1
|
Abstract
Bacteria thrive in environments rich in fluid flow, such as the gastrointestinal tract, bloodstream, aquatic systems, and the urinary tract. Despite the importance of flow, how flow affects bacterial life is underappreciated. In recent years, the combination of approaches from biology, physics, and engineering has led to a deeper understanding of how bacteria interact with flow. Here, we highlight the wide range of bacterial responses to flow, including changes in surface adhesion, motility, surface colonization, quorum sensing, virulence factor production, and gene expression. To emphasize the diversity of flow responses, we focus our review on how flow affects four ecologically distinct bacterial species: Escherichia coli, Staphylococcus aureus, Caulobacter crescentus, and Pseudomonas aeruginosa. Additionally, we present experimental approaches to precisely study bacteria in flow, discuss how only some flow responses are triggered by shear force, and provide perspective on flow-sensitive bacterial signaling.
Collapse
Affiliation(s)
- Gilberto C. Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexander M. Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jessica-Jae S. Palalay
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Morimoto J, Wenzel M, Derous D, Henry Y, Colinet H. The transcriptomic signature of responses to larval crowding in Drosophila melanogaster. INSECT SCIENCE 2023; 30:539-554. [PMID: 36115064 PMCID: PMC10947363 DOI: 10.1111/1744-7917.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways underpinning these ecological processes are poorly characterized. We reared Drosophila melanogaster at three egg densities (5, 60, and 300 eggs/mL) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass, and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs), including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, taurine, Toll/Imd signaling, and P450 xenobiotics metabolism pathways. Overall, our findings show that larval crowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.
Collapse
Affiliation(s)
- Juliano Morimoto
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritibaBrazil
- Institute of MathematicsKing's CollegeUniversity of AberdeenAberdeenUnited Kingdom
| | - Marius Wenzel
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Davina Derous
- School of Biological SciencesUniversity of AberdeenAberdeenUnited Kingdom
| | - Youn Henry
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Herve Colinet
- CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution)—UMR 6553University of RennesRennesFrance
| |
Collapse
|
3
|
Miranda SW, Asfahl KL, Dandekar AA, Greenberg EP. Pseudomonas aeruginosa Quorum Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:95-115. [PMID: 36258070 PMCID: PMC9942581 DOI: 10.1007/978-3-031-08491-1_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pseudomonas aeruginosa, like many bacteria, uses chemical signals to communicate between cells in a process called quorum sensing (QS). QS allows groups of bacteria to sense population density and, in response to changing cell densities, to coordinate behaviors. The P. aeruginosa QS system consists of two complete circuits that involve acyl-homoserine lactone signals and a third system that uses quinolone signals. Together, these three QS circuits regulate the expression of hundreds of genes, many of which code for virulence factors. P. aeruginosa has become a model for studying the molecular biology of QS and the ecology and evolution of group behaviors in bacteria. In this chapter, we recount the history of discovery of QS systems in P. aeruginosa, discuss how QS relates to virulence and the ecology of this bacterium, and explore strategies to inhibit QS. Finally, we discuss future directions for research in P. aeruginosa QS.
Collapse
Affiliation(s)
| | - Kyle L Asfahl
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - E P Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Matilla MA, Velando F, Monteagudo-Cascales E, Krell T. Flagella, Chemotaxis and Surface Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:185-221. [DOI: 10.1007/978-3-031-08491-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
An AY, Choi KYG, Baghela AS, Hancock REW. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Front Microbiol 2021; 12:640787. [PMID: 33927701 PMCID: PMC8076610 DOI: 10.3389/fmicb.2021.640787] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that form on surfaces in the environment and body including medical devices. They are key contributors to the growing antibiotic resistance crisis and account for two-thirds of all infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies for developing, discovering, and testing new anti-biofilm agents. Biofilm formation involves many factors and is broadly regulated by the stringent response, quorum sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm agents. Developing new anti-biofilm agents requires a comprehensive systems-level understanding of these mechanisms, as well as the discovery of new mechanisms. This can be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics, which can also be integrated to better understand biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual screening and machine learning can discover small molecules that can inhibit key biofilm regulators. To increase the likelihood that these candidate agents selected from in silico approaches are efficacious in humans, they must be tested in biologically relevant biofilm models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and highlight organoids as a new biofilm model. This review offers a comprehensive guide of current and future biological and computational approaches of anti-biofilm therapeutic discovery for investigators to utilize to combat the antibiotic resistance crisis.
Collapse
Affiliation(s)
| | | | | | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Vu HN, Subuyuj GA, Crisostomo RV, Skovran E. Transposon mutagenesis for methylotrophic bacteria using Methylorubrum extorquens AM1 as a model system. Methods Enzymol 2021; 650:159-184. [PMID: 33867020 DOI: 10.1016/bs.mie.2021.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transposon mutagenesis utilizes transposable genetic elements that integrate into a recipient genome to generate random insertion mutations which are easily identified. This forward genetic approach has proven powerful in elucidating complex processes, such as various pathways in methylotrophy. In the past decade, many methylotrophic bacteria have been shown to possess alcohol dehydrogenase enzymes that use lanthanides (Lns) as cofactors. Using Methylorubrum extorquens AM1 as a model organism, we discuss the experimental designs, protocols, and results of three transposon mutagenesis studies to identify genes involved in different aspects of Ln-dependent methanol oxidation. These studies include a selection for transposon insertions that prevent toxic intracellular formaldehyde accumulation, a fluorescence-imaging screen to identify regulatory processes for a primary Ln-dependent methanol dehydrogenase, and a phenotypic screen for genes necessary for function of a Ln-dependent ethanol dehydrogenase. We anticipate that the methods described in this chapter can be applied to understand other metabolic systems in diverse bacteria.
Collapse
Affiliation(s)
- Huong N Vu
- Department of Biological Sciences, San José State University, San José, CA, United States
| | - Gabriel A Subuyuj
- Department of Biological Sciences, San José State University, San José, CA, United States
| | | | - Elizabeth Skovran
- Department of Biological Sciences, San José State University, San José, CA, United States.
| |
Collapse
|
7
|
Feiler CG, Weiss MS, Blankenfeldt W. The hypothetical periplasmic protein PA1624 from Pseudomonas aeruginosa folds into a unique two-domain structure. Acta Crystallogr F Struct Biol Commun 2020; 76:609-615. [PMID: 33263573 PMCID: PMC7716261 DOI: 10.1107/s2053230x20014612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 12/02/2022] Open
Abstract
The crystal structure of the 268-residue periplasmic protein PA1624 from the opportunistic pathogen Pseudomonas aeruginosa PAO1 was determined to high resolution using the Se-SAD method for initial phasing. The protein was found to be monomeric and the structure consists of two domains, domains 1 and 2, comprising residues 24-184 and 185-268, respectively. The fold of these domains could not be predicted even using state-of-the-art prediction methods, and similarity searches revealed only a very distant homology to known structures, namely to Mog1p/PsbP-like and OmpA-like proteins for the N- and C-terminal domains, respectively. Since PA1624 is only present in an important human pathogen, its unique structure and periplasmic location render it a potential drug target. Consequently, the results presented here may open new avenues for the discovery and design of antibacterial drugs.
Collapse
Affiliation(s)
- Christian G. Feiler
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-389124 Braunschweig, Germany
| | - Manfred S. Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-389124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| |
Collapse
|
8
|
Kaito C, Murakami K, Imai L, Furuta K. Animal infection models using non-mammals. Microbiol Immunol 2020; 64:585-592. [PMID: 32757288 PMCID: PMC7590188 DOI: 10.1111/1348-0421.12834] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Abstract
The use of non-human animal models for infection experiments is important for investigating the infectious processes of human pathogenic bacteria at the molecular level. Mammals, such as mice and rabbits, are also utilized as animal infection models, but large numbers of animals are needed for these experiments, which is costly, and fraught with ethical issues. Various non-mammalian animal infection models have been used to investigate the molecular mechanisms of various human pathogenic bacteria, including Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa. This review discusses the desirable characteristics of non-mammalian infection models and describes recent non-mammalian infection models that utilize Caenorhabditis elegans, silkworm, fruit fly, zebrafish, two-spotted cricket, hornworm, and waxworm.
