1
|
Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Recombination in Bacterial Genomes: Evolutionary Trends. Toxins (Basel) 2023; 15:568. [PMID: 37755994 PMCID: PMC10534446 DOI: 10.3390/toxins15090568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial organisms have undergone homologous recombination (HR) and horizontal gene transfer (HGT) multiple times during their history. These processes could increase fitness to new environments, cause specialization, the emergence of new species, and changes in virulence. Therefore, comprehensive knowledge of the impact and intensity of genetic exchanges and the location of recombination hotspots on the genome is necessary for understanding the dynamics of adaptation to various conditions. To this end, we aimed to characterize the functional impact and genomic context of computationally detected recombination events by analyzing genomic studies of any bacterial species, for which events have been detected in the last 30 years. Genomic loci where the transfer of DNA was detected pertained to mobile genetic elements (MGEs) housing genes that code for proteins engaged in distinct cellular processes, such as secretion systems, toxins, infection effectors, biosynthesis enzymes, etc. We found that all inferences fall into three main lifestyle categories, namely, ecological diversification, pathogenesis, and symbiosis. The latter primarily exhibits ancestral events, thus, possibly indicating that adaptation appears to be governed by similar recombination-dependent mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Het Lam J, Derkman THJ, van Garderen E, Dijkman R, van Engelen E. Distinct Mannheimia haemolytica serotypes isolated from fatal infections in veal calves and dairy cows. Vet J 2023; 292:105940. [PMID: 36543311 DOI: 10.1016/j.tvjl.2022.105940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Fatal Mannheimia haemolytica (M. haemolytica) infections in cattle, which emerged in the Netherlands between 2004 and 2018, showed two distinct disease presentations: acute fibrinous polyserositis (FPS) in veal calves, and acute fibrinous pleuro-pneumonia (FPP) in adult dairy cattle. To determine whether these presentations were caused by different M. haemolytica genotypes, whole genome sequencing was performed on 96 isolates cultured after necropsy from inflamed sites of veal calves that died of M. haemolytica-associated FPS (n = 49) or with FPP lesions (n = 2), and from dairy cows that died of M. haemolytica-associated FPP (n = 45). Among the 96 M. haemolytica isolates, 93 were shown to belong to either of two large clusters, with 48/51 calf isolates belonging to one, and 43/45 cow isolates and two calf isolates from cases of FPP to the other. All M. haemolytica isolates from veal calves with FPS were of serotype A2, whereas the isolates from dairy cows and two calves with FPP were predominantly of serotypes A1 and A6. Most serotype A2 isolates from veal calves with FPS (95.6 %) contained multiple antibiotic resistance genes (ARGs) against three to five antimicrobial classes (phenicols, sulphonamides, tetracyclines, aminoglycosides or beta-lactams). In contrast, these ARGs were only present in 10.8 % of M. haemolytica A1 and A6 isolates from pneumonic adult cattle and absent in isolates from the two calves with FPP. These two disease presentations appear to be caused by genetically distinct strains with different antimicrobial resistance gene patterns. While M. haemolytica serotype A2 is generally considered to be a commensal microorganism of cattle, it was clearly associated with fatal FPS in veal calves in the Netherlands.
Collapse
Affiliation(s)
- J Het Lam
- Ruminant Health Department, Royal GD (Animal Health Service), Arnsbergstraat 7, 7418 EZ Deventer, the Netherlands.
| | - T H J Derkman
- Ruminant Health Department, Royal GD (Animal Health Service), Arnsbergstraat 7, 7418 EZ Deventer, the Netherlands
| | - E van Garderen
- Laboratory for Pathology and Histology, Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, the Netherlands
| | - R Dijkman
- Research and Development, Molecular Biology Department, Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, the Netherlands
| | - E van Engelen
- Research and Development, Bacteriology Department, Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, the Netherlands
| |
Collapse
|
3
|
O'Boyle N, Berry CC, Davies RL. Differentiated ovine tracheal epithelial cells support the colonisation of pathogenic and non-pathogenic strains of Mannheimia haemolytica. Sci Rep 2020; 10:14971. [PMID: 32917945 PMCID: PMC7486916 DOI: 10.1038/s41598-020-71604-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/07/2020] [Indexed: 11/15/2022] Open
Abstract
Mannheimia haemolytica is the primary bacterial species associated with respiratory disease of ruminants. A lack of cost-effective, reproducible models for the study of M. haemolytica pathogenesis has hampered efforts to better understand the molecular interactions governing disease progression. We employed a highly optimised ovine tracheal epithelial cell model to assess the colonisation of various pathogenic and non-pathogenic M. haemolytica isolates of bovine and ovine origin. Comparison of single representative pathogenic and non-pathogenic ovine isolates over ten time-points by enumeration of tissue-associated bacteria, histology, immunofluorescence microscopy and scanning electron microscopy revealed temporal differences in adhesion, proliferation, bacterial cell physiology and host cell responses. Comparison of eight isolates of bovine and ovine origin at three key time-points (2 h, 48 h and 72 h), revealed that colonisation was not strictly pathogen or serotype specific, with isolates of serotype A1, A2, A6 and A12 being capable of colonising the cell layer regardless of host species or disease status of the host. A trend towards increased proliferative capacity by pathogenic ovine isolates was observed. These results indicate that the host-specific nature of M. haemolytica infection may result at least partially from the colonisation-related processes of adhesion, invasion and proliferation at the epithelial interface.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Catherine C Berry
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Frey J. RTX Toxins of Animal Pathogens and Their Role as Antigens in Vaccines and Diagnostics. Toxins (Basel) 2019; 11:toxins11120719. [PMID: 31835534 PMCID: PMC6950323 DOI: 10.3390/toxins11120719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023] Open
Abstract
Exotoxins play a central role in the pathologies caused by most major bacterial animal pathogens. The large variety of vertebrate and invertebrate hosts in the animal kingdom is reflected by a large variety of bacterial pathogens and toxins. The group of repeats in the structural toxin (RTX) toxins is particularly abundant among bacterial pathogens of animals. Many of these toxins are described as hemolysins due to their capacity to lyse erythrocytes in vitro. Hemolysis by RTX toxins is due to the formation of cation-selective pores in the cell membrane and serves as an important marker for virulence in bacterial diagnostics. However, their physiologic relevant targets are leukocytes expressing β2 integrins, which act as specific receptors for RTX toxins. For various RTX toxins, the binding to the CD18 moiety of β2 integrins has been shown to be host specific, reflecting the molecular basis of the host range of RTX toxins expressed by bacterial pathogens. Due to the key role of RTX toxins in the pathogenesis of many bacteria, antibodies directed against specific RTX toxins protect against disease, hence, making RTX toxins valuable targets in vaccine research and development. Due to their specificity, several structural genes encoding for RTX toxins have proven to be essential in modern diagnostic applications in veterinary medicine.
