1
|
Bao X, Yang C, Li T, Wang Y, Cui A, Meng X, Huang Q, Li S. Efflux of TolC protein to different antimicrobials can be replaced by other outer membrane proteins with similar β-barrel structures in extraintestinal pathogenic Escherichia coli. J Appl Microbiol 2024; 135:lxae214. [PMID: 39217099 DOI: 10.1093/jambio/lxae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
AIM As a major efflux pump system in Gram-negative bacteria, AcrAB-TolC plays a key role in the transport of multiple drug substrates and is considered a potential target for the development of novel antimicrobials. Our previous study found that TolC inactivation compromised the resistance to different antimicrobials in porcine extraintestinal pathogenic Escherichia coli (ExPEC) strain PPECC042 (WT). This study was designed to investigate the functional substitution of TolC by other outer membrane proteins (OMPs) with similar β-barrel structures in pumping out different antimicrobials. METHODS AND RESULTS In this study, we found that over-expression of several OMPs with similar β-barrel structures, OmpX, OmpC, OmpN, OmpW, and PhoE, in the ΔtolC strain restored the resistance to macrolides, quinolones, or tetracyclines to the level of WT strain. However, the introduction of any one of the five OMPs did not affect the resistance of the strains ΔacrA, ΔacrB, and ΔacrAΔtolC. Further study revealed that the efflux activity was significantly reduced in the ΔtolC strain, but not in the WT strain and the ΔtolC strains over-expressing various OMPs. Additionally, Nile red dye test and ciprofloxacin accumulation test confirmed that the lost efflux activity and drug accumulation in bacterial periplasm by TolC inactivation was restored by the over-expression of each OMP, depending on the presence of genes acrA and acrB. CONCLUSION All five OMPs can replace the TolC protein to play the efflux role in pumping out the drugs from the periplasm to the extracellular space with the help of proteins AcrA and AcrB.
Collapse
Affiliation(s)
- Xue Bao
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenglong Yang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanlin Wang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ailian Cui
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianrong Meng
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Huang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaowen Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Greenrod STE, Stoycheva M, Elphinstone J, Friman VP. Influence of insertion sequences on population structure of phytopathogenic bacteria in the Ralstonia solanacearum species complex. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001364. [PMID: 37458734 PMCID: PMC10433421 DOI: 10.1099/mic.0.001364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) is a destructive group of plant pathogenic bacteria and the causative agent of bacterial wilt disease. Experimental studies have attributed RSSC virulence to insertion sequences (IS), transposable genetic elements which can both disrupt and activate host genes. Yet, the global diversity and distribution of RSSC IS are unknown. In this study, IS were bioinformatically identified in a diverse collection of 356 RSSC isolates representing five phylogenetic lineages and their diversity investigated based on genetic distance measures and comparisons with the ISFinder database. IS phylogenetic associations were determined based on their distribution across the RSSC phylogeny. Moreover, IS positions within genomes were characterised and their potential gene disruptions determined based on IS proximity to coding sequences. In total, we found 24732 IS belonging to eleven IS families and 26 IS subgroups with over half of the IS found in the megaplasmid. While IS families were generally widespread across the RSSC phylogeny, IS subgroups showed strong lineage-specific distributions and genetically similar bacterial isolates had similar IS contents. Similar associations with bacterial host genetic background were also observed with IS insertion positions which were highly conserved in closely related bacterial isolates. Finally, IS were found to disrupt genes with predicted functions in virulence, stress tolerance, and metabolism suggesting that they might be adaptive. This study highlights that RSSC insertion sequences track the evolution of their bacterial hosts potentially contributing to both intra- and inter-lineage genetic diversity.
Collapse
Affiliation(s)
- Samuel T. E. Greenrod
- Department of Biology, University of York, York, UK
- Present address: Department of Biology, University of Oxford, Oxford, UK
| | | | - John Elphinstone
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, UK
| | - Ville-Petri Friman
- Department of Biology, University of York, York, UK
- Present address: Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
3
|
LaGree TJ, Byrd BA, Quelle RM, Schofield SL, Mok WWK. Stimulating Transcription in Antibiotic-Tolerant Escherichia coli Sensitizes It to Fluoroquinolone and Nonfluoroquinolone Topoisomerase Inhibitors. Antimicrob Agents Chemother 2023; 67:e0163922. [PMID: 36951560 PMCID: PMC10112259 DOI: 10.1128/aac.01639-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Antibiotic tolerant bacteria and persistent cells that remain alive after a course of antibiotic treatment can foster the chronicity of infections and the development of antibiotic resistance. Elucidating how bacteria overcome antibiotic action and devising strategies to bolster a new drug's activity can allow us to preserve our antibiotic arsenal. Here, we investigate strategies to potentiate the activities of topoisomerase inhibitors against nongrowing Escherichia coli that are often recalcitrant to existing antibiotics. We focus on sensitizing bacteria to the fluoroquinolone (FQ) levofloxacin (Levo) and to the spiropyrimidinetrione zoliflodacin (Zoli)-the first antibiotic in its class of compounds in clinical development. We found that metabolic stimulation either alone or in combination with inhibiting the AcrAB-TolC efflux pump sensitized stationary-phase E. coli to Levo and Zoli. We demonstrate that the added metabolites increased proton motive force generation and ATP production in stationary-phase cultures without restarting growth. Instead, the stimulated bacteria increased transcription and translation, which rendered the populations more susceptible to topoisomerase inhibitors. Our findings illuminate potential vulnerabilities of antibiotic-tolerant bacteria that can be leveraged to sensitize them to new and existing classes of topoisomerase inhibitors. These approaches enable us to stay one step ahead of adaptive bacteria and safeguard the efficacy of our existing antibiotics.
Collapse
Affiliation(s)
- Travis J. LaGree
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Brandon A. Byrd
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
- School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Ryan M. Quelle
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Stephanie L. Schofield
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Wendy W. K. Mok
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Radi MS, Munro LJ, Salcedo-Sora JE, Kim SH, Feist AM, Kell DB. Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress. MEMBRANES 2022; 12:1264. [PMID: 36557171 PMCID: PMC9783932 DOI: 10.3390/membranes12121264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Multidrug transporters (MDTs) are major contributors to microbial drug resistance and are further utilized for improving host phenotypes in biotechnological applications. Therefore, the identification of these MDTs and the understanding of their mechanisms of action in vivo are of great importance. However, their promiscuity and functional redundancy represent a major challenge towards their identification. Here, a multistep tolerance adaptive laboratory evolution (TALE) approach was leveraged to achieve this goal. Specifically, a wild-type E. coli K-12-MG1655 and its cognate knockout individual mutants ΔemrE, ΔtolC, and ΔacrB were evolved separately under increasing concentrations of two lipophilic cations, tetraphenylphosphonium (TPP+), and methyltriphenylphosphonium (MTPP+). The evolved strains showed a significant increase in MIC values of both cations and an apparent cross-cation resistance. Sequencing of all evolved mutants highlighted diverse mutational mechanisms that affect the activity of nine MDTs including acrB, mdtK, mdfA, acrE, emrD, tolC, acrA, mdtL, and mdtP. Besides regulatory mutations, several structural mutations were recognized in the proximal binding domain of acrB and the permeation pathways of both mdtK and mdfA. These details can aid in the rational design of MDT inhibitors to efficiently combat efflux-based drug resistance. Additionally, the TALE approach can be scaled to different microbes and molecules of medical and biotechnological relevance.
