1
|
Choudhary S, Smith JA, McNally A, Hall RJ. Glucose alters the evolutionary response to gentamicin in uropathogenic Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40153309 DOI: 10.1099/mic.0.001548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Urinary tract infections (UTI) are a major health and economic concern. Uropathogenic Escherichia coli (UPEC) are the leading cause of UTI, and antibiotic-resistant UPEC are increasingly common. The microenvironment of the urinary tract is metabolically distinct, and there is growing interest in understanding the extent to which metabolism may influence UPEC infection and response to antibiotics, and how this varies between individuals. Diabetes, characterized in part by glycosuria, is a known risk factor for UTI and is associated with more severe infections. The role that glucose plays in driving UPEC evolution remains unclear. Through experimental evolution with a single UPEC isolate, we identified mutations in the RNA polymerase sigma factor rpoS associated with long-term glucose exposure. We found that the presence of the antibiotic gentamicin resulted in mutations in genes including trkH, which encodes a potassium ion uptake system previously linked to aminoglycoside resistance, and in the autotransporter hyxB. Strikingly, these mutations were not present in populations exposed to a combination of both glucose and gentamicin. This suggests that glucose may influence the survival of mutants in gentamicin, providing new avenues for understanding the evolution and treatment of UPEC-mediated UTI in high-risk individuals.
Collapse
Affiliation(s)
- Shalini Choudhary
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jacob A Smith
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alan McNally
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca J Hall
- Department of Microbes, Infection and Microbiomes, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Taylor JE, Palur DSK, Zhang A, Gonzales JN, Arredondo A, Coulther TA, Lechner ABJ, Rodriguez EP, Fiehn O, Didzbalis J, Siegel JB, Atsumi S. Awakening the natural capability of psicose production in Escherichia coli. NPJ Sci Food 2023; 7:54. [PMID: 37838768 PMCID: PMC10576766 DOI: 10.1038/s41538-023-00231-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Due to the rampant rise in obesity and diabetes, consumers are desperately seeking for ways to reduce their sugar intake, but to date there are no options that are both accessible and without sacrifice of palatability. One of the most promising new ingredients in the food system as a non-nutritive sugar substitute with near perfect palatability is D-psicose. D-psicose is currently produced using an in vitro enzymatic isomerization of D-fructose, resulting in low yield and purity, and therefore requiring substantial downstream processing to obtain a high purity product. This has made adoption of D-psicose into products limited and results in significantly higher per unit costs, reducing accessibility to those most in need. Here, we found that Escherichia coli natively possesses a thermodynamically favorable pathway to produce D-psicose from D-glucose through a series of phosphorylation-epimerization-dephosphorylation steps. To increase carbon flux towards D-psicose production, we introduced a series of genetic modifications to pathway enzymes, central carbon metabolism, and competing metabolic pathways. In an attempt to maximize both cellular viability and D-psicose production, we implemented methods for the dynamic regulation of key genes including clustered regularly interspaced short palindromic repeats inhibition (CRISPRi) and stationary-phase promoters. The engineered strains achieved complete consumption of D-glucose and production of D-psicose, at a titer of 15.3 g L-1, productivity of 2 g L-1 h-1, and yield of 62% under test tube conditions. These results demonstrate the viability of whole-cell catalysis as a sustainable alternative to in vitro enzymatic synthesis for the accessible production of D-psicose.
Collapse
Affiliation(s)
- Jayce E Taylor
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | | | - Angela Zhang
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Jake N Gonzales
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Augustine Arredondo
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | | | | | - Elys P Rodriguez
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - John Didzbalis
- Mars, Incorporated, 6885 Elm Street, McLean, VA, 22101, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, Davis, CA, 95616, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA.
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Li S, Fan W, Xu G, Cao Y, Zhao X, Hao S, Deng B, Ren S, Hu S. Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome. Front Microbiol 2023; 14:1117355. [PMID: 36876063 PMCID: PMC9975161 DOI: 10.3389/fmicb.2023.1117355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Organic and microbial fertilizers have potential advantages over inorganic fertilizers in improving soil fertility and crop yield without harmful side-effects. However, the effects of these bio-organic fertilizers on the soil microbiome and metabolome remain largely unknown, especially in the context of bamboo cultivation. In this study, we cultivated Dendrocalamus farinosus (D. farinosus) plants under five different fertilization conditions: organic fertilizer (OF), Bacillus amyloliquefaciens bio-fertilizer (Ba), Bacillus mucilaginosus Krassilnikov bio-fertilizer (BmK), organic fertilizer plus Bacillus amyloliquefaciens bio-fertilizer (OFBa), and organic fertilizer plus Bacillus mucilaginosus Krassilnikov bio-fertilizer (OFBmK). We conducted 16S rRNA sequencing and liquid chromatography/mass spectrometry (LC-MS) to evaluate the soil bacterial composition and soil metabolic activity in the different treatment groups. The results demonstrate that all the fertilization conditions altered the soil bacterial community composition. Moreover, the combination of organic and microbial fertilizers (i.e., in the OFBa and OFBmK groups) significantly affected the relative abundance of soil bacterial species; the largest number of dominant microbial communities were found in the OFBa group, which were strongly correlated with each other. Additionally, non-targeted metabolomics revealed that the levels of soil lipids and lipid-like molecules, and organic acids and their derivatives, were greatly altered under all treatment conditions. The levels of galactitol, guanine, and deoxycytidine were also markedly decreased in the OFBa and OFBmK groups. Moreover, we constructed a regulatory network to delineated the relationships between bamboo phenotype, soil enzymatic activity, soil differential metabolites, and dominant microbial. The network revealed that bio-organic fertilizers promoted bamboo growth by modifying the soil microbiome and metabolome. Accordingly, we concluded that the use of organic fertilizers, microbial fertilizers, or their combination regulated bacterial composition and soil metabolic processes. These findings provide new insights into how D. farinosus-bacterial interactions are affected by different fertilization regiments, which are directly applicable to the agricultural cultivation of bamboo.