Collapse
Affiliation(s)
- Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kanade Murakami
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Lina Imai
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Younes S, Al-Sulaiti A, Nasser EAA, Najjar H, Kamareddine L. Drosophila as a Model Organism in Host-Pathogen Interaction Studies. Front Cell Infect Microbiol 2020; 10:214. [PMID: 32656090 PMCID: PMC7324642 DOI: 10.3389/fcimb.2020.00214] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
Owing to the genetic similarities and conserved pathways between a fruit fly and mammals, the use of the Drosophila model as a platform to unveil novel mechanisms of infection and disease progression has been justified and widely instigated. Gaining proper insight into host-pathogen interactions and identifying chief factors involved in host defense and pathogen virulence in Drosophila serves as a foundation to establish novel strategies for infectious disease prevention and control in higher organisms, including humans.
Collapse
Affiliation(s)
- Salma Younes
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asma Al-Sulaiti
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | - Hoda Najjar
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
De Mandal S, Lin B, Shi M, Li Y, Xu X, Jin F. iTRAQ-Based Comparative Proteomic Analysis of Larval Midgut From the Beet Armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) Challenged With the Entomopathogenic Bacteria Serratia marcescens. Front Physiol 2020; 11:442. [PMID: 32457652 PMCID: PMC7227483 DOI: 10.3389/fphys.2020.00442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Entomopathogenic bacteria Serratia marcescens is widely used as an environmentally friendly biocontrol agent against various pests, including Spodoptera exigua. Understanding the immune defense mechanism of S. exigua through comparative proteomic analysis can identify the key proteins expressed in response to the microbial infection. Here, we employed the as isobaric tags for relative and absolute quantification (iTRAQ) technique to investigate the effects of S. marcescens on the proteomic expression of S. exigua. Based on the molecular functional analysis, the differentially expressed proteins (DEPs) were mainly involved in the binding process and catalytic activities. Further bioinformatics analysis revealed important DEPs that played a crucial role in innate immunity of S. exigua with recognition (C-type lectin), melanization (propanol oxidase 3, serine protease, Serine-type carboxypeptidase activity, clip domain serine protease 4), antimicrobial activity (lysozyme, lysozyme-like, gloverin, cecropin B), detoxification (acetyl-CoA C-acetyltransferase, 3-dehydroecdysone 3-alpha-reductase, glucuronosyltransferase, glutathione S-transferase) and others. The Quantitative real-time PCR (qRT-PCR) results further indicated the significant upregulation of the immune-related genes in Spodoptera exigua following S. marcescens infection. To the best of our knowledge, this is the first iTRAQ based study to characterize S. marcescens mediated proteomic changes in S. exigua and identified important immune-related DEPs. The results of this study will provide an essential resource for understanding the host-pathogen interactions and the development of novel microbial biopesticides against various pests.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxia Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Fengliang Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Jang HJ, Bae HW, Cho YH. Exploitation of Drosophila Infection Models to Evaluate Antibacterial Efficacy of Phages. Methods Mol Biol 2019; 1898:183-190. [PMID: 30570733 DOI: 10.1007/978-1-4939-8940-9_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Nonmammalian infection models have been exploited to understand the various aspects of host-pathogen interactions and also provided innovative research platforms for identification of virulence factors, screening for antimicrobial hits, and evaluation of antimicroial efficacy. Here we describe a relatively straightforward protocol to assess the antibacterial efficacy of bacteriophages (phages) toward the opportunistic human pathogen, Pseudomonas aeruginosa, based on the systemic infection model using the fruit fly, Drosophila melanogaster. Since phages, unlike antibacterial chemicals, can be easily and sensitively enumerated by simple assays, it is also possible to address the pharmacokinetic properties of administered phages even in this small-scale infection model.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea
| | - Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea.
| |
Collapse
|
12
|
Kollaran AM, Joge S, Kotian HS, Badal D, Prakash D, Mishra A, Varma M, Singh V. Context-Specific Requirement of Forty-Four Two-Component Loci in Pseudomonas aeruginosa Swarming. iScience 2019; 13:305-317. [PMID: 30877999 PMCID: PMC6423354 DOI: 10.1016/j.isci.2019.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 02/26/2019] [Indexed: 11/30/2022] Open
Abstract
Swarming in Pseudomonas aeruginosa is a coordinated movement of bacteria over semisolid surfaces (0.5%-0.7% agar). On soft agar, P. aeruginosa exhibits a dendritic swarm pattern, with multiple levels of branching. However, the swarm patterns typically vary depending upon the experimental design. In the present study, we show that the pattern characteristics of P. aeruginosa swarm are highly environment dependent. We define several quantifiable, macroscale features of the swarm to study the plasticity of the swarm, observed across different nutrient formulations. Furthermore, through a targeted screen of 113 two-component system (TCS) loci of the P. aeruginosa strain PA14, we show that forty-four TCS genes regulate swarming in PA14 in a contextual fashion. However, only four TCS genes-fleR, fleS, gacS, and PA14_59770-were found essential for swarming. Notably, many swarming-defective TCS mutants were found highly efficient in biofilm formation, indicating opposing roles for many TCS loci.
Collapse
Affiliation(s)
- Ameen M Kollaran
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Shubham Joge
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Harshitha S Kotian
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Divakar Badal
- Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Deep Prakash
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ayushi Mishra
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Manoj Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India; Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Varsha Singh
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, Karnataka 560012, India; Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
13
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
14
|
Kendall LV, Owiny JR, Dohm ED, Knapek KJ, Lee ES, Kopanke JH, Fink M, Hansen SA, Ayers JD. Replacement, Refinement, and Reduction in Animal Studies With Biohazardous Agents. ILAR J 2019; 59:177-194. [DOI: 10.1093/ilar/ily021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Abstract
Animal models are critical to the advancement of our knowledge of infectious disease pathogenesis, diagnostics, therapeutics, and prevention strategies. The use of animal models requires thoughtful consideration for their well-being, as infections can significantly impact the general health of an animal and impair their welfare. Application of the 3Rs—replacement, refinement, and reduction—to animal models using biohazardous agents can improve the scientific merit and animal welfare. Replacement of animal models can use in vitro techniques such as cell culture systems, mathematical models, and engineered tissues or invertebrate animal hosts such as amoeba, worms, fruit flies, and cockroaches. Refinements can use a variety of techniques to more closely monitor the course of disease. These include the use of biomarkers, body temperature, behavioral observations, and clinical scoring systems. Reduction is possible using advanced technologies such as in vivo telemetry and imaging, allowing longitudinal assessment of animals during the course of disease. While there is no single method to universally replace, refine, or reduce animal models, the alternatives and techniques discussed are broadly applicable and they should be considered when infectious disease animal models are developed.
Collapse
Affiliation(s)
- Lon V Kendall
- Department of Microbiology, Immunology and Pathology, and Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - James R Owiny
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Erik D Dohm
- Animal Resources Program, University of Alabama, Birmingham, Alabama
| | - Katie J Knapek
- Comparative Medicine Training Program, Colorado State University, Fort Collins, Colorado
| | - Erin S Lee
- Animal Resource Center, University of Texas Medical Branch, Galveston, Texas
| | - Jennifer H Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael Fink
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Iowa, Iowa City, Iowa
| | - Jessica D Ayers
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
15
|
Hakimzadeh A, Okshevsky M, Maisuria V, Déziel E, Tufenkji N. Exposure to Freeze-Thaw Conditions Increases Virulence of Pseudomonas aeruginosa to Drosophila melanogaster. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14180-14186. [PMID: 30444353 DOI: 10.1021/acs.est.8b04900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Groundwater contamination by pathogenic bacteria present in land-applied manure poses a threat to public health. In cold climate regions, surface soil layers experience repeated temperature fluctuations around the freezing point known as freeze-thaw (FT) cycles. With global climate change, annual soil FT cycles have increased, and this trend is expected to continue. It is therefore of interest to understand how FT cycles impact soil microbial communities. This study investigates the influence of FT cycles on the growth, culturability, biofilm formation, and virulence of the bacterial opportunistic pathogen Pseudomonas aeruginosa, a ubiquitous bacterium found in soil and water, responsible for infections in immunocompromised hosts. Our findings demonstrate that exposure to FT had no significant effect on growth or culturability of the bacteria. However, FT treatment significantly increased biofilm formation and delayed the onset of swimming motility, factors that are important for the pathogenicity of P. aeruginosa. An in vivo study using a chronic infection model revealed an increase in the virulence of P. aeruginosa after FT exposure. These results suggest that the impact of climate change on natural FT cycles may be affecting the ecology of soil-borne pathogens and host-pathogen interactions in unexpected ways.
