1
|
Reischl B, Schupp B, Palabikyan H, Steger-Mähnert B, Fink C, Rittmann SKMR. Quantitative analysis of amino acid excretion by Methanothermobacter marburgensis under N 2-fixing conditions. Sci Rep 2025; 15:3755. [PMID: 39885323 PMCID: PMC11782530 DOI: 10.1038/s41598-025-87686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Methanogenic archaea (methanogens) possess fascinating metabolic characteristics, such as the ability to fix molecular nitrogen (N2). Methanogens are of biotechnological importance due to the ability to produce methane (CH4) from molecular hydrogen (H2) and carbon dioxide (CO2) and to excrete proteinogenic amino acids. This study focuses on analyzing the link between biological methanogenesis and amino acid excretion under N2-fixing conditions. Among five hydrogenotrophic, autotrophic methanogens, Methanothermobacter marburgensis was prioritized and further cultivated in closed batch cultivation mode under N2-fixing conditions. M. marburgensis was grown on chemically defined minimal medium with different concentrations of ammonium in a H2/CO2/N2 atmosphere. This enabled the quantification of ammonia uptake, N2-fixation, amino acid excretion and the conversion of H2/CO2 to CH4. To quantify N2-fixation rates in a mass balance setting a novel method has been established. The method utilizes the pressure drop below a certain threshold pressure in closed batch cultivation mode - the threshold pressure for N2-fixation (THpN2fix). Using the THpN2fix method, volumetric N2-fixation rates of M. marburgensis as high as 0.91 mmol L-1 h-1 were determined. Excretion of amino acids was found with highest detected values of glutamic acid, alanine, glycine and asparagine. The highest total amino acid excretion of 7.5 µmol L-1 h-1 was detected with H2/CO2/N2 at an ammonium concentration of 40 mmol L-1. This study sheds light on the link between methanogenesis, biological N2-fixation, and proteinogenic amino acid excretion. The concomitant production of amino acids and CH4 could become of biotechnological relevance in an integrated approach coupling biomethanation and N2-fixation in a biorefinery concept.
Collapse
Affiliation(s)
- Barbara Reischl
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
- Arkeon GmbH, Tulln a.d. Donau, Austria
| | - Benjamin Schupp
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Hayk Palabikyan
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Barbara Steger-Mähnert
- BioOceanography and Marine Biology, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | | | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria.
- Arkeon GmbH, Tulln a.d. Donau, Austria.
| |
Collapse
|
2
|
Riyaz Z, Khan ST. Nitrogen fixation by methanogenic Archaea, literature review and DNA database-based analysis; significance in face of climate change. Arch Microbiol 2024; 207:6. [PMID: 39611976 DOI: 10.1007/s00203-024-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/30/2024]
Abstract
Archaea represents a significant population of up to 10% in soil microbial communities. The role of Archaea in soil is often overlooked mainly due to its unculturability. Among the three domains of life biological nitrogen fixation (BNF) is mainly a trait of Eubacteria and some Archaea. Archaea mediated processes like BNF may become even more important in the face of global Climate change. Although there are reports on nitrogen fixation by Archaea, to best of our knowledge there is no comprehensive report on BNF by Archaea under environmental stresses typical to climate change. Here we report a survey of literature and DNA database to study N2-fixation among Archaea. A total of 37 Archaea belonging to Methanogens of the phylum Euryarchaeota within the class Methanococcus, Methanomicrobia Methanobacteria, and Methanotrophic ANME2 lineages either contain genes for BNF or are known to fix atmospheric N2. Archaea were found to have their nif genes arranged as clusters of 6-8 genes in a single operon. The genes code for commonly found Mo-nitrogenase while in some archaea the genes for alternative metal nitrogenases like vnf were also found. The nifHDK gene similarity matrices show that Archaea shared the highest similarity with the nifHDK gene of anaerobic Clostridium beijerinckii. Although there are various theories about the origin of N2-fixation in Archaea, the most acceptable is the origin of N2-fixation first in bacteria and its subsequent transfer to Archaea. Since Archaea can survive under extreme environmental conditions their role in BNF should be studied especially in soil under environmental stress.
Collapse
Affiliation(s)
- Zubia Riyaz
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
3
|
Pessi IS, Delmont TO, Zehr JP, Hultman J. Discovery of Eremiobacterota with nifH homologues in tundra soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13277. [PMID: 38881156 PMCID: PMC11180709 DOI: 10.1111/1758-2229.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
We describe the genome of an Eremiobacterota population from tundra soil that contains the minimal set of nif genes needed to fix atmospheric N2. This putative diazotroph population, which we name Candidatus Lamibacter sapmiensis, links for the first time Eremiobacterota and N2 fixation. The integrity of the genome and its nif genes are well supported by both environmental and taxonomic signals. Ca. Lamibacter sapmiensis contains three nifH homologues and the complementary set of nifDKENB genes that are needed to assemble a functional nitrogenase. The putative diazotrophic role of Ca. Lamibacter sapmiensis is supported by the presence of genes that regulate N2 fixation and other genes involved in downstream processes such as ammonia assimilation. Similar to other Eremiobacterota, Ca. Lamibacter sapmiensis encodes the potential for atmospheric chemosynthesis via CO2 fixation coupled with H2 and CO oxidation. Interestingly, the presence of a N2O reductase indicates that this population could play a role as a N2O sink in tundra soils. Due to the lack of activity data, it remains uncertain if Ca. Lamibacter sapmiensis is able to assemble a functional nitrogenase and participate in N2 fixation. Confirmation of this ability would be a testament to the great metabolic versatility of Eremiobacterota, which appears to underlie their ecological success in cold and oligotrophic environments.
Collapse
Affiliation(s)
- Igor S. Pessi
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiHelsinkiFinland
- Marine and Freshwater SolutionsFinnish Environment Institute (Syke)HelsinkiFinland
| | | | - Jonathan P. Zehr
- Ocean Sciences DepartmentUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Jenni Hultman
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Sustainability Science (HELSUS)University of HelsinkiHelsinkiFinland
- Natural Resources UnitNatural Resources Institute Finland (Luke)HelsinkiFinland
| |
Collapse
|
4
|
Chanderban M, Hill CA, Dhamad AE, Lessner DJ. Expression of V-nitrogenase and Fe-nitrogenase in Methanosarcina acetivorans is controlled by molybdenum, fixed nitrogen, and the expression of Mo-nitrogenase. Appl Environ Microbiol 2023; 89:e0103323. [PMID: 37695043 PMCID: PMC10537573 DOI: 10.1128/aem.01033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023] Open
Abstract
All nitrogen-fixing bacteria and archaea (diazotrophs) use molybdenum (Mo) nitrogenase to reduce dinitrogen (N2) to ammonia, with some also containing vanadium (V) and iron-only (Fe) nitrogenases that lack Mo. Among diazotrophs, the regulation and usage of the alternative V-nitrogenase and Fe-nitrogenase in methanogens are largely unknown. Methanosarcina acetivorans contains nif, vnf, and anf gene clusters encoding putative Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase, respectively. This study investigated nitrogenase expression and growth by M. acetivorans in response to fixed nitrogen, Mo/V availability, and CRISPRi repression of the nif, vnf, and/or anf gene clusters. The availability of Mo and V significantly affected growth of M. acetivorans with N2 but not with NH4Cl. M. acetivorans exhibited the fastest growth rate and highest cell yield during growth with N2 in medium containing Mo, and the slowest growth in medium lacking Mo and V. qPCR analysis revealed the transcription of the nif operon is only moderately affected by depletion of fixed nitrogen and Mo, whereas vnf and anf transcription increased significantly when fixed nitrogen and Mo were depleted, with removal of Mo being key. Immunoblot analysis revealed Mo-nitrogenase is detected when fixed nitrogen is depleted regardless of Mo availability, while V-nitrogenase and Fe-nitrogenase are detected only in the absence of fixed nitrogen and Mo. CRISPRi repression studies revealed that V-nitrogenase and/or Fe-nitrogenase are required for Mo-independent diazotrophy, and unexpectedly that the expression of Mo-nitrogenase is also required. These results reveal that alternative nitrogenase production in M. acetivorans is tightly controlled and dependent on Mo-nitrogenase expression. IMPORTANCE Methanogens and closely related methanotrophs are the only archaea known or predicted to possess nitrogenase. Methanogens play critical roles in both the global biological nitrogen and carbon cycles. Moreover, methanogens are an ancient microbial lineage and nitrogenase likely originated in methanogens. An understanding of the usage and properties of nitrogenases in methanogens can provide new insight into the evolution of nitrogen fixation and aid in the development nitrogenase-based biotechnology. This study provides the first evidence that a methanogen can produce all three forms of nitrogenases, including simultaneously. The results reveal components of Mo-nitrogenase regulate or are needed to produce V-nitrogenase and Fe-nitrogenase in methanogens, a result not seen in bacteria. Overall, this study provides a foundation to understand the assembly, regulation, and activity of the alternative nitrogenases in methanogens.