Collapse
Affiliation(s)
- Shangmeng Li
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Wei Fan
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Gang Xu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Ying Cao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Xin Zhao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Suwei Hao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Bin Deng
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Siyuan Ren
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| | - Shanglian Hu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, China.,Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, China
| |
Collapse
|
4
|
Adaptive laboratory evolution resolves energy depletion to maintain high aromatic metabolite phenotypes in Escherichia coli strains lacking the Phosphotransferase System. Metab Eng 2018; 48:233-242. [DOI: 10.1016/j.ymben.2018.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 11/20/2022]
|
5
|
Sutrina SL, Daniel K, Lewis M, Charles NT, Anselm CKE, Thomas N, Holder N. Biofilm Growth of Escherichia coli Is Subject to cAMP-Dependent and cAMP-Independent Inhibition. J Mol Microbiol Biotechnol 2015; 25:209-25. [PMID: 26159080 DOI: 10.1159/000375498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We established that Escherichia coli strain 15 (ATCC 9723) produces both curli and cellulose, and forms robust biofilms. Since this strain is wild type with respect to the phosphoenolpyruvate:sugar phosphotransferase system (PTS), it is an ideal strain in which to investigate the effects of the PTS on the biofilm growth of E. coli. We began by looking into the effects of PTS and non-PTS sugars on the biofilm growth of this strain. All the sugars tested tended to activate biofilm growth at low concentrations but to inhibit biofilm growth at high concentrations. Acidification of the medium was an inhibitory factor in the absence of buffer, but buffering to prevent a pH drop did not prevent the inhibitory effects of the sugars. The concentration at which inhibition set in varied from sugar to sugar. For most sugars, cyclic (c)AMP counteracted the inhibition at the lowest inhibitory concentrations but became ineffective at higher concentrations. Our results suggest that cAMP-dependent catabolite repression, which is mediated by the PTS in E. coli, plays a role in the regulation of biofilm growth in response to sugars. cAMP-independent processes, possibly including Cra, also appear to be involved, in addition to pH effects.
Collapse
Affiliation(s)
- Sarah L Sutrina
- Department of Biological and Chemical Sciences, University of the West Indies, Bridgetown, Barbados
| | | | | | | | | | | | | |
Collapse
|
6
|
Kim M, Zorraquino V, Tagkopoulos I. Microbial forensics: predicting phenotypic characteristics and environmental conditions from large-scale gene expression profiles. PLoS Comput Biol 2015; 11:e1004127. [PMID: 25774498 PMCID: PMC4361189 DOI: 10.1371/journal.pcbi.1004127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 01/14/2015] [Indexed: 01/13/2023] Open
Abstract
A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications. The transcriptional profile of an organism contains clues about the environmental context in which it has evolved and currently lives, its behavior and cellular state. It is yet unclear, however, how much information can be efficiently extracted and how it can be used to classify new samples with respect to their environmental and genetic characteristics. Here, we have constructed an extensive transcriptome compendium of Escherichia coli that we have further enriched via an iterative learning approach. We then apply an ensemble of various machine learning algorithms to infer environmental and cellular information such as strain, growth phase, medium, oxygen level, antibiotic and carbon source. Functional analysis of the most informative genes provides mechanistic insights and palpable hypotheses regarding their role in each environmental or genetic context. Our work argues that genome-scale gene expression can be a multi-purpose marker for identifying latent, heterogeneous cellular and environmental states and that optimal classification can be achieved with a feature set of a couple hundred genes that might not necessarily have the most pronounced differential expression in the respective conditions.
Collapse
Affiliation(s)
- Minseung Kim
- Department of Computer Science, University of California, Davis, Davis, California, United States of America
- UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
| | - Violeta Zorraquino
- UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, Davis, California, United States of America
- UC Davis Genome Center, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Kalivoda EJ, Brothers KM, Stella NA, Schmitt MJ, Shanks RMQ. Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation. PLoS One 2013; 8:e71267. [PMID: 23923059 PMCID: PMC3726613 DOI: 10.1371/journal.pone.0071267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related infections are a major contributor to human disease, and the capacity for surface attachment and biofilm formation are key attributes for the pathogenesis of microbes. Serratia marcescens type I fimbriae-dependent biofilms are coordinated by the adenylate cyclase, CyaA, and the cyclic 3′,5′-adenosine monophosphate (cAMP)-cAMP receptor protein (CRP) complex. This study uses S. marcescens as a model system to test the role of cAMP-phosphodiesterase activity in controlling biofilm formation. Herein we describe the characterization of a putative S. marcescens cAMP-phosphodiesterase gene (SMA3506), designated as cpdS, and demonstrated to be a functional cAMP-phosphodiesterase both in vitro and in vivo. Deletion of cpdS resulted in defective biofilm formation and reduced type I fimbriae production, whereas multicopy expression of cpdS conferred a type I fimbriae-dependent hyper-biofilm. Together, these results support a model in which bacterial cAMP-phosphodiesterase activity modulates biofilm formation.
