1
|
Flores Ventura E, Bernabeu M, Callejón-Leblic B, Cabrera-Rubio R, Yeruva L, Estañ-Capell J, Martínez-Costa C, García-Barrera T, Collado MC. Human milk metals and metalloids shape infant microbiota. Food Funct 2024; 15:12134-12145. [PMID: 39584920 DOI: 10.1039/d4fo01929f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Background: The profile of metal(loid)s in human milk is essential for infant growth and development, yet its impact on the development of the infant microbiota remains unclear. Elements, such as manganese, zinc, iron or copper, play crucial roles in influencing infant health. Aim: To investigate the metal(loid) content within human milk and its influence on the infant's gut microbiota within the first 2 months after birth. Methods: Human milk samples and infant stool samples from 77 mother-infant dyads in the MAMI cohort were collected at two time points: the early transitional stage and the mature stage. Metallomic profiling of human milk was conducted using inductively coupled plasma-mass spectrometry (ICP-MS). The infant gut microbiota was profiled through 16S rRNA amplicon sequencing and maternal-infant clinical data were available. Spearman's rank correlation coefficientsprovided insights into metal(loid)-microbiota relationships. Results: Independent cross-sectional analyses of mother-infant pairs at two time points, significant variations in metal concentrations and differences in microbial abundances and diversities were observed. Notably, Bifidobacterium genus abundance was higher during the mature lactation stage. During early lactation, we found a significant positive correlation between infant gut Corynebacterium and human milk nickel concentrations, and negative correlations between Veillonella spp. and antimony, and Enterobacter spp. and copper. Additionally, Simpson's diversity was negatively correlated with iron. In the mature lactation stage, we identified eleven significant correlations between metals and microbiota. Notably, Klebsiella genus showed multiple negative correlations with iron, antimony, and vanadium. Conclusion: Our study highlights the significance of metal(loid)-microbiota interactions in early infant development, indicating that infant gut Klebsiella genus may be particularly vulnerable to fluctuations in metal(loid) levels present in human milk, when compared to other genera. Future research should explore these interactions at a strain level and the implications on infant health and development. This trial was registered as NCT03552939.
Collapse
Affiliation(s)
- Eduard Flores Ventura
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Manuel Bernabeu
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Belén Callejón-Leblic
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Javier Estañ-Capell
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Tamara García-Barrera
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
2
|
Peng ED, Lyman LR, Schmitt MP. Identification and characterization of zinc importers in Corynebacterium diphtheriae. J Bacteriol 2024; 206:e0012424. [PMID: 38809016 PMCID: PMC11332173 DOI: 10.1128/jb.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Corynebacterium diphtheriae is the causative agent of diphtheria, a severe respiratory disease in humans. C. diphtheriae colonizes the human upper respiratory tract, where it acquires zinc, an essential metal required for survival in the host. While the mechanisms for zinc transport by C. diphtheriae are not well characterized, four putative zinc ABC-type transporter loci were recently identified in strain 1737: iutABCD/E (iut), znuACB (znu), nikABCD1 (nik1), and nikABCD2 (nik2). A mutant deleted for all four loci (Δ4) exhibited similar growth to that of the wild-type strain in a zinc-limited medium, suggesting there are additional zinc transporters. Two additional gene loci predicted to be associated with metal import, mntABCD (mnt) and sidAB (sid), were deleted in the Δ4 mutant to construct a new mutant designated Δ6. The C. diphtheriae Δ6 mutant exhibited significantly reduced growth under zinc limitation relative to the wild type, suggesting a deficiency in zinc acquisition. Strains retaining the iut, znu, mnt, or sid loci grew to near-wild-type levels in the absence of the other five loci, indicating that each of these transporters may be involved in zinc uptake. Plasmid complementation with cloned iut, znu, mnt, or nik1 loci also enhanced the growth of the Δ6 mutant. Quantification of intracellular zinc content by inductively coupled plasma mass spectrometry was consistent with reduced zinc uptake by Δ6 relative to the wild type and further supports a zinc uptake function for the transporters encoded by iut, znu, and mnt. This study demonstrates that C. diphtheriae zinc transport is complex and involves multiple zinc uptake systems.IMPORTANCEZinc is a critical nutrient for all forms of life, including human bacterial pathogens. Thus, the tools that bacteria use to acquire zinc from host sources are crucial for pathogenesis. While potential candidates for zinc importers have been identified in Corynebacterium diphtheriae from gene expression studies, to date, no study has clearly demonstrated this function for any of the putative transporters. We show that C. diphtheriae encodes at least six loci associated with zinc import, underscoring the extent of redundancy for zinc acquisition. Furthermore, we provide evidence that a previously studied manganese-regulated importer can also function in zinc import. This study builds upon our knowledge of bacterial zinc transport mechanisms and identifies potential targets for future diphtheria vaccine candidates.
Collapse
Affiliation(s)
- Eric D. Peng
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
3
|
Analysis of the Manganese and MntR Regulon in Corynebacterium diphtheriae. J Bacteriol 2021; 203:e0027421. [PMID: 34370555 DOI: 10.1128/jb.00274-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae is the causative agent of a severe respiratory disease in humans. The bacterial systems required for infection are poorly understood, but the acquisition of metals such as manganese (Mn) is likely critical for host colonization. MntR is a Mn-dependent transcriptional regulator in C. diphtheriae that represses the expression of the mntABCD genes, which encode a putative ABC metal transporter. However, other targets of Mn and MntR regulation in C. diphtheriae have not been identified. In this study, we use comparisons between the gene expression profiles of wild-type C. diphtheriae strain 1737 grown without or with Mn supplementation and comparisons of gene expression between wild-type and an mntR deletion mutant to characterize the C. diphtheriae Mn and MntR regulon. MntR was observed to both repress and induce various target genes in a Mn-dependent manner. Genes induced by MntR include the Mn-superoxide dismutase, sodA, and the putative ABC transporter locus, iutABCD. DNA binding studies showed that MntR interacts with the promoter regions for several genes identified in the expression study, and a 17-bp consensus MntR DNA binding site was identified. We found that an mntR mutant displayed increased sensitivity to Mn and cadmium that could be alleviated by the additional deletion of the mntABCD transport locus, providing evidence that the MntABCD transporter functions as a Mn uptake system in C. diphtheriae. The findings in this study further our understanding of metal uptake systems and global metal regulatory networks in this important human pathogen. Importance Mechanisms for metal scavenging are critical to the survival and success of bacterial pathogens, including Corynebacterium diphtheriae. Metal import systems in pathogenic bacteria have been studied as possible vaccine components due to high conservation, critical functionality, and surface localization. In this study, we expand our understanding of the genes controlled by the global manganese regulator, MntR. We determined a role for the MntABCD transporter in manganese import using evidence from manganese and cadmium toxicity assays. Understanding the nutritional requirements of C. diphtheriae and the tools used to acquire essential metals will aid in the development of future vaccines.