Collapse
Affiliation(s)
- Mohammad S. Radi
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Lachlan J. Munro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Jesus E. Salcedo-Sora
- GeneMill, Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Se Hyeuk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Adam M. Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Bioengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Douglas B. Kell
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
5
|
Vachiranuvathin P, Tharasirivat V, Hemnusornnanon T, Jantaro S. Native SodB Overexpression of Synechocystis sp. PCC 6803 Improves Cell Growth Under Alcohol Stresses Whereas Its Gpx2 Overexpression Impacts on Growth Recovery from Alcohol Stressors. Appl Biochem Biotechnol 2022; 194:5748-5766. [PMID: 35819692 DOI: 10.1007/s12010-022-04061-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
To overcome the limited resistance to alcohol stress, genetically engineered Synechocystis sp. PCC 6803 strains with overexpressions of genes related with the ROS detoxification system (sodB and gpx2, which encode superoxide dismutase and glutathione peroxidase, respectively) were developed. Three engineered strains including a sodB-overexpressing strain (OE + S), a gpx2-overexpressing strain (OE + G), and a sodB/gpx2-overexpressing strain (OE + SG) grew similarly as wild-type control under normal condition. When compared to wild-type control, OE + S and OE + SG strains grew faster for 4 days under 2.0% (v/v) ethanol and 0.3% (v/v) n-butanol conditions, as well as having higher chlorophyll a levels. On the other hand, the prominent growth recovery of OE + G and OE + SG was noted within 4 days in normal BG11 medium after treating cells with high alcohol stresses for 1 h, in particular 15% ethanol and 2.5% n-butanol. Under 4 days of recovery from butanol stress, specific levels of intracellular pigments including chlorophyll a and carotenoids were dramatically increased in all modified strains. The overexpression of antioxidant genes then revealed a significant improvement of alcohol tolerance in Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- Phuwanet Vachiranuvathin
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vetaka Tharasirivat
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thitaporn Hemnusornnanon
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Teng Y, Guo C, Xie M, Feng A, Lu X, Zong H, Zhuge B. Modification of substrate and product transport systems in Klebsiella pneumoniae to improve 1,3-propanediol production. FEMS Microbiol Lett 2022; 369:6613194. [PMID: 35731629 DOI: 10.1093/femsle/fnac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 05/26/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
Substrate uptake and product export are important for microbial growth and product synthesis. Here, the glycerol uptake facilitator (GlpF) and the members of the resistance-nodulation-cell division (RND) type efflux system were overexpressed in Klebsiella pneumoniae to promote 1,3-propanediol (1,3-PDO) production. Overexpression of the endogenous K. pneumoniae GlpF improved glycerol dehydratase activity and promoted 1,3-PDO titer from 55.6 to 65.1 g/L. RND members AcrA and the AcrE had no impact on 1,3-PDO production. RND members AcrF and the TolC increased 1,3-PDO titer from 55.6 g/L to 68.4 and 65.4 g/L, respectively. MexB significantly decreased glycerol dehydratase activity and 1,3-PDO titer. Notably, MexF dramatically enhanced glycerol dehydratase activity and promoted 1,3-PDO titer and glycerol conversion rate to 74.0 g/L and 0.62 mol/mol, respectively. However, coexpression of the endogenous GlpF and MexF did not further improve 1,3-PDO production. The results present here provided novel information about the applications of the uptake of glycerol and the efflux of 1,3-PDO.
Collapse
Affiliation(s)
- Yu Teng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chao Guo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengmeng Xie
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ao Feng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Abstract
Many antibiotic resistant uropathogenic Escherichia coli (UPEC) strains belong to clones defined by their multilocus sequence type (ST), with ST131 being the most dominant. Although we have a good understanding of resistance development to fluoroquinolones and third-generation cephalosporins by ST131, our understanding of the virulence repertoire that has contributed to its global dissemination is limited. Here we show that the genes encoding Afa/Dr fimbriae, a group of adhesins strongly associated with UPEC that cause gestational pyelonephritis and recurrent cystitis, are found in approximately one third of all ST131 strains. Sequence comparison of the AfaE adhesin protein revealed a unique allelic variant carried by 82.9% of afa-positive ST131 strains. We identify the afa regulatory region as a hotspot for the integration of insertion sequence (IS) elements, all but one of which alter afa transcription. Close investigation demonstrated that the integration of an IS1 element in the afa regulatory region leads to increased expression of Afa/Dr fimbriae, promoting enhanced adhesion to kidney epithelial cells and suggesting a mechanism for altered virulence. Finally, we provide evidence for a more widespread impact of IS1 on ST131 genome evolution, suggesting that IS dynamics contribute to strain level microevolution that impacts ST131 fitness. IMPORTANCE E. coli ST131 is the most common antibiotic resistant UPEC clone associated with human urinary tract and bloodstream infections. Understanding the features of ST131 that have driven its global dissemination remains a critical priority if we are to counter its increasing antibiotic resistance. Here, we utilized a large collection of ST131 isolates to investigate the prevalence, regulation, and function of Afa/Dr fimbriae, a well-characterized UPEC colonization and virulence factor. We show that the afa genes are found frequently in ST131 and demonstrate how the integration of IS elements in the afa regulatory region modulates Afa expression, presenting an example of altered virulence capacity. We also exploit a curated set of ST131 genomes to map the integration of the antibiotic resistance-associated IS1 element in the ST131 pangenome, providing evidence for its widespread impact on ST131 genome evolution.
Collapse
|
8
|
Ciusa ML, Marshall RL, Ricci V, Stone JW, Piddock LJV. Absence, loss-of-function, or inhibition of Escherichia coli AcrB does not increase expression of other efflux pump genes supporting the discovery of AcrB inhibitors as antibiotic adjuvants. J Antimicrob Chemother 2021; 77:633-640. [PMID: 34897478 PMCID: PMC8865010 DOI: 10.1093/jac/dkab452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives To determine whether expression of efflux pumps and antibiotic susceptibility are altered in Escherichia coli in response to efflux inhibition. Methods The promoter regions of nine efflux pump genes (acrAB, acrD, acrEF, emrAB, macAB, cusCFBA, mdtK, mdtABC, mdfA) were fused to gfp in pMW82 and fluorescence from each reporter construct was used as a measure of the transcriptional response to conditions in which AcrB was inhibited, absent or made non-functional. Expression was also determined by RT-qPCR. Drug susceptibility of efflux pump mutants with missense mutations known or predicted to cause loss of function of the encoded efflux pump was investigated. Results Data from the GFP reporter constructs revealed that no increased expression of the tested efflux pump genes was observed when AcrB was absent, made non-functional, or inhibited by an efflux pump inhibitor/competitive substrate, such as PAβN or chlorpromazine. This was confirmed by RT-qPCR for PAβN and chlorpromazine; however, a small but significant increase in macB gene expression was seen when acrB is deleted. Efflux inhibitors only synergized with antibiotics in the presence of a functional AcrB. When AcrB was absent or non-functional, there was no impact on MICs when other efflux pumps were also made non-functional. Conclusions Absence, loss-of-function, or inhibition of E. coli AcrB did not significantly increase expression of other efflux pump genes, which suggests there is no compensatory mechanism to overcome efflux inhibition and supports the discovery of inhibitors of AcrB as antibiotic adjuvants.
Collapse
Affiliation(s)
- Maria Laura Ciusa
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert L Marshall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Vito Ricci
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jack W Stone
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Laura J V Piddock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Alav I, Bavro VN, Blair JMA. Interchangeability of periplasmic adaptor proteins AcrA and AcrE in forming functional efflux pumps with AcrD in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2021; 76:2558-2564. [PMID: 34278432 PMCID: PMC8446912 DOI: 10.1093/jac/dkab237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 01/20/2023] Open
Abstract
Background Resistance-nodulation-division (RND) efflux pumps are important mediators of antibiotic resistance. RND pumps, including the principal multidrug efflux pump AcrAB-TolC in Salmonella, are tripartite systems with an inner membrane RND transporter, a periplasmic adaptor protein (PAP) and an outer membrane factor (OMF). We previously identified the residues required for binding between the PAP AcrA and the RND transporter AcrB and have demonstrated that PAPs can function with non-cognate transporters. AcrE and AcrD/AcrF are homologues of AcrA and AcrB, respectively. Here, we show that AcrE can interact with AcrD, which does not possess its own PAP, and establish that the residues previously identified in AcrB binding are also involved in AcrD binding. Methods The acrD and acrE genes were expressed in a strain lacking acrABDEF (Δ3RND). PAP residues involved in promiscuous interactions were predicted based on previously defined PAP-RND interactions and corresponding mutations generated in acrA and acrE. Antimicrobial susceptibility of the mutant strains was determined. Results Co-expression of acrD and acrE significantly decreased susceptibility of the Δ3RND strain to AcrD substrates, showing that AcrE can form a functional complex with AcrD. The substrate profile of Salmonella AcrD differed from that of Escherichia coli AcrD. Mutations targeting the previously defined PAP-RND interaction sites in AcrA/AcrE impaired efflux of AcrD-dependent substrates. Conclusions These data indicate that AcrE forms an efflux-competent pump with AcrD and thus presents an alternative PAP for this pump. Mutagenesis of the conserved RND binding sites validates the interchangeability of AcrA and AcrE, highlighting them as potential drug targets for efflux inhibition.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
10
|
Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli. J Bacteriol 2021; 203:e0010921. [PMID: 33972351 DOI: 10.1128/jb.00109-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.
