1
|
Das P, Das M, Sahoo SK, Dandapat J, Pradhan J. Characterization of extracellular chitin deacetylase from Aneurinibacillus aneurinilyticus isolated from marine crustacean shell. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100325. [PMID: 39678066 PMCID: PMC11638627 DOI: 10.1016/j.crmicr.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Chitosan is a promising biopolymer with wide range of applications. It is the deacetylated product of chitin. Commercially, it is produced from chitin via a harsh thermochemical process that has several shortcomings and heterogenous deacetylation product. Chitin can be transformed into chitosan through enzymatic deacetylation using chitin deacetylase (CDA), enabling the production of chitosan with a specific degree of deacetylation. CDA is primarily extracted from fungi followed by bacteria and insects. The extraction of CDA from fungus is more complex, possess several health risks for human including skin lesions. Therefore, screening of potent bacterial CDA is the need of the hour. In this study, for the first time we have isolated a bacterial strain Aneurinibacillus aneurinilyticus from the rinsed water of marine crab shell, and it was found to be a potent CDA producer. The extracellular CDA from A. aneurinilyticus has been partially purified and the specific activity of the enzyme was found to be 569.73 U/ mg protein. SDS-PAGE profiling of the purified sample depicts two isomers of CDA with molecular weights of 27 kD and 45 kD. The pH and temperature optima of the purified CDA were found to be 7.4 and 37 °C, respectively. The partially purified enzyme has Km and Vmax values of 98.455 µM and 909.09 µmole/min, for non-chitinous substrate such as p-nitroacetanilide. For chitinous substrates like glycol chitin, N-acetyl glucosamine hexamer and colloidal chitin, the enzyme exhibited Km of 96.96, 111.75 and 127.86 µM, respectively, Vmax for these substrates were 23.31, 10.12 and 10.772 µmole/min, respectively. Metal ions like Mn and Mg considerably boost the production and activity of CDA, whereas Cd and Co strongly inhibit its activity. Insights from this study further substantiate that this enzyme follows Michaelis-Menten equation and has potential for industrial applications.
Collapse
Affiliation(s)
- Poonam Das
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Manisha Das
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Sheela Kumari Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
- Centre of Excellence Integrated Omics and Computational Biology, Utkal University, Bhubaneswar, Odisha, India
| | - Jyotsnarani Pradhan
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India
| |
Collapse
|
2
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
3
|
Kim TD, Khanal S, Bäcker LE, Lood C, Kerremans A, Gorivale S, Begyn K, Cambré A, Rajkovic A, Devlieghere F, Heyndrickx M, Michiels C, Duitama J, Aertsen A. Rapid evolutionary tuning of endospore quantity versus quality trade-off via a phase-variable contingency locus. Curr Biol 2024; 34:3077-3085.e5. [PMID: 38925118 DOI: 10.1016/j.cub.2024.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
The UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaAOFF) or restore (PdaAON) the pdaA open reading frame. Compared with B. cereus populations in the PdaAON state, populations in the PdaAOFF state produced a lower yield of viable endospores but endowed them with vastly increased UV resistance. Moreover, selection pressures based on either quantity (i.e., yield of viable endospores) or quality (i.e., UV resistance of viable endospores) aspects could readily shift populations between PdaAON and PdaAOFF states, respectively. Bioinformatic analysis also revealed that pdaA homologs within the Bacillus and Clostridium genera are often equipped with several short tandem repeat regions, suggesting a wider implementation of the pdaA-mediated phase variability in other sporeformers as well. These results for the first time reveal (1) pdaA as a phase-variable contingency locus in the adaptive evolution of endospore properties and (2) bet-hedging between what appears to be a quantity versus quality trade-off in endospore crops.
Collapse
Affiliation(s)
- Tom Dongmin Kim
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sadhana Khanal
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Leonard E Bäcker
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Cédric Lood
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Alison Kerremans
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Sayali Gorivale
- Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Begyn
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Department of Food Technology, Safety and Health, Part of Food2Know, Faculty Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marc Heyndrickx
- ILVO-Flanders Research Institute for Agriculture, Fishery and Food, Technology and Food Science, Unit-Food Safety, 9090 Melle, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Chris Michiels
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; Leuven Food Science and Nutritional Research Centre (LeFoRCe), Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
4
|
Bonive-Boscan AD, Lopez-Garrido J. Evolution: A quantity-quality trade-off constrains the evolution of immortality in bacterial endospores. Curr Biol 2024; 34:R690-R692. [PMID: 39043143 DOI: 10.1016/j.cub.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Bacterial endospores are extremely resilient cells, capable of withstanding the most dramatic environmental challenges. New work identifies a trade-off between resistance to UV radiation and germination efficiency, a trade-off mediated by an unexpected sporulation 'contingency locus'.
Collapse
|
5
|
Gilmore MC, Yadav AK, Espaillat A, Gust AA, Williams MA, Brown PJB, Cava F. A peptidoglycan N-deacetylase specific for anhydroMurNAc chain termini in Agrobacterium tumefaciens. J Biol Chem 2024; 300:105611. [PMID: 38159848 PMCID: PMC10838918 DOI: 10.1016/j.jbc.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.
Collapse
Affiliation(s)
- Michael C Gilmore
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Akhilesh K Yadav
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India; Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Michelle A Williams
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden.
| |
Collapse
|
6
|
Boamah D, Gilmore M, Bourget S, Ghosh A, Hossain M, Vogel J, Cava F, O’Connor T. Peptidoglycan deacetylation controls type IV secretion and the intracellular survival of the bacterial pathogen Legionella pneumophila. Proc Natl Acad Sci U S A 2023; 120:e2119658120. [PMID: 37252954 PMCID: PMC10266036 DOI: 10.1073/pnas.2119658120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
Peptidoglycan is a critical component of the bacteria cell envelope. Remodeling of the peptidoglycan is required for numerous essential cellular processes and has been linked to bacterial pathogenesis. Peptidoglycan deacetylases that remove the acetyl group of the N-acetylglucosamine (NAG) subunit protect bacterial pathogens from immune recognition and digestive enzymes secreted at the site of infection. However, the full extent of this modification on bacterial physiology and pathogenesis is not known. Here, we identify a polysaccharide deacetylase of the intracellular bacterial pathogen Legionella pneumophila and define a two-tiered role for this enzyme in Legionella pathogenesis. First, NAG deacetylation is important for the proper localization and function of the Type IVb secretion system, linking peptidoglycan editing to the modulation of host cellular processes through the action of secreted virulence factors. As a consequence, the Legionella vacuole mis-traffics along the endocytic pathway to the lysosome, preventing the formation of a replication permissive compartment. Second, within the lysosome, the inability to deacetylate the peptidoglycan renders the bacteria more sensitive to lysozyme-mediated degradation, resulting in increased bacterial death. Thus, the ability to deacetylate NAG is important for bacteria to persist within host cells and in turn, Legionella virulence. Collectively, these results expand the function of peptidoglycan deacetylases in bacteria, linking peptidoglycan editing, Type IV secretion, and the intracellular fate of a bacterial pathogen.
Collapse
Affiliation(s)
- David Boamah
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Michael C. Gilmore
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Sarah Bourget
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Anushka Ghosh
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Mohammad J. Hossain
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Joseph P. Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå90187, Sweden
| | - Tamara J. O’Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
7
|
Research Progress on the Effect of Autolysis to Bacillus subtilis Fermentation Bioprocess. FERMENTATION 2022. [DOI: 10.3390/fermentation8120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a gram-positive bacterium, a promising microorganism due to its strong extracellular protein secretion ability, non-toxic, and relatively mature industrial fermentation technology. However, cell autolysis during fermentation restricts the industrial application of B. subtilis. With the fast advancement of molecular biology and genetic engineering technology, various advanced procedures and gene editing tools have been used to successfully construct autolysis-resistant B. subtilis chassis cells to manufacture various biological products. This paper first analyses the causes of autolysis in B. subtilis from a mechanistic perspective and outlines various strategies to address autolysis in B. subtilis. Finally, potential strategies for solving the autolysis problem of B. subtilis are foreseen.