Collapse
Affiliation(s)
- Joachim Frey
- Vetsuisse Facutly, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Benz R, Piselli C, Potter AA. Channel Formation by LktA of Mannheimia (Pasteurella) haemolytica in Lipid Bilayer Membranes and Comparison of Channel Properties with Other RTX-Cytolysins. Toxins (Basel) 2019; 11:toxins11100604. [PMID: 31627319 PMCID: PMC6833087 DOI: 10.3390/toxins11100604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cytolysin LktA is one of the major pathogenicity factors of Mannheimia haemolytica (formerly Pasteurella haemolytica) that is the cause of pasteurellosis, also known as shipping fever pneumonia, causing substantial loss of sheep and cattle during transport. LktA belongs to the family of RTX-toxins (Repeats in ToXins) that are produced as pathogenicity factors by a variety of Gram-negative bacteria. Sublytic concentrations of LktA cause inflammatory responses of ovine leukocytes. Higher concentrations result in formation of transmembrane channels in target cells that may cause cell lysis and apoptosis. In this study we investigated channel formation by LktA in artificial lipid bilayer membranes made of different lipids. LktA purified from culture supernatants by polyethylene glycol 4000 precipitation and lyophilization had to be activated to frequently form channels by solution in 6 M urea. The LktA channels had a single-channel conductance of about 60 pS in 0.1 M KCl, which is about one tenth of the conductance of most RTX-toxins with the exception of adenylate cyclase toxin of Bordetella pertussis. The LktA channels are highly cation-selective caused by negative net charges. The theoretical treatment of the conductance of LktA as a function of the bulk aqueous concentration allowed a rough estimate of the channel diameter, which is around 1.5 nm. The size of the LktA channel is discussed with respect to channels formed by other RTX-toxins. We present here the first investigation of LktA in a reconstituted system.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs-University Bremen gGmbH Campusring, 1; 28759 Bremen, Germany.
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs-University Bremen gGmbH Campusring, 1; 28759 Bremen, Germany.
| | - Andrew A Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3, Canada.
| |
Collapse
|
6
|
Pathogenic Mannheimia haemolytica Invades Differentiated Bovine Airway Epithelial Cells. Infect Immun 2019; 87:IAI.00078-19. [PMID: 30962401 PMCID: PMC6529648 DOI: 10.1128/iai.00078-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The Gram-negative bacterium Mannheimia haemolytica is the primary bacterial species associated with bovine respiratory disease (BRD) and is responsible for significant economic losses to livestock industries worldwide. Healthy cattle are frequently colonized by commensal serotype A2 strains, but disease is usually caused by pathogenic strains of serotype A1. For reasons that are poorly understood, a transition occurs within the respiratory tract and a sudden explosive proliferation of serotype A1 bacteria leads to the onset of pneumonic disease. Very little is known about the interactions of M. haemolytica with airway epithelial cells of the respiratory mucosa which might explain the different abilities of serotype A1 and A2 strains to cause disease. In the present study, host-pathogen interactions in the bovine respiratory tract were mimicked using a novel differentiated bovine bronchial epithelial cell (BBEC) infection model. In this model, differentiated BBECs were inoculated with serotype A1 or A2 strains of M. haemolytica and the course of infection followed over a 5-day period by microscopic assessment and measurement of key proinflammatory mediators. We have demonstrated that serotype A1, but not A2, M. haemolytica invades differentiated BBECs by transcytosis and subsequently undergoes rapid intracellular replication before spreading to adjacent cells and causing extensive cellular damage. Our findings suggest that the explosive proliferation of serotype A1 M. haemolytica that occurs within the bovine respiratory tract prior to the onset of pneumonic disease is potentially due to bacterial invasion of, and rapid proliferation within, the mucosal epithelium. The discovery of this previously unrecognized mechanism of pathogenesis is important because it will allow the serotype A1-specific virulence determinants responsible for invasion to be identified and thereby provide opportunities for the development of new strategies for combatting BRD aimed at preventing early colonization and infection of the bovine respiratory tract.
Collapse
|
7
|
Loy JD, Leger L, Workman AM, Clawson ML, Bulut E, Wang B. Development of a multiplex real-time PCR assay using two thermocycling platforms for detection of major bacterial pathogens associated with bovine respiratory disease complex from clinical samples. J Vet Diagn Invest 2018; 30:837-847. [PMID: 30239324 DOI: 10.1177/1040638718800170] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is one of the most significant diseases of cattle. Bacterial pathogens involved in BRDC include Mannheimia haemolytica, Mycoplasma bovis, Histophilus somni, and Pasteurella multocida. We developed and evaluated a multiplexed real-time hydrolysis probe (rtPCR) assay using block-based Peltier and rotary-based thermocycling on lung tissue, nasal swabs, and deep nasopharyngeal swabs. The rtPCR results were compared to culture or a gel-based M. bovis PCR using statistical analysis to determine optimum quantification cycle (Cq) cutoffs to maximize agreement. The limits of detection were 1.2-12 CFU/reaction for each pathogen. M. haemolytica was the most prevalent organism detected by rtPCR, and was most frequently found with P. multocida. The rtPCR assay enabled enhanced levels of detection over culture for all pathogens on both thermocycling platforms. The rotary-based thermocycler had significantly lower Cq cutoffs (35.2 vs. 39.7), which maximized agreement with gold standard culture or gel-based PCR results following receiver operating characteristic analysis to maximize sensitivity (Se) and specificity (Sp). However, overall assay Se and Sp were similar on both platforms (80.5% Se, 88.8% Sp vs. 80.1% Se, 88.3% Sp). Implementation of these tests could enhance the detection of these pathogens, and with high-throughput workflows could reduce assay time and provide more rapid results. The assays may be especially valuable in identifying coinfections, given that many more antemortem samples tested in our study were positive for 2 or more pathogens by rtPCR ( n = 125) than were detected using culture alone ( n = 25).
Collapse
Affiliation(s)
- John D Loy
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Laura Leger
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Aspen M Workman
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Michael L Clawson
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Ece Bulut
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| | - Bing Wang
- School of Veterinary Medicine and Biomedical Sciences (Loy, Leger), University of Nebraska-Lincoln, Lincoln, NE.,Department of Food Science and Technology (Bulut, Wang), University of Nebraska-Lincoln, Lincoln, NE.,U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE (Workman, Clawson)
| |
Collapse
|
8
|
Gambetta GA, Matthews MA, Syvanen M. The Xylella fastidosa RTX operons: evidence for the evolution of protein mosaics through novel genetic exchanges. BMC Genomics 2018; 19:329. [PMID: 29728072 PMCID: PMC5935956 DOI: 10.1186/s12864-018-4731-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/26/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Xylella fastidiosa (Xf) is a gram negative bacterium inhabiting the plant vascular system. In most species this bacterium lives as a benign symbiote, but in several agriculturally important plants (e.g. coffee, citrus, grapevine) Xf is pathogenic. Xf has four loci encoding homologues to hemolysin RTX proteins, virulence factors involved in a wide range of plant pathogen interactions. RESULTS We show that all four genes are expressed during pathogenesis in grapevine. The sequences from these four genes have a complex repetitive structure. At the C-termini, sequence diversity between strains is what would be expected from orthologous genes. However, within strains there is no N-terminal homology, indicating these loci encode RTXs of different functions and/or specificities. More striking is that many of the orthologous loci between strains share this extreme variation at the N-termini. Thus these RTX orthologues are most easily visualized as fusions between the orthologous C-termini and different N-termini. Further, the four genes are found in operons having a peculiar structure with an extensively duplicated module encoding a small protein with homology to the N-terminal region of the full length RTX. Surprisingly, some of these small peptides are most similar not to their corresponding full length RTX, but to the N-termini of RTXs from other Xf strains, and even other remotely related species. CONCLUSIONS These results demonstrate that these genes are expressed in planta during pathogenesis. Their structure suggests extensive evolutionary restructuring through horizontal gene transfers and heterologous recombination mechanisms. The sum of the evidence suggests these repetitive modules are a novel kind of mobile genetic element.