Collapse
|
11
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
12
|
Lukačišinová M, Fernando B, Bollenbach T. Highly parallel lab evolution reveals that epistasis can curb the evolution of antibiotic resistance. Nat Commun 2020; 11:3105. [PMID: 32561723 PMCID: PMC7305214 DOI: 10.1038/s41467-020-16932-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic perturbations that affect bacterial resistance to antibiotics have been characterized genome-wide, but how do such perturbations interact with subsequent evolutionary adaptation to the drug? Here, we show that strong epistasis between resistance mutations and systematically identified genes can be exploited to control spontaneous resistance evolution. We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic platform that tightly controls population size and selection pressure. We find a global diminishing-returns epistasis pattern: strains that are initially more sensitive generally undergo larger resistance gains. However, some gene deletion strains deviate from this general trend and curtail the evolvability of resistance, including deletions of genes for membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force evolution on inferior mutational paths, not explored in the wild type, and some of these essentially block resistance evolution. This effect is due to strong negative epistasis with resistance mutations. The identified genes and cellular functions provide potential targets for development of adjuvants that may block spontaneous resistance evolution when combined with antibiotics.
Collapse
Affiliation(s)
- Marta Lukačišinová
- University of Cologne, Institute for Biological Physics, Zülpicher Straße 77, 50937, Cologne, Germany
- IST Austria, Am Campus 1, 3400, Klosterneuburg, Austria
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Booshini Fernando
- University of Cologne, Institute for Biological Physics, Zülpicher Straße 77, 50937, Cologne, Germany
| | - Tobias Bollenbach
- University of Cologne, Institute for Biological Physics, Zülpicher Straße 77, 50937, Cologne, Germany.
| |
Collapse
|
13
|
McNeil HE, Alav I, Torres RC, Rossiter AE, Laycock E, Legood S, Kaur I, Davies M, Wand M, Webber MA, Bavro VN, Blair JMA. Identification of binding residues between periplasmic adapter protein (PAP) and RND efflux pumps explains PAP-pump promiscuity and roles in antimicrobial resistance. PLoS Pathog 2019; 15:e1008101. [PMID: 31877175 PMCID: PMC6975555 DOI: 10.1371/journal.ppat.1008101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2020] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
Active efflux due to tripartite RND efflux pumps is an important mechanism of clinically relevant antibiotic resistance in Gram-negative bacteria. These pumps are also essential for Gram-negative pathogens to cause infection and form biofilms. They consist of an inner membrane RND transporter; a periplasmic adaptor protein (PAP), and an outer membrane channel. The role of PAPs in assembly, and the identities of specific residues involved in PAP-RND binding, remain poorly understood. Using recent high-resolution structures, four 3D sites involved in PAP-RND binding within each PAP protomer were defined that correspond to nine discrete linear binding sequences or "binding boxes" within the PAP sequence. In the important human pathogen Salmonella enterica, these binding boxes are conserved within phylogenetically-related PAPs, such as AcrA and AcrE, while differing considerably between divergent PAPs such as MdsA and MdtA, despite overall conservation of the PAP structure. By analysing these binding sequences we created a predictive model of PAP-RND interaction, which suggested the determinants that may allow promiscuity between certain PAPs, but discrimination of others. We corroborated these predictions using direct phenotypic data, confirming that only AcrA and AcrE, but not MdtA or MsdA, can function with the major RND pump AcrB. Furthermore, we provide functional validation of the involvement of the binding boxes by disruptive site-directed mutagenesis. These results directly link sequence conservation within identified PAP binding sites with functional data providing mechanistic explanation for assembly of clinically relevant RND-pumps and explain how Salmonella and other pathogens maintain a degree of redundancy in efflux mediated resistance. Overall, our study provides a novel understanding of the molecular determinants driving the RND-PAP recognition by bridging the available structural information with experimental functional validation thus providing the scientific community with a predictive model of pump-contacts that could be exploited in the future for the development of targeted therapeutics and efflux pump inhibitors.
Collapse
Affiliation(s)
- Helen E. McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Amanda E. Rossiter
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Eve Laycock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Inderpreet Kaur
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Matthew Davies
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Matthew Wand
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Mark A. Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- * E-mail: (VNB); (JMAB)
| | - Jessica M. A. Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (VNB); (JMAB)
| |
Collapse
|
14
|
Deletion of the major Escherichia coli multidrug transporter AcrB reveals transporter plasticity and redundancy in bacterial cells. PLoS One 2019; 14:e0218828. [PMID: 31251753 PMCID: PMC6599122 DOI: 10.1371/journal.pone.0218828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022] Open
Abstract
Multidrug Transporters (MDTs) are major contributors to the acquisition and maintenance of Antimicrobial Resistance (AMR), a growing public health threat of broad concern. Despite the large number of MDTs, the overwhelming majority of the studies performed thus far in Gram-negative bacteria emphasize the supremacy of the AcrAB-TolC complex. To unveil the potential role of other MDTs we studied the behavior of a null AcrB Escherichia coli strain when challenged with chloramphenicol, a bacteriostatic antibiotic. We found that such a strain developed an extremely high-level of resistance to chloramphenicol, cross resistance to quinolones and erythromycin and displayed high levels of expression of the single component MFS transporter MdfA and multiple TolC-dependent transporters. The results suggest that the high versatility of the whole ensemble of transporters, the bacterial Effluxome, is an essential part of a strategy of survival in everchanging, at times noxious, environments. The concept of a functional Effluxome presents an alternative to the existing paradigms in the field and provides novel targets for the search for inhibitors of transporters as adjuvants of existing antibiotics.
Collapse
|
15
|
Chetri S, Dolley A, Bhowmik D, Chanda DD, Chakravarty A, Bhattacharjee A. Transcriptional Response of AcrEF-TolC against Fluoroquinolone and Carbapenem in Escherichia coli of Clinical Origin. Indian J Med Microbiol 2018; 36:537-540. [DOI: 10.4103/ijmm.ijmm_18_308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Nitrothiophene carboxamides, a novel narrow spectrum antibacterial series: Mechanism of action and Efficacy. Sci Rep 2018; 8:7263. [PMID: 29740005 PMCID: PMC5940854 DOI: 10.1038/s41598-018-25407-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
The mechanism of efflux is a tour-de-force in the bacterial armoury that has thwarted the development of novel antibiotics. We report the discovery of a novel chemical series with potent antibacterial properties that was engineered to overcome efflux liability. Compounds liable to efflux specifically via the Resistance Nodulation and cell Division (RND) pump, AcrAB-TolC were chosen for a hit to lead progression. Using structure-based design, the compounds were optimised to lose their binding to the efflux pump, thereby making them potent on wild-type bacteria. We discovered these compounds to be pro-drugs that require activation in E. coli by specific bacterial nitroreductases NfsA and NfsB. Hit to lead chemistry led to the generation of compounds that were potent on wild-type and multi-drug resistant clinical isolates of E. coli, Shigella spp., and Salmonella spp. These compounds are bactericidal and efficacious in a mouse thigh infection model.
Collapse
|
17
|
Schuldiner S. The Escherichia coli effluxome. Res Microbiol 2018; 169:357-362. [PMID: 29574104 DOI: 10.1016/j.resmic.2018.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/30/2022]
Abstract
Multidrug transporters function in a coordinated mode to provide an essential first-line defense mechanism that prevents antibiotics from reaching lethal concentrations, until a number of stable efficient adaptations occur that allow survival. Single-component efflux transporters remove the toxic compounds from the cytoplasm to the periplasmic space where TolC-dependent transporters expel them from the cell. The close interaction between the two types of transporters ensures handling of a wide range of xenobiotics and prevents rapid leak of the hydrophobic substrates back into the cell. In this review, we discuss the concept of the bacterial effluxome of the Gram-negative Escherichia coli that is the entire set of transporters expressed at a given time, under defined conditions. The process of identification of its members and the elucidation of the nature of the interactions throw a novel light on the roles of transporters in bacterial physiology and drug resistance development. We anticipate that the concept of an effluxome where each member contributes to the removal of noxious chemicals from the cell should contribute to improving the present strategy of searching for transport inhibitors as adjuvants of existing antibiotics and provide novel targets for this urgent undertaking.