Collapse
Affiliation(s)
- Arsham Hakimzadeh
- Department of Chemical Engineering , McGill University , 3610 University Street , Montréal , Québec H3A 0C5 , Canada
- INRS-Institut Armand-Frappier , 531 boulevard des Prairies , Laval , Québec H7V 1B7 , Canada
| | - Mira Okshevsky
- Department of Chemical Engineering , McGill University , 3610 University Street , Montréal , Québec H3A 0C5 , Canada
| | - Vimal Maisuria
- Department of Chemical Engineering , McGill University , 3610 University Street , Montréal , Québec H3A 0C5 , Canada
| | - Eric Déziel
- INRS-Institut Armand-Frappier , 531 boulevard des Prairies , Laval , Québec H7V 1B7 , Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering , McGill University , 3610 University Street , Montréal , Québec H3A 0C5 , Canada
| |
Collapse
|
16
|
Phage Morons Play an Important Role in Pseudomonas aeruginosa Phenotypes. J Bacteriol 2018; 200:JB.00189-18. [PMID: 30150232 DOI: 10.1128/jb.00189-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 12/23/2022] Open
Abstract
The viruses that infect bacteria, known as phages, play a critical role in controlling bacterial populations in many diverse environments, including the human body. This control stems not only from phages killing bacteria but also from the formation of lysogens. In this state, the phage replication cycle is suppressed, and the phage genome is maintained in the bacterial cell in a form known as a prophage. Prophages often carry genes that benefit the host bacterial cell, since increasing the survival of the host cell by extension also increases the fitness of the prophage. These highly diverse and beneficial phage genes, which are not required for the life cycle of the phage itself, have been referred to as "morons," as their presence adds "more on" the phage genome in which they are found. While individual phage morons have been shown to contribute to bacterial virulence by a number of different mechanisms, there have been no systematic investigations of their activities. Using a library of phages that infect two different clinical isolates of P. aeruginosa, PAO1 and PA14, we compared the phenotypes imparted by the expression of individual phage morons. We identified morons that inhibit twitching and swimming motilities and observed an inhibition of the production of virulence factors such as rhamnolipids and elastase. This study demonstrates the scope of phage-mediated phenotypic changes and provides a framework for future studies of phage morons.IMPORTANCE Environmental and clinical isolates of the bacterium Pseudomonas aeruginosa frequently contain viruses known as prophages. These prophages can alter the virulence of their bacterial hosts through the expression of nonessential genes known as "morons." In this study, we identified morons in a group of Pseudomonas aeruginosa phages and characterized the effects of their expression on bacterial behaviors. We found that many morons confer selective advantages for the bacterial host, some of which correlate with increased bacterial virulence. This work highlights the symbiotic relationship between bacteria and prophages and illustrates how phage morons can help bacteria adapt to different selective pressures and contribute to human diseases.
Collapse
|
17
|
Drosophila melanogaster as a polymicrobial infection model for Pseudomonas aeruginosa and Staphylococcus aureus. J Microbiol 2018; 56:534-541. [DOI: 10.1007/s12275-018-8331-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
|
18
|
Lindberg HM, McKean KA, Caraco T, Wang IN. Within-host dynamics and random duration of pathogen infection: Implications for between-host transmission. J Theor Biol 2018; 446:137-148. [PMID: 29391172 DOI: 10.1016/j.jtbi.2018.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/27/2017] [Accepted: 01/26/2018] [Indexed: 01/15/2023]
Abstract
Taking an ecological perspective, this paper reports theoretical and empirical results concerning fatal bacterial infections of adult insects. Two models, each combining deterministic and stochastic elements, characterize how the pathogen's dynamics might govern an infected host's mortality rate. We analyze the models in detail for exponential pathogen growth, and apply them to observed insect mortality when the pathogen's growth is unregulated. We then allow bacteriophage to generate fluctuations in the within-host pathogen density; we demonstrate that only one of our models matches host mortality rates when pathogen growth is regulated by phage. We generalize our results on mortality hazard of individual hosts to analyze how random duration of the infectious period can combine with probabilistic transmission events to affect between-host transmission.
Collapse
Affiliation(s)
- Heather M Lindberg
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA; Center for Science and Health Professions, Virginia Western Community College, Roanoke, VA 24015, USA
| | - Kurt A McKean
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - T Caraco
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Ing-Nang Wang
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
19
|
Jacques BJ, Bourret TJ, Shaffer JJ. Role of Fly Cleaning Behavior on Carriage of Escherichia coli and Pseudomonas aeruginosa. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1712-1717. [PMID: 28981669 PMCID: PMC5850793 DOI: 10.1093/jme/tjx124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 06/07/2023]
Abstract
Flies are known to be mechanical vectors of bacterial, viral, and parasitic diseases. Although flies are known to transmit disease, the effects of cleaning behavior have not been well studied. This study quantified the cleaning effectiveness and behavior of three fly species: Sarcophaga bullata, Musca domestica L., and Drosophila virilis. Flies were transferred to plates of Escherichia coli or Pseudomonas aeruginosa and allowed to walk on the bacteria for a total of 5 min. After the flies were contaminated, they were either immediately collected to quantify bacteria or were placed onto sterile plates to clean for 5 or 10 min. After cleaning, flies were placed into tubes with 1 ml of sterile 0.85% saline and were gently shaken for 1 min to remove bacteria. A serial dilution was made and 50-µl spot titers were plated. Cleaning behavior was also monitored and scored for a period of 5 min. Results demonstrate a bacterial reduction for both bacteria on all three fly species. Sarcophaga bullata and D. virilis both showed a significant reduction of both bacteria within 10 min, whereas M. domestica only showed a significant reduction in P. aeruginosa. Cleaning behavior increased significantly in flies that were exposed to bacteria compared to flies that were not exposed to bacteria. This study is important, as it demonstrates that fly cleaning could affect mechanical transmission of disease, and additional studies should look at flies' abilities to remove other types of microorganisms.
Collapse
Affiliation(s)
- B J Jacques
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave., Kearney, NE 68849 (; )
| | - T J Bourret
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178 ()
| | - J J Shaffer
- Department of Biology, University of Nebraska at Kearney, 2401 11th Ave., Kearney, NE 68849 (; )
| |
Collapse
|
20
|
Carloni S, Macchi R, Sattin S, Ferrara S, Bertoni G. The small RNA ReaL: a novel regulatory element embedded in the Pseudomonas aeruginosa
quorum sensing networks. Environ Microbiol 2017; 19:4220-4237. [DOI: 10.1111/1462-2920.13886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Sara Carloni
- Department of Biosciences; Università degli Studi di Milano; Milano Italy
| | - Raffaella Macchi
- Department of Biosciences; Università degli Studi di Milano; Milano Italy
| | - Sara Sattin
- Department of Chemistry; Università degli Studi di Milano; Milano Italy
| | - Silvia Ferrara
- Department of Biosciences; Università degli Studi di Milano; Milano Italy
| | - Giovanni Bertoni
- Department of Biosciences; Università degli Studi di Milano; Milano Italy
| |
Collapse
|
21
|
Guncay A, Balasubramaniam T, Plagens K, Weadge J, Long TA. Cross-generational effects of male reproductive success and offspring immunocompetence in Drosophila melanogaster. Facets (Ott) 2017. [DOI: 10.1139/facets-2015-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In some species where males make no direct contribution to a female’s lifetime reproductive success, females choose mates based on the indirect benefits manifested in their offspring. One trait that may be subject to this sexual selection is immunocompetence (the ability to mount an immune response following exposure to pathogens); however, the results of previous work on its link to male attractiveness have been ambiguous. Herein we examine the life history consequences of mating with males with a history of failure or success in reproductive competitions in Drosophila melanogaster. By examining egg-to-adult survival, body weights, and bacterial loads of offspring reared in either the absence or presence of a bacterial pathogen, we were able to examine whether sire reproductive success was associated with their offsprings’ ability to respond to an immunological challenge and other life history traits. Our results are partially consistent with the predictions of the “immunocompetence handicap hypothesis”: competitively successful males (“studs”) sire male offspring that are better able to handle an immunological challenge than those sired by competitively unsuccessful males (“duds”). However, our assay also revealed the opposite pattern in female offspring, suggestive of the complicating presence of alleles with sexually antagonistic effects on the expression of this important life history trait.
