toxin, the adenylate cyclase produced by Bordetella pertussis, the causative agent of whooping cough. The biomimetic membranes constructed in this study were either hybrid bilayer membranes or polymer-tethered membranes. Hemimembrane formation was obtained in two steps: a monolayer of 1-octadecanethiol or octadecyltrichlorosilane was self-assembled on top of the gold or glass surface, respectively, and then the egg-phosphatidyl choline (PC) vesicle fused on the hydrophobic alkyl layer. Polymer-tethered membranes on solid support were obtained using N-hydroxysuccinimide (NHS)-terminated-poly(ethyleneglycol) (PEG)-phospholipids as anchoring molecules. Egg-PC/1,2-distearoyl-sn-glycero-3-phospho-ethanolamine-poly(ethyleneglycol)-N-hydroxy-succinimide (DSPE-PEG-NHS) mixture liposomes were injected on the top of an amine grafted surface (cysteamine-coated gold or silanized glass); vesicles were linked to the surface and disrupted, leading to the formation of a bilayer. The biomimetic membrane constructions were followed by surface plasmon spectroscopy, while membrane fluidity and continuity were observed by fluorescence microscopy. Protein/membrane binding properties were determined by resonance surface plasmon measurements. The tethered bilayer, designed here, is very versatile as it can be adapted easily to different types of support. The results demonstrate the potentialities of such polymer-tethered artificial membranes for the study of proteins that insert into biological membranes such as toxins and/or integral membrane proteins.
Collapse
Affiliation(s)
- Claire Rossi
- UMR 6022 CNRS Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Mašín J, Konopásek I, Svobodová J, Šebo P. Different structural requirements for adenylate cyclase toxin interactions with erythrocyte and liposome membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004. [DOI: 10.1016/j.bbamem.2003.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Yadav SP, Kundu B, Ghosh JK. Identification and Characterization of an Amphipathic Leucine Zipper-like Motif in Escherichia coli Toxin Hemolysin E. J Biol Chem 2003; 278:51023-34. [PMID: 14525984 DOI: 10.1074/jbc.m310052200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemolysin E (HlyE) is a 34 kDa protein toxin, recently isolated from a pathogenic strain of Escherichia coli, which is believed to exert its toxic activity via formation of pores in the target cell membrane. With the goal of understanding the involvement of different segments of hemolysin E in the membrane interaction and assembly of the toxin, a conserved, amphipathic leucine zipper-like motif has been identified. In order to evaluate the possible structural and functional roles of this segment in HlyE, a 30-residue peptide (H-205) corresponding to the leucine zipper motif (amino acid 205-234) and two mutant peptides of the same size were synthesized and labeled by fluorescent probes at their N termini. The results show that the wild-type H-205 binds to both zwitterionic (PC/Chol) and negatively charged (PC/PG/Chol) phospholipid vesicles and also self-assemble therein. Detailed membrane-binding experiments revealed that this synthetic motif (H-205) formed large aggregates and inserted into the bilayer of only negatively charged lipid vesicles but not of zwitterionic membrane. Although both the mutants bound to zwitterionic and negatively charged lipid vesicles, neither of them inserted into the lipid bilayers nor assembled in any of these lipid vesicles. Furthermore, H-205 adopted a significant helical structure in membrane mimetic environments and induced the permeation of monovalent ions and release of entrapped calcein across the phospholipid vesicles more efficiently than the mutant peptides. The results presented here indicate that this H-205 (amino acid 205-234) segment may be an important structural element in hemolysin E, which could play a significant role in the binding and assembly of the toxin in the target cell membrane and its destabilization.
Collapse
Affiliation(s)
- Sharada Prasad Yadav
- Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
41
|
Cortajarena AL, Goni FM, Ostolaza H. A receptor-binding region in Escherichia coli alpha-haemolysin. J Biol Chem 2003; 278:19159-63. [PMID: 12582172 DOI: 10.1074/jbc.m208552200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli alpha-hemolysin (HlyA) is a 107-kDa protein toxin with a wide range of mammalian target cells. Previous work has shown that glycophorin is a specific receptor for HlyA in red blood cells (Cortajarena, A. L., Goñi, F. M., and Ostolaza, H. (2001) J. Biol. Chem. 276, 12513-12519). The present study was aimed at identifying the glycophorin-binding region in the toxin. Data in the literature pointed to a short amino acid sequence near the C terminus as a putative receptor-binding domain. Previous sequence analyses of several homologous toxins that belong, like HlyA, to the so-called RTX toxin family revealed a conserved region that corresponded to residues 914-936 of HlyA. We therefore prepared a deletion mutant lacking these residues (HlyA Delta 914-936) and found that its hemolytic activity was decreased by 10,000-fold with respect to the wild type. This deletion mutant was virtually unable to bind human and horse red blood cells or to bind pure glycophorin in an affinity column. The peptide Trp914-Arg936 had no lytic activity of its own, but it could bind glycophorin reconstituted in lipid vesicles. Moreover, the peptide Trp914-Arg936 protected red blood cells from hemolysis induced by wild type HlyA. It was concluded that amino acid residues 914-936 constitute a major receptor-binding region in alpha-hemolysin.
Collapse
Affiliation(s)
- Aitziber L Cortajarena
- Unidad de Biofísica, Consejo Superior de Investigaciones Científicas-Euskal Herriko Unibertsitatea and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | |
Collapse
|
42
|
Herlax V, Bakás L. Acyl chains are responsible for the irreversibility in the Escherichia coli alpha-hemolysin binding to membranes. Chem Phys Lipids 2003; 122:185-90. [PMID: 12598051 DOI: 10.1016/s0009-3084(02)00191-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hemolysin (HlyA) is an extracellular protein secreted by uropathogenic strains of Escherichia coli. The mature HlyA is able to bind to mammalian target cell membranes including those of the immune system, causing lysis. The lytic activity is absolutely dependent upon the Hlyc-dependent acylation of Prohemolysin. In this paper we show, through Trp fluorescence studies and denaturation in Guanidine hydrochloride, that the acylation is responsible for the loose conformation of the active protein, necessary to transform it from soluble to membrane-bound form. Previous studies showed that toxin binding to the bilayers occurs in, at least two ways, a reversible adsorption and irreversible insertion. We demonstrated that the irreversibility is due to the acyl chains in the HlyA, as shown by the protein transfer from multilamellar liposomes composed of palmitoyl-oleoyl-phosphatidylcholine (POPC) to large unilamellar vesicles containing POPC-doxyl as protein fluorescence quencher.
Collapse
Affiliation(s)
- V Herlax
- Instituto de Investigaciones Bioquímicas La Plata (INIBIOLP) Facultad de Ciencias Médícas, 60 y 120, (1900), La Plata, Argentina
| | | |
Collapse
|