1
|
Fan G, Song W, Guan Z, Zhang W, Lu X. Some novel features of strong promoters discovered in Cytophaga hutchinsonii. Appl Microbiol Biotechnol 2022; 106:2529-2540. [PMID: 35318522 DOI: 10.1007/s00253-022-11869-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 11/28/2022]
Abstract
Cytophaga hutchinsonii is an important Gram-negative bacterium belonging to the Bacteroides phylum that can efficiently degrade cellulose. But the promoter that mediates the initiation of gene transcription has been unknown for a long time. In this study, we determined the transcription start site (TSS) of C. hutchinsonii by 5' rapid amplification of cDNA ends (5'RACE). The promoter structure was first identified as TAAT and TATTG which are located -5 and -31 bp upstream of TSS, respectively. The function of -5 and -31 regions and the spacer length of the promoter Pchu_1284 were explored by site directed ligase-independent mutagenesis (SLIM). The results showed that the promoter activities were sharply decreased when the TTG motif was mutated into guanine (G) or cytosine (C). Interestingly, we found that the strong promoter was accompanied with many TTTG motifs which could enhance the promoter activities within certain copies. These characteristics were different from other promoters of Bacteriodes species. Furthermore, we carried out genome scanning analysis for C. hutchinsonii and another Bacteroides species by Perl6.0. The results indicated that the promoter structure of C. hutchinsonii possessed more unique features than other species. Also, the screened inducible promoter Pchu_2268 was used to overexpress protein CHU_2196 with a molecular weight of 120 kDa in C. hutchinsonii. The present study enriched the promoter structure of Bacteroidetes species and also provided a novel method for the highly expressed large protein (cellulase) in vivo, which was helpful to elucidate the unique cellulose degradation mechanism of C. hutchinsonii.Key points• The conserved structure of strong promoter of C. hutchinsonii was elucidated.• Two novel regulation motifs of TTTG and AATTATG in the promoter were discovered.• A new method for induced expression of cellulase in vivo was established.• Helpful for explained the unique cellulose degradation mechanism of C. hutchinsonii.
Collapse
Affiliation(s)
- Guoqing Fan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Wenxia Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Zhiwei Guan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China.,School of Life Science, Qilu Normal University, Jinan, 250200, China
| | - Weican Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, China.
| |
Collapse
|
2
|
Chen S, Bagdasarian M, Kaufman MG, Bates AK, Walker ED. Mutational analysis of the ompA promoter from Flavobacterium johnsoniae. J Bacteriol 2007; 189:5108-18. [PMID: 17483221 PMCID: PMC1951883 DOI: 10.1128/jb.00401-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequences that mediate the initiation of transcription in Flavobacterium species are not well known. The majority of identified Flavobacterium promoter elements show homology to those of other members of the phylum Bacteroidetes, but not of proteobacteria, and they function poorly in Escherichia coli. In order to analyze the Flavobacterium promoter structure systematically, we investigated the -33 consensus element, -7 consensus element, and spacer length of the Flavobacterium ompA promoter by measuring the effects of site-directed mutations on promoter activity. The nonconserved sequences in the spacer region and in regions close to the consensus motifs were randomized in order to determine their importance for promoter activity. Most of the base substitutions in these regions caused large decreases in promoter activity. The optimal -33/-7 motifs (TTTG/TANNTTTG) were identical to Bacteroides fragilis sigma(ABfr) consensus -33/-7 promoter elements but lacked similarity to the E. coli sigma(70) promoter elements. The length of the spacer separating the -33 and -7 motifs of the ompA promoter also had a pronounced effect on promoter activity, with 19 bp being optimal. In addition to the consensus promoter elements and spacer length, the GC content of the core promoter sequences had a pronounced effect on Flavobacterium promoter activity. This information was used to conduct a scan of the Flavobacterium johnsoniae and B. fragilis genomes for putative promoters, resulting in 188 hits in B. fragilis and 109 hits in F. johnsoniae.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