Collapse
Affiliation(s)
- Gregory A Gambetta
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F- 33140, Villenave d'Ornon, France.
| | - Mark A Matthews
- Department of Viticulture and Enology, University of California, Davis, CA, 95616-8645, USA
| | - Michael Syvanen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616-8645, USA
| |
Collapse
|
9
|
Butler CJ, Edwards WH, Jennings-Gaines JE, Killion HJ, Wood ME, McWhirter DE, Paterson JT, Proffitt KM, Almberg ES, White PJ, Rotella JJ, Garrott RA. Assessing respiratory pathogen communities in bighorn sheep populations: Sampling realities, challenges, and improvements. PLoS One 2017; 12:e0180689. [PMID: 28708832 PMCID: PMC5510838 DOI: 10.1371/journal.pone.0180689] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022] Open
Abstract
Respiratory disease has been a persistent problem for the recovery of bighorn sheep (Ovis canadensis), but has uncertain etiology. The disease has been attributed to several bacterial pathogens including Mycoplasma ovipneumoniae and Pasteurellaceae pathogens belonging to the Mannheimia, Bibersteinia, and Pasteurella genera. We estimated detection probability for these pathogens using protocols with diagnostic tests offered by a fee-for-service laboratory and not offered by a fee-for-service laboratory. We conducted 2861 diagnostic tests on swab samples collected from 476 bighorn sheep captured across Montana and Wyoming to gain inferences regarding detection probability, pathogen prevalence, and the power of different sampling methodologies to detect pathogens in bighorn sheep populations. Estimated detection probability using fee-for-service protocols was less than 0.50 for all Pasteurellaceae and 0.73 for Mycoplasma ovipneumoniae. Non-fee-for-service Pasteurellaceae protocols had higher detection probabilities, but no single protocol increased detection probability of all Pasteurellaceae pathogens to greater than 0.50. At least one protocol resulted in an estimated detection probability of 0.80 for each pathogen except Mannheimia haemolytica, for which the highest detection probability was 0.45. In general, the power to detect Pasteurellaceae pathogens at low prevalence in populations was low unless many animals were sampled or replicate samples were collected per animal. Imperfect detection also resulted in low precision when estimating prevalence for any pathogen. Low and variable detection probabilities for respiratory pathogens using live-sampling protocols may lead to inaccurate conclusions regarding pathogen community dynamics and causes of bighorn sheep respiratory disease epizootics. We recommend that agencies collect multiples samples per animal for Pasteurellaceae detection, and one sample for Mycoplasma ovipneumoniae detection from at least 30 individuals to reliably detect both Pasteurellaceae and Mycoplasma ovipneumoniae at the population-level. Availability of PCR diagnostic tests to wildlife management agencies would improve the ability to reliably detect Pasteurellaceae in bighorn sheep populations.
Collapse
Affiliation(s)
- Carson J. Butler
- Fish and Wildlife Ecology and Management Program, Department of Ecology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| | - William H. Edwards
- Wildlife Health Laboratory, Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
| | - Jessica E. Jennings-Gaines
- Wildlife Health Laboratory, Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
| | - Halcyon J. Killion
- Wildlife Health Laboratory, Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
| | - Mary E. Wood
- Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
- Wyoming Game and Fish Department, Cody, Wyoming, United States of America
| | - Douglas E. McWhirter
- Montana Department of Fish, Wildlife and Parks, Bozeman, Montana, United States of America
| | - J. Terrill Paterson
- Fish and Wildlife Ecology and Management Program, Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Kelly M. Proffitt
- Montana Department of Fish, Wildlife and Parks, Bozeman, Montana, United States of America
| | - Emily S. Almberg
- Wildlife Health Laboratory, Montana Department of Fish, Wildlife and Parks, Bozeman, Montana, United States of America
| | - P. J. White
- Yellowstone Center for Resources, Yellowstone National Park, National Park Service, Mammoth, Wyoming, United States of America
| | - Jay J. Rotella
- Fish and Wildlife Ecology and Management Program, Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Robert A. Garrott
- Fish and Wildlife Ecology and Management Program, Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
10
|
Oppermann T, Busse N, Czermak P. Mannheimia haemolytica growth and leukotoxin production for vaccine manufacturing — A bioprocess review. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Watkins ER, Maiden MC, Gupta S. Metabolic competition as a driver of bacterial population structure. Future Microbiol 2016; 11:1339-1357. [PMID: 27660887 DOI: 10.2217/fmb-2016-0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding the processes whereby diversity arises and is maintained in pathogen populations is pivotal for designing disease control interventions. A particular problem is the maintenance of strain structure in bacterial pathogen populations despite frequent genetic exchange. Although several theoretical frameworks have been put forward to explain this widespread phenomenon, few have focused on the role of genes encoding metabolic functions, despite an increasing recognition of their importance in pathogenesis and transmission. In this article, we review the literature for evidence of metabolic niches within the host and discuss theoretical frameworks which examine ecological interactions between metabolic genes. We contend that metabolic competition is an important phenomenon which contributes to the maintenance of population structure and diversity of many bacterial pathogens.
Collapse
Affiliation(s)
- Eleanor R Watkins
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Martin Cj Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
12
|
Klima CL, Cook SR, Zaheer R, Laing C, Gannon VP, Xu Y, Rasmussen J, Potter A, Hendrick S, Alexander TW, McAllister TA. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One 2016; 11:e0149520. [PMID: 26926339 PMCID: PMC4771134 DOI: 10.1371/journal.pone.0149520] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2–8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the dependency on antibiotics to treat respiratory infection in cattle.
Collapse
Affiliation(s)
- Cassidy L. Klima
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Shaun R. Cook
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Vick P. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jay Rasmussen
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steve Hendrick
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Trevor W. Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| |
Collapse
|
13
|
Lau JSY, Omaleki L, Turni C, Barber SR, Browning GF, Francis MJ, Graham M, Korman TM. Human Wound Infection with Mannheimia glucosida following Lamb Bite. J Clin Microbiol 2015; 53:3374-6. [PMID: 26202121 PMCID: PMC4572521 DOI: 10.1128/jcm.01249-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022] Open
Abstract
Mannheimia spp. are veterinary pathogens that can cause mastitis and pneumonia in domestic cattle and sheep. While Mannheimia glucosida can be found as normal flora in oral and respiratory mucosa in sheep, there have been no reported cases of human infection with this organism.
Collapse
Affiliation(s)
- Jillian S Y Lau
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stuart Richard Barber
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Glenn Francis Browning
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Maryza Graham
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia Department of Microbiology, Monash Health, Clayton, Victoria, Australia
| | - Tony M Korman
- Monash Infectious Diseases, Monash Health, Clayton, Victoria, Australia Department of Microbiology, Monash Health, Clayton, Victoria, Australia Department of Medicine, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
14
|
Sayavedra L, Kleiner M, Ponnudurai R, Wetzel S, Pelletier E, Barbe V, Satoh N, Shoguchi E, Fink D, Breusing C, Reusch TBH, Rosenstiel P, Schilhabel MB, Becher D, Schweder T, Markert S, Dubilier N, Petersen JM. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 2015; 4:e07966. [PMID: 26371554 PMCID: PMC4612132 DOI: 10.7554/elife.07966] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/14/2015] [Indexed: 01/06/2023] Open
Abstract
Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.