Collapse
Affiliation(s)
- Shimon Schuldiner
- Department of Biological Chemistry, Institute of Life Sciences, Silberman Bldg. 1-339, Edmond J. Safra Campus, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
18
|
Zhang CZ, Chang MX, Yang L, Liu YY, Chen PX, Jiang HX. Upregulation of AcrEF in Quinolone Resistance Development inEscherichia coliWhen AcrAB-TolC Function Is Impaired. Microb Drug Resist 2018; 24:18-23. [DOI: 10.1089/mdr.2016.0207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chuan-Zhen Zhang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Man-Xia Chang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Yan-Yan Liu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Pin-Xian Chen
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| | - Hong-Xia Jiang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University (SCAU), Guangzhou, China
| |
Collapse
|
19
|
XCC2366, A Gene Encoding A Putative TetR Family Transcriptional Regulator, is Required for Acriflavin Resistance and Virulence of Xanthomonas campestris pv. campestris. Curr Microbiol 2017; 74:1373-1381. [DOI: 10.1007/s00284-017-1328-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
|
20
|
Vandecraen J, Chandler M, Aertsen A, Van Houdt R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit Rev Microbiol 2017; 43:709-730. [PMID: 28407717 DOI: 10.1080/1040841x.2017.1303661] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transposable elements (TE), small mobile genetic elements unable to exist independently of the host genome, were initially believed to be exclusively deleterious genomic parasites. However, it is now clear that they play an important role as bacterial mutagenic agents, enabling the host to adapt to new environmental challenges and to colonize new niches. This review focuses on the impact of insertion sequences (IS), arguably the smallest TE, on bacterial genome plasticity and concomitant adaptability of phenotypic traits, including resistance to antibacterial agents, virulence, pathogenicity and catabolism. The direct consequence of IS transposition is the insertion of one DNA sequence into another. This event can result in gene inactivation as well as in modulation of neighbouring gene expression. The latter is usually mediated by de-repression or by the introduction of a complete or partial promoter located within the element. Furthermore, transcription and transposition of IS are affected by host factors and in some cases by environmental signals offering the host an adaptive strategy and promoting genetic variability to withstand the environmental challenges.
Collapse
Affiliation(s)
- Joachim Vandecraen
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium.,b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Michael Chandler
- c Laboratoire de Microbiologie et Génétique Moléculaires, Centre national de la recherche scientifique , Toulouse , France
| | - Abram Aertsen
- b Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre , Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering , KU Leuven , Leuven , Belgium
| | - Rob Van Houdt
- a Microbiology Unit, Interdisciplinary Biosciences , Belgian Nuclear Research Centre (SCK•CEN) , Mol , Belgium
| |
Collapse
|
21
|
AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters. J Bacteriol 2015; 198:332-42. [PMID: 26527645 DOI: 10.1128/jb.00587-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The AcrAB-TolC system in Escherichia coli is an intrinsic RND-type multidrug efflux transporter that functions as a tripartite complex of the inner membrane transporter AcrB, the outer membrane channel TolC, and the adaptor protein AcrA. Although the crystal structures of each component of this system have been elucidated, the crystal structure of the whole complex has not been solved. The available crystal structures have shown that AcrB and TolC function as trimers, but the number of AcrA molecules in the complex is now under debate. Disulfide chemical cross-linking experiments have indicated that the stoichiometry of AcrB-AcrA-TolC is 1:1:1; on the other hand, recent cryo-electron microscopy images of AcrAB-TolC suggested a 1:2:1 stoichiometry. In this study, we constructed 1:1-fixed AcrB-AcrA fusion proteins using various linkers. Surprisingly, all the 1:1-fixed linker proteins showed drug export activity under both acrAB-deficient conditions and acrAB acrEF double-pump-knockout conditions regardless of the lengths of the linkers. Finally, we optimized a shorter linker lacking the conformational freedom imparted by the AcrB C terminus. These results suggest that a complex with equal amounts of AcrA and AcrB is sufficient for drug export function. IMPORTANCE The structure and stoichiometry of the RND-type multidrug exporter AcrB-AcrA-TolC complex are still under debate. Recently, electron microscopic images of the AcrB-AcrA-TolC complex have been reported, suggesting a 1:2:1 stoichiometry. However, we report here that the AcrB-AcrA 1:1 fusion protein is active for drug export under acrAB-deficient conditions and also under acrAB acrEF double-deficient conditions, which eliminate the aid of free AcrA and its close homolog AcrE, indicating that the AcrB-AcrA 1:1 stoichiometry is enough for drug export function. In addition, the AcrB-AcrA fusion protein can function without the aid of free AcrA. We believe that these results are very important for considering the structure and mechanism of AcrAB-TolC-mediated multidrug export.
Collapse
|
22
|
Abstract
Two membranes enclose Gram-negative bacteria-an inner membrane consisting of phospholipid and an outer membrane having an asymmetric structure in which the inner leaflet contains phospholipid and the outer leaflet consists primarily of lipopolysaccharide. The impermeable nature of the outer membrane imposes a need for numerous outer membrane pores and transporters to ferry substances in and out of the cell. These outer membrane proteins have structures distinct from their inner membrane counterparts and most often function without any discernable energy source. In this chapter, we review the structures and functions of four classes of outer membrane protein: general and specific porins, specific transporters, TonB-dependent transporters, and export channels. While not an exhaustive list, these classes exemplify small-molecule transport across the outer membrane and illustrate the diversity of structures and functions found in Gram-negative bacteria.
Collapse
|
23
|
Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 2015; 6:587. [PMID: 26113845 PMCID: PMC4462101 DOI: 10.3389/fmicb.2015.00587] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide.
Collapse
Affiliation(s)
- João Anes
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Matthew P McCusker
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Marta Martins
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| |
Collapse
|
24
|
Importance of Real-Time Assays To Distinguish Multidrug Efflux Pump-Inhibiting and Outer Membrane-Destabilizing Activities in Escherichia coli. J Bacteriol 2015; 197:2479-88. [PMID: 25962916 DOI: 10.1128/jb.02456-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 05/05/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The constitutively expressed AcrAB multidrug efflux system of Escherichia coli shows a high degree of homology with the normally silent AcrEF system. Exposure of a strain with acrAB deleted to antibiotic selection pressure frequently leads to the insertion sequence-mediated activation of the homologous AcrEF system. In this study, we used strains constitutively expressing either AcrAB or AcrEF from their normal chromosomal locations to resolve a controversy about whether phenylalanylarginine β-naphthylamide (PAβN) inhibits the activities of AcrAB and AcrEF and/or acts synergistically with antibiotics by destabilizing the outer membrane permeability barrier. Real-time efflux assays allowed a clear distinction between the efflux pump-inhibiting activity of PAβN and the outer membrane-destabilizing action of polymyxin B nonapeptide (PMXBN). When added in equal amounts, PAβN, but not PMXBN, strongly inhibited the efflux activities of both AcrAB and AcrEF pumps. In contrast, when outer membrane destabilization was assessed by the nitrocefin hydrolysis assay, PMXBN exerted a much greater damaging effect than PAβN. Strong action of PAβN in inhibiting efflux activity compared to its weak action in destabilizing the outer membrane permeability barrier suggests that PAβN acts mainly by inhibiting efflux pumps. We concluded that at low concentrations, PAβN acts specifically as an inhibitor of both AcrAB and AcrEF efflux pumps; however, at high concentrations, PAβN in the efflux-proficient background not only inhibits efflux pump activity but also destabilizes the membrane. The effects of PAβN on membrane integrity are compounded in cells unable to extrude PAβN. IMPORTANCE The increase in multidrug-resistant bacterial pathogens at an alarming rate has accelerated the need for implementation of better antimicrobial stewardship, discovery of new antibiotics, and deeper understanding of the mechanism of drug resistance. The work carried out in this study highlights the importance of employing real-time fluorescence-based assays in differentiating multidrug efflux-inhibitory and outer membrane-destabilizing activities of antibacterial compounds.
Collapse
|
25
|
Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A. Mechanisms of solvent resistance mediated by interplay of cellular factors inPseudomonas putida. FEMS Microbiol Rev 2015; 39:555-66. [DOI: 10.1093/femsre/fuv006] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 11/14/2022] Open
|
26
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1005] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
27
|
Blair JMA, Smith HE, Ricci V, Lawler AJ, Thompson LJ, Piddock LJV. Expression of homologous RND efflux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemother 2014; 70:424-31. [PMID: 25288678 PMCID: PMC4291234 DOI: 10.1093/jac/dku380] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Objectives Enterobacteriaceae have multiple efflux pumps that confer intrinsic resistance to antibiotics. AcrB mediates clinically relevant multidrug resistance and is required for virulence and biofilm formation, making it an attractive target for the design of inhibitors. The aim of this study was to assess the viability of single transporters as a target for efflux inhibition using Salmonella Typhimurium as the model pathogen. Methods The expression of resistance–nodulation–division (RND) efflux pump genes in response to the inactivation of single or multiple homologues was measured using real-time RT–PCR. Phenotypes of mutants were characterized by measuring antimicrobial susceptibility, dye accumulation and the ability to cause infection in vitro. Results The expression of all RND efflux pump genes was increased when single or multiple acr genes were inactivated, suggesting a feedback mechanism that activates the transcription of homologous efflux pump genes. When two or three acr genes were inactivated, the mutants had further reduced efflux, altered susceptibility to antimicrobials (including increased susceptibility to some, but conversely and counterintuitively, decreased susceptibility to some others) and were more attenuated in the tissue culture model than mutants lacking single pumps were. Conclusions These data indicate that it is critical to understand which pumps an inhibitor is active against and the effect of this on the expression of homologous systems. For some antimicrobials, an inhibitor with activity against multiple pumps will have a greater impact on susceptibility, but an unintended consequence of this may be decreased susceptibility to other drugs, such as aminoglycosides.