Collapse
|
8
|
Alves Feliciano C, Eckenroth BE, Diaz OR, Doublié S, Shen A. A lipoprotein allosterically activates the CwlD amidase during Clostridioides difficile spore formation. PLoS Genet 2021; 17:e1009791. [PMID: 34570752 PMCID: PMC8496864 DOI: 10.1371/journal.pgen.1009791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Spore-forming pathogens like Clostridioides difficile depend on germination to initiate infection. During gemination, spores must degrade their cortex layer, which is a thick, protective layer of modified peptidoglycan. Cortex degradation depends on the presence of the spore-specific peptidoglycan modification, muramic-∂-lactam (MAL), which is specifically recognized by cortex lytic enzymes. In C. difficile, MAL production depends on the CwlD amidase and its binding partner, the GerS lipoprotein. To gain insight into how GerS regulates CwlD activity, we solved the crystal structure of the CwlD:GerS complex. In this structure, a GerS homodimer is bound to two CwlD monomers such that the CwlD active sites are exposed. Although CwlD structurally resembles amidase_3 family members, we found that CwlD does not bind Zn2+ stably on its own, unlike previously characterized amidase_3 enzymes. Instead, GerS binding to CwlD promotes CwlD binding to Zn2+, which is required for its catalytic mechanism. Thus, in determining the first structure of an amidase bound to its regulator, we reveal stabilization of Zn2+ co-factor binding as a novel mechanism for regulating bacterial amidase activity. Our results further suggest that allosteric regulation by binding partners may be a more widespread mode for regulating bacterial amidase activity than previously thought. Spore germination is essential for many spore-forming pathogens to initiate infection. In order for spores to germinate, they must degrade a thick, protective layer of cell wall known as the cortex. The enzymes that digest this layer selectively recognize the spore-specific cell wall modification, muramic-∂-lactam (MAL). MAL is made in part through the activity of the CwlD amidase, which is found in all spore-forming bacteria. While Bacillus subtilis CwlD appears to have amidase activity on its own, Clostridioides difficile CwlD activity depends on its binding partner, the GerS lipoprotein. To understand why C. difficile CwlD requires GerS, we determined the X-ray crystal structure of the CwlD:GerS complex and discovered that GerS binds to a site distant from CwlD’s active site. We also found that GerS stabilizes CwlD binding to its co-factor, Zn2+, indicating that GerS allosterically activates CwlD amidase. Notably, regulation at the level of Zn2+ binding has not previously been described for bacterial amidases, and GerS is the first protein to be shown to allosterically activate an amidase. Since binding partners of bacterial amidases were only first discovered 15 years ago, our results suggest that diverse mechanisms remain to be discovered for these critical enzymes.
Collapse
Affiliation(s)
- Carolina Alves Feliciano
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Brian E. Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Oscar R. Diaz
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Planas A. Peptidoglycan Deacetylases in Bacterial Cell Wall Remodeling and Pathogenesis. Curr Med Chem 2021; 29:1293-1312. [PMID: 34525907 DOI: 10.2174/0929867328666210915113723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
The bacterial cell wall peptidoglycan (PG) is a dynamic structure that is constantly synthesized, re-modeled and degraded during bacterial division and growth. Post-synthetic modifications modulate the action of endogenous autolysis during PG lysis and remodeling for growth and sporulation, but also they are a mechanism used by pathogenic bacteria to evade the host innate immune system. Modifica-tions of the glycan backbone are limited to the C-2 amine and the C-6 hydroxyl moieties of either Glc-NAc or MurNAc residues. This paper reviews the functional roles and properties of peptidoglycan de-N-acetylases (distinct PG GlcNAc and MurNAc deacetylases) and recent progress through genetic stud-ies and biochemical characterization to elucidate their mechanism of action, 3D structures, substrate specificities and biological functions. Since they are virulence factors in pathogenic bacteria, peptidogly-can deacetylases are potential targets for the design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià. University Ramon Llull, 08017 Barcelona. Spain
| |
Collapse
|
10
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
11
|
A pH-Dependent Gene Expression Enables Bacillus amyloliquefaciens MBNC to Adapt to Acid Stress. Curr Microbiol 2021; 78:3104-3114. [PMID: 34173842 DOI: 10.1007/s00284-021-02573-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Acid tolerance response (ATR), a process by which bacteria optimize their growth conditions for cellular functions, is a well-characterized bacterial stress response. A bacterial isolate identified, as Bacillus amyloliquefaciens MBNC, was isolated from acidic soil and studied for its acid tolerance response under several range of acidic stress conditions imposed through inorganic acid, organic acid, acetate buffer, and soil extract. The ability of the B. amyloliquefaciens MBNC to tolerate extreme acidic conditions (pH 4.5) increased when exposed to moderate-acidic pH (pH 5.5). Along with ATR, the bacterial cell density was also critical to its ability to tolerate low pH as the cells of late log phase were more tolerant to low pH stress compared to the early log phase cells. A comparative expression study of 28 genes of B. amyloliquefaciens MBNC was assessed in cells grown in neutral (pH 7.0) and acidic condition (pH 4.5) through qRT-PCR. Among the 28 genes analyzed, 24 genes showed increased expression whereas the expression of 4 genes was downregulated under acid stress indicating to the involvement of the genes in acid stress response.
Collapse
|
12
|
A dynamic, ring-forming MucB / RseB-like protein influences spore shape in Bacillus subtilis. PLoS Genet 2020; 16:e1009246. [PMID: 33315869 PMCID: PMC7769602 DOI: 10.1371/journal.pgen.1009246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023] Open
Abstract
How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development. Cell shape is an important cellular attribute linked to cellular function and environmental adaptation. Bacterial endospores are one of the toughest cell types on Earth, with a defined shape and complex, highly-resistant, multi-layered cell envelope. Although decades of research have focused on defining the composition and assembly of the multi-layered spore envelope, little is known about how these layers contribute to spore shape. Here, we identify SsdC, a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria. We show that SsdC is an important factor in spore shape development in the monoderm, model organism Bacillus subtilis. Our data suggest that SsdC influences the assembly of the spore cortex, through connections to the spore coat, by forming an intriguing, dynamic ring-like structure adjacent to the developing spore. Furthermore, our identification of SsdC suggests evolutionary diversification of the MucB /RseB protein domain between diderm and monoderm bacteria.
Collapse
|
13
|
Label-Free Multiple Reaction Monitoring, a Promising Method for Quantification Analyses of Specific Proteins in Bacteria. Int J Mol Sci 2020; 21:ijms21144924. [PMID: 32664686 PMCID: PMC7404251 DOI: 10.3390/ijms21144924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Bacillus subtilis produces eight industrially important exo-proteases. For the detection of proteases, the activity- and antibody-based assays are normally used. Current activity-based assays require expensive multiplex chemical substrates which allow specificity determination of each enzyme. In this study, we provide evidences pertaining to the usefulness of the label-free multiple reaction monitoring (MRM) assay for a rapid identification and quantitation of specific proteins in bacteria. We used wild-type B. pumilus cells producing at least two serine proteases, subtilisin-like protease (AprBp) and glutamyl endopeptidase (GseBp), as well as optimized recombinant B. subtilis cells containing the same protease genes under control of the LIKE expression system. The Skyline software was used for the selection of three specific proteotypic peptides and their fragment ions for quantification and confirmation of AprBp and GseBp in complex mixtures. MRM indicated that the production of AprBp and GseBp exo-enzymes were respectively 0.9- and 26.6-fold higher in the culture medium of B. pumilus strain in comparison to the recombinant B. subtilis strains carrying optimized LIKE expression systems under identical conditions. The developed procedure in this study is fast, easy to perform and dependable. Additionally, it achieves accurate proteins identification and quantification in complex mixture.