Collapse
Affiliation(s)
| | - Manuel Kleiner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ruby Ponnudurai
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Silke Wetzel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Eric Pelletier
- Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- Metabolic Genomics Group, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- University of Évry-Val d'Essonne, Evry, France
| | - Valerie Barbe
- Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Dennis Fink
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Corinna Breusing
- Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Thorsten BH Reusch
- Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | |
Collapse
|
15
|
VieBrock L, Evans SM, Beyer AR, Larson CL, Beare PA, Ge H, Singh S, Rodino KG, Heinzen RA, Richards AL, Carlyon JA. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum. Front Cell Infect Microbiol 2015; 4:186. [PMID: 25692099 PMCID: PMC4315096 DOI: 10.3389/fcimb.2014.00186] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022] Open
Abstract
Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway.
Collapse
Affiliation(s)
- Lauren VieBrock
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Sean M Evans
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Charles L Larson
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | - Paul A Beare
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | - Hong Ge
- Viral and Rickettsial Diseases Department, Naval Medical Research Center Silver Spring, MD, USA
| | - Smita Singh
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Kyle G Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center Silver Spring, MD, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
16
|
Omaleki L, Browning GF, Barber SR, Allen JL, Srikumaran S, Markham PF. Sequence diversity, cytotoxicity and antigenic similarities of the leukotoxin of isolates of Mannheimia species from mastitis in domestic sheep. Vet Microbiol 2014; 174:172-9. [PMID: 25246232 DOI: 10.1016/j.vetmic.2014.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/27/2022]
Abstract
Species within the genus Mannheimia are among the most important causes of ovine mastitis. Isolates of these species can express leukotoxin A (LktA), a primary virulence factor of these bacteria. To examine the significance of variation in the LktA, the sequences of the lktA genes in a panel of isolates from cases of ovine mastitis were compared. The cross-neutralising capacities of rat antisera raised against LktA of one Mannheimia glucosida, one haemolytic Mannheimia ruminalis, and two Mannheimia haemolytica isolates were also examined to assess the effect that variation in the lktA gene can have on protective immunity against leukotoxins with differing sequences. The lktA nucleotide distance between the M. haemolytica isolates was greater than between the M. glucosida isolates, with the M. haemolytica isolates divisible into two groups based on their lktA sequences. Comparison of the topology of phylogenetic trees of 16S rDNA and lktA sequences revealed differences in the relationships between some isolates, suggesting horizontal gene transfer. Cross neutralisation data obtained with monospecific anti-LktA rat sera were used to derive antigenic similarity coefficients for LktA from the four Mannheimia species isolates. Similarity coefficients indicated that LktA of the two M. haemolytica isolates were least similar, while LktA from M. glucosida was most similar to those for one of the M. haemolytica isolates and the haemolytic M. ruminalis isolate. The results suggested that vaccination with the M. glucosida leukotoxin would generate the greatest cross-protection against ovine mastitis caused by Mannheimia species with these alleles.
Collapse
Affiliation(s)
- Lida Omaleki
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia.
| | - Stuart R Barber
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Joanne L Allen
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Subramaniam Srikumaran
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville 3010, VIC, Australia
| |
Collapse
|
17
|
Bowersock TL, Sobecki BE, Terrill SJ, Martinon NC, Meinert TR, Leyh RD. Efficacy of a multivalent modified-live virus vaccine containing aMannheimia haemolyticatoxoid in calves challenge exposed withBibersteinia trehalosi. Am J Vet Res 2014; 75:770-6. [DOI: 10.2460/ajvr.75.8.770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Hanthorn CJ, Dewell RD, Cooper VL, Frana TS, Plummer PJ, Wang C, Dewell GA. Randomized clinical trial to evaluate the pathogenicity of Bibersteinia trehalosi in respiratory disease among calves. BMC Vet Res 2014; 10:89. [PMID: 24745347 PMCID: PMC4036748 DOI: 10.1186/1746-6148-10-89] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bibersteinia trehalosi causes respiratory disease in ruminants particularly in wild and domestic sheep. Recently, there has been an increased number of B. trehalosi isolates obtained from diagnostic samples from bovine respiratory disease cases. This study evaluated the role of B. trehalosi in bovine respiratory disease using an intra-tracheal inoculation model in calves. Thirty six cross bred 2-3 month old dairy calves were inoculated intra-tracheally with either leukotoxin negative B. trehalosi, leukotoxin positive B. trehalosi isolate, Mannheimia haemolytica, a combination of leukotoxin negative B. trehalosi and M. haemolytica or negative control. Calves were euthanized and necropsy performed on day 10 of study. RESULTS B. trehalosi inoculated calves did not have increased lung involvement compared to control calves. Additionally, B. trehalosi was only cultured once from the lungs of inoculated calves at necropsy. CONCLUSIONS Based on these findings B. trehalosi may not be a primary pathogen of respiratory disease in cattle. Culture of B. trehalosi from diagnostic submissions should not be immediately identified as a primary cause of respiratory disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grant A Dewell
- Department of Veterinary and Diagnostic Production Animal Medicine, College of Veterinary Medicine, Iowa State University, 2237 Lloyd Vet Med, Ames, IA 50011, USA.
| |
Collapse
|
19
|
Hsu YH, Cook SR, Alexander TW, Klima CL, Niu YD, Selinger LB, McAllister TA. Investigation of Mannheimia haemolytica bacteriophages relative to host diversity. J Appl Microbiol 2013; 114:1592-603. [PMID: 23489937 DOI: 10.1111/jam.12185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/02/2013] [Accepted: 03/02/2013] [Indexed: 01/21/2023]
Abstract
AIMS This study aimed to characterize the impact of lytic and temperate bacteriophages on the genetic and phenotypic diversity of Mannheimia haemolytica from feedlot cattle. METHODS AND RESULTS Strictly lytic phages were not detected from bovine nasopharyngeal (n = 689) or water trough (n = 30) samples, but Myoviridae- or Siphoviridae-like phages were induced from 54 of 72 M. haemolytica strains by mitomycin C, occasionally from the same strain. Phages with similar restriction fragment length polymorphism profiles (RFLP ≥70% relatedness) shared common host serotypes 1 or 2 (P < 0·0001). Likewise, phages with similar RFLP tended to occur in genetically related host bacteria (70-79% similarity). Host range assays showed that seven phages from host serotypes 1, 2 and 6 lysed representative strains of serotypes 1, 2 or 8. The genome of vB_MhM_1152AP from serotype 6 was found to be collinear with P2-like phage φMhaA1-PHL101. CONCLUSIONS Prophages are a significant component of the genome of M. haemolytica and contribute significantly to host diversity. Further characterization of the role of prophage in virulence and persistence of M. haemolytica in cattle could provide insight into approaches to control this potential respiratory pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated that prophages are widespread within the genome of M. haemolytica isolates and emphasized the challenge of isolating lytic phage as a therapeutic against this pathogen.
Collapse
Affiliation(s)
- Y-H Hsu
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Silva DS, Pereira LMG, Moreira AR, Ferreira-da-Silva F, Brito RM, Faria TQ, Zornetta I, Montecucco C, Oliveira P, Azevedo JE, Pereira PJB, Macedo-Ribeiro S, do Vale A, dos Santos NMS. The apoptogenic toxin AIP56 is a metalloprotease A-B toxin that cleaves NF-κb P65. PLoS Pathog 2013; 9:e1003128. [PMID: 23468618 PMCID: PMC3585134 DOI: 10.1371/journal.ppat.1003128] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/28/2012] [Indexed: 12/15/2022] Open
Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys39-Glu40 peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol. The apoptosis inducing protein of 56 kDa (AIP56) is a key virulence factor secreted by Photobacterium damselae piscicida (Phdp), a Gram-negative bacterium that causes septicaemic infections in economically important marine fish species. It is known that AIP56 induces massive destruction of the phagocytic cells of the infected host, allowing the extracellular multiplication of the bacteria and contributing to the genesis of the pathology. Here we show that AIP56 acts by cleaving NF-κB p65. The NF-κB family of transcription factors is evolutionarily conserved and plays a central role in the host responses to microbial pathogen invasion, regulating the expression of inflammatory and anti-apoptotic genes. Pathogenic bacteria have evolved complex strategies to interfere with NF-κB signalling, usually by injecting protein effectors directly into the cell's cytosol through bacterial secretion machineries that require contact with host cells. In contrast, AIP56 acts at distance and has an intrinsic ability to reach the cytosol due to the presence of a C-terminal domain that functions as “delivery module.”
