1
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Calder A, Snyder LAS. Diversity of the type VI secretion systems in the Neisseria spp. Microb Genom 2023; 9. [PMID: 37052605 DOI: 10.1099/mgen.0.000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Complete Type VI Secretion Systems were identified in the genome sequence data of Neisseria subflava isolates sourced from throat swabs of human volunteers. The previous report was the first to describe two complete Type VI Secretion Systems in these isolates, both of which were distinct in terms of their gene organization and sequence homology. Since publication of the first report, Type VI Secretion System subtypes have been identified in Neisseria spp. The characteristics of each type in N. subflava are further investigated here and in the context of the other Neisseria spp., including identification of the lineages containing the different types and subtypes. Type VI Secretion Systems use VgrG for delivery of toxin effector proteins; several copies of vgrG and associated effector / immunity pairs are present in Neisseria spp. Based on sequence similarity between strains and species, these core Type VI Secretion System genes, vgrG, and effector / immunity genes may diversify via horizontal gene transfer, an instrument for gene acquisition and repair in Neisseria spp.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
3
|
Shaskolskiy B, Kravtsov D, Kandinov I, Dementieva E, Gryadunov D. Genomic Diversity and Chromosomal Rearrangements in Neisseria gonorrhoeae and Neisseria meningitidis. Int J Mol Sci 2022; 23:ijms232415644. [PMID: 36555284 PMCID: PMC9778887 DOI: 10.3390/ijms232415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal rearrangements in N. gonorrhoeae and N. meningitidis were studied with the determination of mobile elements and their role in rearrangements. The results of whole-genome sequencing and de novo genome assembly for 50 N. gonorrhoeae isolates collected in Russia were compared with 96 genomes of N. gonorrhoeae and 138 genomes of N. meningitidis from the databases. Rearrangement events with the determination of the coordinates of syntenic blocks were analyzed using the SibeliaZ software v.1.2.5, the minimum number of events that allow one genome to pass into another was calculated using the DCJ-indel model using the UniMoG program v.1.0. Population-level analysis revealed a stronger correlation between changes in the gene order and phylogenetic proximity for N. meningitidis in contrast to N. gonorrhoeae. Mobile elements were identified, including Correa elements; Spencer-Smith elements (in N. gonorrhoeae); Neisserial intergenic mosaic elements; IS elements of IS5, IS30, IS110, IS1595 groups; Nf1-Nf3 prophages; NgoФ1-NgoФ9 prophages; and Mu-like prophages Pnm1, Pnm2, MuMenB (in N. meningitidis). More than 44% of the observed rearrangements most likely occurred with the participation of mobile elements, including prophages. No differences were found between the Russian and global N. gonorrhoeae population both in terms of rearrangement events and in the number of transposable elements in genomes.
Collapse
|
4
|
Lipszyc A, Szuplewska M, Bartosik D. How Do Transposable Elements Activate Expression of Transcriptionally Silent Antibiotic Resistance Genes? Int J Mol Sci 2022; 23:8063. [PMID: 35897639 PMCID: PMC9330008 DOI: 10.3390/ijms23158063] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The rapidly emerging phenomenon of antibiotic resistance threatens to substantially reduce the efficacy of available antibacterial therapies. Dissemination of resistance, even between phylogenetically distant bacterial species, is mediated mainly by mobile genetic elements, considered to be natural vectors of horizontal gene transfer. Transposable elements (TEs) play a major role in this process-due to their highly recombinogenic nature they can mobilize adjacent genes and can introduce them into the pool of mobile DNA. Studies investigating this phenomenon usually focus on the genetic load of transposons and the molecular basis of their mobility. However, genes introduced into evolutionarily distant hosts are not necessarily expressed. As a result, bacterial genomes contain a reservoir of transcriptionally silent genetic information that can be activated by various transposon-related recombination events. The TEs themselves along with processes associated with their transposition can introduce promoters into random genomic locations. Thus, similarly to integrons, they have the potential to convert dormant genes into fully functional antibiotic resistance determinants. In this review, we describe the genetic basis of such events and by extension the mechanisms promoting the emergence of new drug-resistant bacterial strains.
Collapse
Affiliation(s)
| | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.L.); (M.S.)
| |
Collapse
|
5
|
Durrant MG, Li MM, Siranosian BA, Montgomery SB, Bhatt AS. A Bioinformatic Analysis of Integrative Mobile Genetic Elements Highlights Their Role in Bacterial Adaptation. Cell Host Microbe 2020; 27:140-153.e9. [PMID: 31862382 PMCID: PMC6952549 DOI: 10.1016/j.chom.2019.10.022] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/18/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022]
Abstract
Mobile genetic elements (MGEs) contribute to bacterial adaptation and evolution; however, high-throughput, unbiased MGE detection remains challenging. We describe MGEfinder, a bioinformatic toolbox that identifies integrative MGEs and their insertion sites by using short-read sequencing data. MGEfinder identifies the genomic site of each MGE insertion and infers the identity of the inserted sequence. We apply MGEfinder to 12,374 sequenced isolates of 9 prevalent bacterial pathogens, including Mycobacterium tuberculosis, Staphylococcus aureus, and Escherichia coli, and identify thousands of MGEs, including candidate insertion sequences, conjugative transposons, and prophage elements. The MGE repertoire and insertion rates vary across species, and integration sites often cluster near genes related to antibiotic resistance, virulence, and pathogenicity. MGE insertions likely contribute to antibiotic resistance in laboratory experiments and clinical isolates. Additionally, we identified thousands of mobility genes, a subset of which have unknown function opening avenues for exploration. Future application of MGEfinder to commensal bacteria will further illuminate bacterial adaptation and evolution.
Collapse
Affiliation(s)
- Matthew G Durrant
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Michelle M Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Stephen B Montgomery
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation) Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
MITE Aba12 , a Novel Mobile Miniature Inverted-Repeat Transposable Element Identified in Acinetobacter baumannii ATCC 17978 and Its Prevalence across the Moraxellaceae Family. mSphere 2019; 4:4/1/e00028-19. [PMID: 30787115 PMCID: PMC6382973 DOI: 10.1128/mspheredirect.00028-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation. Insertion sequences (IS) are fundamental mediators of genome plasticity with the potential to generate phenotypic variation with significant evolutionary outcomes. Here, a recently active miniature inverted-repeat transposon element (MITE) was identified in a derivative of Acinetobacter baumannii ATCC 17978 after being subjected to stress conditions. Transposition of the novel element led to the disruption of the hns gene, resulting in a characteristic hypermotile phenotype. DNA identity shared between the terminal inverted repeats of this MITE and coresident ISAba12 elements, together with the generation of 9-bp target site duplications, provides strong evidence that ISAba12 elements were responsible for mobilization of the MITE (designated MITEAba12) within this strain. A wider genome-level survey identified MITEAba12 in 30 additional Acinetobacter genomes at various frequencies and one Moraxella osloensis genome. Ninety MITEAba12 copies could be identified, of which 40% had target site duplications, indicating recent transposition events. Elements ranged between 111 and 114 bp; 90% were 113 bp in length. Using the MITEAba12 consensus sequence, putative outward-facing Escherichia coli σ70 promoter sequences in both orientations were identified. The identification of transcripts originating from the promoter in one direction supports the proposal that the element can influence neighboring host gene transcription. The location of MITEAba12 varied significantly between and within genomes, preferentially integrating into AT-rich regions. Additionally, a copy of MITEAba12 was identified in a novel 8.5-kb composite transposon, Tn6645, in the M. osloensis CCUG 350 chromosome. Overall, this study shows that MITEAba12 is the most abundant nonautonomous element currently found in Acinetobacter. IMPORTANCE One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation.
