1
|
Zhang T, Lin Y, Zhang Z, Wang Z, Zeng F, Wang Q. Roles and applications of autophagy in guarding against environmental stress and DNA damage in Saccharomyces cerevisiae. FEBS J 2025. [PMID: 40272088 DOI: 10.1111/febs.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/09/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Saccharomyces cerevisiae (S. cerevisiae), a famous chassis cell factory, often faces various environmental stress conditions like extreme temperature, osmolarity, and nutrient starvation during the fermentation process. Additionally, chromosomal replication and genome editing-assisted metabolic engineering may cause DNA damage to S. cerevisiae. S. cerevisiae has evolved multiple elaborate mechanisms to fend against these adverse conditions. One of these "self-repair" mechanisms is autophagy, a ubiquitous "self-eating" mechanism that transports intracellular components to the lysosome/vacuole for degradation. Here, we reviewed the current state of our knowledge about the role and application of autophagy regulation in S. cerevisiae in response to environmental stress and genome damage, which may provide new strategies for developing robust industrial yeast and accelerating genome engineering.
Collapse
Affiliation(s)
- Tong Zhang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ziteng Zhang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Zhen Wang
- College of Science & Technology, Hebei Agricultural University, Cangzhou, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
Metur SP, Klionsky DJ. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 2024; 598:32-47. [PMID: 37758520 PMCID: PMC10841420 DOI: 10.1002/1873-3468.14741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.
Collapse
Affiliation(s)
- Shree Padma Metur
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Gulias JF, Niesi F, Arán M, Correa-García S, Bermúdez-Moretti M. Gcn4 impacts metabolic fluxes to promote yeast chronological lifespan. PLoS One 2023; 18:e0292949. [PMID: 37831681 PMCID: PMC10575530 DOI: 10.1371/journal.pone.0292949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological integrity, which impairs functionality and increases susceptibility to mortality. Dietary restriction, mimicking nutrient scarcity without causing malnutrition, is an intervention known to decelerate the aging process. While various hypotheses have been proposed to elucidate how dietary restriction influences aging, the underlying mechanisms remain incompletely understood. This project aimed to investigate the role of the primary regulator of the general amino acid control (GAAC) pathway, the transcription factor Gcn4, in the aging process of S. cerevisiae cells. Under conditions of amino acid deprivation, which activate Gcn4, the deletion of GCN4 led to a diverse array of physiological changes in the cells. Notably, the absence of Gcn4 resulted in heightened mitochondrial activity, likely contributing to the observed increase in reactive oxygen species (ROS) accumulation. Furthermore, these mutant gcn4Δ cells exhibited reduced ethanol production despite maintaining similar glucose consumption rates, suggesting a pivotal role for Gcn4 in regulating the Crabtree effect. Additionally, there was a marked reduction in trehalose, the storage carbohydrate, within the mutant cells compared to the wild-type strain. The intracellular content of free amino acids also exhibited disparities between the wild-type and GCN4-deficient strains. Taken together, our findings indicate that the absence of GCN4 disrupts cellular homeostasis, triggering significant alterations in interconnected intracellular metabolic pathways. These disruptions have far-reaching metabolic consequences that ultimately culminate in a shortened lifespan.
Collapse
Affiliation(s)
- Juan Facundo Gulias
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Florencia Niesi
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | - Susana Correa-García
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
4
|
Lei Y, Klionsky DJ. Transcriptional regulation of autophagy and its implications in human disease. Cell Death Differ 2023; 30:1416-1429. [PMID: 37045910 PMCID: PMC10244319 DOI: 10.1038/s41418-023-01162-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic pathway that is vital for maintaining cell homeostasis and promoting cell survival under stressful conditions. Dysregulation of autophagy is associated with a variety of human diseases, such as cancer, neurodegenerative diseases, and metabolic disorders. Therefore, this pathway must be precisely regulated at multiple levels, involving epigenetic, transcriptional, post-transcriptional, translational, and post-translational mechanisms, to prevent inappropriate autophagy activity. In this review, we focus on autophagy regulation at the transcriptional level, summarizing the transcription factors that control autophagy gene expression in both yeast and mammalian cells. Because the expression and/or subcellular localization of some autophagy transcription factors are altered in certain diseases, we also discuss how changes in transcriptional regulation of autophagy are associated with human pathophysiologies.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Lei Y, Huang Y, Wen X, Yin Z, Zhang Z, Klionsky DJ. How Cells Deal with the Fluctuating Environment: Autophagy Regulation under Stress in Yeast and Mammalian Systems. Antioxidants (Basel) 2022; 11:antiox11020304. [PMID: 35204187 PMCID: PMC8868404 DOI: 10.3390/antiox11020304] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Eukaryotic cells frequently experience fluctuations of the external and internal environments, such as changes in nutrient, energy and oxygen sources, and protein folding status, which, after reaching a particular threshold, become a type of stress. Cells develop several ways to deal with these various types of stress to maintain homeostasis and survival. Among the cellular survival mechanisms, autophagy is one of the most critical ways to mediate metabolic adaptation and clearance of damaged organelles. Autophagy is maintained at a basal level under normal growing conditions and gets stimulated by stress through different but connected mechanisms. In this review, we summarize the advances in understanding the autophagy regulation mechanisms under multiple types of stress including nutrient, energy, oxidative, and ER stress in both yeast and mammalian systems.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuxiang Huang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Wen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhangyuan Yin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhihai Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (Y.L.); (Y.H.); (X.W.); (Z.Y.); (Z.Z.)
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
6
|
GCN4 Regulates Secondary Metabolism through Activation of Antioxidant Gene Expression under Nitrogen Limitation Conditions in Ganoderma lucidum. Appl Environ Microbiol 2021; 87:e0015621. [PMID: 33962980 DOI: 10.1128/aem.00156-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen limitation has been widely reported to affect the growth and development of fungi, and the transcription factor GCN4 (general control nonderepressible 4) is involved in nitrogen restriction. Here, we found that nitrogen limitation highly induced the expression of GCN4 and promoted the synthesis of ganoderic acid (GA), an important secondary metabolite in Ganoderma lucidum. The activated GCN4 is involved in regulating GA biosynthesis. In addition, the accumulation of reactive oxygen species (ROS) also affects the synthesis of GA under nitrogen restrictions. The silencing of the gcn4 gene led to further accumulation of ROS and increased the content of GA. Further studies found that GCN4 activated the transcription of antioxidant enzyme biosynthesis genes gr, gst2, and cat3 (encoding glutathione reductase, glutathione S-transferase, and catalase, respectively) through direct binding to the promoter of these genes to reduce the ROS accumulation. In conclusion, our study found that GCN4 directly interacts with the ROS signaling pathway to negatively regulate GA biosynthesis under nitrogen-limiting conditions. This provides an essential insight into the understanding of GCN4 transcriptional regulation of the ROS signaling pathway and enriches the knowledge of nitrogen regulation mechanisms in fungal secondary metabolism of G. lucidum. IMPORTANCE Nitrogen has been widely reported to regulate secondary metabolism in fungi. Our study assessed the specific nitrogen regulatory mechanisms in Ganoderma lucidum. We found that GCN4 directly interacts with the ROS signaling pathway to negatively regulate GA biosynthesis under nitrogen-limiting conditions. Our research highlights a novel insight that GCN4, the nitrogen utilization regulator, participates in secondary metabolism through ROS signal regulation. In addition, this also provides a theoretical foundation for exploring the regulation of other physiological processes by GCN4 through ROS in fungi.