Collapse
Affiliation(s)
- Daniela S. Silva
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana M. G. Pereira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana R. Moreira
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- Protein Production and Purification, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Rui M. Brito
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Chemistry Department, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Tiago Q. Faria
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Irene Zornetta
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche dell'Università di Padova and Instituto di Neuroscienze del CNR, Padova, Italy
| | - Pedro Oliveira
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Jorge E. Azevedo
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Organelle Biogenesis and Function, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pedro J. B. Pereira
- Biomolecular Structure, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Protein Crystallography, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana do Vale
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno M. S. dos Santos
- Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
21
|
Chen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, Cho J, Yen MR, Saier MH. Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments. J Mol Microbiol Biotechnol 2012; 21:83-96. [PMID: 22286036 DOI: 10.1159/000334611] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transport proteins function in the translocation of ions, solutes and macromolecules across cellular and organellar membranes. These integral membrane proteins fall into >600 families as tabulated in the Transporter Classification Database (www.tcdb.org). Recent studies, some of which are reported here, define distant phylogenetic relationships between families with the creation of superfamilies. Several of these are analyzed using a novel set of programs designed to allow reliable prediction of phylogenetic trees when sequence divergence is too great to allow the use of multiple alignments. These new programs, called SuperfamilyTree1 and 2 (SFT1 and 2), allow display of protein and family relationships, respectively, based on thousands of comparative BLAST scores rather than multiple alignments. Superfamilies analyzed include: (1) Aerolysins, (2) RTX Toxins, (3) Defensins, (4) Ion Transporters, (5) Bile/Arsenite/Riboflavin Transporters, (6) Cation:Proton Antiporters, and (7) the Glucose/Fructose/Lactose superfamily within the prokaryotic phosphoenol pyruvate-dependent Phosphotransferase System. In addition to defining the phylogenetic relationships of the proteins and families within these seven superfamilies, evidence is provided showing that the SFT programs outperform programs that are based on multiple alignments whenever sequence divergence of superfamily members is extensive. The SFT programs should be applicable to virtually any superfamily of proteins or nucleic acids.
Collapse
Affiliation(s)
- Jonathan S Chen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Frey J. The role of RTX toxins in host specificity of animal pathogenic Pasteurellaceae. Vet Microbiol 2011; 153:51-8. [PMID: 21645978 DOI: 10.1016/j.vetmic.2011.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/29/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
RTX toxins are bacterial pore-forming toxins that are particularly abundant among pathogenic species of Pasteurellaceae, in which they play a major role in virulence. RTX toxins of several primary pathogens of the family of Pasteurellaceae are directly involved in causing necrotic lesions in the target organs. Many RTX toxins are known as haemolysins because they lyse erythrocytes in vitro, an effect that is non-specific, but which serves as a useful marker in bacteriological identification and as an easily measurable signal in vitro in experimental studies. More recent studies have shown that the specific targets of most RTX toxins are leukocytes, with RTX toxins binding to the corresponding β-subunit (CD18) of β2 integrins and then exerting cytotoxic activity. After uptake by the target cell, at sub-lytic concentrations, some RTX toxins are transported to mitochondria and induce apoptosis. For several RTX toxins the binding to CD18 has been shown to be host specific and this seems to be the basis for the host range specificity of these RTX toxins. Observations on two very closely related species of the Pasteurellaceae family, Actinobacillus suis, a porcine pathogen particularly affecting suckling pigs, and Actinobacillus equuli subsp. haemolytica, which causes pyosepticaemia in new-born foals (sleepy foal disease), have revealed that they express different RTX toxins, named ApxI/II and Aqx, respectively. These RTX toxins are specifically cytotoxic for porcine and equine leukocytes, respectively. Furthermore, the ApxI and Aqx toxins of these species, when expressed in an isogenetic background in Escherichia coli, are specifically cytotoxic for leukocytes of their respective hosts. These data indicate the determinative role of RTX toxins in host specificity of pathogenic species of Pasteurellaceae.
Collapse
Affiliation(s)
- Joachim Frey
- Institute of Veterinary Bacteriology, University of Bern, Laenggasstrasse 122, CH-3012 Bern, Switzerland.
| |
Collapse
|
23
|
Omaleki L, Browning GF, Allen JL, Barber SR. The role of Mannheimia species in ovine mastitis. Vet Microbiol 2011; 153:67-72. [PMID: 21511411 DOI: 10.1016/j.vetmic.2011.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
Abstract
Mannheimia haemolytica is known to be an important cause of intramammary infection in sheep. It usually causes severe clinical mastitis, followed by toxaemia and gangrenous necrosis of the udder. However there are limited data available on the epidemiology and pathogenesis of mastitis associated with Mannheimia species. These organisms can be more significant as a cause of mastitis than Staphylococcus aureus in some flocks. Some data suggest the possibility of horizontal transmission of Mannheimia species between ewes via lamb sucking. There is no vaccine available for prevention, and the sudden onset of mastitis and its peracute nature renders most treatments unsuccessful. This review examines the significance of the species within this genus in sheep mastitis.
Collapse
Affiliation(s)
- Lida Omaleki
- Veterinary Preclinical Centre, Department of Veterinary Science, The University of Melbourne, Corner Flemington Road and Park Drive, Parkville, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
24
|
Lee I, Davies RL. Evidence for a common gene pool and frequent recombinational exchange of the tbpBA operon in Mannheimia haemolytica, Mannheimia glucosida and Bibersteinia trehalosi. MICROBIOLOGY (READING, ENGLAND) 2011; 157:123-135. [PMID: 20884693 PMCID: PMC3387554 DOI: 10.1099/mic.0.041236-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tbpBA operon was sequenced in 42 representative isolates of Mannheimia haemolytica (32), Mannheimia glucosida (6) and Bibersteinia trehalosi (4). A total of 27 tbpB and 20 tbpA alleles were identified whilst the tbpBA operon was represented by 28 unique alleles that could be assigned to seven classes. There were 1566 (34.8% variation) polymorphic nucleotide sites and 482 (32.1% variation) variable inferred amino acid positions among the 42 tbpBA sequences. The tbpBA operons of serotype A2 M. haemolytica isolates are, with one exception, substantially more diverse than those of the other M. haemolytica serotypes and most likely have a different ancestral origin. The tbpBA phylogeny has been severely disrupted by numerous small- and large-scale intragenic recombination events. In addition, assortative (entire gene) recombination events, involving either the entire tbpBA operon or the individual tbpB and tbpA genes, have played a major role in shaping tbpBA structure and it's distribution in the three species. Our findings indicate that a common gene pool exists for tbpBA in M. haemolytica, M. glucosida and B. trehalosi. In particular, B. trehalosi, M. glucosida and ovine M. haemolytica isolates share a large portion of the tbpA gene, and this probably reflects selection for a conserved TbpA protein that provides effective iron uptake in sheep. Bovine and ovine serotype A2 lineages have very different tbpBA alleles. Bovine-like tbpBA alleles have been partially, or completely, replaced by ovine-like tbpBA alleles in ovine serotype A2 isolates, suggesting that different transferrin receptors are required by serotype A2 isolates for optimum iron uptake in cattle and sheep. Conversely, the tbpBA alleles of bovine-pathogenic serotype A1 and A6 isolates are very similar to those of closely related ovine isolates, suggesting a recent and common evolutionary origin.