Collapse
|
7
|
Elbeyioglu F, Roberts SB, Spencer-Smith R, Pulijala M, Zelewska MA, Nebel JC, Snyder LAS. Inversion of Correia repeat enclosed elements in Neisseria gonorrhoeae. Microbiology (Reading) 2017; 163:31-36. [DOI: 10.1099/mic.0.000394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Firat Elbeyioglu
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Sabrina B. Roberts
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Russell Spencer-Smith
- Present address: University of Illinois at Chicago, Chicago, IL, USA
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Madhuri Pulijala
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Marta A. Zelewska
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Jean-Christophe Nebel
- School of Computer Science and Mathematics, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Lori A. S. Snyder
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
8
|
Correia Repeat Enclosed Elements and Non-Coding RNAs in the Neisseria Species. Microorganisms 2016; 4:microorganisms4030031. [PMID: 27681925 PMCID: PMC5039591 DOI: 10.3390/microorganisms4030031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae is capable of causing gonorrhoea and more complex diseases in the human host. Neisseria meningitidis is a closely related pathogen that shares many of the same genomic features and virulence factors, but causes the life threatening diseases meningococcal meningitis and septicaemia. The importance of non-coding RNAs in gene regulation has become increasingly evident having been demonstrated to be involved in regulons responsible for iron acquisition, antigenic variation, and virulence. Neisseria spp. contain an IS-like element, the Correia Repeat Enclosed Element, which has been predicted to be mobile within the genomes or to have been in the past. This repeat, present in over 100 copies in the genome, has the ability to alter gene expression and regulation in several ways. We reveal here that Correia Repeat Enclosed Elements tend to be near non-coding RNAs in the Neisseria spp., especially N. gonorrhoeae. These results suggest that Correia Repeat Enclosed Elements may have disrupted ancestral regulatory networks not just through their influence on regulatory proteins but also for non-coding RNAs.
Collapse
|
9
|
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are closely related organisms that cause the sexually transmitted infection gonorrhea and serious bacterial meningitis and septicemia, respectively. Both species possess multiple mechanisms to alter the expression of surface-exposed proteins through the processes of phase and antigenic variation. This potential for wide variability in surface-exposed structures allows the organisms to always have subpopulations of divergent antigenic types to avoid immune surveillance and to contribute to functional variation. Additionally, the Neisseria are naturally competent for DNA transformation, which is their main means of genetic exchange. Although bacteriophages and plasmids are present in this genus, they are not as effective as DNA transformation for horizontal genetic exchange. There are barriers to genetic transfer, such as restriction-modification systems and CRISPR loci, that limit particular types of exchange. These host-restricted pathogens illustrate the rich complexity of genetics that can help define the similarities and differences of closely related organisms.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | | |
Collapse
|
10
|
Bai X, Borrow R. Genetic shifts ofNeisseria meningitidisserogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines 2014; 9:1203-17. [DOI: 10.1586/erv.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Ramsey ME, Hackett KT, Kotha C, Dillard JP. New complementation constructs for inducible and constitutive gene expression in Neisseria gonorrhoeae and Neisseria meningitidis. Appl Environ Microbiol 2012; 78:3068-78. [PMID: 22327577 PMCID: PMC3346468 DOI: 10.1128/aem.07871-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/06/2012] [Indexed: 12/20/2022] Open
Abstract
We have created new complementation constructs for use in Neisseria gonorrhoeae and Neisseria meningitidis. The constructs contain regions of homology with the chromosome and direct the insertion of a gene of interest into the intergenic region between the genes iga and trpB. In order to increase the available options for gene expression in Neisseria, we designed the constructs to contain one of three different promoters. One of the constructs contains the isopropyl-β-d-thiogalactopyranoside-inducible lac promoter, which has been widely used in Neisseria. We also designed a construct that contains the strong, constitutive promoter from the gonococcal opaB gene. The third construct contains a tetracycline-inducible promoter, a novel use of this promoter in Neisseria. We demonstrate that anhydrotetracycline can be used to induce gene expression in the pathogenic Neisseria at very low concentrations and without negatively affecting the growth of the organisms. We use these constructs to complement an arginine auxotrophy in N. gonorrhoeae as well as to express a translational fusion of alkaline phosphatase with TraW. TraW is a component of the gonococcal type IV secretion system, and we demonstrate that TraW localizes to the periplasm.
Collapse
Affiliation(s)
- Meghan E Ramsey
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.
Collapse
|
13
|
Lin YH, Ryan CS, Davies JK. Neisserial Correia repeat-enclosed elements do not influence the transcription of pil genes in Neisseria gonorrhoeae and Neisseria meningitidis. J Bacteriol 2011; 193:5728-36. [PMID: 21856854 PMCID: PMC3187199 DOI: 10.1128/jb.05526-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022] Open
Abstract
Two human-specific neisserial pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, require the expression of type IV pili (tfp) for initial attachment to the host during infection. However, the mechanisms controlling the assembly and functionality of tfp are poorly understood. It is known that the gonococcal pilE gene, encoding the major subunit, is positively regulated by IHF, a multifunctional DNA binding protein. A neisserial specific repetitive DNA sequence, termed the Correia repeat-enclosed element (CREE) is situated upstream of three pil loci: pilHIJKX (pilH-X), pilGD, and pilF. CREEs have been shown to contain strong promoters, and some CREE variants contain a functional IHF binding site. CREEs might therefore be involved in the regulation of tfp biogenesis in pathogenic Neisseria. Site-directed and deletion mutagenesis on promoter::cat reporter constructs demonstrated that transcription of pilH-X and pilGD is from a σ(70) promoter and is independent of the CREE. The insertion of a CREE in the pilF promoter region in N. meningitidis generated a functional σ(70) promoter. However, there is also a functional promoter at this position in N. gonorrhoeae, where there is no CREE. These results suggest CREE insertion in these three pil loci does not influence transcription and that IHF does not coordinately regulate tfp biogenesis.