Collapse
|
7
|
Zou C, Wang P, Liang S, Lin Y. Deletion of Gcw13 represses autophagy in Pichia pastoris cells grown in methanol medium with sufficient amino acids. Biotechnol Lett 2019; 41:1423-1431. [PMID: 31650421 DOI: 10.1007/s10529-019-02744-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/13/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The purpose of this article is to study the underlying cause of the induction of autophagy in Pichia pastoris cells grown in amino acid-rich methanol medium during methanol adaptation. RESULTS Autophagy was induced in P. pastoris GS115 when cells were grown in amino acid-rich methanol medium. Transcriptome analysis revealed that genes involved in amino acid biosynthesis were upregulated. The deletion of Gcw13, a GPI-anchored protein that plays a role in the endocytosis of the general amino acid permease Gap1, resulted in the inhibition of autophagy, the activation of TORC1 and an increase in the uptake of glutamine and asparagine in methanol-grown cells. CONCLUSIONS Our results demonstrated that the autophagy induced in P. pastoris cells grown in amino acid-rich methanol medium was nitrogen source independent and may be due to a Gcw13-dependent decrease in amino acid uptake during methanol adaptation.
Collapse
Affiliation(s)
- Chengjuan Zou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Pan Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Transcription-dependent spreading of the Dal80 yeast GATA factor across the body of highly expressed genes. PLoS Genet 2019; 15:e1007999. [PMID: 30818362 PMCID: PMC6413948 DOI: 10.1371/journal.pgen.1007999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/12/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well defined in vitro, the in vivo selectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast. Our data reveal Dal80 binding to a large set of promoters, sometimes independently of GATA sites, correlating with nitrogen- and/or Dal80-sensitive gene expression. Strikingly, Dal80 was also detected across the body of promoter-bound genes, correlating with high expression. Mechanistic single-gene experiments showed that Dal80 spreading across gene bodies requires active transcription. Consistently, Dal80 co-immunoprecipitated with the initiating and post-initiation forms of RNA Polymerase II. Our work suggests that GATA factors could play dual, synergistic roles during transcription initiation and post-initiation steps, promoting efficient remodeling of the gene expression program in response to environmental changes. GATA transcription factors are highly conserved among eukaryotes and play key roles in cancer progression and hematopoiesis. In budding yeast, four GATA transcription factors are involved in the response to the quality of nitrogen supply. Here, we have determined the whole genome binding profile of the Dal80 GATA factor, and revealed that it also associates with the body of promoter-bound genes. The observation that intragenic spreading correlates with high expression levels and exquisite Dal80 sensitivity suggests that GATA factors could play other, unexpected roles at post-initiation stages in eukaryotes.
Collapse
|
9
|
Lee YT, Fang YY, Sun YW, Hsu HC, Weng SM, Tseng TL, Lin TH, Shieh JC. THR1 mediates GCN4 and CDC4 to link morphogenesis with nutrient sensing and the stress response in Candida albicans. Int J Mol Med 2018; 42:3193-3208. [PMID: 30320368 PMCID: PMC6202100 DOI: 10.3892/ijmm.2018.3930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/08/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans (C. albicans) CDC4 (CaCDC4), encoding the F-box protein for the substrate specificity of the Skp1-cullin-F-box E3 ubiquitin ligase complex, suppresses the yeast-to-filament transition in C. albicans. In our previous study, Thr1 was identified as a CaCdc4-associated protein using affinity purification. THR1 encodes a homoserine kinase, which is involved in the threonine biosynthesis pathway. The present study generated a strain with repressible CaCDC4 expression and continuous THR1 expression. Colony and cell morphology analyses, as well as immunoblotting, revealed that the Thr1 protein was detectable under conditions in which the expression of CaCDC4 was repressed and that the filaments resulting from the repressed expression of CaCDC4 were suppressed by the constitutive expression of THR1 in C. albicans. Additionally, by using the CaSAT1-flipper method, the present study produced null mutants of THR1, GCN4, and CaCDC4. The phenotypic consequences were evaluated by growth curves, spotting assays, microscopic analysis, reverse transcription-polymerase chain reaction and XTT-based biofilm formation ability. The results revealed that fewer cells lacking THR1 entered the stationary phase but had no apparent morphological alteration. It was observed that the expression of THR1 was upregulated concurrently with GCN4 during nutrient depletion and that cells lacking GCN4 rescued the lethality of cells in the absence of THR1 in conditions accumulating homoserine in the threonine biosynthesis pathway. Of note, it was found that cells with either CaCDC4 or THR1 loss were sensitive to oxidative stress and osmotic stress, with those with THR1 loss being more sensitive. In addition, it was observed that cells with loss of either CaCDC4 or THR1 exhibited the ability to increase biofilm formation, with those lacking CaCDC4 exhibiting a greater extent of enhancement. It was concluded that CaCDC4 is important in the coordination of morphogenesis, nutrient sensing, and the stress response through THR1 in C. albicans.
Collapse
Affiliation(s)
- Yuan-Ti Lee
- Institute of Medicine and School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yi-Ya Fang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Yu Wen Sun
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Hsiao-Chi Hsu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Shan-Mei Weng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Tzu-Ling Tseng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Ting-Hui Lin
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| | - Jia-Ching Shieh
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 40201, Taiwan, R.O.C
| |
Collapse
|
10
|
Müller C, Zidek LM, Ackermann T, de Jong T, Liu P, Kliche V, Zaini MA, Kortman G, Harkema L, Verbeek DS, Tuckermann JP, von Maltzahn J, de Bruin A, Guryev V, Wang ZQ, Calkhoven CF. Reduced expression of C/EBPβ-LIP extends health and lifespan in mice. eLife 2018; 7:34985. [PMID: 29708496 PMCID: PMC5986274 DOI: 10.7554/elife.34985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ageing is associated with physical decline and the development of age-related diseases such as metabolic disorders and cancer. Few conditions are known that attenuate the adverse effects of ageing, including calorie restriction (CR) and reduced signalling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Synthesis of the metabolic transcription factor C/EBPβ-LIP is stimulated by mTORC1, which critically depends on a short upstream open reading frame (uORF) in the Cebpb-mRNA. Here, we describe that reduced C/EBPβ-LIP expression due to genetic ablation of the uORF delays the development of age-associated phenotypes in mice. Moreover, female C/EBPβΔuORF mice display an extended lifespan. Since LIP levels increase upon aging in wild type mice, our data reveal an important role for C/EBPβ in the aging process and suggest that restriction of LIP expression sustains health and fitness. Thus, therapeutic strategies targeting C/EBPβ-LIP may offer new possibilities to treat age-related diseases and to prolong healthspan. The risks of major diseases including type II diabetes, cancer and Alzheimer’s are linked to the biological process of ageing. By finding ways to slow ageing, we can help more people to live longer healthier lives while avoiding these illnesses. Placing some animals on a diet that contains only two-thirds as many calories as they would normally eat can improve their fitness during old age and delay the onset of many age-related problems. It is unrealistic to expect people to control their diet to this extent, yet there may be other ways to bring about the same effects. Calorie restriction affects the activity of many different genes; for example, it causes a gene that produces a protein known as Liver-enriched Inhibitory Protein (LIP for short) to shut down. LIP controls the activity of many genes involved in metabolism, so it could be a key target for drugs to control ageing. Müller, Zidek et al. used mice that are unable to produce LIP to study this protein’s effect on ageing. The life expectancy of female mice lacking LIP increased by up to 20%. These mice were leaner, fitter, more resistant to cancer, had stronger immune systems and controlled their blood sugar levels better than normal mice. Male mice that lacked LIP did not live longer but did experience some ageing-related benefits. Genetic analysis also showed that gene activity particularly of metabolic genes is more robust in old female LIP-deficient mice and thus more similar to young control mice than old control mice. The results presented by Müller, Zidek et al. suggest that targeting the activity of the LIP gene could help to slow the ageing process. It is not yet clear whether shutting off LIP has similar beneficial effects in humans. Further research is also needed to investigate why female mice gain more benefits from a lack of LIP than males do.