Collapse
Affiliation(s)
- Melissa Chanderban
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| | - Christopher A. Hill
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| | - Ahmed E. Dhamad
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
- Department of Biological Sciences, Wasit University, Wasit, Iraq
| | - Daniel J. Lessner
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| |
Collapse
|
5
|
Comparative Transcriptomics Sheds Light on Remodeling of Gene Expression during Diazotrophy in the Thermophilic Methanogen Methanothermococcus thermolithotrophicus. mBio 2022; 13:e0244322. [PMID: 36409126 PMCID: PMC9765008 DOI: 10.1128/mbio.02443-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Some marine thermophilic methanogens are able to perform energy-consuming nitrogen fixation despite deriving only little energy from hydrogenotrophic methanogenesis. We studied this process in Methanothermococcus thermolithotrophicus DSM 2095, a methanogenic archaeon of the order Methanococcales that contributes to the nitrogen pool in some marine environments. We successfully grew this archaeon under diazotrophic conditions in both batch and fermenter cultures, reaching the highest cell density reported so far. Diazotrophic growth depended strictly on molybdenum and, in contrast to other diazotrophs, was not inhibited by tungstate or vanadium. This suggests an elaborate control of metal uptake and a specific metal recognition system for the insertion into the nitrogenase cofactor. Differential transcriptomics of M. thermolithotrophicus grown under diazotrophic conditions with ammonium-fed cultures as controls revealed upregulation of the nitrogenase machinery, including chaperones, regulators, and molybdate importers, as well as simultaneous upregulation of an ammonium transporter and a putative pathway for nitrate and nitrite utilization. The organism thus employs multiple synergistic strategies for uptake of nitrogen nutrients during the early exponential growth phase without altering transcription levels for genes involved in methanogenesis. As a counterpart, genes coding for transcription and translation processes were downregulated, highlighting the maintenance of an intricate metabolic balance to deal with energy constraints and nutrient limitations imposed by diazotrophy. This switch in the metabolic balance included unexpected processes, such as upregulation of the CRISPR-Cas system, probably caused by drastic changes in transcription levels of putative mobile and virus-like elements. IMPORTANCE The thermophilic anaerobic archaeon M. thermolithotrophicus is a particularly suitable model organism to study the coupling of methanogenesis to diazotrophy. Likewise, its capability of simultaneously reducing N2 and CO2 into NH3 and CH4 with H2 makes it a viable target for biofuel production. We optimized M. thermolithotrophicus cultivation, resulting in considerably higher cell yields and enabling the successful establishment of N2-fixing bioreactors. Improved understanding of the N2 fixation process would provide novel insights into metabolic adaptations that allow this energy-limited extremophile to thrive under diazotrophy, for instance, by investigating its physiology and uncharacterized nitrogenase. We demonstrated that diazotrophic growth of M. thermolithotrophicus is exclusively dependent on molybdenum, and complementary transcriptomics corroborated the expression of the molybdenum nitrogenase system. Further analyses of differentially expressed genes during diazotrophy across three cultivation time points revealed insights into the response to nitrogen limitation and the coordination of core metabolic processes.
Collapse
|
6
|
Bao J, de Dios Mateos E, Scheller S. Efficient CRISPR/Cas12a-Based Genome-Editing Toolbox for Metabolic Engineering in Methanococcus maripaludis. ACS Synth Biol 2022; 11:2496-2503. [PMID: 35730587 PMCID: PMC9295151 DOI: 10.1021/acssynbio.2c00137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The rapid-growing
and genetically tractable methanogen Methanococcus
maripaludis is a promising host organism
for the biotechnological conversion of carbon dioxide and renewable
hydrogen to fuels and value-added products. Expansion of its product
scope through metabolic engineering necessitates reliable and efficient
genetic tools, particularly for genome edits that affect the primary
metabolism and cell growth. Here, we have designed a genome-editing
toolbox by utilizing Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in combination with the homology-directed repair
machinery endogenously present in M. maripaludis. This toolbox can delete target genes with a success rate of up
to 95%, despite the hyperpolyploidy of M. maripaludis. For the purpose of demonstrating a large deletion, the M. maripaludis flagellum operon (∼8.9 kbp)
was replaced by the Escherichia coli β-glucuronidase gene. To facilitate metabolic engineering
and flux balancing in M. maripaludis, the relative strength of 15 different promoters was quantified
in the presence of two common growth substrates, either formate or
carbon dioxide and hydrogen. This CRISPR/LbCas12a toolbox can be regarded
as a reliable and quick method for genome editing in a methanogen.
Collapse
Affiliation(s)
- Jichen Bao
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-02150 Espoo, Finland
| | - Enrique de Dios Mateos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-02150 Espoo, Finland
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-02150 Espoo, Finland
| |
Collapse
|
7
|
The Oxoglutarate Binding Site and Regulatory Mechanism Are Conserved in Ammonium Transporter Inhibitors GlnKs from Methanococcales. Int J Mol Sci 2021; 22:ijms22168631. [PMID: 34445335 PMCID: PMC8395244 DOI: 10.3390/ijms22168631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Protein inhibition is a natural regulatory process to control cellular metabolic fluxes. PII-family signal-transducing effectors are in this matter key regulators of the nitrogen metabolism. Their interaction with their various targets is governed by the cellular nitrogen level and the energy charge. Structural studies on GlnK, a PII-family inhibitor of the ammonium transporters (Amt), showed that the T-loops responsible for channel obstruction are displaced upon the binding of 2-oxoglutarate, magnesium and ATP in a conserved cleft. However, GlnK from Methanocaldococcus jannaschii was shown to bind 2-oxoglutarate on the tip of its T-loop, causing a moderate disruption to GlnK-Amt interaction, raising the question if methanogenic archaea use a singular adaptive strategy. Here we show that membrane fractions of Methanothermococcus thermolithotrophicus released GlnKs only in the presence of Mg-ATP and 2-oxoglutarate. This observation led us to structurally characterize the two GlnK isoforms apo or in complex with ligands. Together, our results show that the 2-oxoglutarate binding interface is conserved in GlnKs from Methanococcales, including Methanocaldococcus jannaschii, emphasizing the importance of a free carboxy-terminal group to facilitate ligand binding and to provoke the shift of the T-loop positions.
Collapse
|
8
|
Composition and Activity of N2-Fixing Microorganisms in Mangrove Forest Soils. FORESTS 2021. [DOI: 10.3390/f12070822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mangrove forests are considered to be a highly productive ecosystem, but they are also generally nitrogen (N)-limited. Thus, soil N2 fixation can be important for the stability of both mangrove ecosystem functions and upland N supply. This study evaluates the N2 fixation activity and composition of relevant microorganisms in two coastal mangrove forests—the Guandu mangrove in an upstream estuary and the Bali mangrove in a downstream estuary—using the acetylene reduction method, real-time polymerase chain reaction, and next-generation sequencing. The results demonstrated that ambient nitrogenase activity was higher in downstream mangrove forests (13.2–15.6 nmol h−1 g−1 soil) than in upstream mangrove forests (0.2–1.4 nmol h−1 g−1 soil). However, both the maximum potential nitrogenase activity and nitrogenase gene (nifH gene) copy number were found to be higher in the upstream than in the downstream mangrove forests, implying that the nitrogenase activity and diazotrophic abundance may not necessarily be positively correlated. In addition, amended MoO4 (which inhibits the activity of sulfate-reducing bacteria in N2-fixation) yielded low nitrogenase activity, and sulfate-reducing bacteria made up 20–50% of the relative diazotrophic abundance in the mangrove forests, indicating that these bacteria might be the major active diazotrophs in this environment.
Collapse
|
9
|
Harris RL, Schuerger AC, Wang W, Tamama Y, Garvin ZK, Onstott TC. Transcriptional response to prolonged perchlorate exposure in the methanogen Methanosarcina barkeri and implications for Martian habitability. Sci Rep 2021; 11:12336. [PMID: 34117335 PMCID: PMC8196204 DOI: 10.1038/s41598-021-91882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Observations of trace methane (CH4) in the Martian atmosphere are significant to the astrobiology community given the overwhelming contribution of biological methanogenesis to atmospheric CH4 on Earth. Previous studies have shown that methanogenic Archaea can generate CH4 when incubated with perchlorates, highly oxidizing chaotropic salts which have been found across the Martian surface. However, the regulatory mechanisms behind this remain completely unexplored. In this study we performed comparative transcriptomics on the methanogen Methanosarcina barkeri, which was incubated at 30˚C and 0˚C with 10-20 mM calcium-, magnesium-, or sodium perchlorate. Consistent with prior studies, we observed decreased CH4 production and apparent perchlorate reduction, with the latter process proceeding by heretofore essentially unknown mechanisms. Transcriptomic responses of M. barkeri to perchlorates include up-regulation of osmoprotectant transporters and selection against redox-sensitive amino acids. Increased expression of methylamine methanogenesis genes suggest competition for H2 with perchlorate reduction, which we propose is catalyzed by up-regulated molybdenum-containing enzymes and maintained by siphoning diffused H2 from energy-conserving hydrogenases. Methanogenesis regulatory patterns suggest Mars' freezing temperatures alone pose greater constraints to CH4 production than perchlorates. These findings increase our understanding of methanogen survival in extreme environments and confers continued consideration of a potential biological contribution to Martian CH4.
Collapse
Affiliation(s)
- Rachel L Harris
- Department of Geosciences, Princeton University, Princeton, NJ, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Wei Wang
- Lewis-Sigler Institute for Integrative Genomics, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yuri Tamama
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Zachary K Garvin
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
10
|
Khan MA, Khan ST, Sequeira MC, Faheem SM, Rais N. Illumina sequencing of 16S rRNA genes reveals a unique microbial community in three anaerobic sludge digesters of Dubai. PLoS One 2021; 16:e0249023. [PMID: 33793629 PMCID: PMC8016227 DOI: 10.1371/journal.pone.0249023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
Understanding the microbial communities in anaerobic digesters, especially bacteria and archaea, is key to its better operation and regulation. Microbial communities in the anaerobic digesters of the Gulf region where climatic conditions and other factors may impact the incoming feed are not documented. Therefore, Archaeal and Bacterial communities of three full-scale anaerobic digesters, namely AD1, AD3, and AD5 of the Jebel Ali Sewage water Treatment Plant (JASTP) were analyzed by Illumina sequencing of 16S rRNA genes. Among bacteria, the most abundant genus was fermentative bacteria Acetobacteroides (Blvii28). Other predominant bacterial genera in the digesters included thermophilic bacteria (Fervidobacterium and Coprothermobacter) and halophilic bacteria like Haloterrigena and Sediminibacter. This can be correlated with the climatic condition in Dubai, where the bacteria in the incoming feed may be thermophilic or halophilic as much of the water used in the country is desalinated seawater. The predominant Archaea include mainly the members of the phyla Euryarchaeota and Crenarchaeota belonging to the genus Methanocorpusculum, Metallosphaera, Methanocella, and Methanococcus. The highest population of Methanocorpusculum (more than 50% of total Archaea), and other hydrogenotrophic archaea, is in agreement with the high population of bacterial genera Acetobacteroides (Blvii28) and Fervidobacterium, capable of fermenting organic substrates into acetate and H2. Coprothermobacter, which is known to improve protein degradation by establishing syntrophy with hydrogenotrophic archaea, is also one of the digesters’ dominant genera. The results suggest that the microbial community in three full-scale anaerobic digesters is different. To best of our knowledge this is the first detailed report from the UAE.