Collapse
Affiliation(s)
- Ya-Hsun Lin
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
14
|
Siddique A, Buisine N, Chalmers R. The transposon-like Correia elements encode numerous strong promoters and provide a potential new mechanism for phase variation in the meningococcus. PLoS Genet 2011; 7:e1001277. [PMID: 21283790 PMCID: PMC3024310 DOI: 10.1371/journal.pgen.1001277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/14/2010] [Indexed: 01/05/2023] Open
Abstract
Neisseria meningitidis is the primary causative agent of bacterial meningitis. The genome is rich in repetitive DNA and almost 2% is occupied by a diminutive transposon called the Correia element. Here we report a bioinformatic analysis defining eight subtypes of the element with four distinct types of ends. Transcriptional analysis, using PCR and a lacZ reporter system, revealed that two ends in particular encode strong promoters. The activity of the strongest promoter is dictated by a recurrent polymorphism (Y128) at the right end of the element. We highlight examples of elements that appear to drive transcription of adjacent genes and others that may express small non-coding RNAs. Pair-wise comparisons between three meningococcal genomes revealed that no more than two-thirds of Correia elements maintain their subtype at any particular locus. This is due to recombinational class switching between elements in a single strain. Upon switching subtype, a new allele is available to spread through the population by natural transformation. This process may represent a hitherto unrecognized mechanism for phase variation in the meningococcus. We conclude that the strain-to-strain variability of the Correia elements, and the large number of strong promoters encoded by them, allows for potentially widespread effects within the population as a whole. By defining the strength of the promoters encoded by the eight subtypes of Correia ends, we provide a resource that allows the transcriptional effects of a particular subtype at a given locus to be predicted.
Collapse
MESH Headings
- Base Sequence
- Computational Biology
- DNA Transposable Elements/genetics
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Humans
- Meningitis, Meningococcal/microbiology
- Molecular Sequence Data
- Neisseria gonorrhoeae/genetics
- Neisseria meningitidis/genetics
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- RNA, Small Untranslated/genetics
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Azeem Siddique
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Nicolas Buisine
- Evolution des Régulation Endocriniennes, Museum National d'Histoire Naturelle, Paris, France
| | - Ronald Chalmers
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
15
|
Yero D, Vipond C, Climent Y, Sardiñas G, Feavers IM, Pajón R. Variation in the Neisseria meningitidis FadL-like protein: an evolutionary model for a relatively low-abundance surface antigen. MICROBIOLOGY-SGM 2010; 156:3596-3608. [PMID: 20817647 DOI: 10.1099/mic.0.043182-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular diversity of a novel Neisseria meningitidis antigen, encoded by the ORF NMB0088 of MC58 (FadL-like protein), was assessed in a panel of 64 diverse meningococcal strains. The panel consisted of strains belonging to different serogroups, serotypes, serosubtypes and MLST sequence types, of different clinical sources, years and countries of isolation. Based on the sequence variability of the protein, the FadL-like protein has been divided into four variant groups in this species. Antigen variants were associated with specific serogroups and MLST clonal complexes. Maximum-likelihood analyses were used to determine the relationships among sequences and to compare the selection pressures acting on the encoded protein. Furthermore, a model of population genetics and molecular evolution was used to detect natural selection in DNA sequences using the non-synonymous : synonymous substitution (d(N) : d(S)) ratio. The meningococcal sequences were also compared with those of the related surface protein in non-pathogenic commensal Neisseria species to investigate potential horizontal gene transfer. The N. meningitidis fadL gene was subject to only weak positive selection pressure and was less diverse than meningococcal major outer-membrane proteins. The majority of the variability in fadL was due to recombination among existing alleles from the same or related species that resulted in a discrete mosaic structure in the meningococcal population. In general, the population structuring observed based on the FadL-like membrane protein indicates that it is under intermediate immune selection. However, the emergence of a new subvariant within the hyperinvasive lineages demonstrates the phenotypic adaptability of N. meningitidis, probably in response to selective pressure.
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Gretel Sardiñas
- Division of Vaccines, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Rolando Pajón
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
16
|
Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 2010; 5:e11835. [PMID: 20676376 PMCID: PMC2911385 DOI: 10.1371/journal.pone.0011835] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 11/19/2022] Open
Abstract
Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange.
Collapse
|
17
|
Regulatory role of the MisR/S two-component system in hemoglobin utilization in Neisseria meningitidis. Infect Immun 2009; 78:1109-22. [PMID: 20008531 DOI: 10.1128/iai.00363-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane iron receptors are some of the major surface entities that are critical for meningococcal pathogenesis. The gene encoding the meningococcal hemoglobin receptor, HmbR, is both independently transcribed and transcriptionally linked to the upstream gene hemO, which encodes a heme oxygenase. The MisR/S two-component system was previously determined to regulate hmbR transcription, and its hemO and hmbR regulatory mechanisms were characterized further here. The expression of hemO and hmbR was downregulated in misR/S mutants under both iron-replete and iron-restricted conditions, and the downregulation could be reversed by complementation. No significant changes in expression of other iron receptors were detected, suggesting that the MisR/S system specifically regulates hmbR. When hemoglobin was the sole iron source, growth defects were detected in the mutants. Primer extension analysis identified a promoter upstream of the hemO-associated Correia element (CE) and another promoter at the proximal end of CE, and processed transcripts previously identified for other cotranscribed CEs were also detected, suggesting that there may be posttranscriptional regulation. MisR directly interacts with sequences upstream of the CE and upstream of the hmbR Fur binding site and thus independently regulates hemO and hmbR. Analysis of transcriptional reporters of hemO and hmbR further demonstrated the positive role of the MisR/S system and showed that the transcription of hmbR initiated from hemO was significantly reduced. A comparison of the effects of the misS mutation under iron-replete and iron-depleted conditions suggested that activation by the MisR/S system and iron-mediated repression by Fur act independently. Thus, the expression of hemO and hmbR is coordinately controlled by multiple independent regulatory mechanisms, including the MisR/S two-component system.
Collapse
|
18
|
Abstract
Neisseria meningitidis usually lives as a commensal bacterium in the upper airways of humans. However, occasionally some strains can also cause life-threatening diseases such as sepsis and bacterial meningitis. Comparative genomics demonstrates that only very subtle genetic differences between carriage and disease strains might be responsible for the observed virulence differences and that N. meningitidis is, evolutionarily, a very recent species. Comparative genome sequencing also revealed a panoply of genetic mechanisms underlying its enormous genomic flexibility which also might affect the virulence of particular strains. From these studies, N. meningitidis emerges as a paradigm for organisms that use genome variability as an adaptation to changing and thus challenging environments.
