1
|
Singh V, Harinarayanan R. (p)ppGpp Buffers Cell Division When Membrane Fluidity Decreases in Escherichia coli. Mol Microbiol 2024; 122:847-865. [PMID: 39461000 DOI: 10.1111/mmi.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
Fluidity is an inherent property of biological membranes and its maintenance (homeoviscous adaptation) is important for optimal functioning of membrane-associated processes. The fluidity of bacterial cytoplasmic membrane increases with temperature or an increase in the proportion of unsaturated fatty acids and vice versa. We found that strains deficient in the synthesis of guanine nucleotide analogs (p)ppGpp and lacking FadR, a transcription factor involved in fatty acid metabolism exhibited a growth defect that was rescued by an increase in growth temperature or unsaturated fatty acid content. The strain lacking (p)ppGpp was sensitive to genetic or chemical perturbations that decrease the proportion of unsaturated fatty acids over saturated fatty acids. Microscopy showed that the growth defect was associated with cell filamentation and lysis and rescued by combined expression of cell division genes ftsQ, ftsA, and ftsZ from plasmid or the gain-of-function ftsA* allele but not over-expression of ftsN. The results implicate (p)ppGpp in positive regulation of cell division during membrane fluidity loss through enhancement of FtsZ proto-ring stability. To our knowledge, this is the first report of a (p)ppGpp-mediated regulation needed for adaptation to membrane fluidity loss in bacteria.
Collapse
Affiliation(s)
- Vani Singh
- Center for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
2
|
Trouillon J, Doubleday PF, Sauer U. Genomic footprinting uncovers global transcription factor responses to amino acids in Escherichia coli. Cell Syst 2023; 14:860-871.e4. [PMID: 37820729 DOI: 10.1016/j.cels.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Our knowledge of transcriptional responses to changes in nutrient availability comes primarily from few well-studied transcription factors (TFs), often lacking an unbiased genome-wide perspective. Leveraging recent advances allowing bacterial genomic footprinting, we comprehensively mapped the genome-wide regulatory responses of Escherichia coli to exogenous leucine, methionine, alanine, and lysine. The global TF Lrp was found to individually sense three amino acids and mount three different target gene responses. Overall, 531 genes had altered RNA polymerase occupancy, and 32 TFs responded directly or indirectly to the presence of amino acids, including regulators of membrane and osmotic pressure homeostasis. About 70% of the detected TF-DNA interactions had not been reported before. We thus identified 682 previously unknown TF-binding locations, for a subset of which the involved TFs were identified by affinity purification. This comprehensive map of amino acid regulation illustrates the incompleteness of the known transcriptional regulation network, even in E. coli.
Collapse
Affiliation(s)
- Julian Trouillon
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter F Doubleday
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Maniyeri A, Wieczorek A, Ayyolath A, Sugalska W, Klein G, Raina S. Suppressors of lapC Mutation Identify New Regulators of LpxC, Which Mediates the First Committed Step in Lipopolysaccharide Biosynthesis. Int J Mol Sci 2023; 24:15174. [PMID: 37894855 PMCID: PMC10607373 DOI: 10.3390/ijms242015174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Gram-negative bacteria, such as Escherichia coli, are characterized by an asymmetric outer membrane (OM) with lipopolysaccharide (LPS) located in the outer leaflet and phospholipids facing the inner leaflet. E. coli recruits LPS assembly proteins LapB, LapC and LapD in concert with FtsH protease to ensure a balanced biosynthesis of LPS and phospholipids. We recently reported that bacteria either lacking the periplasmic domain of the essential LapC protein (lapC190) or in the absence of LapD exhibit an elevated degradation of LpxC, which catalyzes the first committed step in LPS biosynthesis. To further understand the functions of LapC and LapD in regulating LPS biosynthesis, we show that the overproduction of the intact LapD suppresses the temperature sensitivity (Ts) of lapC190, but not when either its N-terminal transmembrane anchor or specific conserved amino acids in the C-terminal domain are mutated. Moreover, overexpression of srrA, marA, yceJ and yfgM genes can rescue the Ts phenotype of lapC190 bacteria by restoring LpxC amounts. We further show that MarA-mediated suppression requires the expression of mla genes, whose products participate in the maintenance of OM asymmetry, and the SrrA-mediated suppression requires the presence of cardiolipin synthase A.