Collapse
Affiliation(s)
- Munawwar Ali Khan
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Shams Tabrez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- * E-mail:
| | - Milred Cedric Sequeira
- School of Life Sciences, Manipal Academy of Higher Education, Academic City, Dubai, United Arab Emirates
| | - Sultan Mohammad Faheem
- School of Life Sciences, Manipal Academy of Higher Education, Academic City, Dubai, United Arab Emirates
| | - Naushad Rais
- School of Life Sciences, Manipal Academy of Higher Education, Academic City, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Vo CH, Goyal N, Karimi IA, Kraft M. First Observation of an Acetate Switch in a Methanogenic Autotroph ( Methanococcus maripaludis S2). Microbiol Insights 2020; 13:1178636120945300. [PMID: 32843840 PMCID: PMC7416134 DOI: 10.1177/1178636120945300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
The transition from acetate production by a microorganism in its early growth phase to acetate re-uptake in its late growth phase has been termed acetate switch. It has been observed in several heterotrophic prokaryotes, but not in an autotroph. Furthermore, all reports hitherto have involved the tricarboxylic acid cycle. This study reports the first observation of acetate switch in a methanogenic autotroph Methanococcus maripaludis S2, which uses the Wolfe cycle for its anaerobic respiration. When grown in minimal medium with carbon dioxide as the sole carbon source, and either ammonium or dinitrogen as the sole nitrogen source, M. maripaludis S2 dissimilated acetate in the early growth phase and assimilated it back in the late growth phase. The acetate switch was more pronounced in the dinitrogen-grown cultures. We postulate that the acetate dissimilation in M. maripaludis S2 may serve as a metabolic outlet for the carbon overflow in the early growth phase, and the assimilation in the late growth phase may be due to the scarcity of the carbon source. Based on the primary and secondary protein structures, we propose that MMP0253 may function as the adenosine diphosphate (ADP)-forming acetyl-CoA synthetase to catalyse acetate formation from acetyl-CoA. To verify this, we produced MMP0253 via the ligation-independent cloning technique in Escherichia coli strain Rosetta (DE3) using pNIC28-Bsa4 as the vector. The recombinant protein showed catalytic activity, when added into a mixture of acetyl-CoA, ADP, and inorganic phosphate (Pi). The concentration profile of acetate, together with the enzymatic activity of MMP0253, shows that M. maripaludis S2 can produce acetate and exhibit an acetate switch.
Collapse
Affiliation(s)
- Chi Hung Vo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Cambridge Centre for Advanced Research and Education in Singapore Ltd, Singapore
| | - Nishu Goyal
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Iftekhar A Karimi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.,Cambridge Centre for Advanced Research and Education in Singapore Ltd, Singapore
| | - Markus Kraft
- Cambridge Centre for Advanced Research and Education in Singapore Ltd, Singapore.,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
12
|
Fernandez L, Peura S, Eiler A, Linz AM, McMahon KD, Bertilsson S. Diazotroph Genomes and Their Seasonal Dynamics in a Stratified Humic Bog Lake. Front Microbiol 2020; 11:1500. [PMID: 32714313 PMCID: PMC7341956 DOI: 10.3389/fmicb.2020.01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Aquatic N-fixation is generally associated with the growth and mass development of Cyanobacteria in nitrogen-deprived photic zones. However, sequenced genomes and environmental surveys suggest active aquatic N-fixation also by many non-cyanobacterial groups. Here, we revealed the seasonal variation and genomic diversity of potential N-fixers in a humic bog lake using metagenomic data and nif gene clusters analysis. Groups with diazotrophic operons were functionally divergent and included Cholorobi, Geobacter, Desulfobacterales, Methylococcales, and Acidobacteria. In addition to nifH (a gene that encodes the dinitrogenase reductase component of the molybdenum nitrogenase), we also identified sequences corresponding to vanadium and iron-only nitrogenase genes. Within the Chlorobi population, the nitrogenase (nifH) cluster was included in a well-structured retrotransposon. Furthermore, the presence of light-harvesting photosynthesis genes implies that anoxygenic photosynthesis may fuel nitrogen fixation under the prevailing low-irradiance conditions. The presence of rnf genes (related to the expression of H+/Na+-translocating ferredoxin: NAD+ oxidoreductase) in Methylococcales and Desulfobacterales suggests that other energy-generating processes may drive the costly N-fixation in the absence of photosynthesis. The highly reducing environment of the anoxic bottom layer of Trout Bog Lake may thus also provide a suitable niche for active N-fixers and primary producers. While future studies on the activity of these potential N-fixers are needed to clarify their role in freshwater nitrogen cycling, the metagenomic data presented here enabled an initial characterization of previously overlooked diazotrophs in freshwater biomes.
Collapse
Affiliation(s)
- Leyden Fernandez
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | - Alexandra M. Linz
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI, United States
| | - Katherine D. McMahon
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
13
|
Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, Wild C. Denitrification Aligns with N 2 Fixation in Red Sea Corals. Sci Rep 2019; 9:19460. [PMID: 31857601 PMCID: PMC6923481 DOI: 10.1038/s41598-019-55408-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Denitrification may potentially alleviate excess nitrogen (N) availability in coral holobionts to maintain a favourable N to phosphorous ratio in the coral tissue. However, little is known about the abundance and activity of denitrifiers in the coral holobiont. The present study used the nirS marker gene as a proxy for denitrification potential along with measurements of denitrification rates in a comparative coral taxonomic framework from the Red Sea: Acropora hemprichii, Millepora dichotoma, and Pleuractis granulosa. Relative nirS gene copy numbers associated with the tissues of these common corals were assessed and compared with denitrification rates on the holobiont level. In addition, dinitrogen (N2) fixation rates, Symbiodiniaceae cell density, and oxygen evolution were assessed to provide an environmental context for denitrification. We found that relative abundances of the nirS gene were 16- and 17-fold higher in A. hemprichii compared to M. dichotoma and P. granulosa, respectively. In concordance, highest denitrification rates were measured in A. hemprichii, followed by M. dichotoma and P. granulosa. Denitrification rates were positively correlated with N2 fixation rates and Symbiodiniaceae cell densities. Our results suggest that denitrification may counterbalance the N input from N2 fixation in the coral holobiont, and we hypothesize that these processes may be limited by photosynthates released by the Symbiodiniaceae.
Collapse
Affiliation(s)
- Arjen Tilstra
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, 28359, Germany.
| | - Yusuf C El-Khaled
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, 28359, Germany
| | - Florian Roth
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Nils Rädecker
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Claudia Pogoreutz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, 28359, Germany
| |
Collapse
|
14
|
Dekas AE, Fike DA, Chadwick GL, Green-Saxena A, Fortney J, Connon SA, Dawson KS, Orphan VJ. Widespread nitrogen fixation in sediments from diverse deep-sea sites of elevated carbon loading. Environ Microbiol 2018; 20:4281-4296. [PMID: 29968367 DOI: 10.1111/1462-2920.14342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 11/27/2022]
Abstract
Nitrogen fixation, the biological conversion of N2 to NH3 , is critical to alleviating nitrogen limitation in many marine ecosystems. To date, few measurements exist of N2 fixation in deep-sea sediments. Here, we conducted > 400 bottle incubations with sediments from methane seeps, whale falls and background sites off the western coast of the United States from 600 to 2893 m water depth to investigate the potential rates, spatial distribution and biological mediators of benthic N2 fixation. We found that N2 fixation was widespread, yet heterogeneously distributed with sediment depth at all sites. In some locations, rates exceeded previous measurements by > 10×, and provided up to 30% of the community anabolic growth requirement for nitrogen. Diazotrophic activity appeared to be inhibited by pore water ammonium: N2 fixation was only observed if incubation ammonium concentrations were ≤ 25 μM, and experimental additions of ammonium reduced diazotrophy. In seep sediments, N2 fixation was dependent on CH4 and coincident with sulphate reduction, consistent with previous work showing diazotrophy by microorganisms mediating sulphate-coupled methane oxidation. However, the pattern of diazotrophy was different in whale-fall and associated reference sediments, where it was largely unaffected by CH4 , suggesting catabolically different diazotrophs at these sites.