Collapse
Affiliation(s)
- Eric J. Kalivoda
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Matthew J. Schmitt
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
- * E-mail:
| |
Collapse
|
8
|
Micevski D, Dougan DA. Proteolytic regulation of stress response pathways in Escherichia coli. Subcell Biochem 2013; 66:105-28. [PMID: 23479439 DOI: 10.1007/978-94-007-5940-4_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maintaining correct cellular function is a fundamental biological process for all forms of life. A critical aspect of this process is the maintenance of protein homeostasis (proteostasis) in the cell, which is largely performed by a group of proteins, referred to as the protein quality control (PQC) network. This network of proteins, comprised of chaperones and proteases, is critical for maintaining proteostasis not only during favourable growth conditions, but also in response to stress. Indeed proteases play a crucial role in the clearance of unwanted proteins that accumulate during stress, but more importantly, in the activation of various different stress response pathways. In bacteria, the cells response to stress is usually orchestrated by a specific transcription factor (sigma factor). In Escherichia coli there are seven different sigma factors, each of which responds to a particular stress, resulting in the rapid expression of a specific set of genes. The cellular concentration of each transcription factor is tightly controlled, at the level of transcription, translation and protein stability. Here we will focus on the proteolytic regulation of two sigma factors (σ(32) and σ(S)), which control the heat and general stress response pathways, respectively. This review will also briefly discuss the role proteolytic systems play in the clearance of unwanted proteins that accumulate during stress.
Collapse
Affiliation(s)
- Dimce Micevski
- Department of Biochemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, 3086, Australia
| | | |
Collapse
|
9
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Suryadarma P, Ojima Y, Fukuda Y, Akamatsu N, Taya M. The rpoS deficiency suppresses acetate accumulation in glucose-enriched culture of Escherichia coli under an aerobic condition. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-012-1287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
12
|
Olvera L, Mendoza-Vargas A, Flores N, Olvera M, Sigala JC, Gosset G, Morett E, Bolívar F. Transcription analysis of central metabolism genes in Escherichia coli. Possible roles of sigma38 in their expression, as a response to carbon limitation. PLoS One 2009; 4:e7466. [PMID: 19838295 PMCID: PMC2759082 DOI: 10.1371/journal.pone.0007466] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/18/2009] [Indexed: 11/29/2022] Open
Abstract
The phosphoenolpyruvate: carbohydrate transferase system (PTS) transports glucose in Escherichia coli. Previous work demonstrated that strains lacking PTS, such as PB11, grow slow on glucose. PB11 has a reduced expression of glycolytic, and upregulates poxB and acs genes as compared to the parental strain JM101, when growing on glucose. The products of the latter genes are involved in the production of AcetylCoA. Inactivation of rpoS that codes for the RNA polymerase σ38 subunit, reduces further (50%) growth of PB11, indicating that σ38 plays a central role in the expression of central metabolism genes in slowly growing cells. In fact, transcription levels of glycolytic genes is reduced in strain PB11rpoS− as compared to PB11. In this report we studied the role of σ70 and σ38 in the expression of the complete glycolytic pathway and poxB and acs genes in certain PTS− strains and their rpoS− derivatives. We determined the transcription start sites (TSSs) and the corresponding promoters, in strains JM101, PB11, its derivative PB12 that recovered its growth capacity, and in their rpoS− derivatives, by 5′RACE and pyrosequencing. In all these genes the presence of sequences resembling σ38 recognition sites allowed the proposition that they could be transcribed by both sigma factors, from overlapping putative promoters that initiate transcription at the same site. Fourteen new TSSs were identified in seventeen genes. Besides, more than 30 putative promoters were proposed and we confirmed ten previously reported. In vitro transcription experiments support the functionality of putative dual promoters. Alternatives that could also explain lower transcription levels of the rpoS− derivatives are discussed. We propose that the presence if real, of both σ70 and σ38 dependent promoters in all glycolytic genes and operons could allow a differential transcription of these central metabolism genes by both sigma subunits as an adaptation response to carbon limitation.
