1
|
Gao R, Wu T, Stock AM. A conserved inhibitory interdomain interaction regulates DNA-binding activities of hybrid two-component systems in Bacteroides. mBio 2024; 15:e0122024. [PMID: 38842315 PMCID: PMC11253607 DOI: 10.1128/mbio.01220-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Zhang Z, Yan Y, Pang J, Dai L, Zhang Q, Yu EW. Structural basis of DNA recognition of the Campylobacter jejuni CosR regulator. mBio 2024; 15:e0343023. [PMID: 38323832 PMCID: PMC10936212 DOI: 10.1128/mbio.03430-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Campylobacter jejuni is a foodborne pathogen commonly found in the intestinal tracts of animals. This pathogen is a leading cause of gastroenteritis in humans. Besides its highly infectious nature, C. jejuni is increasingly resistant to a number of clinically administrated antibiotics. As a consequence, the Centers for Disease Control and Prevention has designated antibiotic-resistant Campylobacter as a serious antibiotic resistance threat in the United States. The C. jejuni CosR regulator is essential to the viability of this bacterium and is responsible for regulating the expression of a number of oxidative stress defense enzymes. Importantly, it also modulates the expression of the CmeABC multidrug efflux system, the most predominant and clinically important system in C. jejuni that mediates resistance to multiple antimicrobials. Here, we report structures of apo-CosR and CosR bound with a 21 bp DNA sequence located at the cmeABC promotor region using both single-particle cryo-electron microscopy and X-ray crystallography. These structures allow us to propose a novel mechanism for CosR regulation that involves a long-distance conformational coupling and rearrangement of the secondary structural elements of the regulator to bind target DNA. IMPORTANCE Campylobacter jejuni has emerged as an antibiotic-resistant threat worldwide. CosR is an essential regulator for this bacterium and is important for Campylobacter adaptation to various stresses. Here, we describe the structural basis of CosR binding to target DNA as determined by cryo-electron microscopy and X-ray crystallography. Since CosR is a potential target for intervention, our studies may facilitate the development of novel therapeutics to combat C. jejuni infection.
Collapse
Affiliation(s)
- Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yuqi Yan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jinji Pang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Lei Dai
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Shi J, Feng Z, Xu J, Li F, Zhang Y, Wen A, Wang F, Song Q, Wang L, Cui H, Tong S, Chen P, Zhu Y, Zhao G, Wang S, Feng Y, Lin W. Structural insights into the transcription activation mechanism of the global regulator GlnR from actinobacteria. Proc Natl Acad Sci U S A 2023; 120:e2300282120. [PMID: 37216560 PMCID: PMC10235972 DOI: 10.1073/pnas.2300282120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
In actinobacteria, an OmpR/PhoB subfamily protein called GlnR acts as an orphan response regulator and globally coordinates the expression of genes responsible for nitrogen, carbon, and phosphate metabolism in actinobacteria. Although many researchers have attempted to elucidate the mechanisms of GlnR-dependent transcription activation, progress is impeded by lacking of an overall structure of GlnR-dependent transcription activation complex (GlnR-TAC). Here, we report a co-crystal structure of the C-terminal DNA-binding domain of GlnR (GlnR_DBD) in complex with its regulatory cis-element DNA and a cryo-EM structure of GlnR-TAC which comprises Mycobacterium tuberculosis RNA polymerase, GlnR, and a promoter containing four well-characterized conserved GlnR binding sites. These structures illustrate how four GlnR protomers coordinate to engage promoter DNA in a head-to-tail manner, with four N-terminal receiver domains of GlnR (GlnR-RECs) bridging GlnR_DBDs and the RNAP core enzyme. Structural analysis also unravels that GlnR-TAC is stabilized by complex protein-protein interactions between GlnR and the conserved β flap, σAR4, αCTD, and αNTD domains of RNAP, which are further confirmed by our biochemical assays. Taken together, these results reveal a global transcription activation mechanism for the master regulator GlnR and other OmpR/PhoB subfamily proteins and present a unique mode of bacterial transcription regulation.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
- Department of Biophysics, Zhejiang University School of Medicine, 310058Hangzhou, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Zhenzhen Feng
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Juncao Xu
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032Shanghai, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Yuqiong Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, 510631Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, 510631Guangzhou, Guangdong, China
- Songshan Lake Materials Laboratory, 523808Dongguan, Guangdong, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, 310058Hangzhou, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Qian Song
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Hong Cui
- Pasteurien College, Suzhou Medical College of Soochow University, Soochow University, 251000Soochow, China
| | - Shujuan Tong
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Peiying Chen