Collapse
Affiliation(s)
- Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David A Fike
- Department of Earth & Planetary Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Abigail Green-Saxena
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Julian Fortney
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Katherine S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
15
|
Grim SL, Dick GJ. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium. Front Microbiol 2016; 7:1546. [PMID: 27790189 PMCID: PMC5061849 DOI: 10.3389/fmicb.2016.01546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating redox gradients and nitrogen availability that occur in benthic mats over a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic cyanobacteria, modulating oxygen production. The genetic repertoire that underpins flexible oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to explore the regulation, evolutionary context, and biogeochemical implications of these co-occurring metabolisms in Earth history.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| |
Collapse
|
16
|
Goyal N, Zhou Z, Karimi IA. Metabolic processes of Methanococcus maripaludis and potential applications. Microb Cell Fact 2016; 15:107. [PMID: 27286964 PMCID: PMC4902934 DOI: 10.1186/s12934-016-0500-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
Methanococcus maripaludis is a rapidly growing, fully sequenced, genetically tractable model organism among hydrogenotrophic methanogens. It has the ability to convert CO2 and H2 into a useful cleaner energy fuel (CH4). In fact, this conversion enhances in the presence of free nitrogen as the sole nitrogen source due to prolonged cell growth. Given the global importance of GHG emissions and climate change, diazotrophy can be attractive for carbon capture and utilization applications from appropriately treated flue gases, where surplus hydrogen is available from renewable electricity sources. In addition, M. maripaludis can be engineered to produce other useful products such as terpenoids, hydrogen, methanol, etc. M. maripaludis with its unique abilities has the potential to be a workhorse like Escherichia coli and S. cerevisiae for fundamental and experimental biotechnology studies. More than 100 experimental studies have explored different specific aspects of the biochemistry and genetics of CO2 and N2 fixation by M. maripaludis. Its genome-scale metabolic model (iMM518) also exists to study genetic perturbations and complex biological interactions. However, a comprehensive review describing its cell structure, metabolic processes, and methanogenesis is still lacking in the literature. This review fills this crucial gap. Specifically, it integrates distributed information from the literature to provide a complete and detailed view for metabolic processes such as acetyl-CoA synthesis, pyruvate synthesis, glycolysis/gluconeogenesis, reductive tricarboxylic acid (RTCA) cycle, non-oxidative pentose phosphate pathway (NOPPP), nitrogen metabolism, amino acid metabolism, and nucleotide biosynthesis. It discusses energy production via methanogenesis and its relation to metabolism. Furthermore, it reviews taxonomy, cell structure, culture/storage conditions, molecular biology tools, genome-scale models, and potential industrial and environmental applications. Through the discussion, it develops new insights and hypotheses from experimental and modeling observations, and identifies opportunities for further research and applications.
Collapse
Affiliation(s)
- Nishu Goyal
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| | - Zhi Zhou
- />School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907 USA
| | - Iftekhar A. Karimi
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585 Singapore
| |
Collapse
|
17
|
Goyal N, Padhiary M, Karimi IA, Zhou Z. Flux measurements and maintenance energy for carbon dioxide utilization by Methanococcus maripaludis. Microb Cell Fact 2015; 14:146. [PMID: 26376868 PMCID: PMC4573941 DOI: 10.1186/s12934-015-0336-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The rapidly growing mesophilic methanogen Methanococcus maripaludis S2 has a unique ability to consume both CO2 and N2, the main components of a flue gas, and produce methane with H2 as the electron donor. The existing literature lacks experimental measurements of CO2 and H2 uptake rates and CH4 production rates on M. maripaludis. Furthermore, it lacks estimates of maintenance energies for use with genome-scale models. In this paper, we performed batch culture experiments on M. maripaludis S2 using CO2 as the sole carbon substrate to quantify three key extracellular fluxes (CO2, H2, and CH4) along with specific growth rates. For precise computation of these fluxes from experimental measurements, we developed a systematic process simulation approach. Then, using an existing genome-scale model, we proposed an optimization procedure to estimate maintenance energy parameters: growth associated maintenance (GAM) and non-growth associated maintenance (NGAM). RESULTS The measured extracellular fluxes for M. maripaludis showed excellent agreement with in silico predictions from a validated genome-scale model (iMM518) for NGAM = 7.836 mmol/gDCW/h and GAM = 27.14 mmol/gDCW. M. maripaludis achieved a CO2 to CH4 conversion yield of 70-95 % and a growth yield of 3.549 ± 0.149 g DCW/mol CH4 during the exponential phase. The ATP gain of 0.35 molATP/molCH4 for M. maripaludis, computed using NGAM, is in the acceptable range of 0.3-0.7 mol ATP/molCH4 reported for methanogens. Interestingly, the uptake distribution of amino acids, quantified using iMM518, confirmed alanine to be the most preferred amino acids for growth and methanogenesis. CONCLUSIONS This is the first study to report experimental gas consumption and production rates for the growth of M. maripaludis on CO2 and H2 in minimal media. A systematic process simulation and optimization procedure was successfully developed to precisely quantify extracellular fluxes along with cell growth and maintenance energy parameters. Our growth yields, ATP gain, and energy parameters fall within acceptable ranges known in the literature for hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Nishu Goyal
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mrutyunjay Padhiary
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.
| | - Iftekhar A Karimi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Zhi Zhou
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.
- Division of Environmental and Ecological Engineering and School of Civil Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
18
|
Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism. J Bacteriol 2015; 197:1690-9. [PMID: 25733617 DOI: 10.1128/jb.02611-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/24/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into aerobes. Here we show that the transition of Nif from anaerobic to aerobic metabolism was accompanied by both gene recruitment and gene loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes is strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protective mechanisms. Rather, gene recruitment was likely a response to more efficiently regulate Nif under oxic conditions that favor protein turnover.
Collapse
|
19
|
Goyal N, Widiastuti H, Karimi IA, Zhou Z. A genome-scale metabolic model of Methanococcus maripaludis S2 for CO2 capture and conversion to methane. MOLECULAR BIOSYSTEMS 2014; 10:1043-54. [PMID: 24553424 DOI: 10.1039/c3mb70421a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Methane is a major energy source for heating and electricity. Its production by methanogenic bacteria is widely known in nature. M. maripaludis S2 is a fully sequenced hydrogenotrophic methanogen and an excellent laboratory strain with robust genetic tools. However, a quantitative systems biology model to complement these tools is absent in the literature. To understand and enhance its methanogenesis from CO2, this work presents the first constraint-based genome-scale metabolic model (iMM518). It comprises 570 reactions, 556 distinct metabolites, and 518 genes along with gene-protein-reaction (GPR) associations, and covers 30% of open reading frames (ORFs). The model was validated using biomass growth data and experimental phenotypic studies from the literature. Its comparison with the in silico models of Methanosarcina barkeri, Methanosarcina acetivorans, and Sulfolobus solfataricus P2 shows M. maripaludis S2 to be a better organism for producing methane. Using the model, genes essential for growth were identified, and the efficacies of alternative carbon, hydrogen and nitrogen sources were studied. The model can predict the effects of reengineering M. maripaludis S2 to guide or expedite experimental efforts.
Collapse
Affiliation(s)
- Nishu Goyal
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576.
| | | | | | | |
Collapse
|
20
|
Fernandes GDC, Trarbach LJ, de Campos SB, Beneduzi A, Passaglia LMP. Alternative nitrogenase and pseudogenes: unique features of the Paenibacillus riograndensis nitrogen fixation system. Res Microbiol 2014; 165:571-80. [PMID: 24956360 DOI: 10.1016/j.resmic.2014.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
Abstract
Biological nitrogen fixation (BNF) is a tightly regulated process that is carried out by diazotrophic microorganisms. The regulatory mechanisms of BNF-related genes are well characterized in Gram-negative models, but they are poorly understood in Gram-positive bacteria. Paenibacillus riograndensis SBR5(T) is a Gram-positive, endospore-forming facultative aerobic diazotroph. Three clusters of BNF-related genes with dissimilar phylogenetic histories were identified in the P. riograndensis genome, and no regulatory genes were recognized. P. riograndensis nifH2 was considered inactive based on transcript and promoter analyses, whereas transcripts of nifH1 and anfH were induced upon nitrogen-limited conditions. The functionality of the alternative nitrogenase system was also validated by enzymatic activity analysis. Fragments upstream of the two active clusters seem to harbor primary functional promoter sequences, producing a constitutive expression pattern in Escherichia coli. Sequences upstream of the anf genes were not recognized by this heterologous host, indicating a very distinct promoter pattern. These results shed light upon the evolutionary history of nitrogen fixation genes in this Gram-positive bacterium and highlight the presence of novel regulatory elements that are yet to be described.
Collapse
Affiliation(s)
- Gabriela de C Fernandes
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil.
| | - Laura J Trarbach
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil.
| | - Samanta B de Campos
- Department of Genetics of Prokaryotes, Bielefeld University, Universitätsstraße 25, 33594 Bielefeld, Germany.
| | - Anelise Beneduzi
- Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), Rua Gonçalves Dias 570, 90130-060, Porto Alegre, RS, Brazil.
| | - Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, Caixa Postal 15.053, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Abstract
The model rumen Firmicutes organism Ruminococcus albus 8 was grown using ammonia, urea, or peptides as the sole nitrogen source; growth was not observed with amino acids as the sole nitrogen source. Growth of R. albus 8 on ammonia and urea showed the same growth rate (0.08 h(-1)) and similar maximum cell densities (for ammonia, the optical density at 600 nm [OD600] was 1.01; and for urea, the OD600 was 0.99); however, growth on peptides resulted in a nearly identical growth rate (0.09 h(-1)) and a lower maximum cell density (OD600 = 0.58). To identify differences in gene expression and enzyme activities, the transcript abundances of 10 different genes involved in nitrogen metabolism and specific enzyme activities were analyzed by harvesting mRNA and crude protein from cells at the mid- and late exponential phases of growth on the different N sources. Transcript abundances and enzyme activities varied according to nitrogen source, ammonia concentration, and growth phase. Growth of R. albus 8 on ammonia and urea was similar, with the only observed difference being an increase in urease transcript abundance and enzyme activity in urea-grown cultures. Growth of R. albus 8 on peptides showed a different nitrogen metabolism pattern, with higher gene transcript abundance levels of gdhA, glnA, gltB, amtB, glnK, and ureC, as well as higher activities of glutamate dehydrogenase and urease. These results demonstrate that ammonia, urea, and peptides can all serve as nitrogen sources for R. albus and that nitrogen metabolism genes and enzyme activities of R. albus 8 are regulated by nitrogen source and the level of ammonia in the growth medium.