Collapse
Affiliation(s)
- Christine Müller
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Laura M Zidek
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Tobias Ackermann
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Tristan de Jong
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Peng Liu
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Verena Kliche
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Mohamad Amr Zaini
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gertrud Kortman
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Liesbeth Harkema
- Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | - Alain de Bruin
- Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
11
|
Mohler K, Mann R, Kyle A, Reynolds N, Ibba M. Aminoacyl-tRNA quality control is required for efficient activation of the TOR pathway regulator Gln3p. RNA Biol 2017; 15:594-603. [PMID: 28910581 DOI: 10.1080/15476286.2017.1379635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aminoacylation status of the cellular tRNA pool regulates both general amino acid control (GAAC) and target of rapamycin (TOR) stress response pathways in yeast. Consequently, fidelity of translation at the level of aminoacyl-tRNA synthesis plays a central role in determining accuracy and sensitivity of stress responses. To investigate effects of translational quality control (QC) on cell physiology under stress conditions, phenotypic microarray analyses were used to identify changes in QC deficient cells. Nitrogen source growth assays showed QC deficient yeast grew differently compared to WT. The QC deficient strain was more tolerant to caffeine treatment than wild type through altered interactions with the TOR and GAAC pathways. Increased caffeine tolerance of the QC deficient strain was consistent with the observation that the activity of Gln3p, a transcription factor controlled by the TOR pathway, is decreased in the QC deficient strain compared to WT. GCN4 translation, which is typically repressed in the absence of nutritional stress, was enhanced in the QC deficient strain through TOR inhibition. QC did not impact cell cycle regulation; however, the chronological lifespan of QC deficient yeast strains decreased compared to wild type, likely due to translational errors and alteration of the TOR-associated regulon. These findings support the idea that changes in translational fidelity provide a mechanism of cellular adaptation by modulating TOR activity. This, in turn, supports a central role for aminoacyl-tRNA synthesis QC in the integrated stress response by maintaining the proper aa-tRNA pools necessary to coordinate the GAAC and TOR.
Collapse
Affiliation(s)
- Kyle Mohler
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA
| | - Rebecca Mann
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA
| | - Amanda Kyle
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA
| | - Noah Reynolds
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA
| | - Michael Ibba
- a Department of Microbiology , The Ohio State University , Columbus , Ohio , USA.,b Center for RNA Biology , The Ohio State University , Columbus , Ohio , USA
| |
Collapse
|
12
|
Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast Saccharomyces cerevisiae. Genetics 2017; 207:975-991. [PMID: 28912343 DOI: 10.1534/genetics.117.300290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2.
Collapse
|
13
|
The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan. Nat Commun 2017; 8:457. [PMID: 28878244 PMCID: PMC5587724 DOI: 10.1038/s41467-017-00539-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/07/2017] [Indexed: 01/21/2023] Open
Abstract
In Saccharomyces cerevisiae, deletion of large ribosomal subunit protein-encoding genes increases the replicative lifespan in a Gcn4-dependent manner. However, how Gcn4, a key transcriptional activator of amino acid biosynthesis genes, increases lifespan, is unknown. Here we show that Gcn4 acts as a repressor of protein synthesis. By analyzing the messenger RNA and protein abundance, ribosome occupancy and protein synthesis rate in various yeast strains, we demonstrate that Gcn4 is sufficient to reduce protein synthesis and increase yeast lifespan. Chromatin immunoprecipitation reveals Gcn4 binding not only at genes that are activated, but also at genes, some encoding ribosomal proteins, that are repressed upon Gcn4 overexpression. The promoters of repressed genes contain Rap1 binding motifs. Our data suggest that Gcn4 is a central regulator of protein synthesis under multiple perturbations, including ribosomal protein gene deletions, calorie restriction, and rapamycin treatment, and provide an explanation for its role in longevity and stress response. The transcription factor Gcn4 is known to regulate yeast amino acid synthesis. Here, the authors show that Gcn4 also acts as a repressor of protein biosynthesis in a range of conditions that enhance yeast lifespan, such as ribosomal protein knockout, calorie restriction or mTOR inhibition.
Collapse
|
14
|
Translational fidelity and mistranslation in the cellular response to stress. Nat Microbiol 2017; 2:17117. [PMID: 28836574 DOI: 10.1038/nmicrobiol.2017.117] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022]
Abstract
Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, and the widespread evolutionary conservation of aaRS proofreading pathways, requirements for translation quality control vary depending on cellular physiology and changes in growth conditions, and translation errors are not always detrimental. Recent work has demonstrated that mistranslation can also be beneficial to cells, and some organisms have selected for a higher degree of mistranslation than others. The aims of this Review Article are to summarize the known mechanisms of protein translational fidelity and explore the diversity and impact of mistranslation events as a potentially beneficial response to environmental and cellular stress.
Collapse
|
15
|
Abstract
Usually, cells balance their growth with their division. Coordinating growth inputs with cell division ensures the proper timing of division when sufficient cell material is available and affects the overall rate of cell proliferation. At a very fundamental level, cellular replicative lifespan-defined as the number of times a cell can divide, is a manifestation of cell cycle control. Hence, control of mitotic cell divisions, especially when the commitment is made to a new round of cell division, is intimately linked to replicative aging of cells. In this chapter, we review our current understanding, and its shortcomings, of how unbalanced growth and division, can dramatically influence the proliferative potential of cells, often leading to cellular and organismal aging phenotypes. The interplay between growth and division also underpins cellular senescence (i.e., inability to divide) and quiescence, when cells exit the cell cycle but still retain their ability to divide.
Collapse
|
16
|
General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization. Genetics 2016; 205:633-655. [PMID: 28007891 DOI: 10.1534/genetics.116.195800] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Nitrogen catabolite repression (NCR), the ability of Saccharomyces cerevisiae to use good nitrogen sources in preference to poor ones, derives from nitrogen-responsive regulation of the GATA family transcription activators Gln3 and Gat1 In nitrogen-replete conditions, the GATA factors are cytoplasmic and NCR-sensitive transcription minimal. When only poor nitrogen sources are available, Gln3 is nuclear, dramatically increasing GATA factor-mediated transcription. This regulation was originally attributed to mechanistic Tor protein kinase complex 1 (mTorC1)-mediated control of Gln3 However, we recently showed that two regulatory systems act cumulatively to maintain cytoplasmic Gln3 sequestration, only one of which is mTorC1. Present experiments demonstrate that the other previously elusive component is uncharged transfer RNA-activated, Gcn2 protein kinase-mediated general amino acid control (GAAC). Gcn2 and Gcn4 are required for NCR-sensitive nuclear Gln3-Myc13 localization, and from epistasis experiments Gcn2 appears to function upstream of Ure2 Bmh1/2 are also required for nuclear Gln3-Myc13 localization and appear to function downstream of Ure2 Overall, Gln3 phosphorylation levels decrease upon loss of Gcn2, Gcn4, or Bmh1/2 Our results add a new dimension to nitrogen-responsive GATA-factor regulation and demonstrate the cumulative participation of the mTorC1 and GAAC pathways, which respond oppositely to nitrogen availability, in the nitrogen-responsive control of catabolic gene expression in yeast.
Collapse
|
17
|
Lucas C, Ferreira C, Cazzanelli G, Franco-Duarte R, Tulha J, Roelink H, Conway SJ. Yeast Gup1(2) Proteins Are Homologues of the Hedgehog Morphogens Acyltransferases HHAT(L): Facts and Implications. J Dev Biol 2016; 4:E33. [PMID: 29615596 PMCID: PMC5831804 DOI: 10.3390/jdb4040033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information.