3
|
Blanco M, Gutiérrez-Martin CB, Rodríguez-Ferri EF, Roberts MC, Navas J. Distribution of tetracycline resistance genes in Actinobacillus pleuropneumoniae isolates from Spain. Antimicrob Agents Chemother 2006; 50:702-8. [PMID: 16436729 PMCID: PMC1366870 DOI: 10.1128/aac.50.2.702-708.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia. Tetracycline is used for therapy of this disease, and A. pleuropneumoniae carrying the tet(B) gene, coding for an efflux protein that reduces the intercellular tetracycline level, has been described previously. Of the 46 tetracycline-resistant (Tc(r)) Spanish A. pleuropneumoniae isolates used in this study, 32 (70%) carried the tet(B) gene, and 30 of these genes were associated with plasmids. Eight (17%) isolates carried the tet(O) gene, two (4%) isolates carried either the tet(H) or the tet(L) gene, and all these genes were associated with plasmids. This is the first description of these tet genes in A. pleuropneumoniae. The last two Tc(r) isolates carried none of the tet genes examined. Except for tet(O)-containing plasmids, the other 34 Tc(r) plasmids were transformable into an Escherichia coli recipient. Two plasmids were completely sequenced. Plasmid p11745, carrying the tet(B) gene, was 5,486 bp and included a rep gene, encoding a replication-related protein, and two open reading frames (ORFs) with homology to mobilization genes of Neisseria gonorrhoeae plasmid pSJ7.4. Plasmid p9555, carrying the tet(L) gene, was 5,672 bp and, based on its G+C content, consisted of two regions, one of putative gram-positive origin containing the tet(L) gene and the other comprising four ORFs organized in an operon-like structure with homology to mobilization genes in other plasmids of gram-negative bacteria.
Collapse
Affiliation(s)
- Mónica Blanco
- Departamento de Biología Molecular (Unidad Asociada al Centro de Investigaciones Biológicas, C.S.I.C.), Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | |
Collapse
|
4
|
Kim P, Laivenieks M, McKinlay J, Vieille C, Gregory Zeikus J. Construction of a shuttle vector for the overexpression of recombinant proteins in Actinobacillus succinogenes. Plasmid 2004; 51:108-15. [PMID: 15003707 DOI: 10.1016/j.plasmid.2003.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 11/12/2003] [Indexed: 11/28/2022]
Abstract
To express foreign proteins in Actinobacillus succinogenes, a shuttle vector was constructed based on the Actinobacillus pleuropneumoniae-Escherichia coli shuttle vector, pGZRS-19. We demonstrated that A. succinogenes is transformed by electroporation at reasonably high efficiency, that pGZRS-19 is stable in A. succinogenes, and that the ampicillin resistance gene carried by pGZRS-19 is expressed in A. succinogenes. Three steps were then required to develop our A. succinogenes-E. coli shuttle vector. (i) The constitutively expressed A. succinogenes phosphoenolpyruvate carboxykinase gene, pckA, was cloned and sequenced. (ii) Its promoter region and ribosome-binding site were subcloned into pGZRS-19. (iii) Finally, the ColE1 origin of replication was added to the vector to increase its stability in E. coli. High levels of A. succinogenes phosphoenolpyruvate carboxykinase, E. coli NADP-dependent malic enzyme, and Bacillus subtilis NAD-dependent malic enzyme activities detected in recombinant A. succinogenes strains confirmed that A. succinogenes and foreign proteins could be expressed in A. succinogenes under control of the A. succinogenes pckA promoter carried by pLGZ920. A. succinogenes is sensitive to chloramphenicol and tetracycline. Although not expressed from their own promoters, the Tn9 chloramphenicol and the Tn10 tetracycline resistance genes are expressed under control of the pckA promoter, and they can be used as additional selection markers in A. succinogenes.