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Yejin Zhu
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032Shanghai, China
| | - Shuang Wang
- Songshan Lake Materials Laboratory, 523808Dongguan, Guangdong, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190Beijing, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, 310058Hangzhou, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058Hangzhou, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023Nanjing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai200237, China
- Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, 210023Nanjing, China
| |
Collapse
|
4
|
Structural basis of phosphorylation-induced activation of the response regulator VbrR. Acta Biochim Biophys Sin (Shanghai) 2023; 55:43-50. [PMID: 36647726 PMCID: PMC10157535 DOI: 10.3724/abbs.2022200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
<p indent="0mm">Two-component systems typically consist of a paired histidine kinase and response regulator and couple environmental changes to adaptive responses. The response regulator VbrR from <italic>Vibrio parahaemolyticus</italic>, a member of the OmpR/PhoB family, regulates virulence and antibiotic resistance genes. The activation mechanism of VbrR remains unclear. Here, we report the crystal structures of full-length VbrR in complex with DNA in the active conformation and the N-terminal receiver domain (RD) and the C-terminal DNA-binding domain (DBD) in both active and inactive conformations. Structural and biochemical analyses suggest that unphosphorylated VbrR adopts mainly as inactive dimers through the DBD at the autoinhibitory state. The RD undergoes a monomer-to-dimer transition upon phosphorylation, which further induces the transition of DBD from an autoinhibitory dimer to an active dimer and enables its binding with target DNA. Our study suggests a new model for phosphorylation-induced activation of response regulators and sheds light on the pathogenesis of <italic>V</italic>. <italic>parahaemolyticus</italic>. </p>.
Collapse
|
5
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
6
|
The Two-Component System RstA/RstB Regulates Expression of Multiple Efflux Pumps and Influences Anaerobic Nitrate Respiration in Pseudomonas fluorescens. mSystems 2021; 6:e0091121. [PMID: 34726491 PMCID: PMC8562477 DOI: 10.1128/msystems.00911-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multidrug resistance (MDR) efflux pumps are involved in bacterial intrinsic resistance to multiple antimicrobials. Expression of MDR efflux pumps can be either constitutive or transiently induced by various environmental signals, which are typically perceived by bacterial two-component systems (TCSs) and relayed to the bacterial nucleoid, where gene expression is modulated for niche adaptation. Here, we demonstrate that RstA/RstB, a TCS previously shown to control acid-induced and biofilm-related genes in Escherichiacoli, confers resistance to multiple antibiotics in Pseudomonas fluorescens by directly regulating the MDR efflux pumps EmhABC and MexCD-OprJ. Moreover, we show that phosphorylation of the conserved Asp52 residue in RstA greatly enhances RstA-DNA interaction, and regulation of the multidrug resistance by RstA/RstB is dependent on the phosphorylation of the RstA Asp52 residue by RstB. Proteome analysis reveals RstA/RstB also positively regulates the efflux pump MexEF-OprN and enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. Our results suggest that, by coupling the expression of multiple efflux pumps and anaerobic nitrate respiration, RstA/RstB could play a role in defense against nitrosative stress caused by anaerobic nitrate respiration. IMPORTANCE Microenvironmental hypoxia typically increases bacterial multidrug resistance by elevating expression of multidrug efflux pumps, but the precise mechanism is currently not well understood. Here, we showed that the two-component system RstA/RstB not only positively regulated expression of several efflux pumps involved in multidrug resistance, but also promoted expression of enzymes involved in anaerobic nitrate respiration and pyoverdine biosynthesis. These results suggested that, by upregulating expression of efflux pumps and pyoverdine biosynthesis-related enzymes, RstA/RstB could play a role in promoting bacterial tolerance to hypoxia by providing protection against nitrosative stress.
Collapse
|
7
|
Guffey AA, Loll PJ. Regulation of Resistance in Vancomycin-Resistant Enterococci: The VanRS Two-Component System. Microorganisms 2021; 9:2026. [PMID: 34683347 PMCID: PMC8541618 DOI: 10.3390/microorganisms9102026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/20/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are a serious threat to human health, with few treatment options being available. New therapeutics are urgently needed to relieve the health and economic burdens presented by VRE. A potential target for new therapeutics is the VanRS two-component system, which regulates the expression of vancomycin resistance in VRE. VanS is a sensor histidine kinase that detects vancomycin and in turn activates VanR; VanR is a response regulator that, when activated, directs expression of vancomycin-resistance genes. This review of VanRS examines how the expression of vancomycin resistance is regulated, and provides an update on one of the field's most pressing questions: How does VanS sense vancomycin?