Collapse
|
14
|
Amon JD, Yadav AK, Ramirez-Guadiana FH, Meeske AJ, Cava F, Rudner DZ. SwsB and SafA Are Required for CwlJ-Dependent Spore Germination in Bacillus subtilis. J Bacteriol 2020; 202:e00668-19. [PMID: 31871031 PMCID: PMC7043669 DOI: 10.1128/jb.00668-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
When Bacillus subtilis spores detect nutrients, they exit dormancy through the processes of germination and outgrowth. A key step in germination is the activation of two functionally redundant cell wall hydrolases (SleB and CwlJ) that degrade the specialized cortex peptidoglycan that surrounds the spore. How these enzymes are regulated remains poorly understood. To identify additional factors that affect their activity, we used transposon sequencing to screen for synthetic germination defects in spores lacking SleB or CwlJ. Other than the previously characterized protein YpeB, no additional factors were found to be specifically required for SleB activity. In contrast, our screen identified SafA and YlxY (renamed SwsB) in addition to the known factors GerQ and CotE as proteins required for CwlJ function. SafA is a member of the spore's proteinaceous coat and we show that, like GerQ and CotE, it is required for accumulation and retention of CwlJ in the dormant spore. SwsB is broadly conserved among spore formers, and we show that it is required for CwlJ to efficiently degrade the cortex during germination. Intriguingly, SwsB resembles polysaccharide deacetylases, and its putative catalytic residues are required for its role in germination. However, we find no chemical signature of its activity on the spore cortex or in vitro While the precise, mechanistic role of SwsB remains unknown, we explore and discuss potential activities.IMPORTANCE Spore formation in Bacillus subtilis has been studied for over half a century, and virtually every step in this developmental process has been characterized in molecular detail. In contrast, how spores exit dormancy remains less well understood. A key step in germination is the degradation of the specialized cell wall surrounding the spore called the cortex. Two enzymes (SleB and CwlJ) specifically target this protective layer, but how they are regulated and whether additional factors promote their activity are unknown. Here, we identified the coat protein SafA and a conserved but uncharacterized protein YlxY as additional factors required for CwlJ-dependent degradation of the cortex. Our analysis provides a more complete picture of this essential step in the exit from dormancy.
Collapse
Affiliation(s)
- Jeremy D Amon
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå, Sweden
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | | - Alexander J Meeske
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Ramos-Silva P, Serrano M, Henriques AO. From Root to Tips: Sporulation Evolution and Specialization in Bacillus subtilis and the Intestinal Pathogen Clostridioides difficile. Mol Biol Evol 2020; 36:2714-2736. [PMID: 31350897 PMCID: PMC6878958 DOI: 10.1093/molbev/msz175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of highly resistant, dormant endospores. Endospores allow environmental persistence, dissemination and for pathogens, are also infection vehicles. In both the model Bacillus subtilis, an aerobic organism, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes. Their expression is coordinated between the forespore and the mother cell, the two cells that participate in the process, and is kept in close register with the course of morphogenesis. The evolutionary mechanisms by which sporulation emerged and evolved in these two species, and more broadly across Firmicutes, remain largely unknown. Here, we trace the origin and evolution of sporulation using the genes known to be involved in the process in B. subtilis and C. difficile, and estimating their gain-loss dynamics in a comprehensive bacterial macroevolutionary framework. We show that sporulation evolution was driven by two major gene gain events, the first at the base of the Firmicutes and the second at the base of the B. subtilis group and within the Peptostreptococcaceae family, which includes C. difficile. We also show that early and late sporulation regulons have been coevolving and that sporulation genes entail greater innovation in B. subtilis with many Bacilli lineage-restricted genes. In contrast, C. difficile more often recruits new sporulation genes by horizontal gene transfer, which reflects both its highly mobile genome, the complexity of the gut microbiota, and an adjustment of sporulation to the gut ecosystem.
Collapse
Affiliation(s)
- Paula Ramos-Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
16
|
Grifoll-Romero L, Sainz-Polo MA, Albesa-Jové D, Guerin ME, Biarnés X, Planas A. Structure-function relationships underlying the dual N-acetylmuramic and N-acetylglucosamine specificities of the bacterial peptidoglycan deacetylase PdaC. J Biol Chem 2019; 294:19066-19080. [PMID: 31690626 DOI: 10.1074/jbc.ra119.009510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/01/2019] [Indexed: 01/30/2023] Open
Abstract
Bacillus subtilis PdaC (BsPdaC) is a membrane-bound, multidomain peptidoglycan N-deacetylase acting on N-acetylmuramic acid (MurNAc) residues and conferring lysozyme resistance to modified cell wall peptidoglycans. BsPdaC contains a C-terminal family 4 carbohydrate esterase (CE4) catalytic domain, but unlike other MurNAc deacetylases, BsPdaC also has GlcNAc deacetylase activity on chitooligosaccharides (COSs), characteristic of chitin deacetylases. To uncover the molecular basis of this dual activity, here we determined the X-ray structure of the BsPdaC CE4 domain at 1.54 Å resolution and analyzed its mode of action on COS substrates. We found that the minimal substrate is GlcNAc3 and that activity increases with the degree of glycan polymerization. COS deacetylation kinetics revealed that BsPdaC operates by a multiple-chain mechanism starting at the internal GlcNAc units and leading to deacetylation of all but the reducing-end GlcNAc residues. Interestingly, BsPdaC shares higher sequence similarity with the peptidoglycan GlcNAc deacetylase SpPgdaA than with other MurNAc deacetylases. Therefore, we used ligand-docking simulations to analyze the dual GlcNAc- and MurNAc-binding specificities of BsPdaC and compared them with those of SpPgdA and BsPdaA, representing peptidoglycan deacetylases highly specific for GlcNAc or MurNAc residues, respectively. BsPdaC retains the conserved Asp-His-His metal-binding triad characteristic of CE4 enzymes acting on GlcNAc residues, differing from MurNAc deacetylases that lack the metal-coordinating Asp residue. BsPdaC contains short loops similar to those in SpPgdA, resulting in an open binding cleft that can accommodate polymeric substrates. We propose that PdaC is the first member of a new subclass of peptidoglycan MurNAc deacetylases.
Collapse
Affiliation(s)
- Laia Grifoll-Romero
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| | - María Angela Sainz-Polo
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain
| | - David Albesa-Jové
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain.,Basque Foundation for Science (IKERBASQUE), 48011 Bilbao, Spain
| | - Marcelo E Guerin
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Ed. 801A, 48160 Derio, Spain.,Basque Foundation for Science (IKERBASQUE), 48011 Bilbao, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| | - Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, 08017 Barcelona, Spain
| |
Collapse
|
17
|
Oke M, Oni O, Bello R, Samuel-Omoyajowo K, Senbadejo T. Structure-function relationships of the 5-oxoprolinase subunit A: Guiding biological sciences students down the path less traveled. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 47:620-631. [PMID: 31520514 DOI: 10.1002/bmb.21300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/02/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Bioinformatics was recently introduced as a module for both undergraduate and postgraduate biological sciences students at our institution. Our experience shows that inquiry-based hands-on exercises provide the most efficient approach to bioinformatic straining. In this article, we report a structural bioinformatics project carried out by Master degree students to determine structure-function relationships of the uncharacterized prokaryotic 5-oxoprolinase subunit A (PxpA). PxpA associates with the PxpBC complex to form a functional 5-oxoprolinase enzyme for conversion of 5-oxoproline to L-glutamate. Although the exact role of PxpA is yet to be determined, it has been demonstrated that PxpBC catalyses the first step of the reaction, which is phosphorylation of 5-oxoproline. Here, we provide evidence that PxpA is involved in the last two steps of the reaction:decyclization of the labile phosphorylated 5-oxoproline to the equally labile γ-glutamylphosphate, and subsequent dephosphorylation to L-glutamate. Structural bioinformatics analysis of four putative PxpA structures revealed that PxpA adopts a non-canonical TIM barrel fold with well-characterized TIM barrel enzyme features. These include a C-terminal groove comprising potentially essential conserved amino acid residues organized into putative motifs. Phylogenetic analysis suggests a relationship between taxonomic grouping and PxpA oligomerization. PxpA forms a tunnel upon ligand binding, thus suggesting that the PxpABC complex employs the mechanism of substrate channeling to protect labile intermediates. Ultimately, students were able to form a testable hypothesis on the function of PxpA, an achievement we consider encouraging other students to emulate. © 2019 International Union of Biochemistry and Molecular Biology, 47(6):620-631, 2019.