Collapse
Affiliation(s)
- Jessica M A Blair
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, and Institute of Microbiology and Infection, The University of Birmingham, Birmingham B15 2TT, UK
| | - Helen E Smith
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, and Institute of Microbiology and Infection, The University of Birmingham, Birmingham B15 2TT, UK
| | - Vito Ricci
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, and Institute of Microbiology and Infection, The University of Birmingham, Birmingham B15 2TT, UK
| | - Amelia J Lawler
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, and Institute of Microbiology and Infection, The University of Birmingham, Birmingham B15 2TT, UK
| | - Louisa J Thompson
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, and Institute of Microbiology and Infection, The University of Birmingham, Birmingham B15 2TT, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, and Institute of Microbiology and Infection, The University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
28
|
Assembly and stability of Salmonella enterica ser. Typhi TolC protein in POPE and DMPE. J Biol Phys 2014; 40:387-400. [PMID: 25011632 DOI: 10.1007/s10867-014-9357-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/23/2014] [Indexed: 10/25/2022] Open
Abstract
In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.
Collapse
|
29
|
Fàbrega A, Soto SM, Ballesté-Delpierre C, Fernández-Orth D, Jiménez de Anta MT, Vila J. Impact of quinolone-resistance acquisition on biofilm production and fitness in Salmonella enterica. J Antimicrob Chemother 2014; 69:1815-24. [PMID: 24706735 DOI: 10.1093/jac/dku078] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the potential relationship between quinolone resistance and biofilm production in a collection of Salmonella enterica clinical isolates and in S. enterica serovar Typhimurium serial mutants with increasing resistance to ciprofloxacin. METHODS Nalidixic acid susceptibility and biofilm formation were assessed in a collection of 122 S. enterica clinical isolates. An in vitro quinolone-resistant mutant, 59-64, was obtained from a biofilm-producing and quinolone-susceptible clinical isolate, 59-wt, in a multistep selection process after increasing ciprofloxacin concentrations. The quinolone resistance mechanisms [target gene and multidrug resistance (MDR) regulatory mutations, MICs of several antibiotics, cell envelope protein analysis, real-time PCR and ciprofloxacin accumulation] were characterized for mutant strains. In addition, analysis of fitness, biofilm formation, rdar morphotype and expression of biofilm-related genes by real-time PCR were also determined. RESULTS Nalidixic acid-susceptible S. enterica strains were more prevalent in producing biofilm than the resistant counterparts. Strain 59-64 acquired five target gene mutations and showed an MDR phenotype. AcrAB and acrF overexpression were ruled out, whereas TolC did show increased expression in 59-64, which, in addition, accumulated less ciprofloxacin. Consistently, increased ramA expression was seen in 59-64 and attributed to a mutation within its promoter. Reduced biofilm production related to diminished csgB expression as well as reduced fitness was seen for 59-64, which was unable to form the rdar morphotype. CONCLUSIONS Quinolone resistance acquisition may be associated with decreased production of biofilm due to lower csgB expression. Efflux, biofilm production and fitness seem to be interrelated.
Collapse
Affiliation(s)
- Anna Fàbrega
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Sara M Soto
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Clara Ballesté-Delpierre
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Dietmar Fernández-Orth
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | - M Teresa Jiménez de Anta
- Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain Department of Clinical Microbiology, Hospital Clínic, School of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev 2014; 38:865-91. [PMID: 24499397 PMCID: PMC7190074 DOI: 10.1111/1574-6976.12067] [Citation(s) in RCA: 428] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/06/2023] Open
Abstract
Insertion sequences (ISs), arguably the smallest and most numerous autonomous transposable elements (TEs), are important players in shaping their host genomes. This review focuses on prokaryotic ISs. We discuss IS distribution and impact on genome evolution. We also examine their effects on gene expression, especially their role in activating neighbouring genes, a phenomenon of particular importance in the recent upsurge of bacterial antibiotic resistance. We explain how ISs are identified and classified into families by a combination of characteristics including their transposases (Tpases), their overall genetic organisation and the accessory genes which some ISs carry. We then describe the organisation of autonomous and nonautonomous IS‐related elements. This is used to illustrate the growing recognition that the boundaries between different types of mobile element are becoming increasingly difficult to define as more are being identified. We review the known Tpase types, their different catalytic activities used in cleaving and rejoining DNA strands during transposition, their organisation into functional domains and the role of this in regulation. Finally, we consider examples of prokaryotic IS domestication. In a more speculative section, we discuss the necessity of constructing more quantitative dynamic models to fully appreciate the continuing impact of TEs on prokaryotic populations.
Collapse
Affiliation(s)
- Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de Recherche Scientifique, Toulouse Cedex, France
| | | | | |
Collapse
|
31
|
Tavío MM, Aquili VD, Vila J, Poveda JB. Resistance to ceftazidime in Escherichia coli associated with AcrR, MarR and PBP3 mutations and overexpression of sdiA. J Med Microbiol 2014; 63:56-65. [DOI: 10.1099/jmm.0.063727-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms responsible for the increase in ceftazidime MIC in two Escherichia coli in vitro selected mutants, Caz/20-1 and Caz/20-2, were studied. OmpF loss and overexpression of acrB, acrD and acrF that were associated with acrR and marR mutations and sdiA overexpression, together with mutations A233T and I332V in FtSI (PBP3) resulted in ceftazidime resistance in Caz/20-2, multiplying by 128-fold the ceftazidime MIC in the parental clinical isolate PS/20. Absence of detectable β-lactamase hydrolytic activity in the crude extract of Caz/20-2 was observed, and coincided with Q191K and P209S mutations in AmpC and a nucleotide substitution at −28 in the ampC promoter, whereas β-lactamase hydrolytic activity in crude extracts of PS/20 and Caz/20-1 strains was detected. Nevertheless, a fourfold increase in ceftazidime MIC in Caz/20-1 compared with that in PS/20 was due to the increased transcript level of acrB derived from acrR mutation. The two Caz mutants and PS/20 showed the same mutations in AmpG and ParE.
Collapse
Affiliation(s)
- María M. Tavío
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
- Microbiología, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Virginia D. Aquili
- Microbiología, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jordi Vila
- Departamento de Microbiología, IDIBAPS, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - José B. Poveda
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
32
|
Sato T, Yokota SI, Uchida I, Okubo T, Usui M, Kusumoto M, Akiba M, Fujii N, Tamura Y. Fluoroquinolone resistance mechanisms in an Escherichia coli isolate, HUE1, without quinolone resistance-determining region mutations. Front Microbiol 2013; 4:125. [PMID: 23745120 PMCID: PMC3662882 DOI: 10.3389/fmicb.2013.00125] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/02/2013] [Indexed: 12/30/2022] Open
Abstract
Fluoroquinolone resistance can cause major clinical problems. Here, we investigated fluoroquinolone resistance mechanisms in a clinical Escherichia coli isolate, HUE1, which had no mutations quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV. HUE1 demonstrated MICs that exceeded the breakpoints for ciprofloxacin, levofloxacin, and norfloxacin. HUE1 harbored oqxAB and qnrS1 on distinct plasmids. In addition, it exhibited lower intracellular ciprofloxacin concentrations and higher mRNA expression levels of efflux pumps and their global activators than did reference strains. The genes encoding AcrR (local AcrAB repressor) and MarR (MarA repressor) were disrupted by insertion of the transposon IS3-IS629 and a frameshift mutation, respectively. A series of mutants derived from HUE1 were obtained by plasmid curing and gene knockout using homologous recombination. Compared to the MICs of the parent strain HUE1, the fluoroquinolone MICs of these mutants indicated that qnrS1, oqxAB, acrAB, acrF, acrD, mdtK, mdfA, and tolC contributed to the reduced susceptibility to fluoroquinolone in HUE1. Therefore, fluoroquinolone resistance in HUE1 is caused by concomitant acquisition of QnrS1 and OqxAB and overexpression of AcrAB–TolC and other chromosome-encoded efflux pumps. Thus, we have demonstrated that QRDR mutations are not absolutely necessary for acquiring fluoroquinolone resistance in E. coli.