Collapse
|
4
|
Párraga Solórzano PK, Yao J, Rock CO, Kehl-Fie TE. Disruption of Glycolysis by Nutritional Immunity Activates a Two-Component System That Coordinates a Metabolic and Antihost Response by Staphylococcus aureus. mBio 2019; 10:e01321-19. [PMID: 31387906 PMCID: PMC6686040 DOI: 10.1128/mbio.01321-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 02/01/2023] Open
Abstract
During infection, bacteria use two-component signal transduction systems to sense and adapt to the dynamic host environment. Despite critically contributing to infection, the activating signals of most of these regulators remain unknown. This also applies to the Staphylococcus aureus ArlRS two-component system, which contributes to virulence by coordinating the production of toxins, adhesins, and a metabolic response that enables the bacterium to overcome host-imposed manganese starvation. Restricting the availability of essential transition metals, a strategy known as nutritional immunity, constitutes a critical defense against infection. In this work, expression analysis revealed that manganese starvation imposed by the immune effector calprotectin or by the absence of glycolytic substrates activates ArlRS. Manganese starvation imposed by calprotectin also activated the ArlRS system even when glycolytic substrates were present. A combination of metabolomics, mutational analysis, and metabolic feeding experiments revealed that ArlRS is activated by alterations in metabolic flux occurring in the latter half of the glycolytic pathway. Moreover, calprotectin was found to induce expression of staphylococcal leukocidins in an ArlRS-dependent manner. These studies indicated that ArlRS is a metabolic sensor that allows S. aureus to integrate multiple environmental stresses that alter glycolytic flux to coordinate an antihost response and to adapt to manganese starvation. They also established that the latter half of glycolysis represents a checkpoint to monitor metabolic state in S. aureus Altogether, these findings contribute to understanding how invading pathogens, such as S. aureus, adapt to the host during infection and suggest the existence of similar mechanisms in other bacterial species.IMPORTANCE Two-component regulatory systems enable bacteria to adapt to changes in their environment during infection by altering gene expression and coordinating antihost responses. Despite the critical role of two-component systems in bacterial survival and pathogenesis, the activating signals for most of these regulators remain unidentified. This is exemplified by ArlRS, a Staphylococcus aureus global regulator that contributes to virulence and to resisting host-mediated restriction of essential nutrients, such as manganese. In this report, we demonstrate that manganese starvation and the absence of glycolytic substrates activate ArlRS. Further investigations revealed that ArlRS is activated when the latter half of glycolysis is disrupted, suggesting that S. aureus monitors flux through the second half of this pathway. Host-imposed manganese starvation also induced the expression of pore-forming toxins in an ArlRS-dependent manner. Cumulatively, this work reveals that ArlRS acts as a sensor that links nutritional status, cellular metabolism, and virulence regulation.
Collapse
Affiliation(s)
- Paola K Párraga Solórzano
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Departmento de Ciencias de la Vida, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Ecuador
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Thomas E Kehl-Fie
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Pokorzynski ND, Brinkworth AJ, Carabeo R. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in Chlamydia trachomatis. eLife 2019; 8:e42295. [PMID: 30938288 PMCID: PMC6504234 DOI: 10.7554/elife.42295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
During infection, pathogens are starved of essential nutrients such as iron and tryptophan by host immune effectors. Without conserved global stress response regulators, how the obligate intracellular bacterium Chlamydia trachomatis arrives at a physiologically similar 'persistent' state in response to starvation of either nutrient remains unclear. Here, we report on the iron-dependent regulation of the trpRBA tryptophan salvage pathway in C. trachomatis. Iron starvation specifically induces trpBA expression from a novel promoter element within an intergenic region flanked by trpR and trpB. YtgR, the only known iron-dependent regulator in Chlamydia, can bind to the trpRBA intergenic region upstream of the alternative trpBA promoter to repress transcription. Simultaneously, YtgR binding promotes the termination of transcripts from the primary promoter upstream of trpR. This is the first description of an iron-dependent mechanism regulating prokaryotic tryptophan biosynthesis that may indicate the existence of novel approaches to gene regulation and stress response in Chlamydia.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Amanda J Brinkworth
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| | - Rey Carabeo
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUnited States
| |
Collapse
|
6
|
Structural and functional characterization of the transcriptional regulator Rv3488 of Mycobacterium tuberculosis H37Rv. Biochem J 2018; 475:3393-3416. [DOI: 10.1042/bcj20180356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Rv3488 of Mycobacterium tuberculosis H37Rv has been assigned to the phenolic acid decarboxylase repressor (PadR) family of transcriptional regulators that play key roles in multidrug resistance and virulence of prokaryotes. The binding of cadmium, zinc, and several other metals to Rv3488 was discovered and characterized by isothermal titration calorimetery to be an exothermic process. Crystal structures of apo-Rv3488 and Rv3488 in complex with cadmium or zinc ions were determined by X-ray crystallography. The structure of Rv3488 revealed a dimeric protein with N-terminal winged-helix-turn-helix DNA-binding domains composed of helices α1, α2, α3, and strands β1 and β2, with the dimerization interface being formed of helices α4 and α1. The overall fold of Rv3488 was similar to PadR-s2 and metal sensor transcriptional regulators. In the crystal structure of Rv3488–Cd complex, two octahedrally coordinated Cd2+ ions were present, one for each subunit. The same sites were occupied by zinc ions in the structure of Rv3488–Zn, with two additional zinc ions complexed in one monomer. EMSA studies showed specific binding of Rv3488 with its own 30-bp promoter DNA. The functional role of Rv3488 was characterized by expressing the rv3488 gene under the control of hsp60 promoter in Mycobacterium smegmatis. Expression of Rv3488 increased the intracellular survival of recombinant M. smegmatis in murine macrophage cell line J774A.1 and also augmented its tolerance to Cd2+ ions. Overall, the studies show that Rv3488 may have transcription regulation and metal-detoxifying functions and its expression in M. smegmatis increases intracellular survival, perhaps by counteracting toxic metal stress.