Collapse
Affiliation(s)
- Pil Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | | | |
Collapse
|
5
|
Boekema BKHL, Van Putten JPM, Stockhofe-Zurwieden N, Smith HE. Host cell contact-induced transcription of the type IV fimbria gene cluster of Actinobacillus pleuropneumoniae. Infect Immun 2004; 72:691-700. [PMID: 14742510 PMCID: PMC321578 DOI: 10.1128/iai.72.2.691-700.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (Tfp) of gram-negative species share many characteristics, including a common architecture and conserved biogenesis pathway. Much less is known about the regulation of Tfp expression in response to changing environmental conditions. We investigated the diversity of Tfp regulatory systems by searching for the molecular basis of the reported variable expression of the Tfp gene cluster of the pathogen Actinobacillus pleuropneumoniae. Despite the presence of an intact Tfp gene cluster consisting of four genes, apfABCD, no Tfp were formed under standard growth conditions. Sequence analysis of the predicted major subunit protein ApfA showed an atypical alanine residue at position -1 from the prepilin peptidase cleavage site in 42 strains. This alanine deviates from the consensus glycine at this position in Tfp from other species. Yet, cloning of the apfABCD genes under a constitutive promoter in A. pleuropneumoniae resulted in pilin and Tfp assembly. Tfp promoter-luxAB reporter gene fusions demonstrated that the Tfp promoter was intact but tightly regulated. Promoter activity varied with bacterial growth phase and was detected only when bacteria were grown in chemically defined medium. Infection experiments with cultured epithelial cells demonstrated that Tfp promoter activity was upregulated upon adherence of the pathogen to primary cultures of lung epithelial cells. Nonadherent bacteria in the culture supernatant exhibited virtually no promoter activity. A similar upregulation of Tfp promoter activity was observed in vivo during experimental infection of pigs. The host cell contact-induced and in vivo-upregulated Tfp promoter activity in A. pleuropneumoniae adds a new dimension to the diversity of Tfp regulation.
Collapse
Affiliation(s)
- Bouke K H L Boekema
- Division of Infectious Diseases and Food Chain Quality, Institute for Animal Science and Health, ID-Lelystad, 8200 AB Lelystad, The Netherlands
| | | | | | | |
Collapse
|
6
|
Provost M, Harel J, Labrie J, Sirois M, Jacques M. Identification, cloning and characterization of rfaE of Actinobacillus pleuropneumoniae serotype 1, a gene involved in lipopolysaccharide inner-core biosynthesis. FEMS Microbiol Lett 2003; 223:7-14. [PMID: 12798993 DOI: 10.1016/s0378-1097(03)00247-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia and its lipopolysaccharides (LPS) have been identified as important adhesins involved in adherence to host cells. To better understand the role of LPS core in the virulence of this organism, the aim of the present study was to identify and clone genes involved in LPS core biosynthesis by complementation with Salmonella enterica serovar Typhimurium mutants (rfaC, rfaD, rfaE and rfaF). Complementation with an A. pleuropneumoniae 4074 genomic library was successful with Salmonella mutant SL1102. This Salmonella deep-rough LPS mutant is defective for the rfaE gene, which is an ADP-heptose synthase. Novobiocin was used to select transformants that had the smooth-LPS type, since Salmonella strains with wild-type smooth-LPS are less permeable, therefore more resistant to hydrophobic antibiotics like novobiocin. We obtained a clone that was able to restore the wild-type smooth-LPS Salmonella phenotype after complementation. The wild-type phenotype was confirmed using phage (Felix-O, P22c.2 and Ffm) susceptibility and SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). One of the open reading frames contained in the 3.3-kb insert in the plasmid encoded a 475-amino-acid protein with 71% identity and 85% similarity to the RfaE protein of S. enterica. We then attempted to generate an A. pleuropneumoniae rfaE mutant by gene replacement. The rfaE gene seems essential in A. pleuropneumoniae viability as we were unable to isolate a heptose-less knockout mutant.
Collapse
Affiliation(s)
- Marilou Provost
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | | | | | | |
Collapse
|
7
|
Mikael LG, Pawelek PD, Labrie J, Sirois M, Coulton JW, Jacques M. Molecular cloning and characterization of the ferric hydroxamate uptake (fhu) operon in Actinobacillus pleuropneumoniae. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2869-2882. [PMID: 12213932 DOI: 10.1099/00221287-148-9-2869] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterium Actinobacillus pleuropneumoniae, a swine pathogen, utilizes ferrichrome as an iron source. This study details the molecular cloning and sequencing of the genes involved in the uptake of this hydroxamate siderophore. Four ferric hydroxamate uptake (fhu) genes, fhuC, fhuD, fhuB and fhuA, were identified in a single operon, and these were found to encode proteins homologous to proteins of the fhu systems of several bacteria, including Escherichia coli. The fhuA gene encodes the 77 kDa outer-membrane protein (OMP) FhuA, the receptor for ferrichrome. FhuD is the 35.6 kDa periplasmic protein responsible for the translocation of ferric hydroxamate from the outer to the inner membrane. FhuC (28.5 kDa) and FhuB (69.4 kDa) are cytoplasmic-membrane-associated proteins that are components of an ABC transporter which internalizes the ferric hydroxamate. Reference strains of A. pleuropneumoniae that represented serotypes 1 to 12 of this organism all tested positive for the four fhu genes. When A. pleuropneumoniae FhuA was affinity-tagged with hexahistidine at its amino terminus and expressed in an E. coli host, the recombinant protein reacted with an mAb against E. coli FhuA, as well as with a polyclonal pig serum raised against an A. pleuropneumoniae infection. Hence, the authors conclude that fhuA is expressed in vivo by A. pleuropneumoniae. Three-dimensional modelling of the OMP FhuA was achieved by threading it to the X-ray crystallographic structure of the homologous protein in E. coli. FhuA from A. pleuropneumoniae was found to have the same overall fold as its E. coli homologue, i.e. it possesses an N-terminal cork domain followed by a C-terminal beta-barrel domain and displays 11 extracellular loops and 10 periplasmic turns.