Collapse
Affiliation(s)
- Inkyoung Lee
- Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert L. Davies
- Institute of Infection, Immunology and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
25
|
Lawrence PK, Kittichotirat W, McDermott JE, Bumgarner RE. A three-way comparative genomic analysis of Mannheimia haemolytica isolates. BMC Genomics 2010; 11:535. [PMID: 20920355 PMCID: PMC3091684 DOI: 10.1186/1471-2164-11-535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 10/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mannhemia haemolytica is a Gram-negative bacterium and the principal etiological agent associated with bovine respiratory disease complex. They transform from a benign commensal to a deadly pathogen, during stress such as viral infection and transportation to feedlots and cause acute pleuropneumonia commonly known as shipping fever. The U.S beef industry alone loses more than one billion dollars annually due to shipping fever. Despite its enormous economic importance there are no specific and accurate genetic markers, which will aid in understanding the pathogenesis and epidemiology of M. haemolytica at molecular level and assist in devising an effective control strategy. DESCRIPTION During our comparative genomic sequence analysis of three Mannheimia haemolytica isolates, we identified a number of genes that are unique to each strain. These genes are "high value targets" for future studies that attempt to correlate the variable gene pool with phenotype. We also identified a number of high confidence single nucleotide polymorphisms (hcSNPs) spread throughout the genome and focused on non-synonymous SNPs in known virulence genes. These SNPs will be used to design new hcSNP arrays to study variation across strains, and will potentially aid in understanding gene regulation and the mode of action of various virulence factors. CONCLUSIONS During our analysis we identified previously unknown possible type III secretion effector proteins, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated sequences (Cas). The presence of CRISPR regions is indicative of likely co-evolution with an associated phage. If proven functional, the presence of a type III secretion system in M. haemolytica will help us re-evaluate our approach to study host-pathogen interactions. We also identified various adhesins containing immuno-dominant domains, which may interfere with host-innate immunity and which could potentially serve as effective vaccine candidates.
Collapse
Affiliation(s)
- Paulraj K Lawrence
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | | | | | - Roger E Bumgarner
- Department of Microbiology, University of Washington, Seattle, WA 98195-7242, USA
| |
Collapse
|
26
|
Abstract
Mannheimia haemolytica is the principal bacterium isolated from respiratory disease in feedlot cattle and is a significant component of enzootic pneumonia in all neonatal calves. A commensal of the nasopharynx, M. haemolytica is an opportunist, gaining access to the lungs when host defenses are compromised by stress or infection with respiratory viruses or mycoplasma. Although several serotypes act as commensals, A1 and A6 are the most frequent isolates from pneumonic lungs. Potential virulence factors include adhesin, capsular polysaccharide, fimbriae, iron-regulated outer membrane proteins, leukotoxin (Lkt), lipopolysaccharide (LPS), lipoproteins, neuraminidase, sialoglycoprotease and transferrin-binding proteins. Of these, Lkt is pivotal in induction of pneumonia. Lkt-mediated infiltration and destruction of neutrophils and other leukocytes impairs bacterial clearance and contributes to development of fibrinous pneumonia. LPS may act synergistically with Lkt, enhancing its effects and contributing endotoxic activity. Antibiotics are employed extensively in the feedlot industry, both prophylactically and therapeutically, but their efficacy varies because of inconsistencies in diagnosis and treatment regimes and development of antibiotic resistance. Vaccines have been used for many decades, even though traditional bacterins failed to demonstrate protection and their use often enhanced disease in vaccinated animals. Modern vaccines use culture supernatants containing Lkt and other soluble antigens, or bacterial extracts, alone or combined with bacterins. These vaccines have 50-70% efficacy in prevention of M. haemolytica pneumonia. Effective control of M. haemolytica pneumonia is likely to require a combination of more definitive diagnosis, efficacious vaccines, therapeutic intervention and improved management practices.
Collapse
|
27
|
Alexander TW, Cook SR, Yanke LJ, Booker CW, Morley PS, Read RR, Gow SP, McAllister TA. A multiplex polymerase chain reaction assay for the identification of Mannheimia haemolytica, Mannheimia glucosida and Mannheimia ruminalis. Vet Microbiol 2008; 130:165-75. [PMID: 18308486 DOI: 10.1016/j.vetmic.2008.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 12/21/2007] [Accepted: 01/11/2008] [Indexed: 11/26/2022]
Abstract
The objective of this study was to design a multiplex PCR assay to identify Mannheimia haemolytica, Mannheimia glucosida and Mannheimia ruminalis. The multiplex PCR included primer sets HP, amplifying a DNA region from an unknown hypothetical protein, Lkt and Lkt2, amplifying different regions of the leukotoxinD gene, and 16S to amplify universal bacterial sequences of the 16S rRNA gene. Based on positive amplification, isolates were delineated as M. haemolytica (HP, Lkt, 16S), M. glucosida (HP, Lkt, Lkt2, 16S), or M. ruminalis (HP, 16S). The validity of the assay was examined against 22 reference strains within the family Pasteurellaceae and 17 field isolates (nasal) that had been collected previously from feedlot cattle and tentatively identified as M. haemolytica based on morphology and substrate utilization. Additionally, 200 feedlot cattle were screened for M. haemolytica using multiplex PCR. Forty-four isolates from 25 animals were identified as M. haemolytica. The PCR assay positively identified all M. haemolytica, as confirmed by phenotypic tests and clustering based upon cellular fatty acid methyl ester (FAME) profiles. Selected nasal isolates that exhibited evidence of haemolysis, but were M. haemolytica-negative based on PCR, were also confirmed negative by phenotypic and FAME analyses. The multiplex PCR assay required no additional phenotypic tests for confirmation of M. haemolytica, within the group of bacteria tested.
Collapse
Affiliation(s)
- Trevor W Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1 Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Larsen J, Pedersen AG, Christensen H, Bisgaard M, Angen Ø, Ahrens P, Olsen JE. Evidence for Vertical Inheritance and Loss of the Leukotoxin Operon in Genus Mannheimia. J Mol Evol 2007; 64:423-37. [PMID: 17437147 DOI: 10.1007/s00239-006-0065-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 01/30/2007] [Indexed: 11/29/2022]
Abstract
The Mannheimia subclades belong to the same bacterial genus but have taken divergent paths toward their distinct lifestyles. M. haemolytica + M. glucosida are potential pathogens of the respiratory tract in the mammalian suborder Ruminantia, whereas M. ruminalis, the supposed sister group, lives as a commensal in the ovine rumen. We have tested the hypothesis that horizontal gene transfer of the leukotoxin operon has catalyzed pathogenic adaptation and speciation of M. haemolytica + M. glucosida, or other major subclades, by using a strategy that combines compositional and phylogenetic methods. We show that it has been vertically inherited from the last common ancestor of the diverging Mannheimia subclades, although several strains belonging to M. ruminalis have lost the operon. Our analyses support that divergence within M. ruminalis following colonization of the ovine rumen was very rapid and that functional decay of most of the leukotoxin operons occurred early when the adaptation to the rumen was fastest, suggesting that antagonistic pleiotropy was the main contributor to losses in the radiating lineages of M. ruminalis. To sum up, the scenario derived from these analyses reflects two aspects. On one hand, it opposes the hypothesis of horizontal gene transfer as a catalyst of pathogenic adaptation and speciation. On the other hand, it indicates that losses of the leukotoxin operons in the radiating lineages of M. ruminalis have catalyzed their adaptation to a commensal environment and reproductive isolation (speciation).