Collapse
Affiliation(s)
| | | | | | | | - Gracjana Klein
- Laboratory of Bacterial Genetics, Gdansk University of Technology, 80-233 Gdansk, Poland; (A.M.); (A.W.); (A.A.); (W.S.)
| | - Satish Raina
- Laboratory of Bacterial Genetics, Gdansk University of Technology, 80-233 Gdansk, Poland; (A.M.); (A.W.); (A.A.); (W.S.)
| |
Collapse
|
4
|
Dong H, Wang H, Cronan JE. Divergent unsaturated fatty acid synthesis in two highly related model pseudomonads. Mol Microbiol 2023; 119:252-261. [PMID: 36537550 DOI: 10.1111/mmi.15018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The genomes of the best-studied pseudomonads, Pseudomonas aeruginosa and Pseudomonas putida, which share 85% of the predicted coding regions, contain a fabA fabB operon (demonstrated in P. aeruginosa, putative in P. putida). The enzymes encoded by the fabA and fabB genes catalyze the introduction of a double bond into a 10-carbon precursor which is elongated to the 16:1Δ9 and 18:1Δ11 unsaturated fatty acyl chains required for functional membrane phospholipids. A detailed analysis of transcription of the P. putida fabA fabB gene cluster showed that fabA and fabB constitute an operon and disclosed an unexpected and essential fabB promoter located within the fabA coding sequence. Inactivation of the fabA fabB operon fails to halt the growth of P. aeruginosa PAO1 but blocks growth of P. putida F1 unless an exogenous unsaturated fatty acid is provided. We report that the asymmetry between these two species is due to the P. aeruginosa PAO1 desA gene which encodes a fatty acid desaturase that introduces double bonds into the 16-carbon acyl chains of membrane phospholipids. Although P. putida F1 encodes a putative DesA homolog that is 84% identical to the P. aeruginosa PAO1, the protein fails to provide sufficient unsaturated fatty acid synthesis for growth when the FabA FabB pathway is inactivated. We report that the P. putida F1 DesA homolog can functionally replace the P. aeruginosa DesA. Hence, the defect in P. putida F1 desaturation is not due to a defective P. putida F1 DesA protein but probably to a weakly active component of the electron transfer process.
Collapse
Affiliation(s)
- Huijuan Dong
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Haihong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
D'Lima NG, Khitun A, Rosenbloom AD, Yuan P, Gassaway BM, Barber KW, Rinehart J, Slavoff SA. Comparative Proteomics Enables Identification of Nonannotated Cold Shock Proteins in E. coli. J Proteome Res 2017; 16:3722-3731. [PMID: 28861998 PMCID: PMC5647875 DOI: 10.1021/acs.jproteome.7b00419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Recent advances in mass spectrometry-based
proteomics have revealed
translation of previously nonannotated microproteins from thousands
of small open reading frames (smORFs) in prokaryotic and eukaryotic
genomes. Facile methods to determine cellular functions of these newly
discovered microproteins are now needed. Here, we couple semiquantitative
comparative proteomics with whole-genome database searching to identify
two nonannotated, homologous cold shock-regulated microproteins in Escherichia coli K12 substr. MG1655, as well as two
additional constitutively expressed microproteins. We apply molecular
genetic approaches to confirm expression of these cold shock proteins
(YmcF and YnfQ) at reduced temperatures and identify the noncanonical
ATT start codons that initiate their translation. These proteins are
conserved in related Gram-negative bacteria and are predicted to be
structured, which, in combination with their cold shock upregulation,
suggests that they are likely to have biological roles in the cell.
These results reveal that previously unknown factors are involved
in the response of E. coli to lowered
temperatures and suggest that further nonannotated, stress-regulated E. coli microproteins may remain to be found. More
broadly, comparative proteomics may enable discovery of regulated,
and therefore potentially functional, products of smORF translation
across many different organisms and conditions.