Collapse
Affiliation(s)
- Leonie G Mikael
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, CanadaJ2S 7C61
| | - Peter D Pawelek
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, CanadaH3A 2B42
| | - Josée Labrie
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, CanadaJ2S 7C61
| | - Marc Sirois
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, CanadaG9A 5H73
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, CanadaH3A 2B42
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, CanadaJ2S 7C61
| |
Collapse
|
8
|
Shea RJ, Mulks MH. ohr, Encoding an organic hydroperoxide reductase, is an in vivo-induced gene in Actinobacillus pleuropneumoniae. Infect Immun 2002; 70:794-802. [PMID: 11796613 PMCID: PMC127688 DOI: 10.1128/iai.70.2.794-802.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, a disease characterized by pulmonary necrosis and hemorrhage caused in part by neutrophil degranulation. In an effort to understand the pathogenesis of this disease, we have developed an in vivo expression technology (IVET) system to identify genes that are specifically up-regulated during infection. One of the genes that we have identified as being induced in vivo is ohr, encoding organic hydroperoxide reductase, an enzyme that could play a role in detoxification of organic hydroperoxides generated during infection. Among the 12 serotypes of A. pleuropneumoniae, ohr was found in only serotypes 1, 9, and 11. This distribution correlated with increased resistance to cumene hydroperoxide, an organic hydroperoxide, but not to hydrogen peroxide or to paraquat, a superoxide generator. Functional assays of Ohr activity demonstrated that A. pleuropneumoniae serotype 1 cultures, but not serotype 5 cultures, were able to degrade cumene hydroperoxide. In A. pleuropneumoniae serotype 1, expression of ohr was induced by cumene hydroperoxide, but not by either hydrogen peroxide or paraquat. In contrast, an ohr gene from serotype 1 cloned into A. pleuropneumoniae serotype 5 was not induced by cumene hydroperoxide or by other forms of oxidative stress, suggesting the presence of a serotype-specific positive regulator of ohr in A. pleuropneumoniae serotype 1.
Collapse
Affiliation(s)
- Robin J Shea
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
9
|
Schneider TD. Strong minor groove base conservation in sequence logos implies DNA distortion or base flipping during replication and transcription initiation. Nucleic Acids Res 2001; 29:4881-91. [PMID: 11726698 PMCID: PMC96701 DOI: 10.1093/nar/29.23.4881] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sequence logo for DNA binding sites of the bacteriophage P1 replication protein RepA shows unusually high sequence conservation ( approximately 2 bits) at a minor groove that faces RepA. However, B-form DNA can support only 1 bit of sequence conservation via contacts into the minor groove. The high conservation in RepA sites therefore implies a distorted DNA helix with direct or indirect contacts to the protein. Here I show that a high minor groove conservation signature also appears in sequence logos of sites for other replication origin binding proteins (Rts1, DnaA, P4 alpha, EBNA1, ORC) and promoter binding proteins (sigma(70), sigma(D) factors). This finding implies that DNA binding proteins generally use non-B-form DNA distortion such as base flipping to initiate replication and transcription.
Collapse
Affiliation(s)
- T D Schneider
- National Cancer Institute at Frederick, Laboratory of Experimental and Computational Biology, Building 469, PO Box B, Frederick, MD 21702-1201, USA.
| |
Collapse
|