Collapse
Affiliation(s)
- Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos, México
| | - Alfredo Mendoza-Vargas
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos, México
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos, México
| | - Maricela Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos, México
| | - Juan Carlos Sigala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos, México
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos, México
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos, México
- * E-mail: (EM); (FB)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología. Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos, México
- * E-mail: (EM); (FB)
| |
Collapse
|
13
|
Lee HJ, Park SJ, Choi SH, Lee KH. Vibrio vulnificus rpoS expression is repressed by direct binding of cAMP-cAMP receptor protein complex to its two promoter regions. J Biol Chem 2008; 283:30438-50. [PMID: 18713737 DOI: 10.1074/jbc.m802219200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vibrio vulnificus, a septicemia-causing pathogenic bacterium, acquires resistance against various stresses and expresses virulence factors via an rpoS gene product. In this study, we investigated the transcriptional characteristics of this global regulator. Two distinct transcriptional initiation sites for the rpoS gene, the proximal promoter (P(p)) and the distal promoter (P(d)), were defined by primer extension experiments. Various rpoS::luxAB transcriptional fusions indicated that P(d) is a major promoter of rpoS expression. Western blot analysis showed that RpoS levels were inversely correlated with intracellular levels of 3',5'-cyclic AMP (cAMP). The expressions of both P(d) and P(p) were increased in cya and crp mutants. The exogenous addition of cAMP to the cya mutant resulted in repressed expression of rpoS. In addition, rpoS expression was significantly lowered in the cpdA mutant, in which the level of cAMP was elevated because of the absence of 3',5'-cAMP phosphodiesterase. In vitro transcription assays using the V. vulnificus RNA polymerase showed that the transcripts from both promoters were reduced by addition of the cAMP-cAMP receptor protein (CRP). The cAMP-CRP was shown to bind to two rpoS promoters by electrophoretic mobility shift assays. The alteration of the putative CRP-binding site on each rpoS promoter, via site-directed mutagenesis, abolished the binding of cAMP-CRP as well as regulation by cAMP-CRP. Therefore, this study shows a relationship between the level of intracellular cAMP and the degree of rpoS expression and further demonstrates, for the first time, the direct binding of the cAMP-CRP complex to rpoS upstream regions, which results in repression of rpoS gene expression.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin 449-791, South Korea
| | | | | | | |
Collapse
|
14
|
Flores N, Escalante A, de Anda R, Báez-Viveros JL, Merino E, Franco B, Georgellis D, Gosset G, Bolívar F. New Insights into the Role of Sigma Factor RpoS as Revealed in Escherichia coli Strains Lacking the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System. J Mol Microbiol Biotechnol 2008; 14:176-92. [DOI: 10.1159/000109945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
15
|
Fredriksson Å, Ballesteros M, Peterson CN, Persson Ö, Silhavy TJ, Nyström T. Decline in ribosomal fidelity contributes to the accumulation and stabilization of the master stress response regulator sigmaS upon carbon starvation. Genes Dev 2007; 21:862-74. [PMID: 17403784 PMCID: PMC1838536 DOI: 10.1101/gad.409407] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The sigma(S) subunit of RNA polymerase is a master regulator of Escherichia coli that retards cellular senescence and bestows cells with general stress protective functions during growth arrest. We show that mutations and drugs triggering translational errors elevate sigma(S) levels and stability. Furthermore, mutations enhancing translational fidelity attenuate induction of the rpoS regulon and prevent stabilization of sigma(S) upon carbon starvation. Destabilization of sigma(S) by increased proofreading requires the presence of the sigma(S) recognition factor SprE (RssB) and the ClpXP protease. The data further suggest that sigma(S) becomes stabilized upon starvation as a result of ClpP sequestration and this sequestration is enhanced by oxidative modifications of aberrant proteins produced by erroneous translation. ClpP overproduction counteracted starvation-induced stabilization of sigma(S), whereas overproduction of a ClpXP substrate (ssrA-tagged GFP) stabilized sigma(S) in exponentially growing cells. We present a model for the sequence of events leading to the accumulation and activation of sigma(S) upon carbon starvation, which are linked to alterations in both ribosomal fidelity and efficiency.
Collapse
Affiliation(s)
- Åsa Fredriksson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, 405 30 Göteborg, Sweden
| | - Manuel Ballesteros
- Centro Andaluz de Biologia del Desarrollo (CABD), University “Pablo de Olavide,” Ctra Utrera km1, ES-41013 Seville, Spain
| | - Celeste N. Peterson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Örjan Persson
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, 405 30 Göteborg, Sweden
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas Nyström
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, 405 30 Göteborg, Sweden
- Corresponding author.E-MAIL ; FAX 46-31-7732599
| |
Collapse
|
16
|
Klauck E, Typas A, Hengge R. The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 2007; 90:103-27. [PMID: 17725229 PMCID: PMC10368345 DOI: 10.3184/003685007x215922] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sigmaS (RpoS) subunit of RNA polymerase in Escherichia coli is a key master regulator which allows this bacterial model organism and important pathogen to adapt to and survive environmentally rough times. While hardly present in rapidly growing cells, sigmaS strongly accumulates in response to many different stress conditions, partly replaces the vegetative sigma subunit in RNA polymerase and thereby reprograms this enzyme to transcribe sigmaS-dependent genes (up to 10% of the E. coli genes). In this review, we summarize the extremely complex regulation of sigmaS itself and multiple signal input at the level of this master regulator, we describe the way in which sigmaS specifically recognizes "stress" promoters despite their similarity to vegetative promoters, and, while being far from comprehensive, we give a short overview of the far-reaching physiological impact of sigmaS. With sigmaS being a central and multiple signal integrator and master regulator of hundreds of genes organized in regulatory cascades and sub-networks or regulatory modules, this system also represents a key model system for analyzing complex cellular information processing and a starting point for understanding the complete regulatory network of an entire cell.