Collapse
|
19
|
Comparative analysis of two Neisseria gonorrhoeae genome sequences reveals evidence of mobilization of Correia Repeat Enclosed Elements and their role in regulation. BMC Genomics 2009; 10:70. [PMID: 19203353 PMCID: PMC2649163 DOI: 10.1186/1471-2164-10-70] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/09/2009] [Indexed: 11/22/2022] Open
Abstract
Background The Correia Repeat Enclosed Element (CREE) of the Neisseria spp., with its inverted repeat and conserved core structure, can generate a promoter sequence at either or both ends, can bind IHF, and can bind RNase III and either be cleaved by it or protected by it. As such, the presence of this element can directly control the expression of adjacent genes. Previous work has shown differences in regulation of gene expression between neisserial strains and species due to the presence of a CREE. These interruptions perhaps remove the expression of CREE-associated genes from ancestral neisserial regulatory networks. Results Analysis of the chromosomal locations of the CREE in Neisseria gonorrhoeae strain FA1090 and N. gonorrhoeae strain NCCP11945 has revealed that most of the over 120 copies of the element are conserved in location between these genome sequences. However, there are some notable exceptions, including differences in the presence and sequence of CREE 5' of copies of the opacity protein gene opa, differences in the potential to bind IHF, and differences in the potential to be cleaved by RNase III. Conclusion The presence of CREE insertions in one strain relative to the other, CREE within a prophage region, and CREE disrupting coding sequences, provide strong evidence of mobility of this element in N. gonorrhoeae. Due to the previously demonstrated role of these elements in altering transcriptional control and the findings from comparing the two gonococcal genome sequences, it is suggested that regulatory differences orchestrated by CREE contribute to the differences between strains and also between the closely related yet clinically distinct species N. gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica.
Collapse
|
20
|
Sardiñas G, Yero D, Climent Y, Caballero E, Cobas K, Niebla O. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential. J Med Microbiol 2009; 58:196-208. [DOI: 10.1099/jmm.0.004820-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Evelin Caballero
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Karem Cobas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Olivia Niebla
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| |
Collapse
|
21
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the etiological agent of gonorrhea. We explored variations in the genes of a multidrug-resistant N. gonorrhoeae isolate from a Korean patient in an effort to understand the prevalence, antibiotic resistance, and importance of horizontal gene transfer within this important, naturally competent organism. Here, we report the complete annotated genome sequence of N. gonorrhoeae strain NCCP11945.
Collapse
|
22
|
Treangen TJ, Ambur OH, Tonjum T, Rocha EPC. The impact of the neisserial DNA uptake sequences on genome evolution and stability. Genome Biol 2008; 9:R60. [PMID: 18366792 PMCID: PMC2397512 DOI: 10.1186/gb-2008-9-3-r60] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/13/2008] [Accepted: 03/26/2008] [Indexed: 12/03/2022] Open
Abstract
A study of the origin and distribution of the abundant short DNA uptake sequence (DUS) in six genomes of Neisseria suggests that transformation and recombination are tightly linked in evolution and that recombination has a key role in the establishment of DUS. Background Efficient natural transformation in Neisseria requires the presence of short DNA uptake sequences (DUSs). Doubts remain whether DUSs propagate by pure selfish molecular drive or are selected for 'safe sex' among conspecifics. Results Six neisserial genomes were aligned to identify gene conversion fragments, DUS distribution, spacing, and conservation. We found a strong link between recombination and DUS: DUS spacing matches the size of conversion fragments; genomes with shorter conversion fragments have more DUSs and more conserved DUSs; and conversion fragments are enriched in DUSs. Many recent and singly occurring DUSs exhibit too high divergence with homologous sequences in other genomes to have arisen by point mutation, suggesting their appearance by recombination. DUSs are over-represented in the core genome, under-represented in regions under diversification, and absent in both recently acquired genes and recently lost core genes. This suggests that DUSs are implicated in genome stability rather than in generating adaptive variation. DUS elements are most frequent in the permissive locations of the core genome but are themselves highly conserved, undergoing mutation selection balance and/or molecular drive. Similar preliminary results were found for the functionally analogous uptake signal sequence in Pasteurellaceae. Conclusion As do many other pathogens, Neisseria and Pasteurellaceae have hyperdynamic genomes that generate deleterious mutations by intrachromosomal recombination and by transient hypermutation. The results presented here suggest that transformation in Neisseria and Pasteurellaceae allows them to counteract the deleterious effects of genome instability in the core genome. Thus, rather than promoting hypervariation, bacterial sex could be regenerative.
Collapse
Affiliation(s)
- Todd J Treangen
- Algorithms and Genetics Group, Department of Computer Science, Technical University of Catalonia, Jordi Girona Salgado, 1-3, E-08034 Barcelona, Spain.