Collapse
|
22
|
Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ. Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ Microbiol 2013; 16:3012-29. [PMID: 24107237 DOI: 10.1111/1462-2920.12247] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/24/2013] [Accepted: 08/09/2013] [Indexed: 11/29/2022]
Abstract
Nitrogen (N2) fixation was investigated at Mound 12, Costa Rica, to determine its spatial distribution and biogeochemical controls in deep-sea methane seep sediment. Using (15)N2 tracer experiments and isotope ratio mass spectrometry analysis, we observed that seep N2 fixation is methane-dependent, and that N2 fixation rates peak in a narrow sediment depth horizon corresponding to increased abundance of aggregates of anaerobic methanotrophic archaea (ANME-2) and sulfate-reducing bacteria (SRB). Using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS), we directly measured (15)N2 uptake by ANME-2/SRB aggregates (n = 26) and observed maximum (15)N incorporation within ANME-2-dominated areas of the aggregates, consistent with previous analyses. NanoSIMS analysis of single cells (n = 34) from the same microcosm experiment revealed no (15)N2 uptake. Together, these observations suggest that ANME-2, and possibly physically associated SRB, mediate the majority of new nitrogen production within the seep ecosystem. ANME-2 diazotrophy was observed while in association with members of two distinct orders of SRB: Desulfobacteraceae and Desulfobulbaceae. The rate of N2 fixation per unit volume biomass was independent of the identity of the associated SRB, aggregate size and morphology. Our results show that the distribution of seep N2 fixation is heterogeneous, laterally and with depth in the sediment, and is likely influenced by chemical gradients affecting the abundance and activity of ANME-2/SRB aggregates.
Collapse
Affiliation(s)
- Anne E Dekas
- California Institute of Technology, Pasadena, CA, 91106, USA
| | | | | | | | | |
Collapse
|
23
|
Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. ISME JOURNAL 2013; 8:150-63. [PMID: 24008326 DOI: 10.1038/ismej.2013.147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 11/09/2022]
Abstract
Diverse associations between methanotrophic archaea (ANME) and sulfate-reducing bacterial groups (SRB) often co-occur in marine methane seeps; however, the ecophysiology of these different symbiotic associations has not been examined. Here, we applied a combination of molecular, geochemical and Fluorescence in situ hybridization (FISH) coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS) analyses of in situ seep sediments and methane-amended sediment incubations from diverse locations (Eel River Basin, Hydrate Ridge and Costa Rican Margin seeps) to investigate the distribution and physiology of a newly identified subgroup of the Desulfobulbaceae (seepDBB) found in consortia with ANME-2c archaea, and compared these with the more commonly observed associations between the same ANME partner and the Desulfobacteraceae (DSS). FISH analyses revealed aggregates of seepDBB cells in association with ANME-2 from both environmental samples and laboratory incubations that are distinct in their structure relative to co-occurring ANME/DSS consortia. ANME/seepDBB aggregates were most abundant in shallow sediment depths below sulfide-oxidizing microbial mats. Depth profiles of ANME/seepDBB aggregate abundance revealed a positive correlation with elevated porewater nitrate relative to ANME/DSS aggregates in all seep sites examined. This relationship with nitrate was supported by sediment microcosm experiments, in which the abundance of ANME/seepDBB was greater in nitrate-amended incubations relative to the unamended control. FISH-NanoSIMS additionally revealed significantly higher (15)N-nitrate incorporation levels in individual aggregates of ANME/seepDBB relative to ANME/DSS aggregates from the same incubation. These combined results suggest that nitrate is a geochemical effector of ANME/seepDBB aggregate distribution, and provides a unique niche for these consortia through their utilization of a greater range of nitrogen substrates than the ANME/DSS.
Collapse
Affiliation(s)
- A Green-Saxena
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - A E Dekas
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - N F Dalleska
- Global Environmental Center, California Institute of Technology, Pasadena, CA, USA
| | - V J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
24
|
Siegert M, Taubert M, Seifert J, von Bergen-Tomm M, Basen M, Bastida F, Gehre M, Richnow HH, Krüger M. The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition. FEMS Microbiol Ecol 2013; 86:231-45. [DOI: 10.1111/1574-6941.12156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/16/2013] [Accepted: 05/29/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Michael Siegert
- Bundesanstalt für Geowissenschaften und Rohstoffe Hannover; Hannover; Germany
| | - Martin Taubert
- School of Environmental Sciences; University of East Anglia; Norwich; UK
| | - Jana Seifert
- Institute of Animal Nutrition; University of Hohenheim; Stuttgart; Germany
| | | | - Mirko Basen
- Max-Planck-Institut für Marine Mikrobiologie; Bremen; Germany
| | - Felipe Bastida
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Matthias Gehre
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Martin Krüger
- Bundesanstalt für Geowissenschaften und Rohstoffe Hannover; Hannover; Germany
| |
Collapse
|
25
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
26
|
Atomi H, Imanaka T, Fukui T. Overview of the genetic tools in the Archaea. Front Microbiol 2012; 3:337. [PMID: 23060865 PMCID: PMC3462420 DOI: 10.3389/fmicb.2012.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/01/2012] [Indexed: 01/17/2023] Open
Abstract
This section provides an overview of the genetic systems developed in the Archaea. Genetic manipulation is possible in many members of the halophiles, methanogens, Sulfolobus, and Thermococcales. We describe the selection/counterselection principles utilized in each of these groups, which consist of antibiotics and their resistance markers, and auxotrophic host strains and complementary markers. The latter strategy utilizes techniques similar to those developed in yeast. However, Archaea are resistant to many of the antibiotics routinely used for selection in the Bacteria, and a number of strategies specific to the Archaea have been developed. In addition, examples utilizing the genetic systems developed for each group will be briefly described.
Collapse
Affiliation(s)
- Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku Kyoto, Japan ; JST, CREST, Sanbancho, Chiyoda-ku Tokyo, Japan
| | | | | |
Collapse
|
27
|
Huergo LF, Pedrosa FO, Muller-Santos M, Chubatsu LS, Monteiro RA, Merrick M, Souza EM. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. MICROBIOLOGY-SGM 2012; 158:176-190. [PMID: 22210804 DOI: 10.1099/mic.0.049783-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fixation of atmospheric nitrogen by the prokaryotic enzyme nitrogenase is an energy- expensive process and consequently it is tightly regulated at a variety of levels. In many diazotrophs this includes post-translational regulation of the enzyme's activity, which has been reported in both bacteria and archaea. The best understood response is the short-term inactivation of nitrogenase in response to a transient rise in ammonium levels in the environment. A number of proteobacteria species effect this regulation through reversible ADP-ribosylation of the enzyme, but other prokaryotes have evolved different mechanisms. Here we review current knowledge of post-translational control of nitrogenase and show that, for the response to ammonium, the P(II) signal transduction proteins act as key players.
Collapse
Affiliation(s)
- Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Marcelo Muller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Leda S Chubatsu
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Rose A Monteiro
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Mike Merrick
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, UK
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| |
Collapse
|
28
|
Dekas AE, Poretsky RS, Orphan VJ. Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia. Science 2009; 326:422-6. [DOI: 10.1126/science.1178223] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Akentieva N. Formation of a cross-linking complex of dinitrogenase reductase-activating glycohydrolase (DRAG) with membrane proteins from Rhodospirillum rubrum chromatophores. BIOCHEMISTRY (MOSCOW) 2008; 73:171-7. [PMID: 18298373 DOI: 10.1134/s0006297908020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Association of dinitrogenase reductase-activating glycohydrolase (DRAG) with membrane proteins of chromatophores has been investigated. The formation of a multicomponent complex between DRAG and membrane proteins was demonstrated in the presence of glutaraldehyde and EDC/NHS (N-(3-dimethylaminopropyl)-N -ethylcarbodiimide hydrochloride/hydroxy-2,5-dioxopyrrolidine-3-sulfonic acid sodium salt). Complex formation was observed both in native chromatophore membrane and in chromatophores treated with 0.5 M NaCl in the presence of homogeneous DRAG and glutaraldehyde in cross-reaction. The molecular weight of the complex was around 200 kD, which is consistent with the association of DRAG with three or more chromatophore membrane proteins. A specific complex with molecular weight of about 75 kD was formed only in the presence of EDC/NHS in the cross-linking reaction. It was demonstrated that ammonium transport protein and P11 protein are possible candidates for association with DRAG in chromatophore membranes.
Collapse
Affiliation(s)
- N Akentieva
- Washington University in Saint Louis, Saint Louis, MO 63110, USA.
| |
Collapse
|
30
|
Dodsworth JA, Leigh JA. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein. Biochem Biophys Res Commun 2007; 364:378-82. [PMID: 17950693 DOI: 10.1016/j.bbrc.2007.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 10/07/2007] [Indexed: 11/25/2022]
Abstract
Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI(1,2) binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI(1,2) binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI(1,2), decreasing its inhibitory effect. NifI(1,2) prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI(1,2) was unable to bind to an AlF4--stabilized Fe protein:MoFe protein complex. NifI(1,2) inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI(1,2) competes with the Fe protein for binding to MoFe protein and prevents electron transfer.