Collapse
Affiliation(s)
- Nadia G D'Lima
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Alexandra Khitun
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Aaron D Rosenbloom
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Peijia Yuan
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Brandon M Gassaway
- Department of Cellular and Molecular Physiology, Yale University , New Haven, Connecticut 06520, United States.,Systems Biology Institute, Yale University , West Haven, Connecticut 06511, United States
| | - Karl W Barber
- Department of Cellular and Molecular Physiology, Yale University , New Haven, Connecticut 06520, United States.,Systems Biology Institute, Yale University , West Haven, Connecticut 06511, United States
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University , New Haven, Connecticut 06520, United States.,Systems Biology Institute, Yale University , West Haven, Connecticut 06511, United States
| | - Sarah A Slavoff
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06529, United States
| |
Collapse
|
6
|
Bi H, Zhu L, Jia J, Zeng L, Cronan JE. Unsaturated Fatty Acid Synthesis in the Gastric Pathogen Helicobacter pylori Proceeds via a Backtracking Mechanism. Cell Chem Biol 2016; 23:1480-1489. [PMID: 27866909 DOI: 10.1016/j.chembiol.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is a Gram-negative bacterium that inhabits the upper gastrointestinal tract in humans, and the presence of this pathogen in the gut microbiome increases the risk of peptic ulcers and stomach cancer. H. pylori depends on unsaturated fatty acid (UFA) biosynthesis for maintaining membrane structure and function. Although some of the H. pylori enzymes involved in UFA biosynthesis are functionally homologous with the enzymes found in Escherichia coli, we show here that an enzyme HP0773, now annotated as FabX, uses an unprecedented backtracking mechanism to not only dehydrogenate decanoyl-acyl carrier protein (ACP) in a reaction that parallels that of acyl-CoA dehydrogenase, the first enzyme of the fatty acid β-oxidation cycle, but also isomerizes trans-2-decenoyl-ACP to cis-3-decenoyl-ACP, the key UFA synthetic intermediate. Thus, FabX reverses the normal fatty acid synthesis cycle in H. pylori at the C10 stage. Overall, this unusual FabX activity may offer a broader explanation for how many bacteria that lack the canonical pathway enzymes produce UFA-containing phospholipids.
Collapse
Affiliation(s)
- Hongkai Bi
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| | - Lei Zhu
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Jia Jia
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Liping Zeng
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China; Department of Pathogen Biology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - John E Cronan
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Tsukuda M, Nakashima N, Miyazaki K. Counterselection method based on conditional silencing of antitoxin genes in Escherichia coli. J Biosci Bioeng 2015; 120:591-5. [DOI: 10.1016/j.jbiosc.2015.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 01/29/2023]
|
8
|
Wei Y, Zhan L, Gao Z, Privé GG, Dong Y. Crystal structure of GnsA from Escherichia coli. Biochem Biophys Res Commun 2015; 462:1-7. [PMID: 25839658 DOI: 10.1016/j.bbrc.2015.03.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Escherichia Coli GnsA is a regulator of phosphatidylethanolamine synthesis and functions as a suppressor of both a secG null mutation and fabA6 mutations. GnsA may also be a toxin with the cognate antitoxin YmcE. Here we report the crystal structure of GnsA to 1.8 Å. GnsA forms a V shaped hairpin structure that is tightly associated into a homodimer. Our comprehensive structural study suggests that GnsA is structurally similar to an outer membrane protein, suggesting a function of protein binding.
Collapse
Affiliation(s)
- Yong Wei
- School of Life Science, University of Science and Technology of China, Hefei 230027, China; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Lihong Zhan
- School of Life Science, University of Science and Technology of China, Hefei 230027, China; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Ariöz C, Götzke H, Lindholm L, Eriksson J, Edwards K, Daley DO, Barth A, Wieslander A. Heterologous overexpression of a monotopic glucosyltransferase (MGS) induces fatty acid remodeling in Escherichia coli membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1862-70. [PMID: 24726609 DOI: 10.1016/j.bbamem.2014.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/27/2014] [Accepted: 04/02/2014] [Indexed: 01/14/2023]
Abstract
The membrane protein monoglucosyldiacylglycerol synthase (MGS) from Acholeplasma laidlawii is responsible for the creation of intracellular membranes when overexpressed in Escherichia coli (E. coli). The present study investigates time dependent changes in composition and properties of E. coli membranes during 22h of MGS induction. The lipid/protein ratio increased by 38% in MGS-expressing cells compared to control cells. Time-dependent screening of lipids during this period indicated differences in fatty acid modeling. (1) Unsaturation levels remained constant for MGS cells (~62%) but significantly decreased in control cells (from 61% to 36%). (2) Cyclopropanated fatty acid content was lower in MGS producing cells while control cells had an increased cyclopropanation activity. Among all lipids, phosphatidylethanolamine (PE) was detected to be the most affected species in terms of cyclopropanation. Higher levels of unsaturation, lowered cyclopropanation levels and decreased transcription of the gene for cyclopropane fatty acid synthase (CFA) all indicate the tendency of the MGS protein to force E. coli membranes to alter its usual fatty acid composition.