| | | | | | | |
Collapse
|
23
|
Characterization of ST-4821 complex, a unique Neisseria meningitidis clone. Genomics 2008; 91:78-87. [DOI: 10.1016/j.ygeno.2007.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/10/2007] [Indexed: 11/21/2022]
|
24
|
Abstract
Small repeat sequences in bacterial genomes, which represent non-autonomous mobile elements, have close similarities to archaeon and eukaryotic miniature inverted repeat transposable elements. These repeat elements are found in both intergenic and intragenic chromosomal regions, and contain an array of diverse motifs. These can include DNA sequences containing an integration host factor binding site and a proposed DNA methyltransferase recognition site, transcribed RNA secondary structural motifs, which are involved in mRNA regulation, and translated open reading frames found fused to other open reading frames. Some bacterial mobile element fusions are in evolutionarily conserved protein and RNA genes. Others might represent or lead to creation of new protein genes. Here we review the remarkable properties of these small bacterial mobile elements in the context of possible beneficial roles resulting from random insertions into the genome.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, SUNY, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
25
|
Yang G, Zhang F, Hancock CN, Wessler SR. Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2007; 104:10962-7. [PMID: 17578919 PMCID: PMC1904124 DOI: 10.1073/pnas.0702080104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An active miniature inverted repeat transposable element (MITE), mPing, was discovered by computer-assisted analysis of rice genome sequence. The mPing element is mobile in rice cell culture and in a few rice strains where it has been amplified to >1,000 copies during recent domestication. However, determination of the transposase source and characterization of the mechanism of transposition have been hampered by the high copy number of mPing and the presence of several candidate autonomous elements in the rice genome. Here, we report that mPing is active in Arabidopsis thaliana, where its transposition is catalyzed by three sources of transposase from rice: the autonomous Ping and Pong elements and by a cDNA derived from a Ping transcript. In addition to transposase, the product of a second element-encoded ORF of unknown function is also required for mPing transposition. Excision of mPing in A. thaliana is usually precise, and transposed copies usually insert into unlinked sites in the genome that are preferentially in or near genes. As such, this will be a valuable assay system for the dissection of MITE transposition and a potentially powerful tagging system for gene discovery in eukaryotes.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| | - Feng Zhang
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| | - C. Nathan Hancock
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| | - Susan R. Wessler
- Department of Plant Biology, University of Georgia, Athens, GA 30602
- *To whom correspondence should be addressed at:
4505 Miller Plant Sciences Building, University of Georgia, Athens, GA 30602. E-mail:
| |
Collapse
|
26
|
Schoen C, Joseph B, Claus H, Vogel U, Frosch M. Living in a changing environment: insights into host adaptation in Neisseria meningitidis from comparative genomics. Int J Med Microbiol 2007; 297:601-13. [PMID: 17572149 DOI: 10.1016/j.ijmm.2007.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022] Open
Abstract
Neisseria meningitidis (the meningococcus) colonizes the human nasopharynx of about 10% of the human population. However, for reasons that are still mostly unknown meningococci occasionally enter the cerebrospinal fluid leading to often fatal bacterial meningitis especially in children and young adults. The genetic basis for the observed differences in the pathogenic potential of different strains has only partially been unravelled so far. With the advent of whole genome sequencing technologies, complete genome sequences from three pathogenic meningococcal strains have become available and allow for a comprehensive analysis of the genomic and genetic differences occurring within this species. In this review, the general properties of the meningococcal genomes so far sequenced is given with an emphasis on the chromosomal rearrangements that have occurred, and the genomic islands and prophages that have been identified. The concomitant development of microarray technology for comparative genome hybridization studies of a large set of different meningococcal isolates as well as strains from other Neisseria species has extended our understanding of meningococcal population genetics on a genome-wide scale thus bridging the gap between meningococcal epidemiology and genomics. Finally, we briefly discuss the potential impact of meningococcal life style on its genome architecture and how in turn this genomic make-up might lead to a virulent phenotype making N. meningitidis an accidental pathogen. The overall properties of the meningococcal genome are characterized by genomic variability and instability, resulting in increased functional flexibility within this species.
Collapse
Affiliation(s)
- Christoph Schoen
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider-Str. 2, Bau E1, D-97080 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
27
|
Bentley SD, Vernikos GS, Snyder LAS, Churcher C, Arrowsmith C, Chillingworth T, Cronin A, Davis PH, Holroyd NE, Jagels K, Maddison M, Moule S, Rabbinowitsch E, Sharp S, Unwin L, Whitehead S, Quail MA, Achtman M, Barrell B, Saunders NJ, Parkhill J. Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 2006; 3:e23. [PMID: 17305430 PMCID: PMC1797815 DOI: 10.1371/journal.pgen.0030023] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 12/21/2006] [Indexed: 11/19/2022] Open
Abstract
The bacterium Neisseria meningitidis is commonly found harmlessly colonising the mucosal surfaces of the human nasopharynx. Occasionally strains can invade host tissues causing septicaemia and meningitis, making the bacterium a major cause of morbidity and mortality in both the developed and developing world. The species is known to be diverse in many ways, as a product of its natural transformability and of a range of recombination and mutation-based systems. Previous work on pathogenic Neisseria has identified several mechanisms for the generation of diversity of surface structures, including phase variation based on slippage-like mechanisms and sequence conversion of expressed genes using information from silent loci. Comparison of the genome sequences of two N. meningitidis strains, serogroup B MC58 and serogroup A Z2491, suggested further mechanisms of variation, including C-terminal exchange in specific genes and enhanced localised recombination and variation related to repeat arrays. We have sequenced the genome of N. meningitidis strain FAM18, a representative of the ST-11/ET-37 complex, providing the first genome sequence for the disease-causing serogroup C meningococci; it has 1,976 predicted genes, of which 60 do not have orthologues in the previously sequenced serogroup A or B strains. Through genome comparison with Z2491 and MC58 we have further characterised specific mechanisms of genetic variation in N. meningitidis, describing specialised loci for generation of cell surface protein variants and measuring the association between noncoding repeat arrays and sequence variation in flanking genes. Here we provide a detailed view of novel genetic diversification mechanisms in N. meningitidis. Our analysis provides evidence for the hypothesis that the noncoding repeat arrays in neisserial genomes (neisserial intergenic mosaic elements) provide a crucial mechanism for the generation of surface antigen variants. Such variation will have an impact on the interaction with the host tissues, and understanding these mechanisms is important to aid our understanding of the intimate and complex relationship between the human nasopharynx and the meningococcus. Human surface tissues, including the skin and gut lining, are host to many different species of bacteria. N. meningitidis is a species of bacteria that is only found in humans where it is able to colonise mucosal surfaces of the nasopharynx (nose and throat). This association is normally harmless and at any one time around 15% of the population are carriers. Some strains of N. meningitidis can cause disease by invading the host tissue leading to septicaemia or meningitis. We aim to gain understanding of the mechanisms by which these bacteria cause disease by studying and comparing genomes from different strains. Here we describe specific genes and associated repetitive DNA sequences that are involved in variation of the bacterial cell surface. The repeat sequences encourage the swapping of genes that code for variant copies of cell surface proteins. The resulting variation of the bacterial cell surface appears to be important in the close interaction between host and bacteria and the potential for disease.