Collapse
Affiliation(s)
- Jeremy A Dodsworth
- Department of Microbiology, University of Washington, P.O. Box 357242, Seattle, WA 98195-7242, USA
| | | |
Collapse
|
31
|
Abstract
A wide range of Bacteria and Archaea sense cellular 2-oxoglutarate (2OG) as an indicator of nitrogen limitation. 2OG sensor proteins are varied, but most of those studied belong to the PII superfamily. Within the PII superfamily, GlnB and GlnK represent a widespread family of homotrimeric proteins (GlnB-K) that bind and respond to 2OG and ATP. In some bacterial phyla, GlnB-K proteins are covalently modified, depending on enzymes that sense cellular glutamine as an indicator of nitrogen sufficiency. GlnB-K proteins are central clearing houses of nitrogen information and bind and modulate a variety of nitrogen assimilation regulators and enzymes. NifI(1) and NifI(2) comprise a second widespread family of PII proteins (NifI) that are heteromultimeric, respond to 2OG and ATP, and bind and regulate dinitrogenase in Euryarchaeota and many Bacteria.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, Washington 98195-7242, USA.
| | | |
Collapse
|
32
|
Andersson AF, Lundgren M, Eriksson S, Rosenlund M, Bernander R, Nilsson P. Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biol 2006; 7:R99. [PMID: 17067383 PMCID: PMC1794556 DOI: 10.1186/gb-2006-7-10-r99] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 10/11/2006] [Accepted: 10/26/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcript half-lives differ between organisms, and between groups of genes within the same organism. The mechanisms underlying these differences are not clear, nor are the biochemical properties that determine the stability of a transcript. To address these issues, genome-wide mRNA decay studies have been conducted in eukaryotes and bacteria. In contrast, relatively little is known about RNA stability in the third domain of life, Archaea. Here, we present a microarray-based analysis of mRNA half-lives in the hyperthermophilic crenarchaea Sulfolobus solfataricus and Sulfolobus acidocaldarius, constituting the first genome-wide study of RNA decay in archaea. RESULTS The two transcriptomes displayed similar half-life distributions, with medians of about five minutes. Growth-related genes, such as those involved in transcription, translation and energy production, were over-represented among unstable transcripts, whereas uncharacterized genes were over-represented among the most stable. Half-life was negatively correlated with transcript abundance and, unlike the situation in other organisms, also negatively correlated with transcript length. CONCLUSION The mRNA half-life distribution of Sulfolobus species is similar to those of much faster growing bacteria, contrasting with the earlier observation that median mRNA half-life is proportional to the minimal length of the cell cycle. Instead, short half-lives may be a general feature of prokaryotic transcriptomes, possibly related to the absence of a nucleus and/or more limited post-transcriptional regulatory mechanisms. The pattern of growth-related transcripts being among the least stable in Sulfolobus may also indicate that the short half-lives reflect a necessity to rapidly reprogram gene expression upon sudden changes in environmental conditions.
Collapse
Affiliation(s)
- Anders F Andersson
- Department of Gene Technology, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720-4767, USA
| | - Magnus Lundgren
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Stefan Eriksson
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Magnus Rosenlund
- Department of Mathematics, KTH - Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Rolf Bernander
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Peter Nilsson
- Department of Gene Technology, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
33
|
Heinrich A, Woyda K, Brauburger K, Meiss G, Detsch C, Stülke J, Forchhammer K. Interaction of the membrane-bound GlnK-AmtB complex with the master regulator of nitrogen metabolism TnrA in Bacillus subtilis. J Biol Chem 2006; 281:34909-17. [PMID: 17001076 DOI: 10.1074/jbc.m607582200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII proteins are widespread and highly conserved signal transduction proteins occurring in bacteria, Archaea, and plants and play pivotal roles in controlling nitrogen assimilatory metabolism. This study reports on biochemical properties of the PII-homologue GlnK (originally termed NrgB) in Bacillus subtilis (BsGlnK). Like other PII proteins, the native BsGlnK protein has a trimeric structure and readily binds ATP in the absence of divalent cations, whereas 2-oxoglutarate is only weakly bound. In contrast to other PII-like proteins, Mg2+ severely affects its ATP-binding properties. BsGlnK forms a tight complex with the membrane-bound ammonium transporter AmtB (NrgA), from which it can be relieved by millimolar concentrations of ATP. Immunoprecipitation and co-localization experiments identified a novel interaction between the BsGlnK-AmtB complex and the major transcription factor of nitrogen metabolism, TnrA. In vitro in the absence of ATP, TnrA is completely tethered to membrane (AmtB)-bound GlnK, whereas in extracts from BsGlnK- or AmtB-deficient cells, TnrA is entirely soluble. The presence of 4 mm ATP leads to concomitant solubilization of BsGlnK and TnrA. This ATP-dependent membrane re-localization of TnrA by BsGlnK/AmtB may present a novel mechanism to control the global nitrogen-responsive transcription regulator TnrA in B. subtilis under certain physiological conditions.
Collapse
Affiliation(s)
- Annette Heinrich
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Enkh-Amgalan J, Kawasaki H, Oh-oka H, Seki T. Cloning and characterization of a novel gene involved in nitrogen fixation in Heliobacterium chlorum: a possible regulatory gene. Arch Microbiol 2006; 186:327-37. [PMID: 16932909 DOI: 10.1007/s00203-006-0148-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 05/19/2006] [Accepted: 07/10/2006] [Indexed: 11/25/2022]
Abstract
In the present study, the transcriptional properties of the nitrogen fixation gene cluster of Hbt. chlorum, a strictly anaerobic, gram-positive, phototrophic bacterium, were explored. The cluster consisted of eleven genes in the same orientation in the order nifI ( 1 ) , nifI ( 2 ) , nifH, nifD, nifK, nifE, nifN, nifX, fdx, nifB, and nifV as detected previously. An open reading frame (orf1) preceding these genes was revealed by further cloning. The orf1 was co-transcribed with downstream nif genes in a single polycistronic transcript, the transcription start site (TSS) was located upstream of the orf1, and a putative promoter was identified 10 bp preceding the TSS. Unlike most diazotrophs which have a sigma(54)-dependent -24/-12 promoter, the promoter was similar to the -35/-10 E. coli promoter. The orf1 had no nif homolog in DNA databases, and the highest level of identity (27% at amino acid level) was found with hutP, a positive regulatory gene of the histidine utilization (hut) operon in B. subtilis. Analogous to the regulatory mechanism of the hut operon in B. subtilis, it is conceivable that the orf1 product interacts with the terminator-like structure located downstream of the orf1 during N-deficient condition and prevents transcription termination; thus, the transcription continues into the nif structural genes.
Collapse
Affiliation(s)
- Jigjiddorj Enkh-Amgalan
- The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 560-0871, Japan
| | | | | | | |
Collapse
|
35
|
Dodsworth JA, Leigh JA. Regulation of nitrogenase by 2-oxoglutarate-reversible, direct binding of a PII-like nitrogen sensor protein to dinitrogenase. Proc Natl Acad Sci U S A 2006; 103:9779-84. [PMID: 16777963 PMCID: PMC1502530 DOI: 10.1073/pnas.0602278103] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Posttranslational regulation of nitrogenase, or switch-off, in the methanogenic archaeon Methanococcus maripaludis requires both nifI(1) and nifI(2), which encode members of the PII family of nitrogen-regulatory proteins. Previous work demonstrated that nitrogenase activity in cell extracts was inhibited in the presence of NifI(1) and NifI(2), and that 2-oxoglutarate (2OG), a potential signal of nitrogen limitation, relieved this inhibition. To further explore the role of the NifI proteins in switch-off, we found proteins that interact with NifI(1) and NifI(2) and determined whether 2OG affected these interactions. Anaerobic purification of His-tagged NifI(2) resulted in copurification of NifI(1) and the dinitrogenase subunits NifD and NifK, and 2OG or a deletion mutation affecting the T-loop of NifI(2) prevented copurification of dinitrogenase but did not affect copurification of NifI(1). Similar results were obtained with His-tagged NifI(1). Gel-filtration chromatography demonstrated an interaction between purified NifI(1,2) and dinitrogenase that was inhibited by 2OG. The NifI proteins themselves formed a complex of approximately 85 kDa, which appeared to further oligomerize in the presence of 2OG. NifI(1,2) inhibited activity of purified nitrogenase when present in a 1:1 molar ratio to dinitrogenase, and 2OG fully relieved this inhibition. These results suggest a model for switch-off of nitrogenase activity, where direct interaction of a NifI(1,2) complex with dinitrogenase causes inhibition, which is relieved by 2OG. The presence of nifI(1) and nifI(2) in the nif operons of all nitrogen-fixing Archaea and some anaerobic Bacteria suggests that this mode of nitrogenase regulation may operate in a wide variety of diazotrophs.
Collapse
Affiliation(s)
- Jeremy A. Dodsworth
- Department of Microbiology, University of Washington, Box 357242, 1959 N.E. Pacific Street, Seattle, WA 98195
| | - John A. Leigh
- Department of Microbiology, University of Washington, Box 357242, 1959 N.E. Pacific Street, Seattle, WA 98195
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Klassen G, Souza EM, Yates MG, Rigo LU, Costa RM, Inaba J, Pedrosa FO. Nitrogenase switch-off by ammonium ions in Azospirillum brasilense requires the GlnB nitrogen signal-transducing protein. Appl Environ Microbiol 2005; 71:5637-41. [PMID: 16151168 PMCID: PMC1214662 DOI: 10.1128/aem.71.9.5637-5641.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase activity in several diazotrophs is switched off by ammonium and reactivated after consumption. The signaling pathway to this system in Azospirillum brasilense is not understood. We show that ammonium-dependent switch-off through ADP-ribosylation of Fe protein was partial in a glnB mutant of A. brasilense but absent in a glnB glnZ double mutant. Triggering of inactivation by anaerobic conditions was not affected in either mutant. The results suggest that glnB is necessary for full ammonium-dependent nitrogenase switch-off in A. brasilense.