Collapse
Affiliation(s)
- Ashley Guncay
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
- Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, AB T6G 2H7, Canada
| | - Thiropa Balasubramaniam
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Katie Plagens
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Joel Weadge
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Tristan A.F. Long
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
22
|
Jin HS, Lee HM, Lee DH, Cha GH, Cho KS, Jang J, Jo EK. Functional characterisation of the Drosophila cg6568 gene in host defence against Mycobacterium marinum. Microbes Infect 2017; 19:351-357. [PMID: 28245983 DOI: 10.1016/j.micinf.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/16/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
Mycobacterium marinum is a pathogenic mycobacterial species closely related to Mycobacterium tuberculosis. In this study, we established a mycobacterial infection model of Drosophila melanogaster to characterize the role played by cg6568, a homolog of the human cathelicidin gene, in the innate defense against infection. Drosophila cg6568 was expressed at various levels during all developmental stages, and the expression levels were modulated by M. marinum in a time-dependent manner. 20-hydroxyecdysone induced Drosophila cg6568 transcription both in vitro and in vivo. Using flies expressing cg6568 RNAi, we found that cg6568 was essential both for D. melanogaster survival and the exertion of antimicrobial effects during M. marinum infection. Thus, we named the gene product a cathelicidin-like antimicrobial protein of D. melanogaster (dCAMP). Our results indicate that dCAMP is crucial in terms of the innate D. melanogaster defense during M. marinum infection.
Collapse
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea; Biomedical Research Institute, Chungnam National University Hospital, Daejeon, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Da-Hye Lee
- Pulmonary Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Guang-Ho Cha
- Infection Biology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jichan Jang
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea; Molecular Mechanism of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju, Gyeongnam, South Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.
| |
Collapse
|
23
|
Bergman P, Seyedoleslami Esfahani S, Engström Y. Drosophila as a Model for Human Diseases—Focus on Innate Immunity in Barrier Epithelia. Curr Top Dev Biol 2017; 121:29-81. [DOI: 10.1016/bs.ctdb.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Fedorka KM, Kutch IC, Collins L, Musto E. Cold temperature preference in bacterially infected Drosophila melanogaster improves survival but is remarkably suboptimal. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:36-41. [PMID: 27530304 DOI: 10.1016/j.jinsphys.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Altering one's temperature preference (e.g. behavioral fever or behavioral chill) is a common immune defense among ectotherms that is likely to be evolutionarily conserved. However, the temperature chosen by an infected host may not be optimal for pathogen defense, causing preference to be inefficient. Here we examined the efficiency of temperature preference in Drosophila melanogaster infected with an LD50 of the gram negative bacteria Pseudomonas aeruginosa. To this end, we estimated the host's uninfected and infected temperature preferences as well as their optimal survival temperature. We found that flies decreased their preference from 26.3°C to 25.2°C when infected, and this preference was stable over 48h. Furthermore, the decrease in temperature preference was associated with an increased chance of surviving the infection. Nevertheless, the infected temperature preference did not coincide with the optimum temperature for infection survival, which lies at or below 21.4°C. These data suggest that the behavioral response to P. aeruginosa infection is considerably inefficient, and the mechanisms that may account for this pattern are discussed. Future studies of infected temperature preferences should document its efficiency, as this understudied aspect of behavioral immunity can provide important insight into preference evolution.
Collapse
Affiliation(s)
- Kenneth M Fedorka
- University of Central Florida, Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| | - Ian C Kutch
- University of Central Florida, Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| | - Louisa Collins
- University of Central Florida, Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| | - Edward Musto
- University of Central Florida, Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| |
Collapse
|
25
|
Ng PM, Zhenxiao Jin, Tan SS, Ho B, Ding JL. C-reactive protein: a predominant LPS-binding acute phase protein responsive to Pseudomonas infection. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100030301] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As a structural component of the outer membrane of Gram-negative bacteria, endotoxin, also known as lipopolysaccharide (LPS) exhibits strong immunostimulatory properties, rendering it a pivotal role in the pathogenesis of Gram-negative septicaemia. Our attempt to identify LPS-binding proteins from the hemolymph of the horseshoe crab led to the isolation and identification of C-reactive protein (CRP) as the predominant LPS-recognition protein during Pseudomonas infection. CRP is an evolutionarily ancient member of a superfamily of `pentraxins'. It is a major protein in acute phase of infection in humans. Our investigation of CRP response to Pseudomonas aeruginosa unveiled a robust innate immune system in the horseshoe crab, which displays rapid suppression of a dosage of 106 CFU of bacteria in the first hour of infection and effected complete clearance of the pathogen by 3 days. Such a high dose would have been lethal to mice. Full-length CRP cDNA was cloned. Analysis of the untranslated regions suggests their crucial role in post-transcriptional regulation of CRP transcript levels. Northern blot analysis demonstrated an acute up-regulation of CRP by about 60-fold in 6—48 h of Pseudomonas infection. Taken together, our results provide new insights into the importance of CRP as a conserved molecule for pathogen recognition.
Collapse
Affiliation(s)
- Patricia M.L. Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Zhenxiao Jin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Sandra S.H. Tan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Bow Ho
- Department of Microbiology, Faculty of Science, National University of Singapore, Singapore
| | - Jeak L. Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore,
| |
Collapse
|
26
|
Swatton JE, Davenport PW, Maunders EA, Griffin JL, Lilley KS, Welch M. Impact of Azithromycin on the Quorum Sensing-Controlled Proteome of Pseudomonas aeruginosa. PLoS One 2016; 11:e0147698. [PMID: 26808156 PMCID: PMC4726577 DOI: 10.1371/journal.pone.0147698] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/07/2016] [Indexed: 12/03/2022] Open
Abstract
The macrolide antibiotic, azithromycin (AZM), has been reported to improve the clinical outcome of cystic fibrosis patients, many of whom are chronically-infected with Pseudomonas aeruginosa. However, the highest clinically-achievable concentrations of this drug are well-below the minimum inhibitory concentration for P. aeruginosa, raising the question of why AZM exhibits therapeutic activity. One possibility that has been raised by earlier studies is that AZM inhibits quorum sensing (QS) by P. aeruginosa. To explicitly test this hypothesis the changes brought about by AZM treatment need to be compared with those associated with specific QS mutants grown alongside in the same growth medium, but this has not been done. In this work, we used quantitative 2D-difference gel electrophoresis and 1H-NMR spectroscopy footprint analysis to examine whether a range of clinically-relevant AZM concentrations elicited proteomic and metabolomic changes in wild-type cultures that were similar to those seen in cultures of defined QS mutants. Consistent with earlier reports, over half of the AZM-induced spot changes on the 2D gels were found to affect QS-regulated proteins. However, AZM modulated very few protein spots overall (compared with QS) and collectively, these modulated proteins comprised only a small fraction (12-13%) of the global QS regulon. We conclude that AZM perturbs a sub-regulon of the QS system but does not block QS per se. Reinforcing this notion, we further show that AZM is capable of attenuating virulence factor production in another Gram-negative species that secretes copious quantities of exoenzymes (Serratia marcescens), even in the absence of a functional QS system.