Collapse
Affiliation(s)
| | - Athanasios Typas
- Aristotle University of Thessaloniki in Greece, Freie Universität Berlin
| | - Regine Hengge
- University of Konstanz. University of Princeton (NJ, USA)
| |
Collapse
|
17
|
Abranches J, Candella MM, Wen ZT, Baker HV, Burne RA. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 2006; 188:3748-56. [PMID: 16707667 PMCID: PMC1482907 DOI: 10.1128/jb.00169-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/21/2006] [Indexed: 11/20/2022] Open
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major carbohydrate transport system in oral streptococci. The mannose-PTS of Streptococcus mutans, which transports mannose and glucose, is involved in carbon catabolite repression (CCR) and regulates the expression of known virulence genes. In this study, we investigated the role of EII(Glc) and EIIAB(Man) in sugar metabolism, gene regulation, biofilm formation, and competence. The results demonstrate that the inactivation of ptsG, encoding a putative EII(Glc), did not lead to major changes in sugar metabolism or affect the phenotypes of interest. However, the loss of EII(Glc) was shown to have a significant impact on the proteome and to affect the expression of a known virulence factor, fructan hydrolase (fruA). JAM1, a mutant strain lacking EIIAB(Man), had an impaired capacity to form biofilms in the presence of glucose and displayed a decreased ability to be transformed with exogenous DNA. Also, the lactose- and cellobiose-PTSs were positively and negatively regulated by EIIAB(Man), respectively. Microarrays were used to investigate the profound phenotypic changes displayed by JAM1, revealing that EIIAB(Man) of S. mutans has a key regulatory role in energy metabolism, possibly by sensing the energy levels of the cells or the carbohydrate availability and, in response, regulating the activity of transcription factors and carbohydrate transporters.
Collapse
Affiliation(s)
- Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, P.O. Box 100424, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
18
|
Flores S, Flores N, de Anda R, González A, Escalante A, Sigala JC, Gosset G, Bolívar F. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis. J Mol Microbiol Biotechnol 2006; 10:51-63. [PMID: 16491026 DOI: 10.1159/000090348] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The physiological role of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) has been studied in Escherichia coli. It has been shown that it directly or indirectly regulates the activity of most catabolic genes involved in carbohydrate transport. Accordingly, strains lacking PTS have pleiotropic phenotypes and are impaired in their capacity to grow on glucose and other PTS sugars. We have previously reported the characterization of a mutant harboring a pts operon deletion (PB11) which, as expected, showed a severe reduction of its growth capacity when incubated on glucose as carbon source, as compared to that of the isogenic wild-type strain. These observations corroborate that PTS is the main determinant of the capacity to grow on glucose and confirm the existence of other systems that allow glucose utilization although at a reduced level. To explore the physiological state and the metabolic pathways involved in glucose utilization in a pts(-) background, we analyzed the global transcriptional response of the PB11 mutant when growing in minimal medium with glucose as carbon source. Genome-wide transcriptional analysis using microarrays revealed that, under this condition, expression of several genes related to carbon transport and metabolism was upregulated, as well as that of genes encoding transporters for certain nucleotides, nitrogen, phosphorus and sulfur sources. In addition, upregulation of rpoS and several genes transcribed by this sigma subunit was detected. These results indicate that the reduced capacity of glucose utilization present in the PB11 strain induces a general nutrient-scavenging response and this behavior is not dependent on a functional PTS. This condition is responsible of the utilization of secondary carbon sources in the presence of glucose.
Collapse
Affiliation(s)
- Salvador Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Flores N, de Anda R, Flores S, Escalante A, Hernández G, Martínez A, Ramírez OT, Gosset G, Bolívar F. Role of pyruvate oxidase in Escherichia coli strains lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. J Mol Microbiol Biotechnol 2005; 8:209-21. [PMID: 16179798 DOI: 10.1159/000086702] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We report a study to determine the role of pyruvate oxidase among Escherichia coli isogenic strains with active and inactive phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). Strain PB11, displaying a specific growth rate (mu) in glucose minimal medium of 0.1 h(-1) is a ptsHI, crr operon deletion derivative of wild-type JM101 (displaying a mu of 0.70 h(-1)). Strain PB12 is a spontaneous mutant obtained from PB11 after selection for its capacity to grow on glucose with a mu of 0.40 h(-1). In minimal medium cultures supplemented with glucose plus acetate, strain JM101 displayed preferential consumption of glucose, whereas strains PB11 and PB12 did not display glucose catabolic repression of acetate consumption. Inactivation of poxB caused a severe reduction in growth rate in strain PB11 when grown in the fermentor with medium containing glucose or glucose plus acetate, whereas under the same conditions poxB(-)derivative strains of JM101 and PB12 were not affected. Relative transcript levels for 29 genes related to poxB transcriptional regulation and central metabolism were determined using RT-PCR. This analysis revealed 2-fold lower transcript levels for genes encoding subunits of the pyruvate dehydrogenase complex (Pdh) in strain PB11 and 4- to 6-fold higher transcript levels for poxB in strains PB11 and PB12, when compared to JM101. In addition, in the PTS(-) strains, upregulation of the poxB transcription factors rpoS, soxS and marA, was detected. The results presented here strongly suggest that AcCoA is mainly synthesized from acetate produced by pyruvate oxidase in strain PB11, whereas in strains JM101 and PB12, AcCoA is synthesized preferentially from pyruvate by Pdh.