Collapse
Affiliation(s)
- Toyotaka Sato
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University Ebetsu, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Watanabe R, Doukyu N. Contributions of mutations in acrR and marR genes to organic solvent tolerance in Escherichia coli. AMB Express 2012; 2:58. [PMID: 23148659 PMCID: PMC3514110 DOI: 10.1186/2191-0855-2-58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 11/07/2012] [Indexed: 12/02/2022] Open
Abstract
The AcrAB-TolC efflux pump is involved in maintaining intrinsic organic solvent tolerance in Escherichia coli. Mutations in regulatory genes such as marR, soxR, and acrR are known to increase the expression level of the AcrAB-TolC pump. To identify these mutations in organic solvent tolerant E. coli, eight cyclohexane-tolerant E. coli JA300 mutants were isolated and examined by DNA sequencing for mutations in marR, soxR, and acrR. Every mutant carried a mutation in either marR or acrR. Among all mutants, strain CH7 carrying a nonsense mutation in marR (named marR109) and an insertion of IS5 in acrR, exhibited the highest organic solvent-tolerance levels. To clarify the involvement of these mutations in improving organic solvent tolerance, they were introduced into the E. coli JA300 chromosome by site-directed mutagenesis using λ red-mediated homologous recombination. Consequently, JA300 mutants carrying acrR::IS5, marR109, or both were constructed and named JA300 acrRIS, JA300 marR, or JA300 acrRIS marR, respectively. The organic solvent tolerance levels of these mutants were increased in the following order: JA300 < JA300 acrRIS < JA300 marR < JA300 acrRIS marR. JA300 acrRIS marR formed colonies on an agar plate overlaid with cyclohexane and p-xylene (6:4 vol/vol mixture). The organic solvent-tolerance level and AcrAB-TolC efflux pump-expression level in JA300 acrRIS marR were similar to those in CH7. Thus, it was shown that the synergistic effects of mutations in only two regulatory genes, acrR and marR, can significantly increase organic solvent tolerance in E. coli.
Collapse
|
34
|
Ogawa W, Onishi M, Ni R, Tsuchiya T, Kuroda T. Functional study of the novel multidrug efflux pump KexD from Klebsiella pneumoniae. Gene 2012; 498:177-82. [PMID: 22391093 DOI: 10.1016/j.gene.2012.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 10/28/2022]
Abstract
We cloned a gene, kexD, that provides a multidrug-resistant phenotype from multidrug-resistant Klebsiella pneumoniae MGH78578. The deduced amino acid sequence of KexD is similar to that of the inner membrane protein, RND-type multidrug efflux pump. Introduction of the kexD gene into Escherichia coli KAM32 resulted in a MIC that was higher for erythromycin, novobiocin, rhodamine 6G, tetraphenylphosphonium chloride, and ethidium bromide than that of the control. Intracellular ethidium bromide levels in E. coli cells carrying the kexD gene were lower than that in the control cells under energized conditions, suggesting that KexD is a component of an energy-dependent efflux pump. RND-type pumps typically consist of three components: an inner membrane protein, a periplasmic protein, and an outer membrane protein. We discovered that KexD functions with a periplasmic protein, AcrA, from E. coli and K. pneumoniae, but not with the periplasmic proteins KexA and KexG from K. pneumoniae. KexD was able to utilize either TolC of E. coli or KocC of K. pneumoniae as an outer membrane component. kexD mRNA was not detected in K. pneumoniae MGH78578 or ATCC10031. We isolated erythromycin-resistant mutants from K. pneumoniae ATCC10031, and some showed a multidrug-resistant phenotype similar to the drug resistance pattern of KexD. Two strains of multidrug-resistant mutants were investigated for kexD expression; kexD mRNA levels were increased in these strains. We conclude that changing kexD expression can contribute to the occurrence of multidrug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Wakano Ogawa
- Department of Molecular Microbiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | | | | | | | | |
Collapse
|
35
|
Doukyu N, Ishikawa K, Watanabe R, Ogino H. Improvement in organic solvent tolerance by double disruptions of proV and marR genes in Escherichia coli. J Appl Microbiol 2012; 112:464-74. [PMID: 22257006 DOI: 10.1111/j.1365-2672.2012.05236.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the involvement of osmoprotectant transporters in organic solvent tolerance in Escherichia coli and to construct an E. coli strain with high organic solvent tolerance. METHODS AND RESULTS The organic solvent tolerance of ΔbetT, ΔproV, ΔproP or ΔputP single-gene knockout mutants of E. coli K-12 strain was examined. Among these mutants, the organic solvent tolerance of the ΔproV mutant remarkably increased compared with that of the parent strain. It has been known that a marR mutation confers tolerance on E. coli to organic solvents. A ΔproV and ΔmarR double-gene mutant was more tolerant to organic solvents than the ΔproV or ΔmarR single-gene mutant. The n-hexane amount accumulated in E. coli cells was examined after incubation in an n-hexane-aqueous medium two-phase system. The intracellular n-hexane level in the ΔproV and ΔmarR double-gene mutant was kept lower than those of the parent strain, ΔproV mutant and ΔmarR mutant. CONCLUSIONS The organic solvent tolerance level in E. coli highly increased by dual disruption of proV and marR. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests a new strategy for increasing the organic solvent tolerance level in E. coli to improve the usability of the whole-cell biocatalysts in two-phase systems employing organic solvents.
Collapse
Affiliation(s)
- N Doukyu
- Bio-Nano Electronic Research Center, Toyo University, Kawagoe, Saitama, Japan.
| | | | | | | |
Collapse
|
36
|
Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob Agents Chemother 2012; 56:2084-90. [PMID: 22290971 DOI: 10.1128/aac.05509-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multidrug efflux pumps have emerged as important mechanisms of antimicrobial resistance in bacterial pathogens. In order to cause infection, pathogenic bacteria require mechanisms to avoid the effects of host-produced compounds, and express efflux pumps may accomplish this task. In this study, we evaluated the effect of the inactivation of AcrAB-TolC on antimicrobial resistance, fitness, and virulence in Enterobacter cloacae, an opportunistic pathogen usually involved in nosocomial infections. Two different clinical isolates of E. cloacae were used, EcDC64 (multidrug resistance overexpressing the AcrAB-TolC efflux pump) and Jc194 (basal AcrAB-TolC expression). The acrA and tolC genes were deleted in strains EcDC64 and Jc194 to produce, respectively, EcΔacrA and EcΔtolC and JcΔacrA and JcΔtolC knockout (KO) derivatives. Antibiotic susceptibility testing was performed with all isolates, and we discovered that these mechanisms are involved in the resistance of E. cloacae to several antibiotics. Competition experiments were also performed with wild-type and isogenic KO strains. The competition index (CI), defined as the mutant/wild-type ratio, revealed that the acrA and tolC genes both affect the fitness of E. cloacae, as fitness was clearly reduced in the acrA and tolC KO strains. The median CI values obtained in vitro and in vivo were, respectively, 0.42 and 0.3 for EcDC64/EcΔacrA, 0.24 and 0.38 for EcDC64/EcΔtolC, 0.15 and 0.11 for Jc194/JcΔacrA, and 0.38 and 0.39 for Jc194/JcΔtolC. Use of an intraperitoneal mouse model of systemic infection revealed reduced virulence in both E. cloacae clinical strains when either the acrA or tolC gene was inactivated. In conclusion, the structural components of the AcrAB-TolC efflux pump appear to play a role in antibiotic resistance as well as environmental adaptation and host virulence in clinical isolates of E. cloacae.
Collapse
|
37
|
Dunlop MJ. Engineering microbes for tolerance to next-generation biofuels. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:32. [PMID: 21936941 PMCID: PMC3189103 DOI: 10.1186/1754-6834-4-32] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/21/2011] [Indexed: 05/02/2023]
Abstract
A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.