Collapse
Affiliation(s)
- J. E. Swatton
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | - P. W. Davenport
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
- Department of Pathology, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - E. A. Maunders
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - J. L. Griffin
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, United Kingdom
| | - K. S. Lilley
- Cambridge Centre for Proteomics, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - M. Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| |
Collapse
|
27
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R. Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3:575-598. [PMID: 26244150 PMCID: PMC4517333 DOI: 10.12998/wjcc.v3.i7.575] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/30/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.
Collapse
|
29
|
Earl SC, Rogers MT, Keen J, Bland DM, Houppert AS, Miller C, Temple I, Anderson DM, Marketon MM. Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis. PLoS One 2015; 10:e0133318. [PMID: 26177454 PMCID: PMC4503695 DOI: 10.1371/journal.pone.0133318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/25/2015] [Indexed: 01/29/2023] Open
Abstract
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is known about vector-pathogen interactions that are required for flea gut colonization. Here we establish a Drosophila melanogaster model system to gain insight into Y. pestis colonization of the insect vector. We show that Y. pestis establishes a stable infection in the anterior midgut of fly larvae, and we used this model system to study the roles of genes involved in biofilm production and/or resistance to gut immunity stressors. We find that PhoP and GmhA both contribute to colonization and resistance to antimicrobial peptides in flies, and furthermore, the data suggest biofilm formation may afford protection against antimicrobial peptides. Production of reactive oxygen species in the fly gut, as in fleas, also serves to limit bacterial infection, and OxyR mediates Y. pestis survival in both insect models. Overall, our data establish the fruit fly as an informative model to elucidate the relationship between Y. pestis and its flea vector.
Collapse
Affiliation(s)
- Shaun C. Earl
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Miles T. Rogers
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Jennifer Keen
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - David M. Bland
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Andrew S. Houppert
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Caitlynn Miller
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Ian Temple
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Melanie M. Marketon
- Department of Biology, Indiana University, Bloomington, IN, United States of America
- * E-mail:
| |
Collapse
|
30
|
Grosso-Becera MV, Servín-González L, Soberón-Chávez G. RNA structures are involved in the thermoregulation of bacterial virulence-associated traits. Trends Microbiol 2015; 23:509-18. [PMID: 25999019 DOI: 10.1016/j.tim.2015.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/01/2015] [Accepted: 04/16/2015] [Indexed: 11/25/2022]
Abstract
Pathogenic bacteria are exposed to temperature changes during colonization of the human body and during exposure to environmental conditions. Virulence-associated traits are mainly expressed by pathogenic bacteria at 37°C. We review different cases of post-transcriptional regulation of virulence-associated proteins through RNA structures (called RNA thermometers or RNATs) that modulate the translation of mRNAs. The analysis of RNATs in pathogenic bacteria has started to produce a comprehensive picture of the structures involved, and of the genes regulated by this mechanism. However, we are still not able to predict the functionality of putative RNATs predicted by bioinformatics methods, and there is not a global approach to measure the effect of these RNA structures in gene regulation during bacterial infections.
Collapse
Affiliation(s)
- María Victoria Grosso-Becera
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones, Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Escolar, Apartado Postal 70228, DF, México
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones, Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Escolar, Apartado Postal 70228, DF, México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones, Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Escolar, Apartado Postal 70228, DF, México.
| |
Collapse
|
31
|
López Hernández Y, Yero D, Pinos-Rodríguez JM, Gibert I. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015; 6:38. [PMID: 25699030 PMCID: PMC4316775 DOI: 10.3389/fmicb.2015.00038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.
Collapse
Affiliation(s)
- Yamilé López Hernández
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Juan M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
32
|
Lindberg HM, McKean KA, Wang IN. Phage fitness may help predict phage therapy efficacy. BACTERIOPHAGE 2014; 4:e964081. [PMID: 26713221 PMCID: PMC4589996 DOI: 10.4161/21597073.2014.964081] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/14/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
We isolated 6 phages from 2 environmental water sources and assessed their ability to treat Pseudomonas aeruginosa infection of Drosophila melanogaster. We found all 6 phages were able to significantly increase mean survival time (MST) of infected D. melanogaster. Although phage traits, such as adsorption rate, burst size, and lysis time, varied significantly among these phages, none of the traits correlated significantly with MST. Phage growth rate determined in vitro, however, was found to be significantly correlated with MST. Overall, our study shows that infected D. melanogaster can be used as a model system to test the therapeutic efficacy of phages. In addition, a more comprehensive characteristic, like the in vitro growth rate, seems to be a better indicator in predicting therapeutic success than constituent traits like the adsorption rate, burst size, or lysis time.
Collapse
|
33
|
Park SJ, Kim SK, So YI, Park HY, Li XH, Yeom DH, Lee MN, Lee BL, Lee JH. Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity. Mol Microbiol 2014; 94:1298-314. [PMID: 25315216 DOI: 10.1111/mmi.12830] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 12/25/2022]
Abstract
In Pseudomonas aeruginosa, quorum sensing (QS) plays an essential role in pathogenesis and the QS response controls many virulence factors. Using a mealworm, Tenebrio molitor as a host model, we found that Protease IV, a QS-regulated exoprotease of P. aeruginosa functions as a key virulence effector causing the melanization and death of T. molitor larvae. Protease IV was able to degrade zymogens of spätzle processing enzyme (SPE) and SPE-activating enzyme (SAE) without the activation of the antimicrobial peptide (AMP) production. Since SPE and SAE function to activate spätzle, a ligand of Toll receptor in the innate immune system of T. molitor, we suggest that Protease IV may interfere with the activation of the Toll signaling. Independently of the Toll pathway, the melanization response, another innate immunity was still generated, since Protease IV directly converted Tenebrio prophenoloxidase into active phenoloxidase. Protease IV also worked as an important factor in the virulence to brine shrimp and nematode. These results suggest that Protease IV provides P. aeruginosa with a sophisticated way to escape the immune attack of host by interfering with the production of AMPs.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Pharmacy, Pusan National University, Pusan, 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers. Proc Natl Acad Sci U S A 2014; 111:15562-7. [PMID: 25313031 DOI: 10.1073/pnas.1402536111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a number of bacterial pathogens, the production of virulence factors is induced at 37 °C; this effect is often regulated by mRNA structures formed in the 5' untranslated region (UTR) that block translation initiation of genes at environmental temperatures. At 37 °C, the RNA structures become unstable and ribosomes gain access to their binding sites in the mRNAs. Pseudomonas aeruginosa is an important opportunistic pathogen and the expression of many of its virulence-associated traits is regulated by the quorum-sensing (QS) response, but the effect of temperature on virulence-factor expression is not well-understood. The aim of this work is the characterization of the molecular mechanism involved in thermoregulation of QS-dependent virulence-factor production. We demonstrate that traits that are dependent on the QS transcriptional regulator RhlR have a higher expression at 37 °C, correlating with a higher RhlR concentration as measured by Western blot. We also determined, using gene fusions and point mutations, that RhlR thermoregulation is a posttranscriptional effect dependent on an RNA thermometer of the ROSE (Repression Of heat-Shock gene Expression) family. This RNA element regulates the expression of the rhlAB operon, involved in rhamnolipid production, and of the downstream rhlR gene. We also identified a second functional thermometer in the 5' UTR of the lasI gene. We confirmed that these RNA thermometers are the main mechanism of thermoregulation of QS-dependent gene expression in P. aeruginosa using quantitative real-time PCR. This is the first description, to our knowledge, of a ROSE element regulating the expression of virulence traits and of an RNA thermometer controlling multiple genes in an operon through a polar effect.