Collapse
Affiliation(s)
- Muse Oke
- Department of Biological Sciences, Fountain University, Osogbo, Nigeria
| | - Omobukola Oni
- Department of Chemical Sciences, Fountain University, Osogbo, Nigeria
| | - Ronke Bello
- Department of Chemical Sciences, Fountain University, Osogbo, Nigeria
| | | | - Tosin Senbadejo
- Department of Biological Sciences, Fountain University, Osogbo, Nigeria
| |
Collapse
|
18
|
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0017-2018. [PMID: 31858953 PMCID: PMC6927485 DOI: 10.1128/microbiolspec.gpp3-0017-2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in Bacillus subtilis and Bacillus anthracis, striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically Clostridium perfringens, Clostridium botulinum, and Clostridioides difficile, induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA
| | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Mahfuzur R Sarker
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR
| | - Daniel Paredes-Sabja
- Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
19
|
Goswami G, Panda D, Samanta R, Boro RC, Modi MK, Bujarbaruah KM, Barooah M. Bacillus megaterium adapts to acid stress condition through a network of genes: Insight from a genome-wide transcriptome analysis. Sci Rep 2018; 8:16105. [PMID: 30382109 PMCID: PMC6208408 DOI: 10.1038/s41598-018-34221-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/05/2018] [Indexed: 11/18/2022] Open
Abstract
RNA-seq analysis of B. megaterium exposed to pH 7.0 and pH 4.5 showed differential expression of 207 genes related to several processes. Among the 207 genes, 11 genes displayed increased transcription exclusively in pH 4.5. Exposure to pH 4.5 induced the expression of genes related to maintenance of cell integrity, pH homeostasis, alternative energy generation and modification of metabolic processes. Metabolic processes like pentose phosphate pathway, fatty acid biosynthesis, cysteine and methionine metabolism and synthesis of arginine and proline were remodeled during acid stress. Genes associated with oxidative stress and osmotic stress were up-regulated at pH 4.5 indicating a link between acid stress and other stresses. Acid stress also induced expression of genes that encoded general stress-responsive proteins as well as several hypothetical proteins. Our study indicates that a network of genes aid B. megaterium G18 to adapt and survive in acid stress condition.
Collapse
Affiliation(s)
- Gunajit Goswami
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India.,Department of Life-Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Debashis Panda
- Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
| | - Ramkrishna Samanta
- Department of Life-Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
| | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India.,Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
| | - Kamal Malla Bujarbaruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, 785013, India.
| |
Collapse
|
20
|
Coullon H, Rifflet A, Wheeler R, Janoir C, Boneca IG, Candela T. N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance. J Biol Chem 2018; 293:18040-18054. [PMID: 30266804 DOI: 10.1074/jbc.ra118.004273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/24/2018] [Indexed: 01/08/2023] Open
Abstract
Spores are produced by many organisms as a survival mechanism activated in response to several environmental stresses. Bacterial spores are multilayered structures, one of which is a peptidoglycan layer called the cortex, containing muramic-δ-lactams that are synthesized by at least two bacterial enzymes, the muramoyl-l-alanine amidase CwlD and the N-deacetylase PdaA. This study focused on the spore cortex of Clostridium difficile, a Gram-positive, toxin-producing anaerobic bacterial pathogen that can colonize the human intestinal tract and is a leading cause of antibiotic-associated diarrhea. Using ultra-HPLC coupled with high-resolution MS, here we found that the spore cortex of the C. difficile 630Δerm strain differs from that of Bacillus subtilis Among these differences, the muramic-δ-lactams represented only 24% in C. difficile, compared with 50% in B. subtilis CD630_14300 and CD630_27190 were identified as genes encoding the C. difficile N-deacetylases PdaA1 and PdaA2, required for muramic-δ-lactam synthesis. In a pdaA1 mutant, only 0.4% of all muropeptides carried a muramic-δ-lactam modification, and muramic-δ-lactams were absent in the cortex of a pdaA1-pdaA2 double mutant. Of note, the pdaA1 mutant exhibited decreased sporulation, altered germination, decreased heat resistance, and delayed virulence in a hamster infection model. These results suggest a much greater role for muramic-δ-lactams in C. difficile than in other bacteria, including B. subtilis In summary, the spore cortex of C. difficile contains lower levels of muramic-δ-lactams than that of B. subtilis, and PdaA1 is the major N-deacetylase for muramic-δ-lactam biosynthesis in C. difficile, contributing to sporulation, heat resistance, and virulence.
Collapse
Affiliation(s)
- Héloise Coullon
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry
| | - Aline Rifflet
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Richard Wheeler
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Claire Janoir
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry
| | - Ivo Gomperts Boneca
- the Institut Pasteur, Unité Biologie et Génétique de la Paroi Bactérienne, 75724 Paris, and; INSERM, Équipe Avenir, 75015 Paris, France
| | - Thomas Candela
- From the EA4043 Unité Bactéries Pathogènes et Santé (UBaPS), Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry,.
| |
Collapse
|
21
|
Yadav AK, Espaillat A, Cava F. Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Front Microbiol 2018; 9:2064. [PMID: 30233540 PMCID: PMC6127315 DOI: 10.3389/fmicb.2018.02064] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
Collapse
Affiliation(s)
- Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
22
|
Diaz OR, Sayer CV, Popham DL, Shen A. Clostridium difficile Lipoprotein GerS Is Required for Cortex Modification and Thus Spore Germination. mSphere 2018; 3:e00205-18. [PMID: 29950380 PMCID: PMC6021603 DOI: 10.1128/msphere.00205-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile, also known as Clostridioides difficile, is a Gram-positive, spore-forming bacterium that is a leading cause of antibiotic-associated diarrhea. C. difficile infections begin when its metabolically dormant spores germinate to form toxin-producing vegetative cells. Successful spore germination depends on the degradation of the cortex, a thick layer of modified peptidoglycan that maintains dormancy. Cortex degradation is mediated by the SleC cortex lytic enzyme, which is thought to recognize the cortex-specific modification muramic-δ-lactam. C. difficile cortex degradation also depends on the Peptostreptococcaceae-specific lipoprotein GerS for unknown reasons. In this study, we tested whether GerS regulates production of muramic-δ-lactam and thus controls the ability of SleC to recognize its cortex substrate. By comparing the muropeptide profiles of ΔgerS spores to those of spores lacking either CwlD or PdaA, both of which mediate cortex modification in Bacillus subtilis, we determined that C. difficile GerS, CwlD, and PdaA are all required to generate muramic-δ-lactam. Both GerS and CwlD were needed to cleave the peptide side chains from N-acetylmuramic acid, suggesting that these two factors act in concert. Consistent with this hypothesis, biochemical analyses revealed that GerS and CwlD directly interact and that CwlD modulates GerS incorporation into mature spores. Since ΔgerS, ΔcwlD, and ΔpdaA spores exhibited equivalent germination defects, our results indicate that C. difficile spore germination depends on cortex-specific modifications, reveal GerS as a novel regulator of these processes, and highlight additional differences in the regulation of spore germination in C. difficile relative to B. subtilis and other spore-forming organisms.IMPORTANCE The Gram-positive, spore-forming bacterium Clostridium difficile is a leading cause of antibiotic-associated diarrhea. Because C. difficile is an obligate anaerobe, its aerotolerant spores are essential for transmitting disease, and their germination into toxin-producing cells is necessary for causing disease. Spore germination requires the removal of the cortex, a thick layer of modified peptidoglycan that maintains spore dormancy. Cortex degradation is mediated by the SleC hydrolase, which is thought to recognize cortex-specific modifications. Cortex degradation also requires the GerS lipoprotein for unknown reasons. In our study, we tested whether GerS is required to generate cortex-specific modifications by comparing the cortex composition of ΔgerS spores to the cortex composition of spores lacking two putative cortex-modifying enzymes, CwlD and PdaA. These analyses revealed that GerS, CwlD, and PdaA are all required to generate cortex-specific modifications. Since loss of these modifications in ΔgerS, ΔcwlD, and ΔpdaA mutants resulted in spore germination and heat resistance defects, the SleC cortex lytic enzyme depends on cortex-specific modifications to efficiently degrade this protective layer. Our results further indicate that GerS and CwlD are mutually required for removing peptide chains from spore peptidoglycan and revealed a novel interaction between these proteins. Thus, our findings provide new mechanistic insight into C. difficile spore germination.
Collapse
Affiliation(s)
- Oscar R Diaz
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- NIH Postbaccalaureate Research Education Program (PREP), Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cameron V Sayer
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases. Int J Mol Sci 2018; 19:ijms19020412. [PMID: 29385775 PMCID: PMC5855634 DOI: 10.3390/ijms19020412] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/27/2022] Open
Abstract
Carbohydrate esterases family 4 (CE4 enzymes) includes chitin and peptidoglycan deacetylases, acetylxylan esterases, and poly-N-acetylglucosamine deacetylases that act on structural polysaccharides, altering their physicochemical properties, and participating in diverse biological functions. Chitin and peptidoglycan deacetylases are not only involved in cell wall morphogenesis and remodeling in fungi and bacteria, but they are also used by pathogenic microorganisms to evade host defense mechanisms. Likewise, biofilm formation in bacteria requires partial deacetylation of extracellular polysaccharides mediated by poly-N-acetylglucosamine deacetylases. Such biological functions make these enzymes attractive targets for drug design against pathogenic fungi and bacteria. On the other side, acetylxylan esterases deacetylate plant cell wall complex xylans to make them accessible to hydrolases, making them attractive biocatalysts for biomass utilization. CE4 family members are metal-dependent hydrolases. They are highly specific for their particular substrates, and show diverse modes of action, exhibiting either processive, multiple attack, or patterned deacetylation mechanisms. However, the determinants of substrate specificity remain poorly understood. Here, we review the current knowledge on the structure, activity, and specificity of CE4 enzymes, focusing on chitin deacetylases and related enzymes active on N-acetylglucosamine-containing oligo and polysaccharides.