Collapse
Affiliation(s)
- Cândida Lucas
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Célia Ferreira
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Giulia Cazzanelli
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Ricardo Franco-Duarte
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | - Joana Tulha
- CBMA—Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-054 Braga, Portugal; (G.C.); (R.F.-D.); (J.T.)
| | | | | |
Collapse
|
18
|
Milias-Argeitis A, Oliveira AP, Gerosa L, Falter L, Sauer U, Lygeros J. Elucidation of Genetic Interactions in the Yeast GATA-Factor Network Using Bayesian Model Selection. PLoS Comput Biol 2016; 12:e1004784. [PMID: 26967983 PMCID: PMC4788432 DOI: 10.1371/journal.pcbi.1004784] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 02/02/2016] [Indexed: 12/03/2022] Open
Abstract
Understanding the structure and function of complex gene regulatory networks using classical genetic assays is an error-prone procedure that frequently generates ambiguous outcomes. Even some of the best-characterized gene networks contain interactions whose validity is not conclusively proven. Founded on dynamic experimental data, mechanistic mathematical models are able to offer detailed insights that would otherwise require prohibitively large numbers of genetic experiments. Here we attempt mechanistic modeling of the transcriptional network formed by the four GATA-factor proteins, a well-studied system of central importance for nitrogen-source regulation of transcription in the yeast Saccharomyces cerevisiae. To resolve ambiguities in the network organization, we encoded a set of five interactions hypothesized in the literature into a set of 32 mathematical models, and employed Bayesian model selection to identify the most plausible set of interactions based on dynamic gene expression data. The top-ranking model was validated on newly generated GFP reporter dynamic data and was subsequently used to gain a better understanding of how yeast cells organize their transcriptional response to dynamic changes of nitrogen sources. Our work constitutes a necessary and important step towards obtaining a holistic view of the yeast nitrogen regulation mechanisms; on the computational side, it provides a demonstration of how powerful Monte Carlo techniques can be creatively combined and used to address the great challenges of large-scale dynamical system inference. Gene regulatory networks underlie all key processes that enable a cell to maintain long-term homeostasis in a changing environment. Understanding the structure and function of complex gene networks is an experimentally difficult and error-prone procedure. Mechanistic mathematical modeling promises to alleviate these problems, as we demonstrate here for the yeast GATA-factor network, the central controller of the cellular response to nitrogen source quality. Despite years of targeted studies, the interaction pattern of this network is still not known precisely. To resolve several still-remaining ambiguities, we generated a set of alternative mathematical models, and compared them against each other using Bayesian model selection based on dynamic gene expression data. The top-ranking model was then validated on a separate, newly generated dataset. Our work thus provides new insights to the mechanism of nitrogen regulation in yeast, while at the same time overcoming some key computational inference problems for large models in systems biology.
Collapse
Affiliation(s)
| | | | - Luca Gerosa
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Laura Falter
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Menacho-Márquez M, Rodríguez-Hernández CJ, Villaronga MÁ, Pérez-Valle J, Gadea J, Belandia B, Murguía JR. eIF2 kinases mediate β-lapachone toxicity in yeast and human cancer cells. Cell Cycle 2015; 14:630-40. [PMID: 25590579 DOI: 10.4161/15384101.2014.994904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
β-Lapachone (β-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with β-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in β-lap treated cells. β-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases. A yeast mutant in the mitochondrial NADH dehydrogenase Nde2p was found to be resistant to β-lap treatment, despite inducing ROS production in a WT manner. Most interestingly, DNA damage responses triggered by β-lap were abolished in the nde2Δ mutant. Amino acid biosynthesis genes were also induced in β-lap treated cells, suggesting that β-lap exposure somehow triggered the General Control of Nutrients (GCN) pathway. Accordingly, β-lap treatment increased phosphorylation of eIF2α subunit in a manner dependent on the Gcn2p kinase. eIF2α phosphorylation required Gcn1p, Gcn20p and Nde2p. Gcn2p was also required for cell survival upon exposure to β-lap and to elicit checkpoint responses. Remarkably, β-lap treatment increased phosphorylation of eIF2α in breast tumor cells, in a manner dependent on the Nde2p ortholog AIF, and the eIF2 kinase PERK. These findings uncover a new target pathway of β-lap in yeast and human cells and highlight a previously unknown functional connection between Nde2p, Gcn2p and DNA damage responses.
Collapse
Affiliation(s)
- Mauricio Menacho-Márquez
- a Instituto de Genética Experimental ; Facultad de Ciencias Médicas ; Universidad Nacional de Rosario ; Rosario , Argentina
| | | | | | | | | | | | | |
Collapse
|
20
|
Crosas E, Sumoy L, González E, Díaz M, Bartolomé S, Farrés J, Parés X, Biosca JA, Fernández MR. The yeast ζ-crystallin/NADPH:quinone oxidoreductase (Zta1p) is under nutritional control by the target of rapamycin pathway and is involved in the regulation of argininosuccinate lyase mRNA half-life. FEBS J 2015; 282:1953-64. [PMID: 25715111 DOI: 10.1111/febs.13246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/28/2015] [Accepted: 02/19/2015] [Indexed: 12/30/2022]
Abstract
The yeast ζ-crystallin (Zta1p) is a quinone oxidoreductase belonging to the ζ-crystallin family, with activity in the reduction of alkenal/alkenone compounds. Various biological functions have been ascribed to the members of this protein family, such as their ability to interact specifically with AU-rich sequences in mRNA, and thus they have been proposed to act as AU-rich element-binding proteins (AREBPs). In this study, we evaluated the specificity of Zta1p for RNA versus DNA by means of a novel nonisotopic method for the in vitro quantitative detection of protein · RNA complexes. Through comparative transcriptomic analysis, we found that the lack of Zta1p negatively affects the expression of a group of genes involved in amino acid biosynthesis, the argininosuccinate lyase (ARG4) gene being one of them. Here, we propose that Zta1p participates in the post-transcriptional regulation of ARG4 expression by increasing the ARG4 mRNA half-life. In addition, expression of the ζ-crystallin gene (ZTA1) is itself regulated by nutrient availability through the general amino acid control and target of rapamycin pathways. Our results shed new light on the ζ-crystallin family members from yeast to humans as stress response proteins with a bifunctional role in the detoxification of alkenal and alkenone compounds, and the regulation of gene expression.
Collapse
Affiliation(s)
- Eva Crosas
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain.,ALBA Synchrotron Light Source, NCD Beamline - Experiments Division, Barcelona, Spain
| | - Lauro Sumoy
- Microarray Unit, Genomics Core Facility, Center for Genomic Regulation (CRG) - Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institut de Medicina Predictiva i Personalitzada del Càncer, IGTP, Campus Can Ruti, Badalona, Barcelona, Spain
| | - Eva González
- Microarray Unit, Genomics Core Facility, Center for Genomic Regulation (CRG) - Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maykelis Díaz
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | - Salvador Bartolomé
- Laboratory of Luminescence and Spectroscopy of Biomolecules (LLEB), Universitat Autònoma de Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | - Josep Antoni Biosca
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Spain
| | | |
Collapse
|
21
|
He C, Tsuchiyama SK, Nguyen QT, Plyusnina EN, Terrill SR, Sahibzada S, Patel B, Faulkner AR, Shaposhnikov MV, Tian R, Tsuchiya M, Kaeberlein M, Moskalev AA, Kennedy BK, Polymenis M. Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS Genet 2014; 10:e1004860. [PMID: 25521617 PMCID: PMC4270464 DOI: 10.1371/journal.pgen.1004860] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 11/29/2022] Open
Abstract
The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life. Aging is the greatest risk factor for many diseases, which together account for the majority of global deaths and healthcare costs. Here we show that the common drug ibuprofen increases the lifespan of yeast, worms and flies, indicative of conserved longevity effects. In budding yeast, an excellent model of cellular longevity mechanisms, ibuprofen's pro-longevity action is independent of its known anti-inflammatory role. We show that the critical function of ibuprofen in longevity is to inhibit the uptake of aromatic amino acids, by destabilizing the high-affinity tryptophan permease. We further show that ibuprofen alters cell cycle progression. Mirroring the effects of ibuprofen, we found that most yeast long-lived mutants were also similarly affected in cell cycle progression. These findings identify a safe drug that extends the lifespan of divergent organisms and reveal fundamental cellular properties associated with longevity.