Collapse
Affiliation(s)
- Giseli Klassen
- Universidade Federal do Paraná, Departamento de Bioquímica e Biologia Molecular, Caixa Postal 19046 CEP-81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Javelle A, Merrick M. Complex formation between AmtB and GlnK: an ancestral role in prokaryotic nitrogen control. Biochem Soc Trans 2005; 33:170-2. [PMID: 15667297 DOI: 10.1042/bst0330170] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ammonium transport proteins belonging to the Amt family are ubiquitous in prokaryotes. In Escherichia coli, the AmtB protein and the associated P(II) signal transduction protein (GlnK) have recently been recognized as an ammonium sensory system that effectively couples the intracellular nitrogen regulation (Ntr) system to external changes in ammonium availability. Given the almost invariant coupling of AmtB and GlnK in bacteria and archaea it seems probable that these two proteins may constitute an ancestral nitrogen-responsive system that has been coupled with a variety of unrelated nitrogen regulatory processes, which are now found in prokaryotes. The multiplicity of P(II) proteins could therefore be considered to have evolved from an ancestral GlnK-like protein and to have subsequently been adapted to control many other aspects of nitrogen metabolism.
Collapse
Affiliation(s)
- A Javelle
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | | |
Collapse
|
38
|
Ehlers C, Veit K, Gottschalk G, Schmitz RA. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:143-50. [PMID: 15803652 PMCID: PMC2685556 DOI: 10.1155/2002/362813] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon.
Collapse
Affiliation(s)
- Claudia Ehlers
- Abteilung Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik der Georg-August-Universität, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Katharina Veit
- Abteilung Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik der Georg-August-Universität, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Gerhard Gottschalk
- Abteilung Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik der Georg-August-Universität, Grisebachstr. 8, 37077 Göttingen, Germany
- Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik der Georg-August-Universität, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Ruth A. Schmitz
- Abteilung Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik der Georg-August-Universität, Grisebachstr. 8, 37077 Göttingen, Germany
- Corresponding author ()
| |
Collapse
|
39
|
Dodsworth JA, Cady NC, Leigh JA. 2-Oxoglutarate and the PII homologues NifI1and NifI2regulate nitrogenase activity in cell extracts ofMethanococcus maripaludis. Mol Microbiol 2005; 56:1527-38. [PMID: 15916603 DOI: 10.1111/j.1365-2958.2005.04621.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Post-translational regulation of nitrogen fixation, or switch-off, in the methanogenic archaeon Methanococcus maripaludis does not involve detectable covalent modification of the dinitrogenase reductase as in some bacteria, and the genes encoding the PII homologues NifI(1) and NifI(2) are both required, indicating a novel mechanism. To further understand the mechanism of switch-off, we assayed nitrogenase activity in cell extracts from wild-type and nifI mutant strains in the absence or presence of potential signals of nitrogen status. Activity in extracts from a DeltanifI(1)nifI(2) strain was sixfold higher than in extracts from wild-type cells. Addition of 2-oxoglutarate to wild-type extracts enhanced activity up to fivefold, a level similar to that observed in DeltanifI(1)nifI(2) extracts. 2-Oxoglutarate did not affect activity in DeltanifI(1)nifI(2) or single nifI mutant extracts. Furthermore, extracts from genetically complimented nifI mutants regained wild-type characteristics, indicating an in vitro correlation with in vivo effects. Extraction and quantification of 2-oxoglutarate indicated concentrations 10-fold higher in nitrogen-fixing cells than in switched-off and ammonium-grown cells. We propose a model for switch-off where the NifI proteins have an inhibitory effect on nitrogenase activity that is counteracted by high levels of 2-oxoglutarate, which acts as a signal of nitrogen limitation.
Collapse
Affiliation(s)
- Jeremy A Dodsworth
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
40
|
Cabello P, Roldán MD, Moreno-Vivián C. Nitrate reduction and the nitrogen cycle in archaea. MICROBIOLOGY-SGM 2005; 150:3527-3546. [PMID: 15528644 DOI: 10.1099/mic.0.27303-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nitrogen cycle (N-cycle) in the biosphere, mainly driven by prokaryotes, involves different reductive or oxidative reactions used either for assimilatory purposes or in respiratory processes for energy conservation. As the N-cycle has important agricultural and environmental implications, bacterial nitrogen metabolism has become a major research topic in recent years. Archaea are able to perform different reductive pathways of the N-cycle, including both assimilatory processes, such as nitrate assimilation and N(2) fixation, and dissimilatory reactions, such as nitrate respiration and denitrification. However, nitrogen metabolism is much less known in archaea than in bacteria. The availability of the complete genome sequences of several members of the eury- and crenarchaeota has enabled new approaches to the understanding of archaeal physiology and biochemistry, including metabolic reactions involving nitrogen compounds. Comparative studies reveal that significant differences exist in the structure and regulation of some enzymes involved in nitrogen metabolism in archaea, giving rise to important conclusions and new perspectives regarding the evolution, function and physiological relevance of the different N-cycle processes. This review discusses the advances that have been made in understanding nitrate reduction and other aspects of the inorganic nitrogen metabolism in archaea.
Collapse
Affiliation(s)
- Purificación Cabello
- Departamento de Biología Vegetal, Área de Fisiología Vegetal, Universidad de Córdoba, Spain
| | - M Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1a planta, Campus Universitario de Rabanales, Universidad de Córdoba, 14071-Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1a planta, Campus Universitario de Rabanales, Universidad de Córdoba, 14071-Córdoba, Spain
| |
Collapse
|
41
|
Ehlers C, Weidenbach K, Veit K, Deppenmeier U, Metcalf WW, Schmitz RA. Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1. Mol Genet Genomics 2005; 273:290-8. [PMID: 15824904 DOI: 10.1007/s00438-005-1128-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 02/08/2005] [Indexed: 11/25/2022]
Abstract
The methanogenic archaeon Methanosarcina mazei strain Gö1 has so far proven to be genetically intractable due to its low plating efficiency on solid medium and the lack of an effective transformation method. Here, we report the first significant improvement in plating efficiency (up to 10%), which was achieved by (1) selecting for a spontaneous mutant of M. mazei that shows significantly higher resistance to mechanical stress during spreading an agar plates, and (2) plating the cells in 0.5% top agar with trimethylamine as a carbon and energy source under a H2S-containing atmosphere (0.1%). Using this mutant we succeeded in establishing a liposome-mediated transformation protocol, which for the first time allowed genetic manipulation of the M. mazei Gö1 strain. We further report on the construction of the first chromosomal deletion mutant of M. mazei by means of homologous recombination. Characterization of this mutant strain revealed that M. mazei cells lacking a functional glnK1-gene exhibited a partial growth defect under nitrogen limitation when molecular nitrogen was used as the sole nitrogen source. Quantitative RT-PCR analysis, however, showed that genes involved in nitrogen assimilation or nitrogen fixation are transcribed in the glnK1 mutant as in the wild type. Thus, we propose that the archaeal GlnK1 protein is not directly involved in the transcriptional regulation of genes involved in nitrogen metabolism, but rather affects their protein products directly.
Collapse
Affiliation(s)
- Claudia Ehlers
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Ehlers C, Weidenbach K, Veit K, Forchhammer K, Schmitz RA. Unique mechanistic features of post-translational regulation of glutamine synthetase activity inMethanosarcina mazeistrain Gö1 in response to nitrogen availability. Mol Microbiol 2005; 55:1841-54. [PMID: 15752204 DOI: 10.1111/j.1365-2958.2005.04511.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PII-like signal transduction proteins are found in all three domains of life and have been shown to play key roles in the control of bacterial nitrogen assimilation. This communication reports the first target protein of an archaeal PII-like protein, representing a novel PII receptor. The GlnK(1) protein of the methanogenic archaeon Methanosarcina mazei strain Go1 interacts and forms stable complexes with glutamine synthetase (GlnA(1)). Complex formation with GlnK(1) in the absence of metabolites inhibits the activity of GlnA(1). On the other hand, the activity of this enzyme is directly stimulated by the effector molecule 2-oxoglutarate. Moreover, 2-oxoglutarate antagonized the inhibitory effects of GlnK(1) on GlnA(1) activity but did not prevent GlnK(1)/GlnA(1) complex formation. On the basis of these findings, we hypothesize that besides the dominant effector molecule 2-oxoglutarate, the nitrogen sensor GlnK(1) allows finetuning control of the glutamine synthetase activity under changing nitrogen availabilities and propose the following model. (i) Under nitrogen limitation, increasing concentrations of 2-oxoglutarate stimulate maximal GlnA(1) activity and transform GlnA(1) into an activated conformation, which prevents inhibition by GlnK(1). (ii) Upon a shift to nitrogen sufficiency after a period of nitrogen limitation, GlnA(1) activity is reduced by decreasing internal 2-oxoglutarate concentrations through diminished direct activation and by GlnK(1) inhibition.