Collapse
Affiliation(s)
- Jesper Larsen
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen, Frederiksberg C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kelley ST, Cassirer EF, Weiser GC, Safaee S. Phylogenetic diversity of Pasteurellaceae and horizontal gene transfer of leukotoxin in wild and domestic sheep. INFECTION GENETICS AND EVOLUTION 2007; 7:13-23. [PMID: 16635591 DOI: 10.1016/j.meegid.2006.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 11/25/2022]
Abstract
Wild and domestic animal populations are known to be sources and reservoirs of emerging diseases. There is also a growing recognition that horizontal genetic transfer (HGT) plays an important role in bacterial pathogenesis. We used molecular phylogenetic methods to assess diversity and cross-transmission rates of Pasteurellaceae bacteria in populations of bighorn sheep, Dall's sheep, domestic sheep and domestic goats. Members of the Pasteurellaceae cause an array of deadly illnesses including bacterial pneumonia known as "pasteurellosis", a particularly devastating disease for bighorn sheep. A phylogenetic analysis of a combined dataset of two RNA genes (16S ribosomal RNA and RNAse P RNA) revealed remarkable evolutionary diversity among Pasteurella trehalosi and Mannheimia (Pasteurella) haemolytica bacteria isolated from sheep and goats. Several phylotypes appeared to associate with particular host species, though we found numerous instances of apparent cross-transmission among species and populations. Statistical analyses revealed that host species, geographic locale and biovariant classification, but not virulence, correlated strongly with Pasteurellaceae phylogeny. Sheep host species correlated with P. trehalosi isolates phylogeny (PTP test; P=0.002), but not with the phylogeny of M. haemolytica isolates, suggesting that P. trehalosi bacteria may be more host specific. With regards to populations within species, we also discovered a strong correlation between geographic locale and isolate phylogeny in the Rocky Mountain bighorn sheep (PTP test; P=0.001). We also investigated the potential for HGT of the leukotoxin A (lktA) gene, which produces a toxin that plays an integral role in causing disease. Comparative analysis of the combined RNA gene phylogeny and the lktA phylogenies revealed considerable incongruence between the phylogenies, suggestive of HGT. Furthermore, we found identical lktA alleles in unrelated bacterial species, some of which had been isolated from sheep in distantly removed populations. For example, lktA sequences from P. trehalosi isolated from remote Alaskan Dall's sheep were 100% identical over a 900-nucleotide stretch to sequences determined from M. haemolytica isolated from domestic sheep in the UK. This extremely high degree of sequence similarity of lktA sequences among distinct bacterial species suggests that HGT has played a role in the evolution of lktA in wild hosts.
Collapse
Affiliation(s)
- Scott T Kelley
- Department of Biology, 5500 Campanile Drive, San Diego State University, San Diego, CA 92182, United States.
| | | | | | | |
Collapse
|
30
|
Stavrinides J, Ma W, Guttman DS. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2006; 2:e104. [PMID: 17040127 PMCID: PMC1599762 DOI: 10.1371/journal.ppat.0020104] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 08/28/2006] [Indexed: 12/23/2022] Open
Abstract
Many bacterial pathogens employ a type III secretion system to deliver type III secreted effectors (T3SEs) into host cells, where they interact directly with host substrates to modulate defense pathways and promote disease. This interaction creates intense selective pressures on these secreted effectors, necessitating rapid evolution to overcome host surveillance systems and defenses. Using computational and evolutionary approaches, we have identified numerous mosaic and truncated T3SEs among animal and plant pathogens. We propose that these secreted virulence genes have evolved through a shuffling process we have called “terminal reassortment.” In terminal reassortment, existing T3SE termini are mobilized within the genome, creating random genetic fusions that result in chimeric genes. Up to 32% of T3SE families in species with relatively large and well-characterized T3SE repertoires show evidence of terminal reassortment, as compared to only 7% of non-T3SE families. Terminal reassortment may permit the near instantaneous evolution of new T3SEs and appears responsible for major modifications to effector activity and function. Because this process plays a more significant role in the evolution of T3SEs than non-effectors, it provides insight into the evolutionary origins of T3SEs and may also help explain the rapid emergence of new infectious agents. Many pathogenic bacteria rely on specialized virulence proteins to cause disease. These proteins, known as type III secreted effectors (T3SEs), are directly injected into the host's cells and facilitate the disease process by interacting with host proteins and interfering with the defense response. Although most T3SEs lack any sequence similarity, several T3SEs share a common terminus, suggesting that part of these proteins was derived from the same sequence. The authors propose an evolutionary mechanism, called “terminal reassortment,” in which the termini of T3SEs reassort with other genetic information to create new chimeric proteins. This study shows that this process has given rise to T3SEs with new virulence functions and that it may influence bacterial host specificity. Chimeric T3SEs are present in eight different genera and in some cases are present in as many as 32% of known T3SE families. This is significantly more than what is found in other protein families, suggesting that terminal reassortment plays a disproportionately important role in the evolution of T3SE. Terminal reassortment may lead to the very rapid evolution of new T3SEs, thereby contributing to the emergence of new infectious diseases.
Collapse
Affiliation(s)
- John Stavrinides
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
31
|
Gioia J, Qin X, Jiang H, Clinkenbeard K, Lo R, Liu Y, Fox GE, Yerrapragada S, McLeod MP, McNeill TZ, Hemphill L, Sodergren E, Wang Q, Muzny DM, Homsi FJ, Weinstock GM, Highlander SK. The genome sequence of Mannheimia haemolytica A1: insights into virulence, natural competence, and Pasteurellaceae phylogeny. J Bacteriol 2006; 188:7257-66. [PMID: 17015664 PMCID: PMC1636238 DOI: 10.1128/jb.00675-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes.
Collapse
Affiliation(s)
- Jason Gioia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Davies RL, Lee I. Diversity of temperate bacteriophages induced in bovine and ovine Mannheimia haemolytica isolates and identification of a new P2-like phage. FEMS Microbiol Lett 2006; 260:162-70. [PMID: 16842340 DOI: 10.1111/j.1574-6968.2006.00314.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The diversity of temperate bacteriophages was examined in 32 Mannheimia haemolytica, six Mannheimia glucosida and four Pasteurella trehalosi isolates. Phage particles were induced and identified by electron microscopy in 24 (75%) M. haemolytica isolates, but in only one (17%) M. glucosida and one (25%) P. trehalosi isolate. The M. haemolytica phages were relatively diverse as seven Siphoviridae, 15 Myoviridae and two Podoviridae-like phages were identified; the Myoviridae-type phages also exhibited structural variation of their tails. The bacteriophages induced in M. glucosida and P. trehalosi were of the Myoviridae type. Restriction endonuclease (RE) analysis identified nine distinct RE types among the M. haemolytica bacteriophages, providing further evidence of their relative diversity. A limited number of phages caused plaques on indicator strains and the phages exhibited a narrow host range. A subgroup of 11 bovine serotype A1 and A6 isolates contained Myoviridae-type phages of the same RE type (type A), but these differed in their abilities to infect and form plaques on the same panel of indicator strains. A P2-like phage (phiPHL213.1), representative of the RE type A phages, was identified from the incomplete M. haemolytica genome sequence. The phiPHL213.1 genome contains previously unidentified genes and represents a new member of the P2 phage family.