Collapse
|
7
|
Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae. J Bacteriol 2018; 200:JB.00051-18. [PMID: 29507090 DOI: 10.1128/jb.00051-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, a Gram-positive, aerobic bacterium, is the causative agent of diphtheria and cutaneous infections. While mechanisms required for heme iron acquisition are well known in C. diphtheriae, systems involved in the acquisition of other metals such as zinc and manganese remain poorly characterized. In this study, we identified a genetic region that encodes an ABC-type transporter (iutBCD) and that is flanked by two genes (iutA and iutE) encoding putative substrate binding proteins of the cluster 9 family, a related group of transporters associated primarily with the import of Mn and Zn. We showed that IutA and IutE are both membrane proteins with comparable Mn and Zn binding abilities. We demonstrated that the iutABCD genes are cotranscribed and repressed in response to iron by the iron-responsive repressor DtxR. Transcription of iutE was positively regulated in response to iron availability in a DtxR-dependent manner and was repressed in response to Zn by the Zn-dependent repressor Zur. Electrophoretic mobility shift assays showed that DtxR does not bind to the iutE upstream region, which indicates that DtxR regulation of iutE is indirect and that other regulatory factors controlled by DtxR are likely responsible for the iron-responsive regulation. Analysis of the iutE promoter region identified a 50-bp sequence at the 3' end of the iutD gene that is required for the DtxR-dependent and iron-responsive activation of the iutE gene. These findings indicate that transcription of iutE is controlled by a complex mechanism that involves multiple regulatory factors whose activity is impacted by both Zn and Fe.IMPORTANCE Vaccination against diphtheria prevents toxin-related symptoms but does not inhibit bacterial colonization of the human host by the bacterium. Thus, Corynebacterium diphtheriae remains an important human pathogen that poses a significant health risk to unvaccinated individuals. The ability to acquire iron, zinc, and manganese is critical to the pathogenesis of many disease-causing organisms. Here, we describe a gene cluster in C. diphtheriae that encodes a metal importer that is homologous to broadly distributed metal transport systems, some with important roles in virulence in other bacterial pathogens. Two metal binding components of the gene cluster encode surface exposed proteins, and studies of such proteins may guide the development of second-generation vaccines for C. diphtheriae.
Collapse
|
8
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
9
|
Competition for Manganese at the Host-Pathogen Interface. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:1-25. [PMID: 27571690 DOI: 10.1016/bs.pmbts.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transition metals such as manganese are essential nutrients for both pathogen and host. Vertebrates exploit this necessity to combat invading microbes by restricting access to these critical nutrients, a defense known as nutritional immunity. During infection, the host uses several mechanisms to impose manganese limitation. These include removal of manganese from the phagolysosome, sequestration of extracellular manganese, and utilization of other metals to prevent bacterial acquisition of manganese. In order to cause disease, pathogens employ a variety of mechanisms that enable them to adapt to and counter nutritional immunity. These adaptations include, but are likely not limited to, manganese-sensing regulators and high-affinity manganese transporters. Even though successful pathogens can overcome host-imposed manganese starvation, this defense inhibits manganese-dependent processes, reducing the ability of these microbes to cause disease. While the full impact of host-imposed manganese starvation on bacteria is unknown, critical bacterial virulence factors such as superoxide dismutases are inhibited. This chapter will review the factors involved in the competition for manganese at the host-pathogen interface and discuss the impact that limiting the availability of this metal has on invading bacteria.
Collapse
|
10
|
Zhang L, Butler CA, Khan HSG, Dashper SG, Seers CA, Veith PD, Zhang JG, Reynolds EC. Characterisation of the Porphyromonas gingivalis Manganese Transport Regulator Orthologue. PLoS One 2016; 11:e0151407. [PMID: 27007570 PMCID: PMC4805248 DOI: 10.1371/journal.pone.0151407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
PgMntR is a predicted member of the DtxR family of transcriptional repressors responsive to manganese in the anaerobic periodontal pathogen Porphyromonas gingivalis. Our bioinformatic analyses predicted that PgMntR had divalent metal binding site(s) with elements of both manganous and ferrous ion specificity and that PgMntR has unusual twin C-terminal FeoA domains. We produced recombinant PgMntR and four variants to probe the specificity of metal binding and its impact on protein structure and DNA binding. PgMntR dimerised in the absence of a divalent transition metal cation. PgMntR bound three Mn(II) per monomer with an overall dissociation constant Kd 2.0 x 10(-11) M at pH 7.5. PgMntR also bound two Fe(II) with distinct binding affinities, Kd1 2.5 x 10(-10) M and Kd2 ≤ 6.0 x 10(-8) M at pH 6.8. Two of the metal binding sites may form a binuclear centre with two bound Mn2+ being bridged by Cys108 but this centre provided only one site for Fe2+. Binding of Fe2+ or Mn2+ did not have a marked effect on the PgMntR secondary structure. Apo-PgMntR had a distinct affinity for the promoter region of the gene encoding the only known P. gingivalis manganese transporter, FB2. Mn2+ increased the DNA binding affinity of PgMntR whilst Fe2+ destabilised the protein-DNA complex in vitro. PgMntR did not bind the promoter DNA of the gene encoding the characterised iron transporter FB1. The C-terminal FeoA domain was shown to be essential for PgMntR structure/function, as its removal caused the introduction of an intramolecular disulfide bond and abolished the binding of Mn2+ and DNA. These data indicate that PgMntR is a novel member of the DtxR family that may function as a transcriptional repressor switch to specifically regulate manganese transport and homeostasis in an iron-dependent manner.
Collapse
Affiliation(s)
- Lianyi Zhang
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine A. Butler
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hasnah S. G. Khan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart G. Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christine A. Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul D. Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
11
|
Juttukonda LJ, Skaar EP. Manganese homeostasis and utilization in pathogenic bacteria. Mol Microbiol 2015; 97:216-28. [PMID: 25898914 DOI: 10.1111/mmi.13034] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 01/08/2023]
Abstract
Manganese (Mn) is a required cofactor for all forms of life. Given the importance of Mn to bacteria, the host has devised strategies to sequester Mn from invaders. In the macrophage phagosome, NRAMP1 removes Mn and other essential metals to starve intracellular pathogens; in the extracellular space, calprotectin chelates Mn and Zn. Calprotectin-mediated Mn sequestration is a newly appreciated host defense mechanism, and recent findings are highlighted herein. In order to acquire Mn when extracellular concentrations are low, bacteria have evolved efficient Mn acquisition systems that are under elegant transcriptional control. To counteract Mn overload, some bacteria possess Mn-specific export systems that are important in vivo, presumably for control of intracellular Mn levels. Mn transporters, their transcriptional regulators and some Mn-requiring enzymes are necessary for virulence of certain bacterial pathogens, as revealed by animal models of infection. Furthermore, Mn is an important facet of the cellular response to oxidative stress, a host antibacterial strategy. The battle for Mn between host and pathogen is now appreciated to be a major determinant of the outcome of infection. In this MicroReview, the contribution of Mn to the host-pathogen interaction is reviewed, and key questions are proposed for future study.