Collapse
|
24
|
Abstract
Bacterial endospores possess multiple integument layers, one of which is the cortex peptidoglycan wall. The cortex is essential for the maintenance of spore core dehydration and dormancy and contains structural modifications that differentiate it from vegetative cell peptidoglycan and determine its fate during spore germination. Following the engulfment stage of sporulation, the cortex is synthesized within the intermembrane space surrounding the forespore. Proteins responsible for cortex synthesis are produced in both the forespore and mother cell compartments. While some of these proteins also contribute to vegetative cell wall synthesis, others are sporulation specific. In order for the bacterial endospore to germinate and resume metabolism, the cortex peptidoglycan must first be degraded through the action of germination-specific lytic enzymes. These enzymes are present, yet inactive, in the dormant spore and recognize the muramic-δ-lactam modification present in the cortex. Germination-specific lytic enzymes across Bacillaceae and Clostridiaceae share this specificity determinant, which ensures that the spore cortex is hydrolyzed while the vegetative cell wall remains unharmed. Bacillus species tend to possess two redundant enzymes, SleB and CwlJ, capable of sufficient cortex degradation, while the clostridia have only one, SleC. Additional enzymes are often present that cannot initiate the cortex degradation process, but which can increase the rate of release of small fragments into the medium. Between the two families, the enzymes also differ in the enzymatic activities they possess and the mechanisms acting to restrict their activation until germination has been initiated.
Collapse
|
25
|
Abstract
Despite being resistant to a variety of environmental insults, the bacterial endospore can sense the presence of small molecules and respond by germinating, losing the specialized structures of the dormant spore, and resuming active metabolism, before outgrowing into vegetative cells. Our current level of understanding of the spore germination process in bacilli and clostridia is reviewed, with particular emphasis on the germinant receptors characterized in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. The recent evidence for a local clustering of receptors in a "germinosome" would begin to explain how signals from different receptors could be integrated. The SpoVA proteins, involved in the uptake of Ca2+-dipicolinic acid into the forespore during sporulation, are also responsible for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and some clostridia, hydrolyze the spore cortex: other clostridia use SleC for this purpose. With genome sequencing has come the appreciation that there is considerable diversity in the setting for the germination machinery between bacilli and clostridia.
Collapse
|
26
|
The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation. mSphere 2017; 2:mSphere00315-17. [PMID: 28959733 PMCID: PMC5607322 DOI: 10.1128/msphere.00315-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023] Open
Abstract
The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation. The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and transform into vegetative, toxin-secreting cells. During infection, C. difficile must also induce spore formation to survive exit from the host. Since spore formation is essential for transmission, understanding the basic mechanisms underlying sporulation in C. difficile could inform the development of therapeutic strategies targeting spores. In this study, we determine the requirement of the C. difficile homolog of SpoVM, a protein that is essential for spore formation in Bacillus subtilis due to its regulation of coat and cortex formation. We observed that SpoVM plays a minor role in C. difficile spore formation, in contrast with B. subtilis, indicating that this protein would not be a good target for inhibiting spore formation.
Collapse
|
27
|
Parthiban C, Varudharasu D, Shanmugam M, Gopal P, Ragunath C, Thomas L, Nitz M, Ramasubbu N. Structural and functional analysis of de-N-acetylase PgaB from periodontopathogen Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2017; 32:324-340. [PMID: 27706922 PMCID: PMC11471279 DOI: 10.1111/omi.12175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 10/15/2024]
Abstract
The oral pathogen Aggregatibacter actinomycetemcomitans uses pga gene locus for the production of an exopolysaccharide made up of a linear homopolymer of β-1,6-N-acetyl-d-glucosamine (PGA). An enzyme encoded by the pgaB of the pga operon in A. actinomycetemcomitans is a de-N-acetylase, which is used to alter the PGA. The full length enzyme (AaPgaB) and the N-terminal catalytic domain (residues 25-290, AaPgaBN) from A. actinomycetemcomitans were cloned, expressed and purified. The enzymatic activities of the AaPgaB enzymes were determined using 7-acetoxycoumarin-3-carboxylic acid as the substrate. The AaPgaB enzymes displayed significantly lower de-N-acetylase activity compared with the activity of the deacetylase PdaA from Bacillus subtilis, a member of the CE4 family of enzymes. To delineate the differences in the activity and the active site architecture, the structure of AaPgaBN was determined. The AaPgaBN structure has two metal ions in the active site instead of one found in other CE4 enzymes. Based on the crystal structure comparisons among the various CE4 enzymes, two residues, Q51 and R271, were identified in AaPgaB, which could potentially affect the enzyme activity. Of the two mutants generated, Q51E and R271K, the variant Q51E showed enhanced activity compared with AaPgaB, validating the requirement that an activating aspartate residue in the active site is essential for higher activity. In summary, our study provides the first structural evidence for a di-nuclear metal site at the active site of a member of the CE4 family of enzymes, evidence that AaPgaBN is catalytically active and that mutant Q51E exhibits higher de-N-acetylase activity.
Collapse
Affiliation(s)
- C Parthiban
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - D Varudharasu
- Selvam Structure Based Drug Design Laboratory, Selvam College of Technology, Namakkal, Tamilnadu, India
| | - M Shanmugam
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - P Gopal
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - C Ragunath
- Scientific Chemical Technologies, Malden, MA, USA
| | - L Thomas
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - M Nitz
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - N Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
28
|
Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes. J Bacteriol 2015; 198:377-85. [PMID: 26369581 DOI: 10.1128/jb.00474-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation.
Collapse
|
29
|
Weighill DA, Jacobson DA. 3-way networks: application of hypergraphs for modelling increased complexity in comparative genomics. PLoS Comput Biol 2015; 11:e1004079. [PMID: 25815802 PMCID: PMC4376783 DOI: 10.1371/journal.pcbi.1004079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/08/2014] [Indexed: 11/24/2022] Open
Abstract
We present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes. Genomes contain the information underlying the molecular functions of an organism. One way to compare the entire genomes of different organisms is to compare their gene-family content profiles which is effectively a comparison of their functional potential. Standard networks, when used to model phylogenomic similarities, are not capable of capturing some of the underlying complexity of the relationships between genomes. In order to address this, we have developed a new three-way similarity metric and constructed three-way networks modelling the relationships between 211 bacterial genomes. We find that such three-way networks find cross-species genomic similarities that would have been otherwise missed by simpler models such as standard networks.
Collapse
Affiliation(s)
- Deborah A Weighill
- Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Daniel A Jacobson
- Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
30
|
The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcus xanthus sporulation. J Bacteriol 2015; 197:1276-87. [PMID: 25645554 DOI: 10.1128/jb.02408-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In the bacterium Myxococcus xanthus, starvation triggers the formation of multicellular fruiting bodies containing thousands of stress-resistant spores. Recent work showed that fruiting body development is regulated by a cascade of transcriptional activators called enhancer binding proteins (EBPs). The EBP Nla6 is a key component of this cascade; it regulates the promoters of other EBP genes, including a downstream-functioning EBP gene that is crucial for sporulation. In recent expression studies, hundreds of Nla6-dependent genes were identified, suggesting that the EBP gene targets of Nla6 may be part of a much larger regulon. The goal of this study was to identify and characterize genes that belong to the Nla6 regulon. Accordingly, a direct repeat [consensus, C(C/A)ACGNNGNC] binding site for Nla6 was identified using in vitro and in vivo mutational analyses, and the sequence was subsequently used to find 40 potential developmental promoter (88 gene) targets. We showed that Nla6 binds to the promoter region of four new targets (asgE, exo, MXAN2688, and MXAN3259) in vitro and that Nla6 is important for their normal expression in vivo. Phenotypic studies indicate that all of the experimentally confirmed targets of Nla6 are primarily involved in sporulation. These targets include genes involved in transcriptional regulation, cell-cell signal production, and spore differentiation and maturation. Although sporulation occurs late in development, all of the developmental loci analyzed here show an Nla6-dependent burst in expression soon after starvation is induced. This finding suggests that Nla6 starts preparing cells for sporulation very early in the developmental process. IMPORTANCE Bacterial development yields a remarkable array of complex multicellular forms. One such form, which is commonly found in nature, is a surface-associated aggregate of cells known as a biofilm. Mature biofilms are structurally complex and contain cells that are highly resistant to antibacterial agents. When starving, the model bacterium Myxococcus xanthus forms a biofilm containing a thin mat of cells and multicellular structures that house a highly resistant cell type called a myxospore. Here, we identify the promoter binding site of the transcriptional activator Nla6, identify genes in the Nla6 regulon, and show that several of the genes in the Nla6 regulon are important for production of stress-resistant spores in starvation-induced M. xanthus biofilms.