Collapse
Affiliation(s)
- Robert L Davies
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
33
|
Davies RL, Lee I. Sequence diversity and molecular evolution of the heat-modifiable outer membrane protein gene (ompA) of Mannheimia(Pasteurella) haemolytica, Mannheimia glucosida, and Pasteurella trehalosi. J Bacteriol 2004; 186:5741-52. [PMID: 15317779 PMCID: PMC516818 DOI: 10.1128/jb.186.17.5741-5752.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The OmpA (or heat-modifiable) protein is a major structural component of the outer membranes of gram-negative bacteria. The protein contains eight membrane-traversing beta-strands and four surface-exposed loops. The genetic diversity and molecular evolution of OmpA were investigated in 31 Mannheimia (Pasteurella) haemolytica, 6 Mannheimia glucosida, and 4 Pasteurella trehalosi strains by comparative nucleotide sequence analysis. The OmpA proteins of M. haemolytica and M. glucosida contain four hypervariable domains located at the distal ends of the surface-exposed loops. The hypervariable domains of OmpA proteins from bovine and ovine M. haemolytica isolates are very different but are highly conserved among strains from each of these two host species. Fourteen different alleles representing four distinct phylogenetic classes, classes I to IV, were identified in M. haemolytica and M. glucosida. Class I, II, and IV alleles were associated with bovine M. haemolytica, ovine M. haemolytica, and M. glucosida strains, respectively, whereas class III alleles were present in certain M. haemolytica and M. glucosida isolates. Class I and II alleles were associated with divergent lineages of bovine and ovine M. haemolytica strains, respectively, indicating a history of horizontal DNA transfer and assortative (entire gene) recombination. Class III alleles have mosaic structures and were derived by horizontal DNA transfer and intragenic recombination. Our findings suggest that OmpA is under strong selective pressure from the host species and that it plays an important role in host adaptation. It is proposed that the OmpA protein of M. haemolytica acts as a ligand and is involved in binding to specific host cell receptor molecules in cattle and sheep. P. trehalosi expresses two OmpA homologs that are encoded by different tandemly arranged ompA genes. The P. trehalosi ompA genes are highly diverged from those of M. haemolytica and M. glucosida, and evidence is presented to suggest that at least one of these genes was acquired by horizontal DNA transfer.
Collapse
Affiliation(s)
- Robert L Davies
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | | |
Collapse
|
34
|
Ko KS, Hong SK, Lee HK, Park MY, Kook YH. Molecular evolution of the dotA gene in Legionella pneumophila. J Bacteriol 2003; 185:6269-77. [PMID: 14563861 PMCID: PMC219400 DOI: 10.1128/jb.185.21.6269-6277.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences of dotA, which suggests that multiple hits, resulting in synonymous substitutions, have occurred. Gene phylogenies inferred from three different segments (the 5'-end region, the central, large periplasmic domain, and the 3'-end region) showed impressively dissimilar topologies. This was concordant with the sequence polymorphisms, indicating that each region has experienced an independent evolutionary history, and was evident even within the same domain of each strain. For example, the PP2 domain was found to have a heterogeneous structure, which led us hypothesize that the dotA gene of L. pneumophila may have originated from two or more different sources. Comparisons of synonymous and nonsynonymous substitutions demonstrated that the PP2 domain has been under strong selective pressure with respect to amino acid change. Split decomposition analysis also supported the intragenic recombination of dotA. Multiple recombinational exchange within the dotA gene, encoding an integral cytoplasmic membrane protein that is secreted, probably provided increased fitness in certain environmental niches, such as within a particular biofilm community or species of amoebae.
Collapse
Affiliation(s)
- Kwan Soo Ko
- Department of Microbiology and Cancer Research Institute, Institute of Endemic Diseases, SNUMRC, Seoul National University College of Medicine, and Clinical Research Institute, Seoul National University Hospital, Seoul 110-799, Korea
| | | | | | | | | |
Collapse
|
35
|
Omelchenko MV, Makarova KS, Wolf YI, Rogozin IB, Koonin EV. Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 2003; 4:R55. [PMID: 12952534 PMCID: PMC193655 DOI: 10.1186/gb-2003-4-9-r55] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 06/26/2003] [Accepted: 07/17/2003] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Shuffling and disruption of operons and horizontal gene transfer are major contributions to the new, dynamic view of prokaryotic evolution. Under the 'selfish operon' hypothesis, operons are viewed as mobile genetic entities that are constantly disseminated via horizontal gene transfer, although their retention could be favored by the advantage of coregulation of functionally linked genes. Here we apply comparative genomics and phylogenetic analysis to examine horizontal transfer of entire operons versus displacement of individual genes within operons by horizontally acquired orthologs and independent assembly of the same or similar operons from genes with different phylogenetic affinities. RESULTS Since a substantial number of operons have been identified experimentally in only a few model bacteria, evolutionarily conserved gene strings were analyzed as surrogates of operons. The phylogenetic affinities within these predicted operons were assessed first by sequence similarity analysis and then by phylogenetic analysis, including statistical tests of tree topology. Numerous cases of apparent horizontal transfer of entire operons were detected. However, it was shown that apparent horizontal transfer of individual genes or arrays of genes within operons is not uncommon either and results in xenologous gene displacement in situ, that is, displacement of an ancestral gene by a horizontally transferred ortholog from a taxonomically distant organism without change of the local gene organization. On rarer occasions, operons might have evolved via independent assembly, in part from horizontally acquired genes. CONCLUSIONS The discovery of in situ gene displacement shows that combination of rampant horizontal gene transfer with selection for preservation of operon structure provides for events in prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at the organism level.
Collapse
Affiliation(s)
- Marina V Omelchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | |
Collapse
|
36
|
Jeyaseelan S, Sreevatsan S, Maheswaran SK. Role of Mannheimia haemolytica leukotoxin in the pathogenesis of bovine pneumonic pasteurellosis. Anim Health Res Rev 2002; 3:69-82. [PMID: 12665107 DOI: 10.1079/ahrr200242] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine pneumonic pasteurellosis continues to be a major respiratory disease in feedlot cattle despite the recent advances in our understanding of the underlying complexities of causation. The etiological agent, Mannheimia haemolytica, possesses several virulence factors, including capsule, outer membrane proteins, adhesins, neuraminidase, endotoxin and exotoxic leukotoxin. Accumulating scientific evidence implicates leukotoxin as the primary factor contributing to clinical presentation and lung injury associated with this disease. Unlike other virulence factors, leukotoxin shows cell-type- and species-specific effects on bovine leukocytes. Recent investigations have delineated the mechanisms underlying the target-cell-specificity of leukotoxin and how this contributes to the pathogenesis of lung damage. This review summarizes current understanding of the secretion, regulation, mechanisms of action and evolutionary diversity of leukotoxin of M. haemolytica. Understanding the precise molecular mechanisms of leukotoxin is critical for the development of more effective prophylactic and therapeutic strategies to control this complex disease.
Collapse
Affiliation(s)
- Samithamby Jeyaseelan
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA.
| | | | | |
Collapse
|