Collapse
Affiliation(s)
- Lillian J Juttukonda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
12
|
Leyn SA, Rodionov DA. Comparative genomics of DtxR family regulons for metal homeostasis in Archaea. J Bacteriol 2015; 197:451-8. [PMID: 25404694 PMCID: PMC4285986 DOI: 10.1128/jb.02386-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/09/2014] [Indexed: 01/15/2023] Open
Abstract
The DtxR family consists of metal-dependent transcription factors (DtxR-TFs) that regulate the expression of genes involved in metal homeostasis in the cell. The majority of characterized DtxR-TFs belong to Bacteria. In the current work, we applied a comparative genomics approach to predict DNA-binding sites and reconstruct regulons for DtxR-TFs in Archaea. As a result, we inferred 575 candidate binding sites for 139 DtxR-TFs in 77 genomes from 15 taxonomic orders. Novel DNA motifs of archaeal DtxR-TFs that have a common palindromic structure were classified into 10 distinct groups. By combining functional regulon reconstructions with phylogenetic analysis, we selected 28 DtxR-TF clades and assigned them metal specificities and regulator names. The reconstructed FetR (ferrous iron), MntR (manganese), and ZntR (zinc) regulons largely contain known or putative metal uptake transporters from the FeoAB, NRAMP, ZIP, and TroA families. A novel family of putative iron transporters (named Irt), including multiple FetR-regulated paralogs, was identified in iron-oxidizing Archaea from the Sulfolobales order. The reconstructed DtxR-TF regulons were reconciled with available transcriptomics data in Archaeoglobus, Halobacterium, and Thermococcus spp.
Collapse
Affiliation(s)
- Semen A Leyn
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| |
Collapse
|
13
|
Baumgart M, Frunzke J. The manganese-responsive regulator MntR represses transcription of a predicted ZIP family metal ion transporter in Corynebacterium glutamicum. FEMS Microbiol Lett 2014; 362:1-10. [PMID: 25790484 DOI: 10.1093/femsle/fnu001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Manganese is an important trace element required as an enzyme cofactor and for protection against oxidative stress. In this study, we characterized the DtxR-type transcriptional regulator MntR (cg0741) of Corynebacterium glutamicum ATCC 13032 as a manganese-dependent repressor of the predicted ZIP family metal transporter Cg1623. Comparative transcriptome analysis of a ΔmntR strain and the wild type led to the identification of cg1623 as potential target gene of MntR which was about 50-fold upregulated when cells were grown in glucose minimal medium. Using electrophoretic mobility shift assays, a conserved 18 bp inverted repeat (TGTTCAATGCGTTGAACA) was identified as binding motif of MntR in the cg1623 promoter and confirmed by mutational analysis. Promoter fusion of Pcg1623 to eyfp confirmed that the MntR-dependent repression is only abolished in the absence of manganese. However, neither deletion of mntR nor cg1623 resulted in a significant growth phenotype in comparison to the wild type--strongly suggesting the presence of further manganese uptake and efflux systems in C. glutamicum. The control of cg1623 by the DtxR-type regulator MntR represents the first example of a predicted ZIP family protein that is regulated in a manganese-dependent manner in bacteria.
Collapse
Affiliation(s)
- Meike Baumgart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
14
|
Helmann JD. Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis. J Biol Chem 2014; 289:28112-20. [PMID: 25160631 DOI: 10.1074/jbc.r114.587071] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metalloregulatory proteins allow cells to sense metal ions and appropriately adjust the expression of metal uptake, storage, and efflux pathways. Bacillus subtilis provides a model for the coordinate regulation of iron and manganese homeostasis that involves three key regulators: Fur senses iron sufficiency, MntR senses manganese sufficiency, and PerR senses the intracellular Fe/Mn ratio. Here, I review the structural and physiological bases of selective metal perception, the effects of non-cognate metals, and mechanisms that may serve to coordinate iron and manganese homeostasis.
Collapse
Affiliation(s)
- John D Helmann
- From the Department of Microbiology, Cornell University, Ithaca, New York 14853-8101
| |
Collapse
|
15
|
Barzantny H, Schröder J, Strotmeier J, Fredrich E, Brune I, Tauch A. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation. J Biotechnol 2012; 159:235-48. [DOI: 10.1016/j.jbiotec.2012.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 01/08/2023]
|
16
|
Perry RD, Craig SK, Abney J, Bobrov AG, Kirillina O, Mier I, Truszczynska H, Fetherston JD. Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis. MICROBIOLOGY-SGM 2012; 158:804-815. [PMID: 22222497 DOI: 10.1099/mic.0.053710-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Yersinia pestis has a flea-mammal-flea transmission cycle, and is a zoonotic pathogen that causes the systemic diseases bubonic and septicaemic plague in rodents and humans, as well as pneumonic plague in humans and non-human primates. Bubonic and pneumonic plague are quite different diseases that result from different routes of infection. Manganese (Mn) acquisition is critical for the growth and pathogenesis of a number of bacteria. The Yfe/Sit and/or MntH systems are the two prominent Mn transporters in Gram-negative bacteria. Previously we showed that the Y. pestis Yfe system transports Fe and Mn. Here we demonstrate that a mutation in yfe or mntH did not significantly affect in vitro aerobic growth under Mn-deficient conditions. A yfe mntH double mutant did exhibit a moderate growth defect which was alleviated by supplementation with Mn. No short-term energy-dependent uptake of (54)Mn was observed in this double mutant. Like the yfeA promoter, the mntH promoter was repressed by both Mn and Fe via Fur. Sequences upstream of the Fur binding sequence in the yfeA promoter converted an iron-repressible promoter to one that is also repressed by Mn and Fe. To our knowledge, this is the first report identifying cis promoter elements needed to alter cation specificities involved in transcriptional repression. Finally, the Y. pestis yfe mntH double mutant had an ~133-fold loss of virulence in a mouse model of bubonic plague but no virulence loss in the pneumonic plague model. This suggests that Mn availability, bacterial Mn requirements or Mn transporters used by Y. pestis are different in the lungs (pneumonic plague) compared with systemic disease.