Collapse
|
35
|
Fauvarque MO. Small flies to tackle big questions: assaying complex bacterial virulence mechanisms usingDrosophila melanogaster. Cell Microbiol 2014; 16:824-33. [DOI: 10.1111/cmi.12292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Marie-Odile Fauvarque
- Univ. Grenoble Alpes; iRTSV-BGE; F-38000 Grenoble France
- CEA; iRTSV-BGE; F-38000 Grenoble France
- INSERM; BGE; F-38000 Grenoble France
| |
Collapse
|
36
|
Maspoli A, Wenner N, Mislin GLA, Reimmann C. Functional analysis of pyochelin-/enantiopyochelin-related genes from a pathogenicity island of Pseudomonas aeruginosa strain PA14. Biometals 2014; 27:559-73. [PMID: 24682869 DOI: 10.1007/s10534-014-9729-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 05/28/2023]
Abstract
Genomic islands are foreign DNA blocks inserted in so-called regions of genomic plasticity (RGP). Depending on their gene content, they are classified as pathogenicity, symbiosis, metabolic, fitness or resistance islands, although a detailed functional analysis is often lacking. Here we focused on a 34-kb pathogenicity island of Pseudomonas aeruginosa PA14 (PA14GI-6), which is inserted at RGP5 and carries genes related to those for pyochelin/enantiopyochelin biosynthesis. These enantiomeric siderophores of P. aeruginosa and certain strains of Pseudomonas protegens are assembled by a thiotemplate mechanism from salicylate and two molecules of cysteine. The biochemical function of several proteins encoded by PA14GI-6 was investigated by a series of complementation analyses using mutants affected in potential homologs. We found that PA14_54940 codes for a bifunctional salicylate synthase/salicyl-AMP ligase (for generation and activation of salicylate), that PA14_54930 specifies a dihydroaeruginoic acid (Dha) synthetase (for coupling salicylate with a cysteine-derived thiazoline ring), that PA14_54910 produces a type II thioesterase (for quality control), and that PA14_54880 encodes a serine O-acetyltransferase (for increased cysteine availability). The structure of the PA14GI-6-specified metabolite was determined by mass spectrometry, thin-layer chromatography, and HPLC as (R)-Dha, an iron chelator with antibacterial, antifungal and antitumor activity. The conservation of this genomic island in many clinical and environmental P. aeruginosa isolates of different geographical origin suggests that the ability for Dha production may confer a selective advantage to its host.
Collapse
Affiliation(s)
- Alessandro Maspoli
- Département de Microbiologie Fondamentale, Université de Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015, Lausanne, Switzerland
| | | | | | | |
Collapse
|
37
|
Nadarasah G, Stavrinides J. Quantitative evaluation of the host-colonizing capabilities of the enteric bacterium Pantoea using plant and insect hosts. MICROBIOLOGY-SGM 2014; 160:602-615. [PMID: 24430494 DOI: 10.1099/mic.0.073452-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genus Pantoea is a highly diverse group comprising free-living, and both pathogenic and non-pathogenic host-associating species. Pathogenic isolates have been found to infect insects, plants and humans, yet it is unclear whether these isolates have similar pathogenic potential to the free-living environmental populations. Using MLSA of six housekeeping genes, we evaluated the phylogenetic relationships among 115 environmental and clinical (human) isolates representing 11 Pantoea species. An overlay of the location of isolation onto the resulting tree revealed that clinical and environmental isolates are interspersed, and do not form distinctive groups. We then conducted quantitative growth assays of our isolates using maize, onion and fruit flies as hosts. Notably, most clinical isolates were able to grow in both plant hosts often comparably or even better than the environmental isolates. There were no obvious growth or host colonization patterns that could distinguish those isolates with clinical potential. Growth of an isolate in one host could not be predicted based on its performance in another host, nor could host growth be predicted by phylogeny or source of isolation. This work demonstrates that the host-colonizing capabilities of all Pantoea species groups is unpredictable, indicating a broader host range and pathogenic potential than currently assumed.
Collapse
Affiliation(s)
- Geetanchaly Nadarasah
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| |
Collapse
|
38
|
Chung IY, Kim YK, Cho YH. Common virulence factors for Pseudomonas tolaasii pathogenesis in Agaricus and Arabidopsis. Res Microbiol 2013; 165:102-9. [PMID: 24370573 DOI: 10.1016/j.resmic.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 12/03/2013] [Indexed: 11/17/2022]
Abstract
Brown blotch of cultivatable mushrooms is a disease caused by the small peptide toxin (tolaasin) secreted by Pseudomonas tolaasii. Here we found that the wild type tolassin-producing P. tolaasii stain 6264 was capable of infection in Arabidopsis thaliana cotyledons, causing chlorotic symptoms and growth arrest as a result of bacterial proliferation. Seven virulence-attenuated mutants of P. tolaasii were isolated from the Agaricus bisporus screen using 2512 mariner-based transposon insertion mutants, and all of them displayed reduced virulence and bacterial proliferation in Arabidopsis infection as well. The transposon was inserted within the genes for tolassin biosynthesis and amino acid biosynthesis, and within an intergenic region between the genes of unknown function. The finding that some virulence factors are commonly required for both Agaricus and Arabidopsis infections suggests that Arabidopsis could be exploited to study the host-pathogen interaction involving P. tolaasii.
Collapse
Affiliation(s)
- In-Young Chung
- Department of Pharmacy, CHA University, Gyeonggi 463-840, South Korea
| | - Young-Kee Kim
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, South Korea
| | - You-Hee Cho
- Department of Pharmacy, CHA University, Gyeonggi 463-840, South Korea.
| |
Collapse
|
39
|
Abstract
Placement of motility structures at the poles of rod-shaped bacteria is a common engineering problem with a variety of potential solutions. While investigating the mechanisms for positioning of the single polar flagellum of Pseudomonas aeruginosa, Cowles and colleagues discovered a new membrane-bound three-component system related to TonB-ExbB-ExbD that they named 'Poc' for polar organelle co-ordinator, which controls polar localization of both the flagellum and type IV pili. The Poc complex itself is not found at the poles, and is required for increased expression of pilus genes upon surface association, suggesting a new paradigm of localization control.
Collapse
Affiliation(s)
- Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Rm 4H18, 1280 Main St. W., Hamilton, Ontario, Canada, L8S4K1
| |
Collapse
|
40
|
Taylor TB, Rodrigues AMM, Gardner A, Buckling A. The social evolution of dispersal with public goods cooperation. J Evol Biol 2013; 26:2644-53. [DOI: 10.1111/jeb.12259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 01/18/2023]
Affiliation(s)
- T. B. Taylor
- Department of Zoology; University of Oxford; Oxford UK
- School of Biological Sciences; University of Reading; Reading UK
| | | | - A. Gardner
- Department of Zoology; University of Oxford; Oxford UK
- Balliol College, University of Oxford; Oxford UK
- School of Biology; University of St Andrews; St Andrews UK
| | - A. Buckling
- Department of Zoology; University of Oxford; Oxford UK
- Biosciences; University of Exeter; Penryn UK
| |
Collapse
|
41
|
Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int J Mol Sci 2013; 14:19309-40. [PMID: 24065108 PMCID: PMC3794835 DOI: 10.3390/ijms140919309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023] Open
Abstract
Bacteria, although considered for decades to be antisocial organisms whose sole purpose is to find nutrients and multiply are, in fact, highly communicative organisms. Referred to as quorum sensing, cell-to-cell communication mechanisms have been adopted by bacteria in order to co-ordinate their gene expression. By behaving as a community rather than as individuals, bacteria can simultaneously switch on their virulence factor production and establish successful infections in eukaryotes. Understanding pathogen-host interactions requires the use of infection models. As the use of rodents is limited, for ethical considerations and the high costs associated with their use, alternative models based on invertebrates have been developed. Invertebrate models have the benefits of low handling costs, limited space requirements and rapid generation of results. This review presents examples of such models available for studying the pathogenicity of the Gram-negative bacterium Pseudomonas aeruginosa. Quorum sensing interference, known as quorum quenching, suggests a promising disease-control strategy since quorum-quenching mechanisms appear to play important roles in microbe-microbe and host-pathogen interactions. Examples of natural and synthetic quorum sensing inhibitors and their potential as antimicrobials in Pseudomonas-related infections are discussed in the second part of this review.