Collapse
|
28
|
Knutsen E, Johnsborg O, Quentin Y, Claverys JP, Håvarstein LS. BOX elements modulate gene expression in Streptococcus pneumoniae: impact on the fine-tuning of competence development. J Bacteriol 2006; 188:8307-12. [PMID: 16997972 PMCID: PMC1698192 DOI: 10.1128/jb.00850-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More than 100 BOX elements are randomly distributed in intergenic regions of the pneumococcal genome. Here we demonstrate that these elements can affect expression of neighboring genes and present evidence that they are mobile. Together, our findings show that BOX elements enhance genetic diversity and genomic plasticity in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Eivind Knutsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | | | | | | | | |
Collapse
|
29
|
Packiam M, Shell DM, Liu SV, Liu YB, McGee DJ, Srivastava R, Seal S, Rest RF. Differential expression and transcriptional analysis of the alpha-2,3-sialyltransferase gene in pathogenic Neisseria spp. Infect Immun 2006; 74:2637-50. [PMID: 16622200 PMCID: PMC1459705 DOI: 10.1128/iai.74.5.2637-2650.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alpha-2,3-sialyltransferase (Lst) is expressed on the outer membrane of Neisseria gonorrhoeae and Neisseria meningitidis and sialylates surface lipooligosaccharide (LOS), facilitating resistance to complement-mediated killing. The enzyme is constitutively expressed from a single gene (lst) and does not undergo antigenic or phase variation. We observed that Triton X-100 extracts of N. gonorrhoeae strain F62 contain about fivefold more sialyltransferase (Stase) activity than extracts of N. meningitidis strain MC58 [symbol: see text]3 a serogroup B acapsulate mutant. We confirmed and expanded upon this observation by showing that extracts of 16 random N. gonorrhoeae isolates contain various amounts of Stase activity, but, on average, 2.2-fold-more Stase activity than extracts of 16 N. meningitidis clinical isolates, representing several serogroups and nongroupable strains. Northern and real-time reverse transcription-PCR analysis of lst transcript levels in N. gonorrhoeae and N. meningitidis revealed that N. gonorrhoeae strains express more lst transcript than N. meningitidis strains. Although transcript levels correlate with average Stase activity observed in the two species, there was not a direct correlation between lst transcript levels and Stase activity among individual isolates of each species. Comparison of lst upstream (5'lst) regions of N. gonorrhoeae and N. meningitidis revealed striking sequence differences characteristic of the two pathogens. N. gonorrhoeae 5'lst regions possess 30-bp and 13-bp elements present as single elements or as tandem repeats that exist only as single elements in the 5'lst regions of N. meningitidis isolates. In addition, the 5'lst regions of N. meningitidis strains have 105-bp transposon-like Correia elements which are absent in N. gonorrhoeae. Chromosomal N. gonorrhoeae 5'lst::lacZ translational fusions expressed 4.75 +/- 0.09-fold (n = 4) higher beta-galactosidase (beta-gal) activity than N. meningitidis 5'lst::lacZ fusions in a host-independent manner, indicating differential expression is governed at least in part by sequence variations in the 5'lst regions. Reporter fusion assays and promoter-mapping analysis revealed that N. gonorrhoeae and N. meningitidis use different promoters with different strengths to transcribe lst. In N. gonorrhoeae, a strong sigma 70 promoter 80 bp upstream of the translational start site is used to transcribe lst, whereas this promoter is inactive in N. meningitidis. In N. meningitidis, a weak sigma 70 promoter at the 3' terminus of a 105-bp Correia repeat-enclosed element 99 bp upstream of the translational start site is used to transcribe lst. We conclude that differential Stase expression between N. gonorrhoeae and N. meningitidis is due at least in part to differential lst gene transcription.
Collapse
Affiliation(s)
- Mathanraj Packiam
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Most Neisseria species are gram-negative cocci or diplococci; currently, N. elongata is the only species of human origin with a bacillary morphology. Here, we report isolation and characterization of eight strains of another bacillary Neisseria species from human infections. The organisms caused or contributed to either oral cavity-related or respiratory tract infections, and two strains were isolated from blood cultures. The 16S rRNA gene sequences of these organisms, being homogenous or nearly so (99.4 to 100% identity), matched at <96% known Neisseria species and formed a distinct group within the genus. Analysis of the cellular fatty acids showed broad similarity with a few Neisseria species. The organisms were gram negative and measured 0.6 mum by 1.3 to 3.0 mum. They grew well on chocolate agar and on sheep blood agar but did not grow on modified Thayer-Martin agar. They were positive for oxidase and negative for indole production. There was no acid production from dextrose, lactose, maltose, or sucrose. The tests for catalase reaction, nitrate reduction, and tributilin varied with the strains. These results suggest that these organisms represent a novel species within the genus Neisseria, for which the name Neisseria bacilliformis sp. nov. is proposed. The type strain is MDA2833 = ATCC BAA-1200(T) = CCUG50858(T). Distinction between N. bacilliformis and N. elongata can be made confidently by 16S rRNA gene sequencing or cellular fatty acid profiling but may be difficult by morphology or routine biochemical tests.
Collapse
Affiliation(s)
- Xiang Y Han
- Section of Clinical Microbiology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 84, Houston, TX 77030, USA.
| | | | | |
Collapse
|
31
|
Qvarnstrom Y, Swedberg G. Variations in gene organization and DNA uptake signal sequence in the folP region between commensal and pathogenic Neisseria species. BMC Microbiol 2006; 6:11. [PMID: 16503987 PMCID: PMC1431543 DOI: 10.1186/1471-2180-6-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 02/17/2006] [Indexed: 11/18/2022] Open
Abstract
Background Horizontal gene transfer is an important source of genetic variation among Neisseria species and has contributed to the spread of resistance to penicillin and sulfonamide drugs in the pathogen Neisseria meningitidis. Sulfonamide resistance in Neisseria meningitidis is mediated by altered chromosomal folP genes. At least some folP alleles conferring resistance have been horizontally acquired from other species, presumably from commensal Neisseriae. In this work, the DNA sequence surrounding folP in commensal Neisseria species was determined and compared to corresponding regions in pathogenic Neisseriae, in order to elucidate the potential for inter-species DNA transfer within this region. Results The upstream region of folP displayed differences in gene order between species, including an insertion of a complete Correia element in Neisseria lactamica and an inversion of a larger genomic segment in Neisseria sicca, Neisseria subflava and Neisseria mucosa. The latter species also had DNA uptake signal sequences (DUS) in this region that were one base different from the DUS in pathogenic Neisseriae. Another interesting finding was evidence of a horizontal transfer event from Neisseria lactamica or Neisseria cinerea that introduced a novel folP allele to the meningococcal population. Conclusion Genetic recombination events immediately upstream of folP and horizontal transfer have resulted in sequence differences in the folP region between the Neisseria species. This variability could be a consequence of the selective pressure on this region exerted by the use of sulfonamide drugs.
Collapse
Affiliation(s)
- Yvonne Qvarnstrom
- Department of Medical Biochemistry and Microbiology, Uppsala University, PO Box 582, SE-751 23 Uppsala, Sweden
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, mail stop F36, 4770 Buford Highway, Atlanta, GA 30341, USA
| | - Gote Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, PO Box 582, SE-751 23 Uppsala, Sweden
| |
Collapse
|
32
|
Abstract
Neisseria meningitidis (the meningococcus) is an important commensal, pathogen and model organism that faces up to the environment in its exclusive human host with a small but hyperdynamic genome. Compared with Escherichia coli, several DNA-repair genes are absent in N. meningitidis, whereas the gene products of others interact differently. Instead of responding to external stimuli, the meningococcus spontaneously produces a plethora of genetic variants. The frequent genomic alterations and polymorphisms have profound consequences for the interaction of this microorganism with its host, impacting structural and antigenic changes in crucial surface components that are relevant for adherence and invasion as well as antibiotic resistance and vaccine development.