Collapse
Affiliation(s)
- Chong He
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Scott K. Tsuchiyama
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Quynh T. Nguyen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Ekaterina N. Plyusnina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Samuel R. Terrill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Sarah Sahibzada
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Bhumil Patel
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Alena R. Faulkner
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mikhail V. Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
| | - Ruilin Tian
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mitsuhiro Tsuchiya
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Alexey A. Moskalev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
- Syktyvkar State University, Syktyvkar, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Brian K. Kennedy
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (BKK); (MP)
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (BKK); (MP)
| |
Collapse
|
22
|
Song R, Liu P, Acar M. Network-dosage compensation topologies as recurrent network motifs in natural gene networks. BMC SYSTEMS BIOLOGY 2014; 8:69. [PMID: 24929807 PMCID: PMC4071340 DOI: 10.1186/1752-0509-8-69] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/09/2014] [Indexed: 11/14/2022]
Abstract
Background Global noise in gene expression and chromosome duplication during cell-cycle progression cause inevitable fluctuations in the effective number of copies of gene networks in cells. These indirect and direct alterations of network copy numbers have the potential to change the output or activity of a gene network. For networks whose specific activity levels are crucial for optimally maintaining cellular functions, cells need to implement mechanisms to robustly compensate the effects of network dosage fluctuations. Results Here, we determine the necessary conditions for generalized N-component gene networks to be network-dosage compensated and show that the compensation mechanism can robustly operate over large ranges of gene expression levels. Furthermore, we show that the conditions that are necessary for network-dosage compensation are also sufficient. Finally, using genome-wide protein-DNA and protein-protein interaction data, we search the yeast genome for the abundance of specific dosage-compensation motifs and show that a substantial percentage of the natural networks identified contain at least one dosage-compensation motif. Conclusions Our results strengthen the hypothesis that the special network topologies that are necessary for network-dosage compensation may be recurrent network motifs in eukaryotic genomes and therefore may be an important design principle in gene network assembly in cells.
Collapse
Affiliation(s)
| | | | - Murat Acar
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, P,O, Box 27391, New Haven, CT 06511, USA.
| |
Collapse
|
23
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
24
|
Valbuena N, Rozalén AE, Moreno S. Fission yeast TORC1 prevents eIF2α phosphorylation in response to nitrogen and amino acids via Gcn2 kinase. J Cell Sci 2012; 125:5955-9. [PMID: 23108671 DOI: 10.1242/jcs.105395] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serine 51 phosphorylation of the eukaryotic initiation factor-2α (eIF2α) is an important mechanism involved in blocking general protein synthesis in response to diverse types of stress. In fission yeast, three kinases (Hri1, Hri2 and Gcn2) can phosphorylate eIF2α at serine 51. In this study, we show that Tor2, as part of the TORC1 complex, prevents the phosphorylation of eIF2α in cells growing in the presence of nitrogen and amino acids. Inhibition of TORC1, either by rapamycin treatment, mutation of Tor2 or nitrogen deprivation, induces Gcn2-dependent phosphorylation of eIF2α.
Collapse
Affiliation(s)
- Noelia Valbuena
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/University of Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
25
|
Abstract
For most eukaryotic organisms, including Saccharomyces cerevisiae, the rapid inhibition of protein synthesis forms part of a response to stress. In order to balance the changing conditions, precise stress-specific alterations to the cell's proteome are required. Therefore, in the background of a global down-regulation in protein synthesis, specific proteins are induced. Given the level of plasticity required to enable stress-specific alterations of this kind, it is surprising that the mechanisms of translational regulation are not more diverse. In the present review, we summarize the impact of stress on translation initiation, highlighting both the similarities and distinctions between various stress responses. Finally, we speculate as to how yeast cells generate stress-responsive programmes of protein production when regulation is focused on the same steps in the translation pathway.
Collapse
|
26
|
Rodriguez-Hernandez CJ, Guinovart JJ, Murguia JR. Anti-diabetic and anti-obesity agent sodium tungstate enhances GCN pathway activation through Glc7p inhibition. FEBS Lett 2012; 586:270-6. [PMID: 22245679 DOI: 10.1016/j.febslet.2011.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/14/2023]
Abstract
Tungstate counteracts diabetes and obesity in animal models, but its molecular mechanisms remain elusive. Our Saccharomyces cerevisiae-based approach has found that tungstate alleviated the growth defect induced by nutrient stress and enhanced the activation of the GCN pathway. Tungstate relieved the sensitivity to starvation of a gcn2-507 yeast hypomorphic mutant, indicating that tungstate modulated the GCN pathway downstream of Gcn2p. Interestingly, tungstate inhibited Glc7p and PP1 phosphatase activity, both negative regulators of the GCN pathway in yeast and humans, respectively. Accordingly, overexpression of a dominant-negative Glc7p mutant in yeast mimicked tungstate effects. Therefore tungstate alleviates nutrient stress in yeast by in vivo inhibition of Glc7p. These data uncover a potential role for tungstate in the treatment of PP1 and GCN related diseases.
Collapse
|
27
|
Cherkasova V, Maury LL, Bacikova D, Pridham K, Bähler J, Maraia RJ. Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p. Mol Biol Cell 2011; 23:480-91. [PMID: 22160596 PMCID: PMC3268726 DOI: 10.1091/mbc.e11-08-0732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Deletion of the sla1(+) gene, which encodes a homologue of the human RNA-binding protein La in Schizosaccharomyces pombe, causes irregularities in tRNA processing, with altered distribution of pre-tRNA intermediates. We show, using mRNA profiling, that cells lacking sla1(+) have increased mRNAs from amino acid metabolism (AAM) genes and, furthermore, exhibit slow growth in Edinburgh minimal medium. A subset of these AAM genes is under control of the AP-1-like, stress-responsive transcription factors Atf1p and Pcr1p. Although S. pombe growth is resistant to rapamycin, sla1-Δ cells are sensitive, consistent with deficiency of leucine uptake, hypersensitivity to NH4, and genetic links to the target of rapamycin (TOR) pathway. Considering that perturbed intranuclear pre-tRNA metabolism and apparent deficiency in tRNA nuclear export in sla1-Δ cells may trigger the AAM response, we show that modest overexpression of S. pombe los1(+) (also known as Xpo-t), encoding the nuclear exportin for tRNA, suppresses the reduction in pre-tRNA levels, AAM gene up-regulation, and slow growth of sla1-Δ cells. The conclusion that emerges is that sla1(+) regulates AAM mRNA production in S. pombe through its effects on nuclear tRNA processing and probably nuclear export. Finally, the results are discussed in the context of stress response programs in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Vera Cherkasova
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
Mapping the interaction of Snf1 with TORC1 in Saccharomyces cerevisiae. Mol Syst Biol 2011; 7:545. [PMID: 22068328 PMCID: PMC3261716 DOI: 10.1038/msb.2011.80] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023] Open
Abstract
Nutrient sensing and coordination of metabolic pathways are crucial functions for living cells. A combined analysis of the yeast transcriptome, phosphoproteome and metabolome is used to investigate the interactions between the Snf1 and TORC1 pathways under nutrient-limited conditions. Snf1 regulates a broad range of biological processes, while target of rapamycin complex 1 (TORC1) seems to be repressed under both glucose- and ammonium-limited conditions. Snf1 has a role in regulating amino acids by upregulating the NADP+-dependent glutamate dehydrogenase (encoded by GDH3) under glucose-limited condition. In addition to the accepted role of Snf1 in regulating fatty acid (FA) metabolism, TORC1 may also regulate FA metabolism. Direct interactions between Snf1 and TORC1 pathways are unlikely under nutrient-limited conditions and TORC1 might be repressed in a manner that is independent of Snf1.