Collapse
Affiliation(s)
- Candan Ariöz
- The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Hansjörg Götzke
- The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ljubica Lindholm
- The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jonny Eriksson
- BMC, Department of Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Katarina Edwards
- BMC, Department of Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Daniel O Daley
- The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Andreas Barth
- The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ake Wieslander
- The Arrhenius Laboratories for Natural Sciences, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Hayashi Y, Tsurumizu R, Tsukahara J, Takeda K, Narita SI, Mori M, Miki K, Tokuda H. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane. J Biol Chem 2014; 289:10530-10539. [PMID: 24569999 DOI: 10.1074/jbc.m113.539270] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.
Collapse
Affiliation(s)
- Yumi Hayashi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Ryoji Tsurumizu
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Jun Tsukahara
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Kazuki Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichiro Narita
- Department of Nutritional Sciences, University of Morioka, Takizawa 020-0694 Iwate, Japan
| | - Makiko Mori
- Department of Nutritional Sciences, University of Morioka, Takizawa 020-0694 Iwate, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hajime Tokuda
- Department of Nutritional Sciences, University of Morioka, Takizawa 020-0694 Iwate, Japan.
| |
Collapse
|
11
|
Reyes LH, Almario MP, Kao KC. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One 2011; 6:e17678. [PMID: 21408113 PMCID: PMC3050900 DOI: 10.1371/journal.pone.0017678] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/05/2011] [Indexed: 01/08/2023] Open
Abstract
Background n-Butanol is a promising emerging biofuel, and recent metabolic engineering efforts have demonstrated the use of several microbial hosts for its production. However, most organisms have very low tolerance to n-butanol (up to 2% (v/v)), limiting the economic viability of this biofuel. The rational engineering of more robust n-butanol production hosts relies upon understanding the mechanisms involved in tolerance. However, the existing knowledge of genes involved in n-butanol tolerance is limited. The goal of this study is therefore to identify E. coli genes that are involved in n-butanol tolerance. Methodology/Principal Findings Using a genomic library enrichment strategy, we identified approximately 270 genes that were enriched or depleted in n-butanol challenge. The effects of these candidate genes on n-butanol tolerance were experimentally determined using overexpression or deletion libraries. Among the 55 enriched genes tested, 11 were experimentally shown to confer enhanced tolerance to n-butanol when overexpressed compared to the wild-type. Among the 84 depleted genes tested, three conferred increased n-butanol resistance when deleted. The overexpressed genes that conferred the largest increase in n-butanol tolerance were related to iron transport and metabolism, entC and feoA, which increased the n-butanol tolerance by 32.8±4.0% and 49.1±3.3%, respectively. The deleted gene that resulted in the largest increase in resistance to n-butanol was astE, which enhanced n-butanol tolerance by 48.7±6.3%. Conclusions/Significance We identified and experimentally verified 14 genes that decreased the inhibitory effect of n-butanol tolerance on E. coli. From the data, we were able to expand the current knowledge on the genes involved in n-butanol tolerance; the results suggest that an increased iron transport and metabolism and decreased acid resistance may enhance n-butanol tolerance. The genes and mechanisms identified in this study will be helpful in the rational engineering of more robust biofuel producers.