Collapse
Affiliation(s)
- Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Susannah K Craig
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Jennifer Abney
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Olga Kirillina
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Ildefonso Mier
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| | - Helena Truszczynska
- Department of Institutional Research Planning and Effectiveness, University of Kentucky, Lexington, KY 40536, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0298, USA
| |
Collapse
|
17
|
Reyes-Caballero H, Campanello GC, Giedroc DP. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys Chem 2011; 156:103-14. [PMID: 21511390 DOI: 10.1016/j.bpc.2011.03.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 01/13/2023]
Abstract
Prokaryotic organisms have evolved the capacity to quickly adapt to a changing and challenging microenvironment in which the availability of both biologically required and non-essential transition metal ions can vary dramatically. In all bacteria, a panel of metalloregulatory proteins controls the expression of genes encoding membrane transporters and metal trafficking proteins that collectively manage metal homeostasis and resistance. These "metal sensors" are specialized allosteric proteins, in which the direct binding of a specific or small number of "cognate" metal ion(s) drives a conformational change in the regulator that allosterically activates or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby converting a poor promoter to a strong one. In this review, we discuss our current understanding of the features that control metal specificity of the allosteric response in these systems, and the role that structure, thermodynamics and conformational dynamics play in mediating allosteric activation or inhibition of DNA binding.
Collapse
|
18
|
Trost E, Ott L, Schneider J, Schröder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, Soares SDC, D'Afonseca V, Miyoshi A, Ruiz J, Silva A, Azevedo V, Burkovski A, Guiso N, Join-Lambert OF, Kayal S, Tauch A. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics 2010; 11:728. [PMID: 21192786 PMCID: PMC3022926 DOI: 10.1186/1471-2164-11-728] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated. RESULTS Sequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence. CONCLUSION The functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host.
Collapse
Affiliation(s)
- Eva Trost
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae. J Bacteriol 2010; 192:4606-17. [PMID: 20639324 DOI: 10.1128/jb.00525-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, the causative agent of the severe respiratory disease diphtheria, utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. Because of the toxicity of high levels of hemin and iron, these compounds are often tightly regulated in bacterial systems. In this report, we identify and characterize the C. diphtheriae hrtAB genes, which encode a putative ABC type transporter involved in conferring resistance to the toxic effects of hemin. Deletion of the hrtAB genes in C. diphtheriae produced increased sensitivity to hemin, which was complemented by a plasmid harboring the cloned hrtAB locus. The HrtAB system was not involved in the uptake and use of hemin as an iron source. The hrtAB genes are located on the C. diphtheriae genome upstream from the chrSA operon, which encodes a previously characterized two-component signal transduction system that regulates gene expression in a heme-dependent manner. The hrtB promoter is activated by the ChrAS system in the presence of hemin or hemoglobin, and mutations in the chrSA genes abolish heme-activated expression from the hrtB promoter. It was also observed that transcription from the hrtB promoter is reduced in a dtxR deletion mutant, suggesting that DtxR is required for optimal expression of hrtAB. Previous studies proposed that the ChrS sensor kinase may be responsive to an environmental signal, such as hemin. We show that specific point mutations in the ChrS N-terminal transmembrane domain result in a reduced ability to activate the hrtB promoter in the presence of a heme source, suggesting that this putative sensor region is essential for the detection of a signal produced in response to hemin exposure. This study shows that the HrtAB system is required for protection from hemin toxicity and that expression of the hrtAB genes is regulated by the ChrAS two-component system. This study demonstrates a direct correlation between the detection of heme or a heme-associated signal by the N-terminal sensor domain of ChrS and the transcriptional activation of the hrtAB genes.
Collapse
|
20
|
Toukoki C, Gold KM, McIver KS, Eichenbaum Z. MtsR is a dual regulator that controls virulence genes and metabolic functions in addition to metal homeostasis in the group A streptococcus. Mol Microbiol 2010; 76:971-89. [PMID: 20398221 PMCID: PMC3082948 DOI: 10.1111/j.1365-2958.2010.07157.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MtsR is a metal-dependent regulator in the group A streptococcus (GAS) that directly represses the transcription of genes involved in haem and metal uptake. While MtsR has been implicated in GAS virulence, the DNA recognition and full regulatory scope exerted by the protein are unknown. In this study we identified the shr promoter (P(shr)) and mapped MtsR binding to a 69 bp segment in P(shr) that overlaps the core promoter elements. A global transcriptional analysis demonstrated that MtsR modulates the expression of 64 genes in GAS, 44 of which were upregulated and 20 were downregulated in the mtsR mutant. MtsR controls genes with diverse functions including metal homeostasis, nucleic acid and amino acid metabolism, and protein fate. Importantly, the MtsR regulon includes mga, emm49 and ska, which are central for GAS pathogenesis. MtsR binding to the promoter region of both negatively and positively regulated genes demonstrates that it functions as a dual regulator. MtsR footprints are large (47-130 bp) and vary between target promoters. A 16 bp motif that consists of an interrupted palindrome is implicated in the DNA recognition by the metalloregulator. In conclusion, we report here that MtsR is a global regulator in GAS that shapes the expression of vital virulence factors and genes involved in metabolic functions and metal transport, and we discuss the implications for the GAS disease process.
Collapse
Affiliation(s)
- Chadia Toukoki
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Kathryn M. Gold
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Zehava Eichenbaum
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
21
|
Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Chem Rev 2009; 109:4644-81. [PMID: 19788177 PMCID: PMC2783614 DOI: 10.1021/cr900077w] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen Ma
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128 USA
| | - Faith E. Jacobsen
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47401-7005 USA
| |
Collapse
|
22
|
Regulation and activity of a zinc uptake regulator, Zur, in Corynebacterium diphtheriae. J Bacteriol 2008; 191:1595-603. [PMID: 19074382 DOI: 10.1128/jb.01392-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of metal ion homeostasis is essential to bacterial cell survival, and in most species it is controlled by metal-dependent transcriptional regulators. In this study, we describe a Corynebacterium diphtheriae ferric uptake regulator-family protein, Zur, that controls expression of genes involved in zinc uptake. By measuring promoter activities and mRNA levels, we demonstrate that Zur represses transcription of three genes (zrg, cmrA, and troA) in zinc-replete conditions. All three of these genes have similarity to genes involved in zinc uptake. Transcription of zrg and cmrA was also shown to be regulated in response to iron and manganese, respectively, by mechanisms that are independent of Zur. We demonstrate that the activity of the zur promoter is slightly decreased under low zinc conditions in a process that is dependent on Zur itself. This regulation of zur transcription is distinctive and has not yet been described for any other zur. An adjacent gene, predicted to encode a metal-dependent transcriptional regulator in the ArsR/SmtB family, is transcribed from a separate promoter whose activity is unaffected by Zur. A C. diphtheriae zur mutant was more sensitive to peroxide stress, which suggests that zur has a role in protecting the bacterium from oxidative damage. Our studies provide the first evidence of a zinc specific transcriptional regulator in C. diphtheriae and give new insights into the intricate regulatory network responsible for regulating metal ion concentrations in this toxigenic human pathogen.