Nutrient sensing and coordination of metabolic pathways are crucial functions for all living cells, but details of the coordination under different environmental conditions remain elusive. We therefore undertook a systems biology approach to investigate the interactions between the Snf1 and the target of rapamycin complex 1 (TORC1) in Saccharomyces cerevisiae. We show that Snf1 regulates a much broader range of biological processes compared with TORC1 under both glucose- and ammonium-limited conditions. We also find that Snf1 has a role in upregulating the NADP+-dependent glutamate dehydrogenase (encoded by GDH3) under derepressing condition, and therefore may also have a role in ammonium assimilation and amino-acid biosynthesis, which can be considered as a convergence of Snf1 and TORC1 pathways. In addition to the accepted role of Snf1 in regulating fatty acid (FA) metabolism, we show that TORC1 also regulates FA metabolism, likely through modulating the peroxisome and β-oxidation. Finally, we conclude that direct interactions between Snf1 and TORC1 pathways are unlikely under nutrient-limited conditions and propose that TORC1 is repressed in a manner that is independent of Snf1.
Collapse
|
29
|
Dunn CD. Running on empty: does mitochondrial DNA mutation limit replicative lifespan in yeast?: Mutations that increase the division rate of cells lacking mitochondrial DNA also extend replicative lifespan in Saccharomyces cerevisiae. Bioessays 2011; 33:742-8. [PMID: 21826691 DOI: 10.1002/bies.201100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations escalate with increasing age in higher organisms. However, it has so far been difficult to experimentally determine whether mtDNA mutation merely correlates with age or directly limits lifespan. A recent study shows that budding yeast can also lose functional mtDNA late in life. Interestingly, independent studies of replicative lifespan (RLS) and of mtDNA-deficient cells show that the same mutations can increase both RLS and the division rate of yeast lacking the mitochondrial genome. These exciting, parallel findings imply a potential causal relationship between mtDNA mutation and replicative senescence. Furthermore, these results suggest more efficient methods for discovering genes that determine lifespan.
Collapse
Affiliation(s)
- Cory D Dunn
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
| |
Collapse
|
30
|
Understanding the yeast host cell response to recombinant membrane protein production. Biochem Soc Trans 2011; 39:719-23. [DOI: 10.1042/bst0390719] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes.
Collapse
|
31
|
Aging and cancer: can mTOR inhibitors kill two birds with one drug? Target Oncol 2011; 6:41-51. [DOI: 10.1007/s11523-011-0168-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/16/2011] [Indexed: 01/01/2023]
|
32
|
Sharp ZD. Aging and TOR: interwoven in the fabric of life. Cell Mol Life Sci 2011; 68:587-97. [PMID: 20960025 PMCID: PMC11114916 DOI: 10.1007/s00018-010-0542-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/22/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
Abstract
Longstanding results with calorie and growth factor restriction plus recent results with the first interventional drug suggest that retarding the pace of aging to improve the quality of life of older people is at hand. The biological system targeted by these approaches is the target of rapamycin (TOR), which is central for cellular responses to a variety of stimuli including stressors, growth factors, and nutrients and energy states. That the life-extending response to reducing its activity is highly conserved from yeast to mammals is consistent with the evolution of aging as a strategy to preserve reproductive potential of young cells and animals.
Collapse
Affiliation(s)
- Zelton Dave Sharp
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, 78245, USA.
| |
Collapse
|
33
|
Colón M, Hernández F, López K, Quezada H, González J, López G, Aranda C, González A. Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS One 2011; 6:e16099. [PMID: 21267457 PMCID: PMC3022659 DOI: 10.1371/journal.pone.0016099] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/06/2010] [Indexed: 11/19/2022] Open
Abstract
Background Gene duplication is a key evolutionary mechanism providing material for the generation of genes with new or modified functions. The fate of duplicated gene copies has been amply discussed and several models have been put forward to account for duplicate conservation. The specialization model considers that duplication of a bifunctional ancestral gene could result in the preservation of both copies through subfunctionalization, resulting in the distribution of the two ancestral functions between the gene duplicates. Here we investigate whether the presumed bifunctional character displayed by the single branched chain amino acid aminotransferase present in K. lactis has been distributed in the two paralogous genes present in S. cerevisiae, and whether this conservation has impacted S. cerevisiae metabolism. Principal Findings Our results show that the KlBat1 orthologous BCAT is a bifunctional enzyme, which participates in the biosynthesis and catabolism of branched chain aminoacids (BCAAs). This dual role has been distributed in S. cerevisiae Bat1 and Bat2 paralogous proteins, supporting the specialization model posed to explain the evolution of gene duplications. BAT1 is highly expressed under biosynthetic conditions, while BAT2 expression is highest under catabolic conditions. Bat1 and Bat2 differential relocalization has favored their physiological function, since biosynthetic precursors are generated in the mitochondria (Bat1), while catabolic substrates are accumulated in the cytosol (Bat2). Under respiratory conditions, in the presence of ammonium and BCAAs the bat1Δ bat2Δ double mutant shows impaired growth, indicating that Bat1 and Bat2 could play redundant roles. In K. lactis wild type growth is independent of BCAA degradation, since a Klbat1Δ mutant grows under this condition. Conclusions Our study shows that BAT1 and BAT2 differential expression and subcellular relocalization has resulted in the distribution of the biosynthetic and catabolic roles of the ancestral BCAT in two isozymes improving BCAAs metabolism and constituting an adaptation to facultative metabolism.
Collapse
Affiliation(s)
- Maritrini Colón
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Fabiola Hernández
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Karla López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Héctor Quezada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, México City, México
| | - James González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Geovani López
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Cristina Aranda
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
- * E-mail:
| |
Collapse
|
34
|
Zhang F, Hinnebusch AG. An upstream ORF with non-AUG start codon is translated in vivo but dispensable for translational control of GCN4 mRNA. Nucleic Acids Res 2011; 39:3128-40. [PMID: 21227927 PMCID: PMC3082883 DOI: 10.1093/nar/gkq1251] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genome-wide analysis of ribosome locations in mRNAs of Saccharomyces cerevisiae has revealed the translation of upstream open reading frames that initiate with near-cognate start codons in many transcripts. Two such non-translation initiation codon (AUG)-initiated upstream open reading frames (uORFs) (nAuORFs 1 and 2) occur in GCN4 mRNA upstream of the four AUG-initiated uORFs (uORFs 1–4) that regulate GCN4 translation. We verified that nAuORF2 is translated in vivo by demonstrating β-galactosidase production from lacZ coding sequences fused to nAuORF2, in a manner abolished by replacing its non-AUG initiation codon (AUA) start codon with the non-cognate triplet AAA, whereas translation of nAuORF1 was not detected. Importantly, replacing the near-cognate start codons of both nAuORFs with non-cognate triplets had little or no effect on the repression of GCN4 translation in non-starved cells, nor on its derepression in response to histidine limitation, nutritional shift-down or treatment with rapamycin, hydrogen peroxide or methyl methanesulfonate. Additionally, we found no evidence that initiation from the AUA codon of nAuORF2 is substantially elevated, or dependent on Gcn2, the sole eIF2α kinase of yeast, in histidine-deprived cells. Thus, although nAuORF2 is translated in vivo, it appears that this event is not stimulated by eIF2α phosphorylation nor significantly influences GCN4 translational induction under various starvation or stress conditions.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Gene Regulation and Development, Eunice K Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
35
|
Hernández H, Aranda C, Riego L, González A. Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 2010; 404:859-64. [PMID: 21184740 DOI: 10.1016/j.bbrc.2010.12.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
Abstract
The yeast Saccharomyces cerevisiae is able to sense the availability and quality of nitrogen sources and the intrinsic variation of amino acid disponibility for protein synthesis. When this yeast is provided with secondary nitrogen sources, transcription of genes encoding enzymes involved in their catabolism is elicited through the action of Gln3, which constitutes the main activator of the Nitrogen Catabolite Repression network (NCR). Activation of genes encoding enzymes involved in the amino acid biosynthetic pathways is achieved through the action of the GCN4-encoded transcriptional modulator whose transcriptional activation is induced at the translational level by limitation for any amino acid. Thus the role of each one of these activators had been secluded to either catabolic or biosynthetic pathways. However, some observations have suggested that under peculiar physiological conditions, Gln3 and Gcn4 could act simultaneously in order to contemporaneously increase expression of both sets of genes. This paper addresses the question of whether Gln3 and Gcn4 cooperatively determine expression of their target genes. Results presented herein show that induced expression of catabolic and biosynthetic genes when cells are grown under nitrogen derepressive conditions and amino acid deprivation is dependent on the concurrent action of Gln3 and Gcn4, which form part of a unique transcriptional complex. We propose that the combination of Gln3 and Gcn4 results in the constitution of a hybrid modulator which elicits a novel transcriptional response, not evoked when these modulators act in a non-combinatorial fashion.