Collapse
Affiliation(s)
- Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología/UNAM, Cuernavaca, Morelos 62271, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Peterson CN, Mandel MJ, Silhavy TJ. Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 2005; 187:7549-53. [PMID: 16267278 PMCID: PMC1280323 DOI: 10.1128/jb.187.22.7549-7553.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Gosset G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 2005; 4:14. [PMID: 15904518 PMCID: PMC1156936 DOI: 10.1186/1475-2859-4-14] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/16/2005] [Indexed: 12/22/2022] Open
Abstract
The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS) transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, Cuernavaca, Mor, 62250, México.
| |
Collapse
|
22
|
Lacour S, Landini P. SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 2004; 186:7186-95. [PMID: 15489429 PMCID: PMC523212 DOI: 10.1128/jb.186.21.7186-7195.2004] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigma(S) subunit of RNA polymerase, the product of the rpoS gene, controls the expression of genes responding to starvation and cellular stresses. Using gene array technology, we investigated rpoS-dependent expression at the onset of stationary phase in Escherichia coli grown in rich medium. Forty-one genes were expressed at significantly lower levels in an rpoS mutant derived from the MG1655 strain; for 10 of these, we also confirmed rpoS and stationary-phase dependence by reverse transcription-PCR. Only seven genes (dps, osmE, osmY, sodC, rpsV, wrbA, and yahO) had previously been recognized as rpoS dependent. Several newly identified rpoS-dependent genes are involved in the uptake and metabolism of amino acids, sugars, and iron. Indeed, the rpoS mutant strain shows severely impaired growth on some sugars such as fructose and N-acetylglucosamine. The rpoS gene controls the production of indole, which acts as a signal molecule in stationary-phase cells, via regulation of the tnaA-encoded tryptophanase enzyme. Genes involved in protein biosynthesis, encoding the ribosome-associated protein RpsV (sra) and the initiation factor IF-1 (infA), were also induced in an rpoS-dependent fashion. Using primer extension, we determined the promoter sequences of a selection of rpoS-regulated genes representative of different functional classes. Significant fractions of these promoters carry sequence features specific for Esigma(S) recognition of the -10 region, such as cytosines at positions -13 (70%) and -12 (30%) as well as a TG motif located upstream of the -10 region (50%), thus supporting the TGN(0-2)C(C/T)ATA(C/A)T consensus sequence recently proposed for sigma(S).
Collapse
Affiliation(s)
- Stephan Lacour
- Swiss Federal Institute of Environmental Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
23
|
Nascimento MM, Lemos JAC, Abranches J, Gonçalves RB, Burne RA. Adaptive acid tolerance response of Streptococcus sobrinus. J Bacteriol 2004; 186:6383-90. [PMID: 15375118 PMCID: PMC516607 DOI: 10.1128/jb.186.19.6383-6390.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans and Streptococcus sobrinus are the bacteria most commonly associated with human dental caries. A major virulence attribute of these and other cariogenic bacteria is acid tolerance. The acid tolerance mechanisms of S. mutans have begun to be investigated in detail, including the adaptive acid tolerance response (ATR), but this is not the case for S. sobrinus. An analysis of the ATR of two S. sobrinus strains was conducted with cells grown to steady state in continuous chemostat cultures. Compared with cells grown at neutral pH, S. sobrinus cells grown at pH 5.0 showed an increased resistance to acid killing and were able to drive down the pH through glycolysis to lower values. Unlike what is found for S. mutans, the enhanced acid tolerance and glycolytic capacities of acid-adapted S. sobrinus were not due to increased F-ATPase activities. Interestingly though, S. sobrinus cells grown at pH 5.0 had twofold more glucose phosphoenolpyruvate:sugar phosphotransferase system (PTS) activity than cells grown at pH 7.0. In contrast, glucose PTS activity was actually higher in S. mutans grown at pH 7.0 than in cells grown at pH 5.0. Silver staining of two-dimensional gels of whole-cell lysates of S. sobrinus 6715 revealed that at least 9 proteins were up-regulated and 22 proteins were down-regulated in pH 5.0-grown cells compared with cells grown at pH 7.0. Our results demonstrate that S. sobrinus is capable of mounting an ATR but that there are critical differences between the mechanisms of acid adaptation used by S. sobrinus and S. mutans.
Collapse
Affiliation(s)
- Marcelle M Nascimento
- Department of Oral Diagnostics, Dental School of Piracicaba, University of Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
24
|
Nothaft H, Dresel D, Willimek A, Mahr K, Niederweis M, Titgemeyer F. The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol 2004; 185:7019-23. [PMID: 14617669 PMCID: PMC262694 DOI: 10.1128/jb.185.23.7019-7023.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutation of the crr-ptsI gene locus revealed that Streptomyces coelicolor uses the phosphotransferase system (PTS) for N-acetylglucosamine uptake. crr, ptsI, and ptsH, which encode the three general PTS phosphotransferases, are induced by N-acetylglucosamine but not by other PTS substrates. Thus, the S. coelicolor PTS is biased for N-acetylglucosamine utilization, a novel feature that distinguishes this PTS from others.