Collapse
|
31
|
Abstract
Since the first application of high hydrostatic pressure (HHP) for food preservation more than 100 years ago, a wealth of knowledge has been gained on molecular mechanisms underlying the HHP-mediated destruction of microorganisms. However, one observation made back then is still valid, i.e. that HHP alone is not sufficient for the complete inactivation of bacterial endospores. To achieve "commercial sterility" of low-acid foods, i.e. inactivation of spores capable of growing in a specific product under typical storage conditions, a combination of HHP with other hurdles is required (most effectively with heat (HPT)). Although HPT processes are not yet industrially applied, continuous technical progress and increasing consumer demand for minimally processed, additive-free food with long shelf life, makes HPT sterilization a promising alternative to thermal processing.In recent years, considerable progress has been made in understanding the response of spores of the model organism B. subtilis to HPT treatments and detailed insights into some basic mechanisms in Clostridium species shed new light on differences in the HPT-mediated inactivation of Bacillus and Clostridium spores. In this chapter, current knowledge on sporulation and germination processes, which presents the basis for understanding development and loss of the extreme resistance properties of spores, is summarized highlighting commonalities and differences between Bacillus and Clostridium species. In this context, the effect of HPT treatments on spores, inactivation mechanism and kinetics, the role of population heterogeneity, and influence factors on the results of inactivation studies are discussed.
Collapse
Affiliation(s)
- Christian A Lenz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
32
|
Abstract
Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids (TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis, and important functions of major cell envelope components in gram-positive bacteria. Possible targets for new antimicrobials will be noted.
Collapse
|
33
|
Andrés E, Albesa-Jové D, Biarnés X, Moerschbacher BM, Guerin ME, Planas A. Structural Basis of Chitin Oligosaccharide Deacetylation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Hashimoto M, Fujikura K, Miyake Y, Higashitsuji Y, Kiriyama Y, Tanaka T, Yamamoto H, Sekiguchi J. A cell wall protein (YqgA) is genetically related to the cell wall-degrading dl-endopeptidases in Bacillus subtilis. Biosci Biotechnol Biochem 2014; 78:1428-34. [PMID: 25130749 DOI: 10.1080/09168451.2014.923294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Gram-positive bacterium Bacillus subtilis has a thick cell wall. The cell wall contains various proteins, both for secretion and for peptidoglycan (PG) maintenance. Penicillin-binding proteins for PG synthesis, PG hydrolases (autolysins), and regulator proteins for the autolysins are the known components of the PG maintenance system. YqgA was identified as an abundant protein attached to the cell wall of B. subtilis through a proteomics analysis. The YqgA protein was localized at cell division sites during the transition period between the exponential and the stationary phases. YqgA localization was affected by mutations in the dl-endopeptidases (DLEPases), which are the autolysins involved in cell morphogenesis. Furthermore, yqgA mutations on a background of defective DLEPases led to delays in cell growth and cell morphological changes. These results demonstrate that yqgA is genetically related to the genes encoding DLEPases involved in cell morphogenesis.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- a Institute of Molecular Medicine , National Cheng Kung University Medical College , Tainan , Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Andrés E, Albesa-Jové D, Biarnés X, Moerschbacher BM, Guerin ME, Planas A. Structural basis of chitin oligosaccharide deacetylation. Angew Chem Int Ed Engl 2014; 53:6882-7. [PMID: 24810719 DOI: 10.1002/anie.201400220] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/02/2014] [Indexed: 01/28/2023]
Abstract
Cell signaling and other biological activities of chitooligosaccharides (COSs) seem to be dependent not only on the degree of polymerization, but markedly on the specific de-N-acetylation pattern. Chitin de-N-acetylases (CDAs) catalyze the hydrolysis of the acetamido group in GlcNAc residues of chitin, chitosan, and COS. A major challenge is to understand how CDAs specifically define the distribution of GlcNAc and GlcNH2 moieties in the oligomeric chain. We report the crystal structure of the Vibrio cholerae CDA in four relevant states of its catalytic cycle. The two enzyme complexes with chitobiose and chitotriose represent the first 3D structures of a CDA with its natural substrates in a productive mode for catalysis, thereby unraveling an induced-fit mechanism with a significant conformational change of a loop closing the active site. We propose that the deacetylation pattern exhibited by different CDAs is governed by critical loops that shape and differentially block accessible subsites in the binding cleft of CE4 enzymes.
Collapse
Affiliation(s)
- Eduardo Andrés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona (Spain)
| | | | | | | | | | | |
Collapse
|
36
|
Gene conservation among endospore-forming bacteria reveals additional sporulation genes in Bacillus subtilis. J Bacteriol 2012; 195:253-60. [PMID: 23123912 DOI: 10.1128/jb.01778-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity to form endospores is unique to certain members of the low-G+C group of Gram-positive bacteria (Firmicutes) and requires signature sporulation genes that are highly conserved across members of distantly related genera, such as Clostridium and Bacillus. Using gene conservation among endospore-forming bacteria, we identified eight previously uncharacterized genes that are enriched among endospore-forming species. The expression of five of these genes was dependent on sporulation-specific transcription factors. Mutants of none of the genes exhibited a conspicuous defect in sporulation, but mutants of two, ylxY and ylyA, were outcompeted by a wild-type strain under sporulation-inducing conditions, but not during growth. In contrast, a ylmC mutant displayed a slight competitive advantage over the wild type specific to sporulation-inducing conditions. The phenotype of a ylyA mutant was ascribed to a defect in spore germination efficiency. This work demonstrates the power of combining phylogenetic profiling with reverse genetics and gene-regulatory studies to identify unrecognized genes that contribute to a conserved developmental process.
Collapse
|
37
|
Kobayashi K, Sudiarta IP, Kodama T, Fukushima T, Ara K, Ozaki K, Sekiguchi J. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J Biol Chem 2012; 287:9765-9776. [PMID: 22277649 DOI: 10.1074/jbc.m111.329490] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell wall metabolism and cell wall modification are very important processes that bacteria use to adjust to various environmental conditions. One of the main modifications is deacetylation of peptidoglycan. The polysaccharide deacetylase homologue, Bacillus subtilis YjeA (renamed PdaC), was characterized and found to be a unique deacetylase. The pdaC deletion mutant was sensitive to lysozyme treatment, indicating that PdaC acts as a deacetylase. The purified recombinant and truncated PdaC from Escherichia coli deacetylated B. subtilis peptidoglycan and its polymer, (-GlcNAc-MurNAc[-L-Ala-D-Glu]-)(n). Surprisingly, RP-HPLC and ESI-MS/MS analyses showed that the enzyme deacetylates N-acetylmuramic acid (MurNAc) not GlcNAc from the polymer. Contrary to Streptococcus pneumoniae PgdA, which shows high amino acid sequence similarity with PdaC and is a zinc-dependent GlcNAc deacetylase toward peptidoglycan, there was less dependence on zinc ion for deacetylation of peptidoglycan by PdaC than other metal ions (Mn(2+), Mg(2+), Ca(2+)). The kinetic values of the activity toward B. subtilis peptidoglycan were K(m) = 4.8 mM and k(cat) = 0.32 s(-1). PdaC also deacetylated N-acetylglucosamine (GlcNAc) oligomers with a K(m) = 12.3 mM and k(cat) = 0.24 s(-1) toward GlcNAc(4). Therefore, PdaC has GlcNAc deacetylase activity toward GlcNAc oligomers and MurNAc deacetylase activity toward B. subtilis peptidoglycan.