Collapse
Affiliation(s)
- Hugo Hernández
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Mexico City, Mexico
| | | | | | | |
Collapse
|
36
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
37
|
Staschke KA, Dey S, Zaborske JM, Palam LR, McClintick JN, Pan T, Edenberg HJ, Wek RC. Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 2010; 285:16893-911. [PMID: 20233714 DOI: 10.1074/jbc.m110.121947] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two important nutrient-sensing and regulatory pathways, the general amino acid control (GAAC) and the target of rapamycin (TOR), participate in the control of yeast growth and metabolism during changes in nutrient availability. Amino acid starvation activates the GAAC through Gcn2p phosphorylation of translation factor eIF2 and preferential translation of GCN4, a transcription activator. TOR senses nitrogen availability and regulates transcription factors such as Gln3p. We used microarray analyses to address the integration of the GAAC and TOR pathways in directing the yeast transcriptome during amino acid starvation and rapamycin treatment. We found that GAAC is a major effector of the TOR pathway, with Gcn4p and Gln3p each inducing a similar number of genes during rapamycin treatment. Although Gcn4p activates a common core of 57 genes, the GAAC directs significant variations in the transcriptome during different stresses. In addition to inducing amino acid biosynthetic genes, Gcn4p in conjunction with Gln3p activates genes required for the assimilation of secondary nitrogen sources such as gamma-aminobutyric acid (GABA). Gcn2p activation upon shifting to secondary nitrogen sources is suggested to occur by means of a dual mechanism. First, Gcn2p is induced by the release of TOR repression through a mechanism involving Sit4p protein phosphatase. Second, this eIF2 kinase is activated by select uncharged tRNAs, which were shown to accumulate during the shift to the GABA medium. This study highlights the mechanisms by which the GAAC and TOR pathways are integrated to recognize changing nitrogen availability and direct the transcriptome for optimal growth adaptation.
Collapse
Affiliation(s)
- Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sharp ZD, Strong R. The role of mTOR signaling in controlling mammalian life span: what a fungicide teaches us about longevity. J Gerontol A Biol Sci Med Sci 2010; 65:580-9. [PMID: 20083554 DOI: 10.1093/gerona/glp212] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zelton Dave Sharp
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, Texas 78245, USA.
| | | |
Collapse
|
39
|
Deleting the 14-3-3 protein Bmh1 extends life span in Saccharomyces cerevisiae by increasing stress response. Genetics 2009; 183:1373-84. [PMID: 19805817 DOI: 10.1534/genetics.109.107797] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Enhanced stress response has been suggested to promote longevity in many species. Calorie restriction (CR) and conserved nutrient-sensing target of rapamycin (TOR) and protein kinase A (PKA) pathways have also been suggested to extend life span by increasing stress response, which protects cells from age-dependent accumulation of oxidative damages. Here we show that deleting the yeast 14-3-3 protein, Bmh1, extends chronological life span (CLS) by activating the stress response. 14-3-3 proteins are highly conserved chaperone-like proteins that play important roles in many cellular processes. bmh1Delta-induced heat resistance and CLS extension require the general stress-response transcription factors Msn2, Msn4, and Rim15. The bmh1Delta mutant also displays a decreased reactive oxygen species level and increased heat-shock-element-driven transcription activity. We also show that BMH1 genetically interacts with CR and conserved nutrient-sensing TOR- and PKA-signaling pathways to regulate life span. Interestingly, the level of phosphorylated Ser238 on Bmh1 increases during chronological aging, which is delayed by CR or by reduced TOR activities. In addition, we demonstrate that PKA can directly phosphorylate Ser238 on Bmh1. The status of Bmh1 phosphorylation is therefore likely to play important roles in life-span regulation. Together, our studies suggest that phosphorylated Bmh1 may cause inhibitory effects on downstream longevity factors, including stress-response proteins. Deleting Bmh1 may eliminate the inhibitory effects of Bmh1 on these longevity factors and therefore extends life span.
Collapse
|
40
|
Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK. The TOR pathway comes of age. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:1067-74. [PMID: 19539012 PMCID: PMC3981532 DOI: 10.1016/j.bbagen.2009.06.007] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 12/13/2022]
Abstract
Studies in a variety of model organisms indicate that nutrient signaling is tightly coupled to longevity. In nutrient replete conditions, organisms develop, grow, and age quickly. When nutrients become sparse as with dietary restriction, growth and development decline, stress response pathways become induced and organisms live longer. Considerable effort has been devoted to understanding the molecular events mediating lifespan extension by dietary restriction. One central focus has been on nutrient-responsive signal transduction pathways including insulin/IGF-1, AMP kinase, protein kinase A and the TOR pathway. Here we describe the increasingly prominent links between TOR signaling and aging in invertebrates. Longevity studies in mammals are not published to date. Instead, we highlight studies in mouse models, which indicate that dampening the TOR pathway leads to widespread protection from an array of age-related diseases.
Collapse
Affiliation(s)
- Monique N Stanfel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
41
|
Cebollero E, Reggiori F. Regulation of autophagy in yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1413-21. [DOI: 10.1016/j.bbamcr.2009.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/04/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
|
42
|
Schönig B, Vogel S, Tudzynski B. Cpc1 mediates cross-pathway control independently of Mbf1 in Fusarium fujikuroi. Fungal Genet Biol 2009; 46:898-908. [PMID: 19679194 DOI: 10.1016/j.fgb.2009.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
The deletion of glnA, encoding the glutamine synthetase (GS), had led to the down-regulation of genes involved in secondary metabolism and up-regulation of cpc1, the cross-pathway control transcription factor. In the present study, a Deltacpc1 mutant was created and used for transcriptional profiling by macroarray analysis. Most of the Cpc1 target genes were amino acid biosynthesis genes besides a homologue of the multi-protein bridging factor MBF1 that binds to the yeast Cpc1 homologue GCN4. We show that Deltambf1 mutants exhibit no Cpc1-related phenotype and that both proteins do not interact with each other in Fusarium fujikuroi. Moreover, results presented here suggest that Cpc1 is not responsible for the GS-dependent down-regulation of secondary metabolism and that its role is focused on the activation of amino acid biosynthesis in response to the amino acid status of the cell. Surprisingly, cross-pathway control is repressed by nitrogen limitation in an AreA-dependent manner.
Collapse
Affiliation(s)
- Birgit Schönig
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany
| | | | | |
Collapse
|
43
|
García-Campusano F, Anaya VH, Robledo-Arratia L, Quezada H, Hernández H, Riego L, González A. ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae. Can J Microbiol 2009; 55:368-74. [DOI: 10.1139/w08-150] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the yeast Saccharomyces cerevisiae , the paralogous genes ALT1 and ALT2 have been proposed to encode alanine aminotransferase isozymes. Although in other microorganisms this enzyme constitutes the main pathway for alanine biosynthesis, its role in S. cerevisiae had remained unclear. Results presented in this paper show that under respiratory conditions, Alt1p constitutes the sole pathway for alanine biosynthesis and catabolism, constituting the first example of an alanine aminotransferase that simultaneously carries out both functions. Conversely, under fermentative conditions, it plays a catabolic role and alanine is mainly synthesized through an alternative pathway. It can thus be concluded that ALT1 has functions in alanine biosynthesis and utilization or only alanine utilization under respiratory and fermentative conditions, respectively. ALT2 expression was repressed under all tested conditions, suggesting that Alt2p biosynthesis is strictly controlled and only allowed to express under peculiar physiological conditions.