Collapse
Affiliation(s)
- Luis H. Reyes
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Maria P. Almario
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Katy C. Kao
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Scharl T, Striedner G, Pötschacher F, Leisch F, Bayer K. Interactive visualization of clusters in microarray data: an efficient tool for improved metabolic analysis of E. coli. Microb Cell Fact 2009; 8:37. [PMID: 19604371 PMCID: PMC2717919 DOI: 10.1186/1475-2859-8-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022] Open
Abstract
Background Interpretation of comprehensive DNA microarray data sets is a challenging task for biologists and process engineers where scientific assistance of statistics and bioinformatics is essential. Interdisciplinary cooperation and concerted development of software-tools for simplified and accelerated data analysis and interpretation is the key to overcome the bottleneck in data-analysis workflows. This approach is exemplified by gcExplorer an interactive visualization toolbox based on cluster analysis. Clustering is an important tool in gene expression data analysis to find groups of co-expressed genes which can finally suggest functional pathways and interactions between genes. The visualization of gene clusters gives practitioners an understanding of the cluster structure of their data and makes it easier to interpret the cluster results. Results In this study the interactive visualization toolbox gcExplorer is applied to the interpretation of E. coli microarray data. The data sets derive from two fedbatch experiments conducted in order to investigate the impact of different induction strategies on the host metabolism and product yield. The software enables direct graphical comparison of these two experiments. The identification of potentially interesting gene candidates or functional groups is substantially accelerated and eased. Conclusion It was shown that gcExplorer is a very helpful tool to gain a general overview of microarray experiments. Interesting gene expression patterns can easily be found, compared among different experiments and combined with information about gene function from publicly available databases.
Collapse
Affiliation(s)
- Theresa Scharl
- Department of Biotechnology, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria.
| | | | | | | | | |
Collapse
|
13
|
Nishiyama KI, Tokuda H. Genes coding for SecG and Leu2-tRNA form an operon to give an unusual RNA comprising mRNA and a tRNA precursor. ACTA ACUST UNITED AC 2005; 1729:166-73. [PMID: 15951035 DOI: 10.1016/j.bbaexp.2005.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 04/18/2005] [Accepted: 05/13/2005] [Indexed: 11/22/2022]
Abstract
The secG gene encoding the SecG subunit of the SecYEG translocon and the leuU gene encoding Leu2-tRNA are very closely located on the Escherichia coli chromosome. A secG-leuU disruptant was not viable unless secG-leuU was induced from a plasmid, indicating that leuU is an essential gene since secG is dispensable at 37 degrees C. A mutant strain in which the promoter region for secG was replaced with cat revealed the same phenotype as the secG-leuU disruptant, indicating that leuU was expressed from the secG promoter. When the secG-leuU locus was placed on a high copy plasmid, an RNA comprising both mRNA for SecG and a precursor for Leu2-tRNA was detected on a Northern blot. Moreover, a secG-leuU transcript was amplified by RT-PCR using the total RNA fraction prepared from wild type E. coli cells but not from the secG-leuU and the secG promoter disruptants, indicating that secG-leuU forms an operon. Thus, the expression of Leu2-tRNA requires expression of the upstream secG gene. The gene structure of secG-leuU was conserved among Gram-negative bacteria, although the sequences separating the two genes were quite diverse. The physiological significance of this unusual gene organization is discussed.
Collapse
Affiliation(s)
- Ken-ichi Nishiyama
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | |
Collapse
|
14
|
Sugai R, Shimizu H, Nishiyama KI, Tokuda H. Overexpression of gnsA, a multicopy suppressor of the secG null mutation, increases acidic phospholipid contents by inhibiting phosphatidylethanolamine synthesis at low temperatures. J Bacteriol 2004; 186:5968-71. [PMID: 15317805 PMCID: PMC516848 DOI: 10.1128/jb.186.17.5968-5971.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GnsA overproduction was previously found to suppress both the secG null mutation and the fabA6 mutation in Escherichia coli by increasing the unsaturated fatty acid contents. We report here that it also increased the acidic phospholipid contents at 20 degrees C but not at 37 degrees C. GnsA overproduction at 20 degrees C specifically inhibited phosphatidylethanolamine synthesis and therefore caused the increase in the proportion of acidic phospholipids.
Collapse
Affiliation(s)
- Rie Sugai
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|