Collapse
|
23
|
Rodionov DA, Gelfand MS, Todd JD, Curson ARJ, Johnston AWB. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol 2006; 2:e163. [PMID: 17173478 PMCID: PMC1698941 DOI: 10.1371/journal.pcbi.0020163] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/18/2006] [Indexed: 01/08/2023] Open
Abstract
We used comparative genomics to investigate the distribution of conserved DNA-binding motifs in the regulatory regions of genes involved in iron and manganese homeostasis in alpha-proteobacteria. Combined with other computational approaches, this allowed us to reconstruct the metal regulatory network in more than three dozen species with available genome sequences. We identified several classes of cis-acting regulatory DNA motifs (Irr-boxes or ICEs, RirA-boxes, Iron-Rhodo-boxes, Fur-alpha-boxes, Mur-box or MRS, MntR-box, and IscR-boxes) in regulatory regions of various genes involved in iron and manganese uptake, Fe-S and heme biosynthesis, iron storage, and usage. Despite the different nature of the iron regulons in selected lineages of alpha-proteobacteria, the overall regulatory network is consistent with, and confirmed by, many experimental observations. This study expands the range of genes involved in iron homeostasis and demonstrates considerable interconnection between iron-responsive regulatory systems. The detailed comparative and phylogenetic analyses of the regulatory systems allowed us to propose a theory about the possible evolution of Fe and Mn regulons in alpha-proteobacteria. The main evolutionary event likely occurred in the common ancestor of the Rhizobiales and Rhodobacterales, where the Fur protein switched to regulating manganese transporters (and hence Fur had become Mur). In these lineages, the role of global iron homeostasis was taken by RirA and Irr, two transcriptional regulators that act by sensing the physiological consequence of the metal availability rather than its concentration per se, and thus provide for more flexible regulation.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Two areas of research have recently converged to highlight important roles for Mn(2+) in pathogenesis: the recognition that both bacterial Nramp homologs and members of LraI family of proteins are Mn(2+) transporters. Their mutation is associated with decreased virulence of various bacterial species. Thus, Mn(2+) appears to be essential for bacterial virulence. This review describes what is currently known about Mn(2+) transport in prokaryotes and how prokaryotic Mn(2+) transport is regulated. Some of the phenotypes that arise when microorganisms lack Mn(2+) are then discussed, with an emphasis on those phenotypes involving pathogenesis. The concluding section describes possible enzymatic roles for Mn(2+) that might help explain why Mn(2+) is necessary for virulence.
Collapse
|
25
|
Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palù G, Riccardi G, Manganelli R. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 2006; 189:730-40. [PMID: 17098899 PMCID: PMC1797298 DOI: 10.1128/jb.01190-06] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proteins belonging to the Fur family are global regulators of gene expression involved in the response to several environmental stresses and to the maintenance of divalent cation homeostasis. The Mycobacterium tuberculosis genome encodes two Fur-like proteins, FurA and a protein formerly annotated FurB. Since in this paper we show that it represents a zinc uptake regulator, we refer to it as Zur. The gene encoding Zur is found in an operon together with the gene encoding a second transcriptional regulator (Rv2358). In a previous work we demonstrated that Rv2358 is responsible for the zinc-dependent repression of the Rv2358-zur operon, favoring the hypothesis that these genes represent key regulators of zinc homeostasis. In this study we generated a zur mutant in M. tuberculosis, examined its phenotype, and characterized the Zur regulon by DNA microarray analysis. Thirty-two genes, presumably organized in 16 operons, were found to be upregulated in the zur mutant. Twenty-four of them belonged to eight putative transcriptional units preceded by a conserved 26-bp palindrome. Electrophoretic mobility shift experiments demonstrated that Zur binds to this palindrome in a zinc-dependent manner, suggesting its direct regulation of these genes. The proteins encoded by Zur-regulated genes include a group of ribosomal proteins, three putative metal transporters, the proteins belonging to early secretory antigen target 6 (ESAT-6) cluster 3, and three additional proteins belonging to the ESAT-6/culture filtrate protein 10 (CFP-10) family known to contain immunodominant epitopes in the T-cell response to M. tuberculosis infection.
Collapse
Affiliation(s)
- Anna Maciag
- Department of Genetics and Microbiology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kliegman JI, Griner SL, Helmann JD, Brennan RG, Glasfeld A. Structural basis for the metal-selective activation of the manganese transport regulator of Bacillus subtilis. Biochemistry 2006; 45:3493-505. [PMID: 16533030 PMCID: PMC2586665 DOI: 10.1021/bi0524215] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The manganese transport regulator (MntR) of Bacillus subtilis is activated by Mn(2+) to repress transcription of genes encoding transporters involved in the uptake of manganese. MntR is also strongly activated by cadmium, both in vivo and in vitro, but it is poorly activated by other metal cations, including calcium and zinc. The previously published MntR.Mn(2+) structure revealed a binuclear complex of manganese ions with a metal-metal separation of 3.3 A (herein designated the AB conformer). Analysis of four additional crystal forms of MntR.Mn(2+) reveals that the AB conformer is only observed in monoclinic crystals at 100 K, suggesting that this conformation may be stabilized by crystal packing forces. In contrast, monoclinic crystals analyzed at room temperature (at either pH 6.5 or pH 8.5), and a second hexagonal crystal form (analyzed at 100 K), all reveal the shift of one manganese ion by 2.5 A, thereby leading to a newly identified conformation (the AC conformer) with an internuclear distance of 4.4 A. Significantly, the cadmium and calcium complexes of MntR also contain binuclear complexes with a 4.4 A internuclear separation. In contrast, the zinc complex of MntR contains only one metal ion per subunit, in the A site. Isothermal titration calorimetry confirms the stoichiometry of Mn(2+), Cd(2+), and Zn(2+) binding to MntR. We propose that the specificity of MntR activation is tied to productive binding of metal ions at two sites; the A site appears to act as a selectivity filter, determining whether the B or C site will be occupied and thereby fully activate MntR.