Collapse
|
42
|
Taylor TB, Buckling A. Bacterial motility confers fitness advantage in the presence of phages. J Evol Biol 2013; 26:2154-60. [PMID: 23937523 DOI: 10.1111/jeb.12214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 01/13/2023]
Abstract
Dispersal provides the opportunity to escape harm and colonize new patches, enabling populations to expand and persist. However, the benefits of dispersal associated with escaping harm will be dependent on the structure of the environment and the likelihood of escape. Here, we empirically investigate how the spatial distribution of a parasite influences the evolution of host dispersal. Bacteriophages are a strong and common threat for bacteria in natural environments and offer a good system with which to explore parasite-mediated selection on host dispersal. We used two transposon mutants of the opportunistic bacteria, Pseudomonas aeruginosa, which varied in their motility (a disperser and a nondisperser), and the lytic bacteriophage ФKZ. The phage was distributed either in the central point of colony inoculation only, thus offering an escape route for the dispersing bacteria; or, present throughout the agar, where benefits of dispersal might be lost. Surprisingly, we found dispersal to be equally advantageous under both phage conditions relative to when phages were absent. A general explanation is that dispersal decreased the spatial structuring of host population, reducing opportunities for parasite transmission, but other more idiosyncratic mechanisms may also have contributed. This study highlights the crucial role the parasites can play on the evolution of dispersal and, more specifically, that bacteriophages, which are ubiquitous, are likely to select for bacterial motility.
Collapse
Affiliation(s)
- T B Taylor
- Biological Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
43
|
Ye YH, Woolfit M, Rancès E, O'Neill SL, McGraw EA. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Negl Trop Dis 2013; 7:e2362. [PMID: 23951381 PMCID: PMC3738474 DOI: 10.1371/journal.pntd.0002362] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/30/2013] [Indexed: 12/15/2022] Open
Abstract
Background Wolbachia infections confer protection for their insect hosts against a range of pathogens including bacteria, viruses, nematodes and the malaria parasite. A single mechanism that might explain this broad-based pathogen protection is immune priming, in which the presence of the symbiont upregulates the basal immune response, preparing the insect to defend against subsequent pathogen infection. A study that compared natural Wolbachia infections in Drosophila melanogaster with the mosquito vector Aedes aegypti artificially transinfected with the same strains has suggested that innate immune priming may only occur in recent host-Wolbachia associations. This same study also revealed that while immune priming may play a role in viral protection it cannot explain the entirety of the effect. Methodology/Findings Here we assess whether the level of innate immune priming induced by different Wolbachia strains in A. aegypti is correlated with the degree of protection conferred against bacterial pathogens. We show that Wolbachia strains wMel and wMelPop, currently being tested for field release for dengue biocontrol, differ in their protective abilities. The wMelPop strain provides stronger, more broad-based protection than wMel, and this is likely explained by both the higher induction of immune gene expression and the strain-specific activation of particular genes. We also show that Wolbachia densities themselves decline during pathogen infection, likely as a result of the immune induction. Conclusions/Significance This work shows a correlation between innate immune priming and bacterial protection phenotypes. The ability of the Toll pathway, melanisation and antimicrobial peptides to enhance viral protection or to provide the basis of malaria protection should be further explored in the context of this two-strain comparison. This work raises the questions of whether Wolbachia may improve the ability of wild mosquitoes to survive pathogen infection or alter the natural composition of gut flora, and thus have broader consequences for host fitness. Wolbachia is a commonly occurring bacterium or symbiont that lives inside the cells of insects. Recently, Wolbachia was artificially introduced into the mosquito vector dengue virus that was naturally Wolbachia-free. Wolbachia limits the growth of a range of pathogens transmitted to humans, including viruses, bacteria and parasites inside the mosquito. This “pathogen protection” forms the basis of field trials to determine if releasing Wolbachia into wild mosquito populations could reduce dengue virus incidence in humans. The basis of pathogen protection is not fully understood. Previous work suggests that the symbiont may activate the basal immune response, preparing the insect to defend itself against subsequent pathogen infection. Here we infect mosquitoes harbouring Wolbachia with a range of bacterial pathogens as a means to understand the nature of protection. We show that different Wolbachia strains vary in their ability to limit pathogen growth and that this correlates with the degree to which the Wolbachia activates the host immune response. These findings may assist with Wolbachia strain selection for future open field release and raise the question whether Wolbachia might provide a fitness advantage to mosquitoes in the wild by limiting their death due to bacterial infection.
Collapse
Affiliation(s)
- Yixin H. Ye
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Megan Woolfit
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Edwige Rancès
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Scott L. O'Neill
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
44
|
Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella. Infect Immun 2013; 81:3552-65. [PMID: 23836821 DOI: 10.1128/iai.00391-13] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The implementation of infection models that approximate human disease is essential for understanding pathogenesis at the molecular level and for testing new therapies before they are entered into clinical stages. Insects are increasingly being used as surrogate hosts because they share, with mammals, essential aspects of the innate immune response to infections. We examined whether the larva of the wax moth Galleria mellonella could be used as a host model to conceptually approximate Klebsiella pneumoniae-triggered pneumonia. We report that the G. mellonella model is capable of distinguishing between pathogenic and nonpathogenic Klebsiella strains. Moreover, K. pneumoniae infection of G. mellonella models some of the known features of Klebsiella-induced pneumonia, i.e., cell death associated with bacterial replication, avoidance of phagocytosis by phagocytes, and the attenuation of host defense responses, chiefly the production of antimicrobial factors. Similar to the case for the mouse pneumonia model, activation of innate responses improved G. mellonella survival against subsequent Klebsiella challenge. Virulence factors necessary in the mouse pneumonia model were also implicated in the Galleria model. We found that mutants lacking capsule polysaccharide, lipid A decorations, or the outer membrane proteins OmpA and OmpK36 were attenuated in Galleria. All mutants activated G. mellonella defensive responses. The Galleria model also allowed us to monitor Klebsiella gene expression. The expression levels of cps and the loci implicated in lipid A remodeling peaked during the first hours postinfection, in a PhoPQ- and PmrAB-governed process. Taken together, these results support the utility of G. mellonella as a surrogate host for assessing infections with K. pneumoniae.
Collapse
|
45
|
Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress. J Bacteriol 2013; 195:3299-308. [PMID: 23687271 DOI: 10.1128/jb.00167-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive.
Collapse
|
46
|
Filiatrault MJ, Tombline G, Wagner VE, Van Alst N, Rumbaugh K, Sokol P, Schwingel J, Iglewski BH. Pseudomonas aeruginosa PA1006, which plays a role in molybdenum homeostasis, is required for nitrate utilization, biofilm formation, and virulence. PLoS One 2013; 8:e55594. [PMID: 23409004 PMCID: PMC3568122 DOI: 10.1371/journal.pone.0055594] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/27/2012] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (Pae) is a clinically important opportunistic pathogen. Herein, we demonstrate that the PA1006 protein is critical for all nitrate reductase activities, growth as a biofilm in a continuous flow system, as well as virulence in mouse burn and rat lung model systems. Microarray analysis revealed that ΔPA1006 cells displayed extensive alterations in gene expression including nitrate-responsive, quorum sensing (including PQS production), and iron-regulated genes, as well as molybdenum cofactor and Fe-S cluster biosynthesis factors, members of the TCA cycle, and Type VI Secretion System components. Phenotype Microarray™ profiles of ΔPA1006 aerobic cultures using Biolog plates also revealed a reduced ability to utilize a number of TCA cycle intermediates as well as a failure to utilize xanthine as a sole source of nitrogen. As a whole, these data indicate that the loss of PA1006 confers extensive changes in Pae metabolism. Based upon homology of PA1006 to the E. coli YhhP protein and data from the accompanying study, loss of PA1006 persulfuration and/or molybdenum homeostasis are likely the cause of extensive metabolic alterations that impact biofilm development and virulence in the ΔPA1006 mutant.