Collapse
Affiliation(s)
- Kaori Kobayashi
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - I Putu Sudiarta
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Takeko Kodama
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | - Tatsuya Fukushima
- Division of Gene Research, Department of Life Sciences, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan and
| | - Katsutoshi Ara
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | - Katsuya Ozaki
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | - Junichi Sekiguchi
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
38
|
Comparison of different Bacillus subtilis expression systems. Res Microbiol 2010; 161:791-7. [PMID: 20863884 DOI: 10.1016/j.resmic.2010.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/27/2010] [Indexed: 11/23/2022]
Abstract
Bacillus subtilis is considered to have great potential as a host for the production and secretion of recombinant proteins. Many different expression systems have been developed for B. subtilis. Here we compare two widely used expression systems, the IPTG-inducible derivative of spac system (hyper-spank) and the xylose-inducible (xyl) to the SURE (subtilin-regulated gene expression) system. Western blot analysis of the membrane protein SpoIISA together with its protein partner SpoIISB showed that the highest expression level of this complex is obtained using the SURE system. Measurement of β-galactosidase activities of the promoter-lacZ fusions in individual expression systems confirmed that the P(spaS) promoter of the SURE system is the strongest of those compared, although the induction/repression ratio reached only 1.84. Based on these results, we conclude that the SURE system is the most efficient of these three B. subtilis expression systems in terms of the amount of expressed product. Remarkably, the yield of the SpoIISA-SpoIISB complex obtained from B. subtilis was comparable to that normally obtained from the Escherichia coli arabinose-inducible expression system.
Collapse
|
39
|
Development of natto with germination-defective mutants of Bacillus subtilis (natto). Appl Microbiol Biotechnol 2009; 82:741-8. [PMID: 19205688 DOI: 10.1007/s00253-009-1894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
The effects of cortex-lysis related genes with the pdaA, sleB, and cwlD mutations of Bacillus subtilis (natto) NAFM5 on sporulation and germination were investigated. Single or double mutations did not prevent normal sporulation, but did affect germination. Germination was severely inhibited by the double mutation of sleB and cwlD. The quality of natto made with the sleB cwlD double mutant was tested, and the amounts of glutamic acid and ammonia were very similar to those in the wild type. The possibility of industrial development of natto containing a reduced number of viable spores is presented.
Collapse
|
40
|
Ramazzina I, Cendron L, Folli C, Berni R, Monteverdi D, Zanotti G, Percudani R. Logical identification of an allantoinase analog (puuE) recruited from polysaccharide deacetylases. J Biol Chem 2008; 283:23295-304. [PMID: 18550550 DOI: 10.1074/jbc.m801195200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrolytic cleavage of the hydantoin ring of allantoin, catalyzed by allantoinase, is required for the utilization of the nitrogen present in purine-derived compounds. The allantoinase gene (DAL1), however, is missing in many completely sequenced organisms able to use allantoin as a nitrogen source. Here we show that an alternative allantoinase gene (puuE) can be precisely identified by analyzing its logic relationship with three other genes of the pathway. The novel allantoinase is annotated in structure and sequence data bases as polysaccharide deacetylase for its homology with enzymes that catalyze hydrolytic reactions on chitin or peptidoglycan substrates. The recombinant PuuE protein from Pseudomonas fluorescens exhibits metal-independent allantoinase activity and stereospecificity for the S enantiomer of allantoin. The crystal structures of the protein and of protein-inhibitor complexes reveal an overall similarity with the polysaccharide deacetylase beta/alpha barrel and remarkable differences in oligomeric assembly and active site geometry. The conserved Asp-His-His metal-binding triad is replaced by Glu-His-Trp, a configuration that is distinctive of PuuE proteins within the protein family. An extra domain at the top of the barrel offers a scaffold for protein tetramerization and forms a small substrate-binding cleft by hiding the large binding groove of polysaccharide deacetylases. Substrate positioning at the active site suggests an acid/base mechanism of catalysis in which only one member of the catalytic pair of polysaccharide deacetylases has been conserved. These data provide a structural rationale for the shifting of substrate specificity that occurred during evolution.
Collapse
Affiliation(s)
- Ileana Ramazzina
- Department of Biochemistry and Molecular Biology and Mathematics, University of Parma, 43100, Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Tsalafouta A, Psylinakis E, Kapetaniou EG, Kotsifaki D, Deli A, Roidis A, Bouriotis V, Kokkinidis M. Purification, crystallization and preliminary X-ray analysis of the peptidoglycan N-acetylglucosamine deacetylase BC1960 from Bacillus cereus in the presence of its substrate (GlcNAc)6. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:203-5. [PMID: 18323609 PMCID: PMC2374148 DOI: 10.1107/s1744309108002510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/23/2008] [Indexed: 11/10/2022]
Abstract
The peptidoglycan N-acetylglucosamine (GlcNAc) deacetylase BC1960 from Bacillus cereus (EC 3.5.1.33), an enzyme consisting of 275 amino acids, was crystallized in the presence of its substrate (GlcNAc)(6). The crystals belonged to the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = b = 92.7, c = 242.9 A and four molecules in the asymmetric unit. A complete data set was collected at 100 K to a resolution of 2.38 A using synchrotron radiation.
Collapse
Affiliation(s)
- Aleka Tsalafouta
- Department of Biology, University of Crete, PO Box 2208, GR-71110, Heraklion, Crete, Greece
| | - Emmanuel Psylinakis
- Institute of Molecular Biology and Biotechnology (IMBB), PO Box 1527, GR-71110, Heraklion, Crete, Greece
| | - Evangelia G. Kapetaniou
- Institute of Molecular Biology and Biotechnology (IMBB), PO Box 1527, GR-71110, Heraklion, Crete, Greece
| | - Dina Kotsifaki
- Institute of Molecular Biology and Biotechnology (IMBB), PO Box 1527, GR-71110, Heraklion, Crete, Greece
| | - Alexandra Deli
- Department of Biology, University of Crete, PO Box 2208, GR-71110, Heraklion, Crete, Greece
| | - Alexandros Roidis
- Institute of Molecular Biology and Biotechnology (IMBB), PO Box 1527, GR-71110, Heraklion, Crete, Greece
| | - Vasilis Bouriotis
- Department of Biology, University of Crete, PO Box 2208, GR-71110, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology (IMBB), PO Box 1527, GR-71110, Heraklion, Crete, Greece
| | - Michael Kokkinidis
- Department of Biology, University of Crete, PO Box 2208, GR-71110, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology (IMBB), PO Box 1527, GR-71110, Heraklion, Crete, Greece
| |
Collapse
|
42
|
Fukushima T, Kitajima T, Yamaguchi H, Ouyang Q, Furuhata K, Yamamoto H, Shida T, Sekiguchi J. Identification and characterization of novel cell wall hydrolase CwlT: a two-domain autolysin exhibiting n-acetylmuramidase and DL-endopeptidase activities. J Biol Chem 2008; 283:11117-25. [PMID: 18305117 DOI: 10.1074/jbc.m706626200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cell wall hydrolase homologue, Bacillus subtilis YddH (renamed CwlT), was determined to be a novel cell wall lytic enzyme. The cwlT gene is located in the region of an integrative and conjugative element (ICEBs1), and a cwlT-lacZ fusion experiment revealed the significant expression when mitomycin C was added to the culture. Judging from the Pfam data base, CwlT (cell wall lytic enzyme T (Two-catalytic domains)) has two hydrolase domains that exhibit high amino acid sequence similarity to dl-endopeptidases and relatively low similarity to lytic transglycosylases at the C and N termini, respectively. The purified C-terminal domain of CwlT (CwlT-C-His) could hydrolyze the linkage of d-gamma-glutamyl-meso-diaminopimelic acid in B. subtilis peptidoglycan, suggesting that the C-terminal domain acts as a dl-endopeptidase. On the other hand, the purified N-terminal domain (CwlT-N-His) could also hydrolyze the peptidoglycan of B. subtilis. However, on reverse-phase HPLC and mass spectrometry (MS) and MS-MS analyses of the reaction products by CwlT-N-His, this domain was determined to act as an N-acetylmuramidase and not a lytic transglycosylase. Moreover, the site-directed mutagenesis analysis revealed that Glu-87 and Asp-94 are sites related with the cell wall lytic activity. Because the amino acid sequence of the N-terminal domain of CwlT exhibits low similarity compared with those of the soluble lytic transglycosylase and muramidase (goose lysozyme), this domain represents "a new category of cell wall hydrolases."