Collapse
Affiliation(s)
- Claudia Ehlers
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
43
|
Lie TJ, Wood GE, Leigh JA. Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators. J Biol Chem 2004; 280:5236-41. [PMID: 15590692 DOI: 10.1074/jbc.m411778200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The methanogenic archaean Methanococcus maripaludis can use ammonia, alanine, or dinitrogen as a nitrogen source for growth. The euryarchaeal nitrogen repressor NrpR controls the expression of the nif (nitrogen fixation) operon, resulting in full repression with ammonia, intermediate repression with alanine, and derepression with dinitrogen. NrpR binds to two tandem operators in the nif promoter region, nifOR(1) and nifOR(2). Here we have undertaken both in vivo and in vitro approaches to study the way in which NrpR, nifOR(1), nifOR(2), and the effector 2-oxoglutarate (2OG) combine to regulate nif expression, leading to a comprehensive understanding of this archaeal regulatory system. We show that NrpR binds as a dimer to nifOR(1) and cooperatively as two dimers to both operators. Cooperative binding occurs only with both operators present. nifOR(1) has stronger binding and by itself can mediate the repression of nif transcription during growth on ammonia, unlike the weakly binding nifOR(2). However, nifOR(2) in combination with nifOR(1) is critical for intermediate repression during growth on alanine. Accordingly, NrpR binds to both operators together with higher affinity than to nifOR(1) alone. NrpR responds directly to 2OG, which weakens its binding to the operators. Hence, 2OG is an intracellular indicator of nitrogen deficiency and acts as an inducer of nif transcription via NrpR. This model is upheld by the recent finding (J. A. Dodsworth and J. A. Leigh, submitted for publication) in our laboratory that 2OG levels in M. maripaludis vary with growth on different nitrogen sources.
Collapse
Affiliation(s)
- Thomas J Lie
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
44
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Heinrich A, Maheswaran M, Ruppert U, Forchhammer K. The Synechococcus elongatus P signal transduction protein controls arginine synthesis by complex formation with N-acetyl-L-glutamate kinase. Mol Microbiol 2004; 52:1303-14. [PMID: 15165234 DOI: 10.1111/j.1365-2958.2004.04058.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This communication identifies, for the first time, a receptor protein for signal perception from the P(II) signal transduction protein in the cyanobacterium Synechococcus elongatus. P(II), a phosphoprotein that signals the carbon/nitrogen status of the cells, forms a tight complex with the key enzyme of the arginine biosynthetic pathway, N-acetylglutamate (NAG) kinase. In complex with P(II), the catalytic activity of NAG kinase is strongly enhanced. Complex formation does not require the effector molecules of P(II), 2-oxoglutarate and ATP, but it is highly susceptible to modifications at the phosphorylation site of P(II), Ser-49. Stable complexes were only formed with the non-phosphorylated form of P(II) but not with Ser-49 mutants. In accordance with these data, NAG kinase activity in S. elongatus extracts correlated with the phosphorylation state of P(II), with high NAG kinase activities corresponding to non-phosphorylated P(II) (nitrogen-excess conditions) and low activities to increased levels of P(II) phosphorylation (nitrogen-poor conditions), thus subjecting the key enzyme of arginine biosynthesis to global nitrogen control.
Collapse
Affiliation(s)
- Annette Heinrich
- Institut für Mikrobiologie und Molekularbiologie, Interdisziplinäres Forschungszentrum (IFZ), Justus-Liebig Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
46
|
Moorhead GBG, Smith CS. Interpreting the plastid carbon, nitrogen, and energy status. A role for PII? PLANT PHYSIOLOGY 2003; 133:492-8. [PMID: 14555778 PMCID: PMC523876 DOI: 10.1104/pp.103.025627] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 06/09/2003] [Accepted: 07/09/2003] [Indexed: 05/19/2023]
Affiliation(s)
- Greg B G Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| | | |
Collapse
|
47
|
Lie TJ, Leigh JA. A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 2003; 47:235-46. [PMID: 12492867 DOI: 10.1046/j.1365-2958.2003.03293.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitrogen assimilation in the methanogenic archaeon Methanococcus maripaludis is regulated by transcriptional repression involving a palindromic 'nitrogen operator' repressor binding sequence. Here we report the isolation of the nitrogen repressor, NrpR, from M. maripaludis using DNA affinity purification. Deletion of the nrpR gene resulted in loss of nitrogen operator binding activity in cell extracts and loss of repression of nif (nitrogen-fixation) and glnA (glutamine synthetase) gene expression in vivo. Genetic complementation of the nrpR mutation restored all functions. NrpR contained a putative N-terminal winged helix-turn-helix motif followed by two mutually homologous domains of unknown function. Comparison of the migration of NrpR in gel-filtration chromatography with its subunit molecular weight (60 kDa) suggested that NrpR was a tetramer. Several lines of evidence suggested that the level of NrpR itself is not regulated, and the binding affinity of NrpR to the nitrogen operator is controlled by an unknown mechanism. Homologues of NrpR were found only in certain species in the kingdom Euryarchaeota. Full length homologues were found in Methanocaldococcus jannaschii and Methanothermobacter thermoautotrophicus, and homologues lacking one or more of the three polypeptide domains were found in Archaeoglobus fulgidus, Methanopyrus kandleri, Methanosarcina acetivorans, and Methanosarcina mazei. NrpR represents a new family of regulators unique to the Euryarchaeota.
Collapse
Affiliation(s)
- Thomas J Lie
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
48
|
Lie TJ, Leigh JA. Regulatory response of Methanococcus maripaludis to alanine, an intermediate nitrogen source. J Bacteriol 2002; 184:5301-6. [PMID: 12218015 PMCID: PMC135352 DOI: 10.1128/jb.184.19.5301-5306.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the methanogenic archaeon Methanococcus maripaludis, growth with ammonia results in conditions of nitrogen excess. Complete repression of nitrogen fixation (nif) gene transcription occurs, and glutamine synthetase (glnA) gene transcription falls to a basal constitutive level. In addition, ammonia completely switches off nitrogenase enzyme activity. In contrast, growth with dinitrogen as the sole nitrogen source results in nitrogen starvation, full expression of nif and glnA, and high activity of nitrogenase. Here we report that a third nitrogen source, alanine, results in an intermediate regulatory response. Growth with alanine resulted in intermediate transcription of nif and glnA, and addition of alanine to a nitrogen-fixing (diazotrophic) culture caused partial switch-off of nitrogenase. This uniformity of response occurred despite differences in regulatory mechanisms. Nitrogenase switch-off requires the nitrogen sensor homologs NifI(1) and NifI(2), while transcriptional regulation of nif and glnA relies on a different, unknown sensor mechanism. In addition, although nif and glnA transcription are governed by a common repressor, the numbers and arrangements of repressor binding sites differ. Thus, the nif promoter region contains two operators situated downstream of the transcription start site, while the glnA promoter region contains only one operator just upstream of two closely spaced transcription start sites. In a previous study of nif expression using ammonia, we were able to detect a role only for the first nif operator in repression. Here we show that nif repression by alanine requires the second operator as well. In contrast, in the case of glnA the single operator was sufficient for repression by ammonia or alanine. These results suggest a uniform cellular response to nitrogen that is mediated by a different mechanism in each case.
Collapse
Affiliation(s)
- Thomas J Lie
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
49
|
Ehlers C, Grabbe R, Veit K, Schmitz RA. Characterization of GlnK1 from Methanosarcina mazei strain Gö1: complementation of an Escherichia coli glnK mutant strain by GlnK1. J Bacteriol 2002; 184:1028-40. [PMID: 11807063 PMCID: PMC134814 DOI: 10.1128/jb.184.4.1028-1040.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Accepted: 11/19/2001] [Indexed: 11/20/2022] Open
Abstract
Trimeric PII-like signal proteins are known to be involved in bacterial regulation of ammonium assimilation and nitrogen fixation. We report here the first biochemical characterization of an archaeal GlnK protein from the diazotrophic methanogenic archaeon Methanosarcina mazei strain Gö1 and show that M. mazei GlnK1 is able to functionally complement an Escherichia coli glnK mutant for growth on arginine. This indicates that the archaeal GlnK protein substitutes for the regulatory function of E. coli GlnK. M. mazei GlnK1 is encoded in the glnK1-amtB1 operon, which is transcriptionally regulated by the availability of combined nitrogen and is only transcribed in the absence of ammonium. The deduced amino acid sequence of the archaeal glnK1 shows 44% identity to the E. coli GlnK and contains the conserved tyrosine residue (Tyr-51) in the T-loop structure. M. mazei glnK1 was cloned and overexpressed in E. coli, and GlnK1 was purified to apparent homogeneity. A molecular mass of 42 kDa was observed under native conditions, indicating that its native form is a trimer. GlnK1-specific antibodies were raised and used to confirm the in vivo trimeric form by Western analysis. In vivo ammonium upshift experiments and analysis of purified GlnK1 indicated significant differences compared to E. coli GlnK. First, GlnK1 from M. mazei is not covalently modified by uridylylation under nitrogen limitation. Second, heterotrimers between M. mazei GlnK1 and Klebsiella pneumoniae GlnK are not formed. Because M. mazei GlnK1 was able to complement growth of an E. coli glnK mutant with arginine as the sole nitrogen source, it is likely that uridylylation is not required for its regulatory function.
Collapse
Affiliation(s)
- Claudia Ehlers
- Institut für Mikrobiologie und Genetik, Universität Göttingen, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
50
|
Arcondéguy T, Jack R, Merrick M. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001; 65:80-105. [PMID: 11238986 PMCID: PMC99019 DOI: 10.1128/mmbr.65.1.80-105.2001] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) family of signal transduction proteins are among the most widely distributed signal proteins in the bacterial world. First identified in 1969 as a component of the glutamine synthetase regulatory apparatus, P(II) proteins have since been recognized as playing a pivotal role in control of prokaryotic nitrogen metabolism. More recently, members of the family have been found in higher plants, where they also potentially play a role in nitrogen control. The P(II) proteins can function in the regulation of both gene transcription, by modulating the activity of regulatory proteins, and the catalytic activity of enzymes involved in nitrogen metabolism. There is also emerging evidence that they may regulate the activity of proteins required for transport of nitrogen compounds into the cell. In this review we discuss the history of the P(II) proteins, their structures and biochemistry, and their distribution and functions in prokaryotes. We survey data emerging from bacterial genome sequences and consider other likely or potential targets for control by P(II) proteins.
Collapse
Affiliation(s)
- T Arcondéguy
- Department of Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|