Collapse
Affiliation(s)
- Mary J Dunlop
- University of Vermont, School of Engineering, 33 Colchester Ave, Burlington, VT 05405, USA.
| |
Collapse
|
38
|
Torres S, Pandey A, Castro GR. Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnol Adv 2011; 29:442-52. [DOI: 10.1016/j.biotechadv.2011.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
|
39
|
Godoy P, Molina‐Henares AJ, De La Torre J, Duque E, Ramos JL. Characterization of the RND family of multidrug efflux pumps: in silico to in vivo confirmation of four functionally distinct subgroups. Microb Biotechnol 2010; 3:691-700. [PMID: 21255364 PMCID: PMC3815342 DOI: 10.1111/j.1751-7915.2010.00189.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/04/2010] [Indexed: 11/12/2022] Open
Abstract
We have developed a generalized profile that identifies members of the root-nodulation-cell-division (RND) family of efflux pumps and classifies them into four functional subfamilies. According to Z-score values, efflux pumps can be grouped by their metabolic function, thus making it possible to distinguish pumps involved in antibiotic resistance (group 1) from those involved in metal resistance (group 3). In silico data regarding efflux pumps in group 1 were validated after identification of RND efflux pumps in a number of environmental microbes that were isolated as resistant to ethidium bromide. Analysis of the Pseudomonas putida KT2440 genome identified efflux pumps in all groups. A collection of mutants in efflux pumps and a screening platform consisting of 50 drugs were created to assign a function to the efflux pumps. We validated in silico data regarding efflux pumps in groups 1 and 3 using 9 different mutants. Four mutants belonging to group 2 were found to be more sensitive than the wild-type to oxidative stress-inducing agents such as bipyridyl and methyl viologen. The two remaining mutants belonging to group 4 were found to be more sensitive than the parental to tetracycline and one of them was particularly sensitive to rubidium and chromate. By effectively combining in vivo data with generalized profiles and gene annotation data, this approach allowed the assignment, according to metabolic function, of both known and uncharacterized RND efflux pumps into subgroups, thereby providing important new insight into the functions of proteins within this family.
Collapse
Affiliation(s)
| | | | | | | | - Juan L. Ramos
- Consejo Superior de Investigaciones Científicas, Department of Environmental Protection, E‐18008 Granada, Spain
| |
Collapse
|
40
|
Tavio MM, Aquili VD, Poveda JB, Antunes NT, Sanchez-Cespedes J, Vila J. Quorum-sensing regulator sdiA and marA overexpression is involved in in vitro-selected multidrug resistance of Escherichia coli. J Antimicrob Chemother 2010; 65:1178-86. [DOI: 10.1093/jac/dkq112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
Gupta A, Khare SK. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol 2009; 29:44-54. [PMID: 19514902 DOI: 10.1080/07388550802688797] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.
Collapse
Affiliation(s)
- Anshu Gupta
- School of Environment Management, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi, India
| | | |
Collapse
|
42
|
Blair JMA, La Ragione RM, Woodward MJ, Piddock LJV. Periplasmic adaptor protein AcrA has a distinct role in the antibiotic resistance and virulence of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2009; 64:965-72. [PMID: 19744979 DOI: 10.1093/jac/dkp311] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES AcrA can function as the periplasmic adaptor protein (PAP) in several RND tripartite efflux pumps, of which AcrAB-TolC is considered the most important. This system confers innate multiple antibiotic resistance. Disruption of acrB or tolC impairs the ability of Salmonella Typhimurium to colonize and persist in the host. The aim of this study was to investigate the role of AcrA alone in multidrug resistance and pathogenicity. METHODS The acrA gene was inactivated in Salmonella Typhimurium SL1344 by insertion of the aph gene and this mutant complemented with pWKS30acrA. The antimicrobial susceptibility of the mutant to six antibiotics as well as various dyes and detergents was determined. In addition, efflux activity was quantified. The ability of the mutant to adhere to, and invade, tissue culture cells in vitro was measured. RESULTS Following disruption of acrA, RT-PCR and western blotting confirmed that acrB/AcrB was still expressed when acrA was disrupted. The acrA mutant was hypersusceptible to antibiotics, dyes and detergents. In some cases, lower MICs were seen than for the acrB or tolC mutants. Efflux of the fluorescent dye Hoechst H33342 was less than in wild-type following disruption of acrA. acrA was also required for adherence to, and invasion of, tissue culture cells. CONCLUSIONS Inactivation of acrA conferred a phenotype distinct to that of acrB::aph and tolC::aph. These data indicate a role for AcrA distinct to that of other protein partners in both efflux of substrates and virulence.
Collapse
Affiliation(s)
- Jessica M A Blair
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
43
|
Prather KLJ, Edmonds MC, Herod JW. Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines. Appl Microbiol Biotechnol 2006; 73:815-26. [PMID: 16941177 DOI: 10.1007/s00253-006-0532-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
Merck Research Laboratories has developed a highly productive Escherichia coli fermentation process to produce plasmid DNA for use as vaccines. The process consists of a fed-batch fermentation in a chemically defined medium. Initiation of the feed stream precedes a growth-limited phase in which plasmid DNA is amplified. The fermentation is only maximally productive for a small fraction of E. coli transformants designated as high-producers, while the predominant low-producer population does not amplify plasmid DNA. In experiments undertaken to probe this phenomenon, transposition of the 768-bp E. coli insertion sequence IS1 into an HIV DNA vaccine vector was observed in several low-producer clones. IS1 was found to insert in or near the neomycin resistance gene in nearly a dozen unique sites from within a single population of plasmid molecules. The fraction of IS1-containing plasmids within several clones was determined by quantitative polymerase chain reaction and was found to increase with increasing cultivation time in the chemically defined medium. Because transposition into an antibiotic-resistance gene is unlikely to affect plasmid amplification, the genomes of high- and low-producers of three different HIV DNA vaccine vectors were subsequently profiled by restriction fragment length polymorphism analysis. In all three cases, IS1 insertional mutations were found in the genomes of the predominant low-producers, while the genomes of the high-producers were indistinguishable from untransformed cells. The insertions reside on similarly sized fragments for two of the low-producer clones, and the fragment size is smaller for the third clone. The third clone also produces much less plasmid DNA than a typical low-producer. The results suggest the presence of an IS1 insertional mutation that affects plasmid replication and amplification, possibly in a position-dependent manner.
Collapse
Affiliation(s)
- Kristala L Jones Prather
- Biocatalysis and Fermentation Development, Bioprocess R&D, Merck Research Laboratories, Rahway, NJ 07062, USA.
| | | | | |
Collapse
|
44
|
Bowden SD, Salmond GPC. Exploitation of a beta-lactamase reporter gene fusion in the carbapenem antibiotic production operon to study adaptive evolution in Erwinia carotovora. MICROBIOLOGY-SGM 2006; 152:1089-1097. [PMID: 16549672 DOI: 10.1099/mic.0.28575-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Erwinia carotovora subsp. carotovora strain ATTn10 produces the beta-lactam antibiotic 1-carbapen-2-em-3-carboxylic acid (carbapenem) by expressing the carABCDEFGH operon. Mutants exhibiting increased carbapenem gene transcription were positively selected using an engineered strain with a functional beta-lactamase translational fusion in carH, the last gene of the operon. However, spontaneous ampicillin-resistant mutants were isolated even when transcription of carH : : blaM was blocked by a strongly polar mutation in carE. The mechanism of resistance was shown to be due to cryptic IS10 elements transposing upstream of carH : : blaM, thereby providing new promoters enabling carH : : blaM transcription. Southern blots showed that IS10 was present in multicopy in ATTn10. In addition, a Tn10 genetic remnant was discovered. The results offer insights into the genetic archaeology of strain ATTn10 and highlight the powerful impacts of cryptic IS elements in bacterial adaptive evolution.
Collapse
MESH Headings
- Adaptation, Biological
- Ampicillin Resistance/genetics
- Anti-Bacterial Agents/biosynthesis
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Artificial Gene Fusion
- Base Sequence
- Blotting, Southern
- Carbapenems/biosynthesis
- Carbapenems/metabolism
- Carbapenems/pharmacology
- Colony Count, Microbial
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Evolution, Molecular
- Genes, Reporter
- Molecular Sequence Data
- Mutation
- Operon
- Pectobacterium carotovorum/genetics
- Pectobacterium carotovorum/metabolism
- Promoter Regions, Genetic
- Recombination, Genetic
- Selection, Genetic
- Transcription, Genetic
- beta-Lactamases/analysis
- beta-Lactamases/genetics
Collapse
Affiliation(s)
- Steven D Bowden
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
45
|
Giraud E, Baucheron S, Cloeckaert A. Resistance to fluoroquinolones in Salmonella: emerging mechanisms and resistance prevention strategies. Microbes Infect 2006; 8:1937-44. [PMID: 16714137 DOI: 10.1016/j.micinf.2005.12.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/28/2005] [Indexed: 11/18/2022]
Abstract
We review the current state of knowledge about the genetic and biochemical mechanisms that mediate quinolone resistance in Salmonella. They include modifications of topoisomerase targets, increased efflux activity and the recently described topoisomerase protection by the plasmid-encoded Qnr protein. We discuss what factors may determine the order of implementation of these various mechanisms in a particular strain, and what strategies could be used to combat resistance, from the inhibition of mutagenesis mechanisms to counteracting, during fluoroquinolone treatment, of resistance mechanisms already set in the infecting strain.