Collapse
Affiliation(s)
- Tatsuya Fukushima
- Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 2008; 32:259-86. [PMID: 18266855 DOI: 10.1111/j.1574-6976.2007.00099.x] [Citation(s) in RCA: 647] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Most bacteria have multiple peptidoglycan hydrolases capable of cleaving covalent bonds in peptidoglycan sacculi or its fragments. An overview of the different classes of peptidoglycan hydrolases and their cleavage sites is provided. The physiological functions of these enzymes include the regulation of cell wall growth, the turnover of peptidoglycan during growth, the separation of daughter cells during cell division and autolysis. Specialized hydrolases enlarge the pores in the peptidoglycan for the assembly of large trans-envelope complexes (pili, flagella, secretion systems), or they specifically cleave peptidoglycan during sporulation or spore germination. Moreover, peptidoglycan hydrolases are involved in lysis phenomena such as fratricide or developmental lysis occurring in bacterial populations. We will also review the current view on the regulation of autolysins and on the role of cytoplasm hydrolases in peptidoglycan recycling and induction of beta-lactamase.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
44
|
Abstract
The normal, unmodified glycan strands of bacterial peptidoglycan consist of alternating residues of beta-1,4-linked N-acetylmuramic acid and N-acetylglucosamine. In many species the glycan strands become modified after their insertion into the cell wall. This review describes the structure of secondary modifications and of attachment sites of surface polymers in the glycan strands of peptidoglycan. It also provides an overview of the occurrence of these modifications in various bacterial species. Recently, enzymes responsible for the N-deacetylation, N-glycolylation and O-acetylation of the glycan strands were identified. The presence of these modifications affects the hydrolysis of peptidoglycan and its enlargement during cell growth. Glycan strands are frequently deacetylated and/or O-acetylated in pathogenic species. These alterations affect the recognition of bacteria by host factors, and contribute to the resistance of bacteria to host defence factors such as lysozyme.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK.
| |
Collapse
|
45
|
Fukushima T, Yao Y, Kitajima T, Yamamoto H, Sekiguchi J. Characterization of new l,d-endopeptidase gene product CwlK (previous YcdD) that hydrolyzes peptidoglycan in Bacillus subtilis. Mol Genet Genomics 2007; 278:371-83. [PMID: 17588176 DOI: 10.1007/s00438-007-0255-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Bacillus subtilis has various cell wall hydrolases, however, the functions and hydrolase activities of some enzymes are still unknown. B. subtilis CwlK (YcdD) exhibits high sequence similarity with the peptidoglycan hydrolytic L,D-endopeptidase (PLY500) of Listeria monocytogenes phage and CwlK has the VanY motif which is a D-alanyl-D-alanine carboxypeptidase (Pfam: http://www.sanger.ac.uk/Software/Pfam/). The beta-galactosidase activity observed on cwlK-lacZ fusion indicated that the cwlK gene was expressed during the vegetative growth phase, and Western blotting suggested that CwlK seems to be localized in the membrane. Truncated CwlK fused with a histidine-tag (h-DeltaCwlK) was produced in Escherichia coli and purified on a nickel column. The h-DeltaCwlK protein hydrolyzed the peptidoglycan of B. subtilis, and the optimal pH, temperature and NaCl concentration for h-DeltaCwlK were pH 6.5, 37 degrees C, and 0 M, respectively. Interestingly, h-DeltaCwlK could hydrolyze the linkage of L-alanine-D-glutamic acid in the stem of the peptidoglycan, however, this enzyme could not hydrolyze the linkage of D-alanine-D-alanine, suggesting that CwlK is an L,D-endopeptidase not a D,D-carboxypeptidase. CwlK could not hydrolyze polyglutamate from B. natto or peptidoglycan of Staphylococcus aureus. This is the first report describing the characterization of an L,D-endopeptidase in B. subtilis and also the first report in bacteria of the characterization of a PLY500 family protein encoded in chromosomal DNA.
Collapse
Affiliation(s)
- Tatsuya Fukushima
- Department of Bioscience and Textile Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano, 386-8567, Japan
| | | | | | | | | |
Collapse
|
46
|
Day WA, Rasmussen SL, Carpenter BM, Peterson SN, Friedlander AM. Microarray analysis of transposon insertion mutations in Bacillus anthracis: global identification of genes required for sporulation and germination. J Bacteriol 2007; 189:3296-301. [PMID: 17277068 PMCID: PMC1855828 DOI: 10.1128/jb.01860-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/23/2007] [Indexed: 11/20/2022] Open
Abstract
A transposon site hybridization (TraSH) assay was developed for functional analysis of the Bacillus anthracis genome using a mini-Tn10 transposon which permitted analysis of 82% of this pathogen's genes. The system, used to identify genes required for generation of infectious anthrax spores, spore germination, and optimal growth on rich medium, was predictive of the contributions of two conserved hypothetical genes for the phenotypes examined.
Collapse
Affiliation(s)
- William A Day
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
47
|
Hu K, Yang H, Liu G, Tan H. Identification and characterization of a polysaccharide deacetylase gene from Bacillus thuringiensis. Can J Microbiol 2007; 52:935-41. [PMID: 17110961 DOI: 10.1139/w06-045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One polysaccharide deacetylase gene was cloned from Bacillus thuringiensis and designated pdaA. Disruption of pdaA did not affect vegetative growth and sporulation but obviously affected spore germination. When L-alanine was added into the spore suspension, the spores of the pdaA disruption mutant showed a slow and partial reduction in absorbance at OD600 and became phase pale gray compared with phase dark of the wild-type strain. In contrast with the outgrowing of wild-type spores after germination, the pdaA mutant spores were blocked at the stage of spore germination. Transmission electron micrographs revealed a significant difference between the pdaA mutant and the wild-type strain in the spore cortex. Introduction of the pdaA gene into the pdaA disruption mutant complemented the germination-negative phenotype. Reverse transcription--polymerase chain reaction showed that pdaA was transcribed after incubation for 10 h in CCY medium.
Collapse
Affiliation(s)
- Kun Hu
- Institute of Microbiology, Chinese Academy of Science, Beijing, PR China
| | | | | | | |
Collapse
|
48
|
Forman S, Bobrov AG, Kirillina O, Craig SK, Abney J, Fetherston JD, Perry RD. Identification of critical amino acid residues in the plague biofilm Hms proteins. MICROBIOLOGY-SGM 2007; 152:3399-3410. [PMID: 17074909 DOI: 10.1099/mic.0.29224-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Yersinia pestis biofilm formation causes massive adsorption of haemin or Congo red in vitro as well as colonization and eventual blockage of the flea proventriculus in vivo. This blockage allows effective transmission of plague from some fleas, like the oriental rat flea, to mammals. Four Hms proteins, HmsH, HmsF, HmsR and HmsS, are essential for biofilm formation, with HmsT and HmsP acting as positive and negative regulators, respectively. HmsH has a beta-barrel structure with a large periplasmic domain while HmsF possesses polysaccharide deacetylase and COG1649 domains. HmsR is a putative glycosyltransferase while HmsS has no recognized domains. In this study, specific amino acids within conserved domains or within regions of high similarity in HmsH, HmsF, HmsR and HmsS proteins were selected for site-directed mutagenesis. Some but not all of the substitutions in HmsS and within the periplasmic domain of HmsH were critical for protein function. Substitutions within the glycosyltransferase domain of HmsR and the deacetylase domain of HmsF abolished biofilm formation in Y. pestis. Surprisingly, substitution of highly conserved residues within COG1649 did not affect HmsF function.
Collapse
Affiliation(s)
- Stanislav Forman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | - Susannah K Craig
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | - Jennifer Abney
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| |
Collapse
|
49
|
Schumann W. Production of Recombinant Proteins in Bacillus subtilis. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:137-89. [PMID: 17869605 DOI: 10.1016/s0065-2164(07)62006-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
50
|
Oberbarnscheidt L, Taylor EJ, Davies GJ, Gloster TM. Structure of a carbohydrate esterase from Bacillus anthracis. Proteins 2006; 66:250-2. [PMID: 17063474 DOI: 10.1002/prot.21217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leoni Oberbarnscheidt
- York Structural Biology Laboratory, University of York, York YO10 5YW, United Kingdom
| | | | | | | |
Collapse
|