Collapse
Affiliation(s)
- Tonje Davidsen
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | |
Collapse
|
33
|
De Gregorio E, Silvestro G, Petrillo M, Carlomagno MS, Di Nocera PP. Enterobacterial repetitive intergenic consensus sequence repeats in yersiniae: genomic organization and functional properties. J Bacteriol 2005; 187:7945-54. [PMID: 16291667 PMCID: PMC1291288 DOI: 10.1128/jb.187.23.7945-7954.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide analyses carried out in silico revealed that the DNA repeats called enterobacterial repetitive intergenic consensus sequences (ERICs), which are present in several Enterobacteriaceae, are overrepresented in yersiniae. From the alignment of DNA regions from the wholly sequenced Yersinia enterocolitica 8081 and Yersinia pestis CO92 strains, we could establish that ERICs are miniature mobile elements whose insertion leads to duplication of the dinucleotide TA. ERICs feature long terminal inverted repeats (TIRs) and can fold as RNA into hairpin structures. The proximity to coding regions suggests that most Y. enterocolitica ERICs are cotranscribed with flanking genes. Elements which either overlap or are located next to stop codons are preferentially inserted in the same (or B) orientation. In contrast, ERICs located far apart from open reading frames are inserted in the opposite (or A) orientation. The expression of genes cotranscribed with A- and B-oriented ERICs has been monitored in vivo. In mRNAs spanning B-oriented ERICs, upstream gene transcripts accumulated at lower levels than downstream gene transcripts. This difference was abolished by treating cells with chloramphenicol. We hypothesize that folding of B-oriented elements is impeded by translating ribosomes. Consequently, upstream RNA degradation is triggered by the unmasking of a site for the RNase E located in the right-hand TIR of ERIC. A-oriented ERICs may act in contrast as upstream RNA stabilizers or may have other functions. The hypothesis that ERICs act as regulatory RNA elements is supported by analyses carried out in Yersinia strains which either lack ERIC sequences or carry alternatively oriented ERICs at specific loci.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
34
|
Snyder LAS, Davies JK, Ryan CS, Saunders NJ. Comparative overview of the genomic and genetic differences between the pathogenic Neisseria strains and species. Plasmid 2005; 54:191-218. [PMID: 16024078 DOI: 10.1016/j.plasmid.2005.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/18/2005] [Accepted: 04/21/2005] [Indexed: 01/19/2023]
Abstract
The availability of complete genome sequences from multiple pathogenic Neisseria strains and species has enabled a comprehensive survey of the genomic and genetic differences occurring within these species. In this review, we describe the chromosomal rearrangements that have occurred, and the genomic islands and prophages that have been identified in the various genomes. We also describe instances where specific genes are present or absent, other instances where specific genes have been inactivated, and situations where there is variation in the version of a gene that is present. We also provide an overview of mosaic genes present in these genomes, and describe the variation systems that allow the expression of particular genes to be switched ON or OFF. We have also described the presence and location of mobile non-coding elements in the various genomes. Finally, we have reviewed the incidence and properties of various extra-chromosomal elements found within these species. The overall impression is one of genomic variability and instability, resulting in increased functional flexibility within these species.
Collapse
Affiliation(s)
- Lori A S Snyder
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
35
|
Økstad OA, Tourasse NJ, Stabell FB, Sundfaer CK, Egge-Jacobsen W, Risøen PA, Read TD, Kolstø AB. The bcr1 DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics. J Bacteriol 2004; 186:7714-25. [PMID: 15516586 PMCID: PMC524882 DOI: 10.1128/jb.186.22.7714-7725.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus strains ATCC 10987 and ATCC 14579 harbor an approximately 155-bp repeated element, bcr1, which is conserved in B. cereus, B. anthracis, B. thuringiensis, and B. mycoides but not in B. subtilis and B. licheniformis. In this study, we show by Southern blot hybridizations that bcr1 is present in all 54 B. cereus group strains tested but absent in 11 Bacillus strains outside the group, suggesting that bcr1 may be specific and ubiquitous to the B. cereus group. By comparative analysis of the complete genome sequences of B. cereus ATCC 10987, B. cereus ATCC 14579, and B. anthracis Ames, we show that bcr1 is exclusively present in the chromosome but absent from large plasmids carried by these strains and that the numbers of full-length bcr1 repeats for these strains are 79, 54, and 12, respectively. Numerous copies of partial bcr1 elements are also present in the three genomes (91, 128, and 53, respectively). Furthermore, the genomic localization of bcr1 is not conserved between strains with respect to chromosomal position or organization of gene neighbors, as only six full-length bcr1 loci are common to at least two of the three strains. However, the intergenic sequence surrounding a specific bcr1 repeat in one of the three strains is generally strongly conserved in the other two, even in loci where bcr1 is found exclusively in one strain. This finding indicates that bcr1 either has evolved by differential deletion from a very high number of repeats in a common ancestor to the B. cereus group or is moving around the chromosome. The identification of bcr1 repeats interrupting genes in B. cereus ATCC 10987 and ATCC 14579 and the presence of a flanking TTTAT motif in each end show that bcr1 exhibits features characteristic of a mobile element.
Collapse
|
36
|
Snyder LAS, Davies JK, Saunders NJ. Microarray genomotyping of key experimental strains of Neisseria gonorrhoeae reveals gene complement diversity and five new neisserial genes associated with Minimal Mobile Elements. BMC Genomics 2004; 5:23. [PMID: 15084227 PMCID: PMC406496 DOI: 10.1186/1471-2164-5-23] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 04/13/2004] [Indexed: 12/03/2022] Open
Abstract
Background There are four widely used experimental strains of N. gonorrhoeae, one of which has been sequenced and used as the basis for the construction of a multi-strain, mutli-species pan-neisserial microarray. Although the N. gonorrhoeae population structure is thought to be less diverse than N. meningitidis, there are some recognized gene-complement differences between strains, including the 59 genes of the Gonococcal Genetic Island. In this study we have investigated the three experimental strains that have not been sequenced to determine the extent and nature of their similarities and differences. Results Using the Pan-Neisseria microarray, three commonly used gonococcal laboratory experimental strains were investigated (F62, MS11, & FA19). Genes absent from these strains, but present in strain FA1090, were assessed as is possible with typical microarrays. Due to the design of this microarray, additional genes were also identified. Differences were associated with Minimal Mobile Elements (MMEs) or known divergences. Genomotyping indicates the presence of genes previously only described in meningococci and shows the presence of the complete Gonococcal Genetic Island in N. gonorrhoeae strain FA19. Five new neisserial genes were identified through microarray genomotyping and subsequent sequencing of two divergent MMEs in N. gonorrhoeae strain MS11 and four MMEs in N. gonorrhoeae strain FA19. No differences were identified between N. gonorrhoeae strains FA1090 and F62, indicating that these strains are very similar. Conclusion This study shows extensive similarity between the experimental strains, associated with a varying number of strain-specific genes. This provides a framework for those working with these strains to refer to the available gonococcal genome sequence, and is the first detailed comparison of gene complements between gonococcal strains.