Collapse
Affiliation(s)
- Etienne Giraud
- UMR INRA-ENVN Chimiothérapie Aquacole et Environnement, La Chantrerie, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | |
Collapse
|
46
|
He YW, Xu M, Lin K, Ng YJA, Wen CM, Wang LH, Liu ZD, Zhang HB, Dong YH, Dow JM, Zhang LH. Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Mol Microbiol 2006; 59:610-22. [PMID: 16390454 DOI: 10.1111/j.1365-2958.2005.04961.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) recruits a diffusible signal factor (DSF), which has recently been structurally characterized as cis-11-methyl-2-dodecenoic acid, as a cell-cell communication signal to synchronize virulence gene expression and biofilm dispersal. In this study, we showed that despite the existance of phenotype variations in different Xcc isolates, the DSF-mediated functions were in general conserved. To investigate the genomic profiles of DSF regulation, we designed and conducted oligomicroarray analysis by comparison of the gene expression patterns of wild-type strain XC1 and its DSF-deficient mutant XC1dF, as well as those of XC1dF in the presence or absence of DSF signals. The analyses led to identification of 165 genes, whose expression was significantly influenced by DSF signals. These genes encode proteins and enzymes belonging to at least 12 functional groups. In addition to those previously known DSF-dependent activities such as production of extracellular enzymes and extracellular polysaccharides, microarray analyses also revealed new functions mediated by DSF, such as flagellum synthesis, resistance to toxins and oxidative stress, and aerobic respiration. Phenotype analyses confirmed that DSF signalling contributed to resistance to toxin acriflavin and hydrogen peroxide, and to the survival of bacterial cells at different temperatures. We conclude that DSF cell-cell signalling is not only essential for co-ordinating the expression of virulence genes but also plays a vital role in keeping up the general competence of the pathogen in ecosystems.
Collapse
Affiliation(s)
- Ya-Wen He
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
The effect of intracellular ppGpp levels on glutamate and lysine overproduction in Escherichia coli. J Biotechnol 2006; 125:328-37. [PMID: 16621093 DOI: 10.1016/j.jbiotec.2006.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/23/2006] [Accepted: 03/13/2006] [Indexed: 11/26/2022]
Abstract
Although the enhancement of amino-acid synthesis by guanosine-3',5'-tetraphosphate (ppGpp) is well known, the effect of intracellular ppGpp levels on amino-acid overproduction in Escherichia coli has not been investigated. In this study, we demonstrate that overexpression of the relA gene, encoding ppGpp synthetase, increases the accumulation of amino acids, such as glutamate and lysine, in amino-acid-overproducing strains of E. coli. Elevation of intracellular ppGpp levels due to depletion of required amino acids also enhances glutamate overproduction. Moreover, the extent of overproduction is highly dependent on the intracellular ppGpp level. These results demonstrate that amino-acid overproduction in E. coli is closely connected to amino-acid auxotrophy via the accumulation of ppGpp.
Collapse
|
48
|
Herzberg M, Kaye IK, Peti W, Wood TK. YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J Bacteriol 2006; 188:587-98. [PMID: 16385049 PMCID: PMC1347309 DOI: 10.1128/jb.188.2.587-598.2006] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
YdgG is an uncharacterized protein that is induced in Escherichia coli biofilms. Here it is shown that deletion of ydgG decreased extracellular and increased intracellular concentrations of autoinducer 2 (AI-2); hence, YdgG enhances transport of AI-2. Consistent with this hypothesis, deletion of ydgG resulted in a 7,000-fold increase in biofilm thickness and 574-fold increase in biomass in flow cells. Also consistent with the hypothesis, deletion of ydgG increased cell motility by increasing transcription of flagellar genes (genes induced by AI-2). By expressing ydgG in trans, the wild-type phenotypes for extracellular AI-2 activity, motility, and biofilm formation were restored. YdgG is also predicted to be a membrane-spanning protein that is conserved in many bacteria, and it influences resistance to several antimicrobials, including crystal violet and streptomycin (this phenotype could also be complemented). Deletion of ydgG also caused 31% of the bacterial chromosome to be differentially expressed in biofilms, as expected, since AI-2 controls hundreds of genes. YdgG was found to negatively modulate expression of flagellum- and motility-related genes, as well as other known products essential for biofilm formation, including operons for type 1 fimbriae, autotransporter protein Ag43, curli production, colanic acid production, and production of polysaccharide adhesin. Eighty genes not previously related to biofilm formation were also identified, including those that encode transport proteins (yihN and yihP), polysialic acid production (gutM and gutQ), CP4-57 prophage functions (yfjR and alpA), methionine biosynthesis (metR), biotin and thiamine biosynthesis (bioF and thiDFH), anaerobic metabolism (focB, hyfACDR, ttdA, and fumB), and proteins with unknown function (ybfG, yceO, yjhQ, and yjbE); 10 of these genes were verified through mutation to decrease biofilm formation by 40% or more (yfjR, bioF, yccW, yjbE, yceO, ttdA, fumB, yjiP, gutQ, and yihR). Hence, it appears YdgG controls the transport of the quorum-sensing signal AI-2, and so we suggest the gene name tqsA.
Collapse
Affiliation(s)
- Moshe Herzberg
- Department of Chemical Engineering and Biology, Texas A & M University, 220 Jack E. Brown Building, College Station, TX 77843-3122, USA
| | | | | | | |
Collapse
|
49
|
Webber M, Buckley AM, Randall LP, Woodward MJ, Piddock LJV. Overexpression of marA, soxS and acrB in veterinary isolates of Salmonella enterica rarely correlates with cyclohexane tolerance. J Antimicrob Chemother 2006; 57:673-9. [PMID: 16492722 DOI: 10.1093/jac/dkl025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine the contribution of the AcrAB efflux system to cyclohexane tolerance in Salmonella enterica. METHODS The expression of the efflux pump gene, acrB, and regulators marA and soxS from 46 isolates of S. enterica of 14 different serovars was determined by comparative RT-PCR and denaturing HPLC analysis. RESULTS Twenty-one of the 46 isolates were cyclohexane tolerant, a phenotype associated with multiple antibiotic resistance (MAR) and overexpression of efflux pumps. Of the cyclohexane-tolerant isolates 81% were MAR, whereas only 44% of the cyclohexane-susceptible isolates were MAR, confirming the association between cyclohexane tolerance and MAR. However, there was no correlation between cyclohexane tolerance or MAR and overexpression of acrB, soxS or marA. CONCLUSIONS These data suggest that cyclohexane tolerance in S. enterica can be mediated by an acrB-independent mechanism.
Collapse
Affiliation(s)
- Mark Webber
- Antimicrobial Agents Research Group, Division of Immunity and Infection, University of Birmingham, UK
| | | | | | | | | |
Collapse
|
50
|
Lau SY, Zgurskaya HI. Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. J Bacteriol 2005; 187:7815-25. [PMID: 16267305 PMCID: PMC1280316 DOI: 10.1128/jb.187.22.7815-7825.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli chromosome contains several operons encoding confirmed and predicted multidrug transporters. Among these transporters only the inactivation of components of the AcrAB-TolC complex leads to substantial changes in susceptibility to multiple drugs. This observation prompted a conclusion that other transporters are silent or expressed at levels insufficient to contribute to multidrug resistance phenotype. We found that increased expression of AcrA, the periplasmic membrane fusion protein, is toxic only in cells lacking the multidrug efflux transporter AcrEF. AcrEF-deficient cells with increased expression of AcrA have a severe cell division defect that results in cell filamentation (>50 microm). Similar defects were obtained in cells lacking the outer membrane channel TolC, which acts with AcrEF, suggesting that cell filamentation is caused by the loss of AcrEF function. Green fluorescent protein-AcrA fusion studies showed that in normal and filamentous cells AcrA is associated with membranes in a confined manner and that this localization is not affected by the lack of AcrEF. Similarly, the structure and composition of membranes were normal in filamentous cells. Fluorescence microscopy showed that the filamentous AcrEF-deficient E. coli cells are defective in chromosome condensation and segregation. Our results suggest that the E. coli AcrEF transporter is expressed under standard laboratory conditions and plays an important role in the normal maintenance of cell division.
Collapse
Affiliation(s)
- Sze Yi Lau
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, USA
| | | |
Collapse
|