Collapse
Affiliation(s)
- Harald Nothaft
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Sugiura M, Aiba H, Mizuno T. Identification and classification of two-component systems that affect rpoS expression in Escherichia coli. Biosci Biotechnol Biochem 2003; 67:1612-5. [PMID: 12913314 DOI: 10.1271/bbb.67.1612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The rpoS-encoded sigmaS subunit of RNA polymerase regulates the expression of stationary phase and stress response genes in Escherichia coli. Recent study of our DNA microarray analysis suggested that the rpoS expression is affected by multiple two-component systems. In this study, we identified two-component-system mutants in which the rpoS expression increased. The regulatory manner of the systems on rpoS expression is suggested.
Collapse
Affiliation(s)
- Masahito Sugiura
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
26
|
Abstract
In Escherichia coli, the stationary phase alternative sigma factor sigmas controls the expression of genes involved cell survival in response to cessation of growth (stationary phase) and provides cross-protection to various stresses. Levels of sigmas increase dramatically at the onset of stationary phase and are regulated at the transcriptional, post-transcriptional and post-translational level, making this one of the most complex regulatory systems in bacteria. The basic mechanisms for the control of translation and sigmas proteolysis have been understood. However, studies on the transcriptional control in E. coli lag behind and are controversial. The cAMP-CRP complex and the two component BarA/UvrY system have been implicated and, ppGpp and polyphosphate appear to have a signalling role. sigmas has also been reported to be a general stress regulator in the fluorescent pseudomonads (Pseudomonas aeruginosa, P. fluorescens and P. putida) and recent studies on sigmas regulation highlight that transcriptional regulation in these bacteria apparently plays a major role. Global regulatory systems, the GacA/GacS two component system and quorum sensing all affect rpoS expression, as does the TetR family PsrA regulator that directly binds to- and activates the rpoS promoter in stationary phase. This striking difference in regulation between E. coli and Pseudomonas can be partly attributed to the differences in the functional role of sigmas in the two bacterial species. This report will review mainly recent studies on rpoS transcriptional regulation and will try to rationalize the current knowledge into a working model.
Collapse
Affiliation(s)
- Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy.
| |
Collapse
|
27
|
Abstract
Analysis of senescent Escherichia coli cells reveals a link between protein oxidation and the fidelity of the translational apparatus. This model system has also provided a mechanistic molecular explanation for a trade-off between reproduction and survival activities, which may inspire proponents of the disposable soma theory and antagonistic pleiotropy hypothesis of aging.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology - Microbiology, Göteborg University Medicinaregatan 9C, Göteborg, Sweden.
| |
Collapse
|
28
|
Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 2002; 46:281-91. [PMID: 12366850 DOI: 10.1046/j.1365-2958.2002.03170.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have systematically examined the mRNA profiles of 36 two-component deletion mutants, which include all two-component regulatory systems of Escherichia coli, under a single growth condition. DNA microarray results revealed that the mutants belong to one of three groups based on their gene expression profiles in Luria-Bertani broth under aerobic conditions: (i) those with no or little change; (ii) those with significant changes; and (iii) those with drastic changes. Under these conditions, the anaeroresponsive ArcB/ArcA system, the osmoresponsive EnvZ/OmpR system and the response regulator UvrY showed the most drastic changes. Cellular functions such as flagellar synthesis and expression of the RpoS regulon were affected by multiple two-component systems. A high correlation coefficient of expression profile was found between several two-component mutants. Together, these results support the view that a network of functional interactions, such as cross-regulation, exists between different two-component systems. The compiled data are avail-able at our website (http://ecoli.aist-nara.ac.jp/xp_analysis/ 2_components).
Collapse
Affiliation(s)
- Taku Oshima
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 2002; 66:373-95, table of contents. [PMID: 12208995 PMCID: PMC120795 DOI: 10.1128/mmbr.66.3.373-395.2002] [Citation(s) in RCA: 705] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The sigma(S) (RpoS) subunit of RNA polymerase is the master regulator of the general stress response in Escherichia coli and related bacteria. While rapidly growing cells contain very little sigma(S), exposure to many different stress conditions results in rapid and strong sigma(S) induction. Consequently, transcription of numerous sigma(S)-dependent genes is activated, many of which encode gene products with stress-protective functions. Multiple signal integration in the control of the cellular sigma(S) level is achieved by rpoS transcriptional and translational control as well as by regulated sigma(S) proteolysis, with various stress conditions differentially affecting these levels of sigma(S) control. Thus, a reduced growth rate results in increased rpoS transcription whereas high osmolarity, low temperature, acidic pH, and some late-log-phase signals stimulate the translation of already present rpoS mRNA. In addition, carbon starvation, high osmolarity, acidic pH, and high temperature result in stabilization of sigma(S), which, under nonstress conditions, is degraded with a half-life of one to several minutes. Important cis-regulatory determinants as well as trans-acting regulatory factors involved at all levels of sigma(S) regulation have been identified. rpoS translation is controlled by several proteins (Hfq and HU) and small regulatory RNAs that probably affect the secondary structure of rpoS mRNA. For sigma(S) proteolysis, the response regulator RssB is essential. RssB is a specific direct sigma(S) recognition factor, whose affinity for sigma(S) is modulated by phosphorylation of its receiver domain. RssB delivers sigma(S) to the ClpXP protease, where sigma(S) is unfolded and completely degraded. This review summarizes our current knowledge about the molecular functions and interactions of these components and tries to establish a framework for further research on the mode of multiple signal input into this complex regulatory system.