Collapse
Affiliation(s)
- Melanie J. Filiatrault
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Gregory Tombline
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Victoria E. Wagner
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Nadine Van Alst
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Kendra Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Pam Sokol
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Johanna Schwingel
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Barbara H. Iglewski
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Martin OY, Puniamoorthy N, Gubler A, Wimmer C, Germann C, Bernasconi MV. Infections with the microbe Cardinium in the Dolichopodidae and other Empidoidea. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:47. [PMID: 23909372 PMCID: PMC3740928 DOI: 10.1673/031.013.4701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 09/05/2012] [Indexed: 06/02/2023]
Abstract
Maternally transmitted reproductive parasites such as Wolbachia and Cardinium can drastically reshape reproduction in their hosts. Beyond skewing sex ratios towards females, these microbes can also cause cytoplasmic incompatibility. Wolbachia probably infects two thirds of insects, but far less is known about the occurrence or action of other bacteria with potentially similar effects. In contrast with the two more widespread reproductive parasites, Wolbachia and Spiroplasma, far less is known of infections with Cardinium (Bacteroidetes) and possible consequences in the Diptera. Here, in an extensive survey, 244 dipteran species from 67 genera belonging to the Dolichopodidae, Empididae, and Hybotidae were assessed for the presence of the microbe Cardinium. Although 130 of the species screened tested positive (ca. 53%), the presence of Cardinium could only be confirmed in 10 species (ca. 4%) based on analysis of sequences. Numerous additional sequences were found to be assignable to known or unknown Bacteroidetes. Considering the known issues concerning specificity of Cardinium primers and the phylogenetic uncertainties surrounding this microbe, the actual prevalence of this symbiont is worthy of further scrutiny. Potential directions for future research on Cardinium-host interactions in Diptera and in general are discussed.
Collapse
Affiliation(s)
- Oliver Y. Martin
- ETH Zürich, Experimental Ecology, Institute for Integrative Biology, CHNJ 11, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
- these authors contributed equally
| | - Nalini Puniamoorthy
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH8057 Zürich, Switzerland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore I 17543, Singapore
| | - Andrea Gubler
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH8057 Zürich, Switzerland
| | - Corinne Wimmer
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH8057 Zürich, Switzerland
| | - Christoph Germann
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH8057 Zürich, Switzerland
| | - Marco V. Bernasconi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH8057 Zürich, Switzerland
- Natur-Museum Luzern, Kasernenplatz 6, CH-6003 Luzern, Switzerland
- these authors contributed equally
| |
Collapse
|
48
|
Hussa E, Goodrich-Blair H. Rearing and injection of Manduca sexta larvae to assess bacterial virulence. J Vis Exp 2012:e4295. [PMID: 23271332 DOI: 10.3791/4295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Manduca sexta, commonly known as the tobacco hornworm, is considered a significant agricultural pest, feeding on solanaceous plants including tobacco and tomato. The susceptibility of M. sexta larvae to a variety of entomopathogenic bacterial species(1-5), as well as the wealth of information available regarding the insect's immune system(6-8), and the pending genome sequence(9) make it a good model organism for use in studying host-microbe interactions during pathogenesis. In addition, M. sexta larvae are relatively large and easy to manipulate and maintain in the laboratory relative to other susceptible insect species. Their large size also facilitates efficient tissue/hemolymph extraction for analysis of the host response to infection. The method presented here describes the direct injection of bacteria into the hemocoel (blood cavity) of M. sexta larvae. This approach can be used to analyze and compare the virulence characteristics of various bacterial species, strains, or mutants by simply monitoring the time to insect death after injection. This method was developed to study the pathogenicity of Xenorhabdus and Photorhabdus species, which typically associate with nematode vectors as a means to gain entry into the insect. Entomopathogenic nematodes typically infect larvae via natural digestive or respiratory openings, and release their symbiotic bacterial contents into the insect hemolymph (blood) shortly thereafter(10). The injection method described here bypasses the need for a nematode vector, thus uncoupling the effects of bacteria and nematode on the insect. This method allows for accurate enumeration of infectious material (cells or protein) within the inoculum, which is not possible using other existing methods for analyzing entomopathogenesis, including nicking(11) and oral toxicity assays(12). Also, oral toxicity assays address the virulence of secreted toxins introduced into the digestive system of larvae, whereas the direct injection method addresses the virulence of whole-cell inocula. The utility of the direct injection method as described here is to analyze bacterial pathogenesis by monitoring insect mortality. However, this method can easily be expanded for use in studying the effects of infection on the M. sexta immune system. The insect responds to infection via both humoral and cellular responses. The humoral response includes recognition of bacterial-associated patterns and subsequent production of various antimicrobial peptides(7); the expression of genes encoding these peptides can be monitored subsequent to direct infection via RNA extraction and quantitative PCR(13). The cellular response to infection involves nodulation, encapsulation, and phagocytosis of infectious agents by hemocytes(6). To analyze these responses, injected insects can be dissected and visualized by microscopy(13, 14).
Collapse
|
49
|
Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathog 2012; 8:e1003052. [PMID: 23209420 PMCID: PMC3510237 DOI: 10.1371/journal.ppat.1003052] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 09/09/2012] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilm is considered as a particular lifestyle helping cells to survive hostile environments triggered by a variety of signals sensed and integrated through adequate regulatory pathways. Pseudomonas aeruginosa, a Gram-negative bacterium causing severe infections in humans, forms biofilms and is a fantastic example for fine-tuning of the transition between planktonic and community lifestyles through two-component systems (TCS). Here we decipher the regulon of the P. aeruginosa response regulator PprB of the TCS PprAB. We identified genes under the control of this TCS and once this pathway is activated, analyzed and dissected at the molecular level the PprB-dependent phenotypes in various models. The TCS PprAB triggers a hyper-biofilm phenotype with a unique adhesive signature made of BapA adhesin, a Type 1 secretion system (T1SS) substrate, CupE CU fimbriae, Flp Type IVb pili and eDNA without EPS involvement. This unique signature is associated with drug hyper-susceptibility, decreased virulence in acutely infected flies and cytotoxicity toward various cell types linked to decreased Type III secretion (T3SS). Moreover, once the PprB pathway is activated, decreased virulence in orally infected flies associated with enhanced biofilm formation and dissemination defect from the intestinal lumen toward the hemolymph compartment is reported. PprB may thus represent a key bacterial adaptation checkpoint of multicellular and aggregative behavior triggering the production of a unique matrix associated with peculiar antibiotic susceptibility and attenuated virulence, a particular interesting breach for therapeutic intervention to consider in view of possible eradication of P. aeruginosa biofilm-associated infections.
Collapse
|
50
|
Burkholderia thailandensis is virulent in Drosophila melanogaster. PLoS One 2012; 7:e49745. [PMID: 23209596 PMCID: PMC3507839 DOI: 10.1371/journal.pone.0049745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
Melioidosis is a serious infectious disease endemic to Southeast Asia and Northern Australia. This disease is caused by the Gram-negative bacterium Burkholderia pseudomallei; Burkholderia thailandensis is a closely-related organism known to be avirulent in humans. B. thailandensis has not previously been used to infect Drosophila melanogaster. We examined the effect of B. thailandensis infection on fly survival, on antimicrobial peptide expression, and on phagocytic cells. In the fruit fly, which possesses only an innate immune system, B. thailandensis is highly virulent, causing rapid death when injected or fed. One intriguing aspect of this infection is its temperature dependence: infected flies maintained at 25°C exhibit rapid bacterial proliferation and death in a few days, while infected animals maintained at 18°C exhibit very slow bacterial proliferation and take weeks to die; this effect is due in part to differences in immune activity of the host. Death in this infection is likely due at least in part to a secreted toxin, as injection of flies with sterile B. thailandensis-conditioned medium is able to kill. B. thailandensis infection strongly induces the expression of antimicrobial peptides, but this is insufficient to inhibit bacterial proliferation in infected flies. Finally, the function of fly phagocytes is not affected by B. thailandensis infection. The high virulence of B. thailandensis in the fly suggests the possibility that this organism is a natural pathogen of one or more invertebrates.
Collapse
|