Collapse
Affiliation(s)
- Lori AS Snyder
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - John K Davies
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, VIC 3800, Australia
| | - Nigel J Saunders
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
37
|
De Gregorio E, Abrescia C, Carlomagno MS, Di Nocera PP. Ribonuclease III-mediated processing of specific Neisseria meningitidis mRNAs. Biochem J 2003; 374:799-805. [PMID: 12826014 PMCID: PMC1223648 DOI: 10.1042/bj20030533] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Revised: 06/16/2003] [Accepted: 06/25/2003] [Indexed: 11/17/2022]
Abstract
Approx. 2% of the Neisseria meningitidis genome consists of small DNA insertion sequences known as Correia or nemis elements, which feature TIRs (terminal inverted repeats) of 26-27 bp in length. Elements interspersed with coding regions are co-transcribed with flanking genes into mRNAs, processed at double-stranded RNA structures formed by TIRs. N. meningitidis RNase III (endoribonuclease III) is sufficient to process nemis+ RNAs. RNA hairpins formed by nemis with the same termini (26/26 and 27/27 repeats) are cleaved. By contrast, bulged hairpins formed by 26/27 repeats inhibit cleavage, both in vitro and in vivo. In electrophoretic mobility shift assays, all hairpin types formed similar retarded complexes upon incubation with RNase III. The levels of corresponding nemis+ and nemis- mRNAs, and the relative stabilities of RNA segments processed from nemis+ transcripts in vitro, may both vary significantly.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
38
|
De Gregorio E, Abrescia C, Carlomagno MS, Di Nocera PP. Asymmetrical distribution of Neisseria miniature insertion sequence DNA repeats among pathogenic and nonpathogenic Neisseria strains. Infect Immun 2003; 71:4217-21. [PMID: 12819122 PMCID: PMC161981 DOI: 10.1128/iai.71.7.4217-4221.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria miniature insertion sequences (nemis) are miniature DNA insertion sequences found in Neisseria species. Out of 57 elements closely flanking cellular genes analyzed by PCR, most were conserved in Neisseria meningitidis but not in N. lactamica strains. Since mRNAs spanning nemis are processed by RNase III at hairpins formed by element termini, gene sets could selectively be regulated in meningococci at the posttranscriptional level.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L. Califano, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | | | | | | |
Collapse
|
39
|
Abstract
Complete genome sequences are available for an increasing number of pathogenic bacteria. These new data are beginning to make an impact on the understanding of bacterial evolution and virulence. Thus far, however, vaccine development has had little benefit from genomics. Here we discuss how genomic sequence is being used in ways that could help identify useful bacterial antigens or create attenuated live vaccines.
Collapse
Affiliation(s)
- Samantha L Sampson
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
40
|
Abstract
The density of information in a bacterial genome allows its history, organization and encoded functions to be distilled into a single graphical representation. These features have made it possible to discern the forces acting in and on bacterial genomes at levels not attainable in eukaryotes.
Collapse
Affiliation(s)
- Howard Ochman
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
41
|
Morelle S, Carbonnelle E, Nassif X. The REP2 repeats of the genome of Neisseria meningitidis are associated with genes coordinately regulated during bacterial cell interaction. J Bacteriol 2003; 185:2618-27. [PMID: 12670987 PMCID: PMC152611 DOI: 10.1128/jb.185.8.2618-2627.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction with host cells is essential in meningococcal pathogenesis especially at the blood-brain barrier. This step is likely to involve a common regulatory pathway allowing coordinate regulation of genes necessary for the interaction with endothelial cells. The analysis of the genomic sequence of Neisseria meningitidis Z2491 revealed the presence of many repeats. One of these, designated REP2, contains a -24/-12 type promoter and a ribosome binding site 5 to 13 bp before an ATG. In addition most of these REP2 sequences are located immediately upstream of an ORF. Among these REP2-associated genes are pilC1 and crgA, described as being involved in steps essential for the interaction of N. meningitidis with host cells. Furthermore, the REP2 sequences located upstream of pilC1 and crgA correspond to the previously identified promoters known to be induced during the initial localized adhesion of N. meningitidis with human cells. This characteristic led us to hypothesize that at least some of the REP2-associated genes were upregulated under the same circumstances as pilC1 and crgA. Quantitative PCR in real time demonstrated that the expression of 14 out of 16 REP2-associated genes were upregulated during the initial localized adhesion of N. meningitidis. Taken together, these data suggest that these repeats control a set of genes necessary for the efficient interaction of this pathogen with host cells. Subsequent mutational analysis was performed to address the role of these genes during meningococcus-cell interaction.
Collapse
Affiliation(s)
- Sandrine Morelle
- INSERM U570, Faculté de Médecine Necker-Enfants Malades, Université René Descartes, Paris, France
| | | | | |
Collapse
|
42
|
Snyder LAS, Shafer WM, Saunders NJ. Divergence and transcriptional analysis of the division cell wall (dcw) gene cluster in Neisseria spp. Mol Microbiol 2003; 47:431-42. [PMID: 12519193 DOI: 10.1046/j.1365-2958.2003.03204.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three of the 18 open reading frames in the division and cell wall synthesis cluster of the pathogenic Neisseria spp. are not present in the clusters of other bacterial species. The region containing two of these, dcaB and dcaC, displays interstrain and interspecies variability uncharacteristic of such clusters. 3' of dcaB is a Correia repeat enclosed element (CREE), which is only present in some strains. It has been suggested that this CREE is a transcriptional terminator, although we demonstrate otherwise. A gearbox-like promoter within this CREE is active in Escherichia coli but not in Neisseria meningitidis. There is an active promoter 5' of dcaC, although its sequence is not conserved. The presence of similarly located promoters has not been demonstrated in other species. In Neisseria lactamica, this promoter involves another dcw-associated CREE, the first demonstration of active promoter generation at the 5' end of this common intergenic, apparently mobile, element. Upstream of this promoter is an inverted pair of neisserial uptake signal sequences, which are commonly considered to be transcriptional terminators. It has been proposed to terminate transcription in this location, although we have demonstrated transcript extending through this uptake signal sequence. dcaC contains a 108 bp tandem repeat, which is present in different copy numbers in the neisserial strains examined. This investigation reveals extensive sequence variation, disputes the presence of transcriptional terminators and identifies active internal promoters in this normally highly conserved cluster of essential genes, and addresses the transcriptional activity of two common neisserial intergenic components.
Collapse
Affiliation(s)
- Lori A S Snyder
- The Sir William Dunn School of Pathology, Univrsity of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
43
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003; 4:277-84. [PMID: 18629117 PMCID: PMC2447404 DOI: 10.1002/cfg.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|