Collapse
Affiliation(s)
- Regine Hengge-Aronis
- Institut für Biologie, Mikrobiologie, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
30
|
Vilhelmsson O, Miller KJ. Synthesis of pyruvate dehydrogenase in Staphylococcus aureus is stimulated by osmotic stress. Appl Environ Microbiol 2002; 68:2353-8. [PMID: 11976108 PMCID: PMC127531 DOI: 10.1128/aem.68.5.2353-2358.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2001] [Accepted: 02/14/2002] [Indexed: 11/20/2022] Open
Abstract
The pyruvate dehydrogenase multienzyme complex (PDHC) was found to be upregulated by osmotic stress in the osmotolerant pathogen Staphylococcus aureus. Upregulation was detectable in the levels of both activity and protein and was judged to be about fourfold when sodium chloride was used to adjust the water activity (a(w)) of the growth medium to 0.94. The upregulation of the PDHC was also found to be humectant dependent and was greatest when impermeant, nonmetabolizable humectants were used to adjust a(w). Further experiments provided evidence that in addition to osmotic upregulation, the PDHC complex is also subject to catabolite repression, thus providing a possible explanation for the observation that high concentrations of carbohydrates are generally more inhibitory to the growth of this bacterial pathogen than are high concentrations of salts.
Collapse
Affiliation(s)
- Oddur Vilhelmsson
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | | |
Collapse
|
31
|
Sondej M, Weinglass AB, Peterkofsky A, Kaback HR. Binding of enzyme IIAGlc, a component of the phosphoenolpyruvate:sugar phosphotransferase system, to the Escherichia coli lactose permease. Biochemistry 2002; 41:5556-65. [PMID: 11969416 DOI: 10.1021/bi011990j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzyme IIA(Glc), encoded by the crr gene of the phosphoenolpyruvate:sugar phosphotransferase system, plays an important role in regulating intermediary metabolism in Escherichia coli ("catabolite repression"). One function involves inhibition of inducible transport systems ("inducer exclusion"), and with lactose permease, a galactoside is required for unphosphorylated IIA(Glc) binding to cytoplasmic loops IV/V and VI/VII [Sondej, M., Sun, J. et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 3525-3530]. With inside-out membrane vesicles containing the permease, [(125)I]IIA(Glc) binding promoted by melibiose exhibits an affinity (K(D)(IIA)) of approximately 1 microM and a stoichiometry of one mole of IIA(Glc) per six moles of lactose permease. Both the quantity of [(125)I]IIA(Glc) bound and the sugar concentration required for half-maximal IIA(Glc) binding (K(0.5)(IIA)(sug)) was measured for eight permease substrates. Differences in maximal IIA(Glc) binding are observed, and the K(0.5)(IIA)(sug) does not correlate with the affinity of LacY for sugar. Furthermore, K(0.5)(IIA)(sug) does not correlate with sugar affinities for various permease mutants. IIA(Glc) does not bind to a mutant (Cys154 --> Gly), which is locked in an outwardly facing conformation, binds with increased stoichiometry to mutant Lys131 --> Cys, and binds only weakly to two other mutants which appear to be predominantly in either an outwardly or an inwardly facing conformation. When the latter two mutations are combined, sugar-dependent IIA(Glc) binding returns to near wild-type levels. The findings suggest that binding of various substrates to lactose permease results in a collection of unique conformations, each of which presents a specific surface toward the inner face of the membrane that can interact to varying degrees with IIA(Glc).
Collapse
Affiliation(s)
- Melissa Sondej
- Howard Hughes Medical Institute, Department of Physiology, University of California Los Angeles, Los Angeles, California 90095-1662, USA
| | | | | | | |
Collapse
|
32
|
Kamionka A, Parche S, Nothaft H, Siepelmeyer J, Jahreis K, Titgemeyer F. The phosphotransferase system of Streptomyces coelicolor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2143-50. [PMID: 11985592 DOI: 10.1046/j.1432-1033.2002.02864.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the crr gene of Streptomyces coelicolor that encodes a homologue of enzyme IIAGlucose of Escherichia coli, which, as a component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays a key role in carbon regulation by triggering glucose transport, carbon catabolite repression, and inducer exclusion. As in E. coli, the crr gene of S. coelicolor is genetically associated with the ptsI gene that encodes the general phosphotransferase enzyme I. The gene product IIACrr was overproduced, purified, and polyclonal antibodies were obtained. Western blot analysis revealed that IIACrr is expressed in vivo. The functionality of IIACrr was demonstrated by phosphoenolpyruvate-dependent phosphorylation via enzyme I and the histidine-containing phosphoryl carrier protein HPr. Phosphorylation was abolished when His72, which corresponds to the catalytic histidine of E. coli IIAGlucose, was mutated. The capacity of IIACrr to operate in sugar transport was shown by complementation of the E. coli glucose-PTS. The striking functional resemblance between IIACrr and IIAGlucose was further demonstrated by its ability to confer inducer exclusion of maltose to E. coli. A specific interaction of IIACrr with the maltose permease subunit MalK from Salmonella typhimurium was uncovered by surface plasmon resonance. These data suggest that this IIAGlucose-like protein may be involved in carbon metabolism in S. coelicolor.
Collapse
Affiliation(s)
- Annette Kamionka
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Lehrstuhl für Mikrobiologie, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|