Collapse
Affiliation(s)
| | - Sarah L. Griner
- Department of Chemistry, Reed College, Portland, Oregon 97202
| | - John D. Helmann
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York 14853
| | - Richard G. Brennan
- Department of Biochemistry and Molecular Biology, U. T. M. D. Anderson Cancer Center, Unit 1000 Houston, TX 77030
| | - Arthur Glasfeld
- Department of Chemistry, Reed College, Portland, Oregon 97202
| |
Collapse
|
27
|
Johnston JW, Briles DE, Myers LE, Hollingshead SK. Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect Immun 2006; 74:1171-80. [PMID: 16428766 PMCID: PMC1360317 DOI: 10.1128/iai.74.2.1171-1180.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The concentration of Mn2+ is 1,000-fold higher in secretions than it is at internal sites of the body, making it a potential signal by which bacteria can sense a shift from a mucosal environment to a more invasive site. PsaR, a metal-dependent regulator in Streptococcus pneumoniae, was found to negatively affect the transcription of psaBCA, pcpA, rrgA, rrgB, rrgC, srtBCD, and rlrA in the presence of Mn2+. psaBCA encode an ABC-type transporter for Mn2+. pcpA, rrgA, rrgB, and rrgC encode several outer surface proteins. srtBCD encode a cluster of sortase enzymes, and rlrA encodes a transcriptional regulator. Steady-state RNA levels are high under low Mn2+ concentrations in the wild-type strain and are elevated under both high and low Mn2+ concentrations in a psaR mutant strain. RlrA is an activator of rrgA, rrgB, rrgC, and srtBCD (D. Hava and A. Camilli, Mol. Microbiol. 45:1389-1406, 2002), suggesting that PsaR may indirectly control these genes through rlrA, while PsaR-dependent repression of psaBCA, pcpA, and rlrA transcription is direct. The impact of Mn2+-dependent regulation on virulence was further examined in mouse models of pneumonia and nasopharyngeal carriage. The abilities of DeltapsaR, pcpA, and DeltapsaR DeltapcpA mutant strains to colonize the lung were reduced compared to those of the wild type, confirming that both PcpA-mediated gene regulation and PsaR-mediated gene regulation are required for full virulence in the establishment of pneumonia. Neither PcpA nor PsaR was found to be required for colonization of the nasopharynx in a carriage model. This is the first demonstration of Mn2+ acting as a signal for the expression of virulence factors within different host sites.
Collapse
Affiliation(s)
- Jason W Johnston
- Department of Microbiology, University of Iowa, BSB 3-401, 51 Newton Road, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
28
|
Bates CS, Toukoki C, Neely MN, Eichenbaum Z. Characterization of MtsR, a new metal regulator in group A streptococcus, involved in iron acquisition and virulence. Infect Immun 2005; 73:5743-53. [PMID: 16113291 PMCID: PMC1231137 DOI: 10.1128/iai.73.9.5743-5753.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A streptococcus (GAS) is a common pathogen of the human skin and mucosal surfaces capable of producing a variety of diseases. In this study, we investigated regulation of iron uptake in GAS and the role of a putative transcriptional regulator named MtsR (for Mts repressor) with homology to the DtxR family of metal-dependent regulatory proteins. An mtsR mutant was constructed in NZ131 (M49 serotype) and analyzed. Western blot and RNA analysis showed that mtsR inactivation results in constitutive transcription of the sia (streptococcal iron acquisition) operon, which was negatively regulated by iron in the parent strain. A recombinant MtsR with C-terminal His(6) tag fusion (rMtsR) was cloned and purified. Electrophoretic mobility gel shift assays demonstrated that rMtsR specifically binds to the sia promoter region in an iron- and manganese-dependent manner. Together, these observations indicate that MtsR directly represses the sia operon during cell growth under conditions of high metal levels. Consistent with deregulation of iron uptake, the mtsR mutant is hypersensitive to streptonigrin and hydrogen peroxide, and (55)Fe uptake assays demonstrate that it accumulates 80% +/- 22.5% more iron than the wild-type strain during growth in complete medium. Studies with a zebrafish infection model revealed that the mtsR mutant is attenuated for virulence in both the intramuscular and the intraperitoneal routes. In conclusion, MtsR, a new regulatory protein in GAS, controls iron homeostasis and has a role in disease production.
Collapse
Affiliation(s)
- Christopher S Bates
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
29
|
Dashper SG, Butler CA, Lissel JP, Paolini RA, Hoffmann B, Veith PD, O'Brien-Simpson NM, Snelgrove SL, Tsiros JT, Reynolds EC. A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem 2005; 280:28095-102. [PMID: 15901729 DOI: 10.1074/jbc.m503896200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FeoB is an atypical transporter that has been shown to exclusively mediate ferrous ion transport in some bacteria. Unusually the genome of the periodontal pathogen Porphyromonas gingivalis has two genes (feoB1 and feoB2) encoding FeoB homologs, both of which are expressed in bicistronic operons. Kinetic analysis of ferrous ion transport by P. gingivalis W50 revealed the presence of a single, high affinity system with a K(t) of 0.31 microM. FeoB1 was found to be solely responsible for this transport as energized cells of the isogenic FeoB1 mutant (W50FB1) did not transport radiolabeled iron, while the isogenic FeoB2 mutant (W50FB2) transported radiolabeled iron at a rate similar to wild type. This was reflected in the iron content of W50FB1 grown in iron excess conditions which was approximately half that of the wild type and W50FB2. The W50FB1 mutant had increased sensitivity to both oxygen and hydrogen peroxide and was avirulent in an animal model of infection whereas W50FB2 exhibited the same virulence as the wild type. Analysis of manganous ion uptake using inductively coupled plasma-mass spectrometry revealed a greater than 3-fold decrease in intracellular manganese accumulation in W50FB2 which was also unable to grow in manganese-limited media. The protein co-expressed with FeoB2 appears to be a novel FeoA-MntR fusion protein that exhibits homology to a manganese-responsive, DNA-binding metalloregulatory protein. These results indicate that FeoB2 is not involved in iron transport but plays a novel role in manganese transport.