Collapse
Affiliation(s)
- Florencia García-Campusano
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Mexico City, D.F. 04510, Mexico
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, Mexico City, D.F. 14070, Mexico
- División de Biología Molecular, IPICYT, Camino a la Presa San José No 2055 Lomas, Cuarta Sección 78216, San Luis Potosí, Mexico
| | - Víctor-Hugo Anaya
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Mexico City, D.F. 04510, Mexico
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, Mexico City, D.F. 14070, Mexico
- División de Biología Molecular, IPICYT, Camino a la Presa San José No 2055 Lomas, Cuarta Sección 78216, San Luis Potosí, Mexico
| | - Luis Robledo-Arratia
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Mexico City, D.F. 04510, Mexico
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, Mexico City, D.F. 14070, Mexico
- División de Biología Molecular, IPICYT, Camino a la Presa San José No 2055 Lomas, Cuarta Sección 78216, San Luis Potosí, Mexico
| | - Héctor Quezada
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Mexico City, D.F. 04510, Mexico
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, Mexico City, D.F. 14070, Mexico
- División de Biología Molecular, IPICYT, Camino a la Presa San José No 2055 Lomas, Cuarta Sección 78216, San Luis Potosí, Mexico
| | - Hugo Hernández
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Mexico City, D.F. 04510, Mexico
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, Mexico City, D.F. 14070, Mexico
- División de Biología Molecular, IPICYT, Camino a la Presa San José No 2055 Lomas, Cuarta Sección 78216, San Luis Potosí, Mexico
| | - Lina Riego
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Mexico City, D.F. 04510, Mexico
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, Mexico City, D.F. 14070, Mexico
- División de Biología Molecular, IPICYT, Camino a la Presa San José No 2055 Lomas, Cuarta Sección 78216, San Luis Potosí, Mexico
| | - Alicia González
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Mexico City, D.F. 04510, Mexico
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, Mexico City, D.F. 14070, Mexico
- División de Biología Molecular, IPICYT, Camino a la Presa San José No 2055 Lomas, Cuarta Sección 78216, San Luis Potosí, Mexico
| |
Collapse
|
44
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Smets B, De Snijder P, Engelen K, Joossens E, Ghillebert R, Thevissen K, Marchal K, Winderickx J. Genome-wide expression analysis reveals TORC1-dependent and -independent functions of Sch9. FEMS Yeast Res 2008; 8:1276-88. [DOI: 10.1111/j.1567-1364.2008.00432.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4. Mol Cell Biol 2008; 28:6796-818. [PMID: 18794364 DOI: 10.1128/mcb.00800-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The late endosome (MVB) plays a key role in coordinating vesicular transport of proteins between the Golgi complex, vacuole/lysosome, and plasma membrane. We found that deleting multiple genes involved in vesicle fusion at the MVB (class C/D vps mutations) impairs transcriptional activation by Gcn4, a global regulator of amino acid biosynthetic genes, by decreasing the ability of chromatin-bound Gcn4 to stimulate preinitiation complex assembly at the promoter. The functions of hybrid activators with Gal4 or VP16 activation domains are diminished in class D mutants as well, suggesting a broader defect in activation. Class E vps mutations, which impair protein sorting at the MVB, also decrease activation by Gcn4, provided they elicit rapid proteolysis of MVB cargo proteins in the aberrant late endosome. By contrast, specifically impairing endocytic trafficking from the plasma membrane, or vesicular transport to the vacuole, has a smaller effect on Gcn4 function. Thus, it appears that decreasing cargo proteins in the MVB through impaired delivery or enhanced degradation, and not merely the failure to transport cargo properly to the vacuole or downregulate plasma membrane proteins by endocytosis, is required to attenuate substantially transcriptional activation by Gcn4.
Collapse
|
48
|
Quezada H, Aranda C, DeLuna A, Hernández H, Calcagno ML, Marín-Hernández Á, González A. Specialization of the paralogue LYS21 determines lysine biosynthesis under respiratory metabolism in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2008; 154:1656-1667. [PMID: 18524920 DOI: 10.1099/mic.0.2008/017103-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the first committed step of the lysine biosynthetic pathway is catalysed by two homocitrate synthases encoded by LYS20 and LYS21. We undertook a study of the duplicate homocitrate synthases to analyse whether their retention and presumable specialization have affected the efficiency of lysine biosynthesis in yeast. Our results show that during growth on ethanol, homocitrate is mainly synthesized through Lys21p, while under fermentative metabolism, Lys20p and Lys21p play redundant roles. Furthermore, results presented in this paper indicate that, in contrast to that which had been found for Lys20p, lysine is a strong allosteric inhibitor of Lys21p (K(i) 0.053 mM), which, in addition, induces positive co-operativity for alpha-ketoglutarate (alpha-KG) binding. Differential lysine inhibition and modulation by alpha-KG of the two isozymes, and the regulation of the intracellular amount of the two isoforms, give rise to an exquisite regulatory system, which balances the rate at which alpha-KG is diverted to lysine biosynthesis or to other metabolic pathways. It can thus be concluded that retention and further biochemical specialization of the LYS20- and LYS21-encoded enzymes with partially overlapping roles contributed to the acquisition of facultative metabolism.
Collapse
Affiliation(s)
- Héctor Quezada
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| | - Cristina Aranda
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| | - Alexander DeLuna
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| | - Hugo Hernández
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| | - Mario L Calcagno
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Álvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México DF, México
| | - Alicia González
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| |
Collapse
|
49
|
Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 2008; 133:292-302. [PMID: 18423200 PMCID: PMC2749658 DOI: 10.1016/j.cell.2008.02.037] [Citation(s) in RCA: 382] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/27/2007] [Accepted: 02/06/2008] [Indexed: 11/27/2022]
Abstract
In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.
Collapse
Affiliation(s)
- Kristan K. Steffen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Vivian L. MacKay
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Emily O. Kerr
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Mitsuhiro Tsuchiya
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Di Hu
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Lindsay A. Fox
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nick Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Elijah D. Johnston
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan A. Oakes
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Bie N. Tchao
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Diana N. Pak
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Stanley Fields
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
50
|
Zurita-Martinez SA, Puria R, Pan X, Boeke JD, Cardenas ME. Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 2007; 176:2139-50. [PMID: 17565946 PMCID: PMC1950620 DOI: 10.1534/genetics.107.072835] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/25/2007] [Indexed: 12/26/2022] Open
Abstract
The Tor kinases regulate responses to nutrients and control cell growth. Unlike most organisms that only contain one Tor protein, Saccharomyces cerevisiae expresses two, Tor1 and Tor2, which are thought to share all of the rapamycin-sensitive functions attributable to Tor signaling. Here we conducted a genetic screen that defined the global TOR1 synthetic fitness or lethal interaction gene network. This screen identified mutations in distinctive functional categories that impaired vacuolar function, including components of the EGO/Gse and PAS complexes that reduce fitness. In addition, tor1 is lethal in combination with mutations in class C Vps complex components. We find that Tor1 does not regulate the known function of the class C Vps complex in protein sorting. Instead class C vps mutants fail to recover from rapamycin-induced growth arrest or to survive nitrogen starvation and have low levels of amino acids. Remarkably, addition of glutamate or glutamine restores viability to a tor1 pep3 mutant strain. We conclude that Tor1 is more effective than Tor2 at providing rapamycin-sensitive Tor signaling under conditions of amino acid limitation, and that an intact class C Vps complex is required to mediate intracellular amino acid homeostasis for efficient Tor signaling.
Collapse
Affiliation(s)
- Sara A Zurita-Martinez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|