Collapse
Affiliation(s)
- Stuart G Dashper
- Center for Oral Health Science, School of Dental Science, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Flores FJ, Martín JF. Iron-regulatory proteins DmdR1 and DmdR2 of Streptomyces coelicolor form two different DNA-protein complexes with iron boxes. Biochem J 2004; 380:497-503. [PMID: 14960152 PMCID: PMC1224170 DOI: 10.1042/bj20031945] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 02/11/2004] [Accepted: 02/12/2004] [Indexed: 11/17/2022]
Abstract
In high G+C Gram-positive bacteria, the control of expression of genes involved in iron metabolism is exerted by a DmdR [divalent (bivalent) metal-dependent regulatory protein] in the presence of Fe2+ or other bivalent ions. The dmdR1 and dmdR2 genes of Streptomyces coelicolor were overexpressed in Escherichia coli and the DmdR1 and DmdR2 proteins were purified to homogeneity. Electrophoretic mobility-shift assays showed that both DmdR1 and DmdR2 bind to the 19-nt tox and desA iron boxes forming two different complexes in each case. Increasing the concentrations of DmdR1 or DmdR2 protein shifted these complexes from their low-molecular-mass form to the high-molecular-mass complexes. Formation of the DNA-protein complexes was prevented by the bivalent metal chelating agent 2,2'-dipyridyl and by antibodies specific against the DmdR proteins. Cross-linking with glutaraldehyde of pure DmdR1 or DmdR2 proteins showed that DmdR1 forms dimers, whereas DmdR2 is capable of forming dimers and probably tetramers. Ten different iron boxes were found in a search for iron boxes in the genome of S. coelicolor. Most of them correspond to putative genes involved in siderophore biosynthesis. Since the nucleotide sequence of these ten boxes is identical (or slightly different) with the synthetic DNA fragment containing the desA box used in the present study, it is proposed that DmdR1 and DmdR2 bind to the iron boxes upstream of at least ten different genes in S. coelicolor.
Collapse
Affiliation(s)
- Francisco J Flores
- Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Area de Microbiología, 24071 León, Spain
| | | |
Collapse
|
31
|
Oram DM, Avdalovic A, Holmes RK. Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species. Infect Immun 2004; 72:1885-95. [PMID: 15039307 PMCID: PMC375144 DOI: 10.1128/iai.72.4.1885-1895.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal-dependent transcriptional regulators of the diphtheria toxin repressor (DtxR) family have been identified in a wide variety of bacterial genera, where they control gene expression in response to one of two metal ions, Fe(2+) or Mn(2+). DtxR of Corynebacterium diphtheriae is the best characterized of these important metal-dependent regulators. The genus Corynebacterium includes many phenotypically diverse species, and the prevalence of DtxR-like regulators within the genus is unknown. We assayed chromosomal DNA from 42 different corynebacterial isolates, representing 33 different species, for the presence of a highly conserved region of the dtxR gene that encodes the DNA-binding helix-turn-helix motif and metal-binding site 1 within domains 1 and 2 of DtxR. The chromosome of all of the isolates contained this conserved region of dtxR, and DNA sequencing revealed a high level of nucleotide sequence conservation within this region in all of the corynebacterial species (ranging from 62 to 100% identity and averaging 70% identity with the dtxR prototype). The level of identity was even greater for the predicted protein sequences encoded by the dtxR-like genes, ranging from 81 to 100% identity and averaging 91% identity with DtxR. Using a DtxR-specific antiserum we confirmed the presence of a DtxR-like protein in extracts of most of the corynebacterial isolates and determined the precise amount of DtxR per cell in C. diphtheriae. The high level of identity at both DNA and protein levels suggests that all of the isolates tested encode a functional DtxR-like Fe(2+)-activated regulatory protein that can bind homologs of the DtxR operator and regulate gene expression in response to iron.
Collapse
Affiliation(s)
- Diana Marra Oram
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
32
|
Kunkle CA, Schmitt MP. Analysis of the Corynebacterium diphtheriae DtxR regulon: identification of a putative siderophore synthesis and transport system that is similar to the Yersinia high-pathogenicity island-encoded yersiniabactin synthesis and uptake system. J Bacteriol 2004; 185:6826-40. [PMID: 14617647 PMCID: PMC262719 DOI: 10.1128/jb.185.23.6826-6840.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor, DtxR, is a global iron-dependent regulatory protein in Corynebacterium diphtheriae that controls gene expression by binding to 19-bp operator sequences. To further define the DtxR regulon in C. diphtheriae, a DtxR repressor titration assay (DRTA) was developed and used to identify 10 previously unknown DtxR binding sites. Open reading frames downstream from seven of the newly identified DtxR binding sites are predicted to encode proteins associated with iron or heme transport. Electrophoretic mobility shift assays indicated that DtxR was able to bind to DNA fragments carrying the 19-bp operator regions, and transcriptional analysis of putative promoter elements adjacent to the binding site sequences revealed that most of these regions displayed iron- and DtxR-regulated activity. A putative siderophore biosynthesis and transport operon located downstream from one of the DtxR binding sites, designated sid, is similar to the yersiniabactin synthesis and uptake genes encoded on the Yersinia pestis high pathogenicity island. The siderophore biosynthetic genes in the sid operon contained a large deletion in the C. diphtheriae C7 strain, but the sid genes were unaffected in four clinical isolates that are representative of the dominant strains from the recent diphtheria epidemic in the former Soviet Union. Mutations in the siderophore biosynthetic genes in a clinical strain had no effect on siderophore synthesis or growth in low-iron conditions; however, a mutation in one of the putative transport proteins, cdtP, resulted in reduced growth in iron-depleted media, which suggests that this system may have a role in iron uptake. The findings from this study indicate that C. diphtheriae contains at least 18 DtxR binding sites and that DtxR may affect the expression of as many as 40 genes.
Collapse
Affiliation(s)
- Carey A Kunkle
- Laboratory of Bacterial Toxins, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
33
|
Glasfeld A, Guedon E, Helmann JD, Brennan RG. Structure of the manganese-bound manganese transport regulator of Bacillus subtilis. Nat Struct Mol Biol 2003; 10:652-7. [PMID: 12847518 DOI: 10.1038/nsb951] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Accepted: 05/21/2003] [Indexed: 11/08/2022]
Abstract
The Bacillus subtilis manganese transport regulator, MntR, binds Mn2+ as an effector and is a repressor of transporters that import manganese. A member of the diphtheria toxin repressor (DtxR) family of metalloregulatory proteins, MntR exhibits selectivity for Mn2+ over Fe2+. Replacement of a metal-binding residue, Asp8, with methionine (D8M) relaxes this specificity. We report here the X-ray crystal structures of wild-type MntR and the D8M mutant bound to manganese with 1.75 A and 1.61 A resolution, respectively. The 142-residue MntR homodimer has substantial structural similarity to the 226-residue DtxR but lacks the C-terminal SH3-like domain of DtxR. The metal-binding pockets of MntR and DtxR are substantially different. The cation-to-cation distance between the two manganese ions bound by MntR is 3.3 A, whereas that between the metal ions bound by DtxR is 9 A. D8M binds only a single Mn2+ per monomer, owing to alteration of the metal-binding site. The sole retained metal site adopts pseudo-hexacoordinate geometry rather than the pseudo-heptacoordinate geometry of the MntR metal sites.
Collapse
Affiliation(s)
- Arthur Glasfeld
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, Oregon 97202, USA.
| | | | | | | |
Collapse
|