Collapse
Affiliation(s)
| | - Patrick J. Loll
- Department of Biochemistry & Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| |
Collapse
|
8
|
Maciunas LJ, Porter N, Lee PJ, Gupta K, Loll PJ. Structures of full-length VanR from Streptomyces coelicolor in both the inactive and activated states. Acta Crystallogr D Struct Biol 2021; 77:1027-1039. [PMID: 34342276 PMCID: PMC8329863 DOI: 10.1107/s2059798321006288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
Vancomycin has historically been used as a last-resort treatment for serious bacterial infections. However, vancomycin resistance has become widespread in certain pathogens, presenting a serious threat to public health. Resistance to vancomycin is conferred by a suite of resistance genes, the expression of which is controlled by the VanR-VanS two-component system. VanR is the response regulator in this system; in the presence of vancomycin, VanR accepts a phosphoryl group from VanS, thereby activating VanR as a transcription factor and inducing expression of the resistance genes. This paper presents the X-ray crystal structures of full-length VanR from Streptomyces coelicolor in both the inactive and activated states at resolutions of 2.3 and 2.0 Å, respectively. Comparison of the two structures illustrates that phosphorylation of VanR is accompanied by a disorder-to-order transition of helix 4, which lies within the receiver domain of the protein. This transition generates an interface that promotes dimerization of the receiver domain; dimerization in solution was verified using analytical ultracentrifugation. The inactive conformation of the protein does not appear intrinsically unable to bind DNA; rather, it is proposed that in the activated form DNA binding is enhanced by an avidity effect contributed by the receiver-domain dimerization.
Collapse
Affiliation(s)
- Lina J. Maciunas
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Graduate Program in Biochemistry, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Nadia Porter
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Summer Undergraduate Research Fellowship Program, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Paula J. Lee
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Patrick J. Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
9
|
A Trigger Phosphodiesterase Modulates the Global c-di-GMP Pool, Motility, and Biofilm Formation in Vibrio parahaemolyticus. J Bacteriol 2021; 203:e0004621. [PMID: 33846117 DOI: 10.1128/jb.00046-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio parahaemolyticus cells transit from free-swimming to surface adapted lifestyles, such as swarming colonies and three-dimensional biofilms. These transitions are regulated by sensory modules and regulatory networks that involve the second messenger cyclic diguanylate monophosphate (c-di-GMP). In this work, we show that a previously uncharacterized c-di-GMP phosphodiesterase (VP1881) from V. parahaemolyticus plays an important role in modulating the c-di-GMP pool. We found that the product of VP1881 promotes its own expression when the levels of c-di-GMP are low or when the phosphodiesterase (PDE) is catalytically inactive. This behavior has been observed in a class of c-di-GMP receptors called trigger phosphodiesterases, and hence we named the product of VP1881 TpdA, for trigger phosphodiesterase A. The absence of tpdA showed a negative effect on swimming motility while, its overexpression from an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible promoter showed a positive effect on both swimming and swarming motility and a negative effect on biofilm formation. Changes in TpdA abundance altered the expression of representative polar and lateral flagellar genes, as well as that of the biofilm-related gene cpsA. Our results also revealed that autoactivation of the native PtpdA promoter is sufficient to alter c-di-GMP signaling responses such as swarming and biofilm formation in V. parahaemolyticus, an observation that could have important implications in the dynamics of these social behaviors. IMPORTANCE c-di-GMP trigger phosphodiesterases (PDEs) could play a key role in controlling the heterogeneity of biofilm matrix composition, a property that endows characteristics that are potentially relevant for sustaining integrity and functionality of biofilms in a variety of natural environments. Trigger PDEs are not always easy to identify based on their sequence, and hence not many examples of these type of signaling proteins have been reported in the literature. Here, we report on the identification of a novel trigger PDE in V. parahaemolyticus and provide evidence suggesting that its autoactivation could play an important role in the progression of swarming motility and biofilm formation, multicellular behaviors that are important for the survival and dissemination of this environmental pathogen.
Collapse
|
10
|
Structural basis for promoter DNA recognition by the response regulator OmpR. J Struct Biol 2020; 213:107638. [PMID: 33152421 DOI: 10.1016/j.jsb.2020.107638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022]
Abstract
OmpR, a response regulator of the EnvZ/OmpR two-component system (TCS), controls the reciprocal regulation of two porin proteins, OmpF and OmpC, in bacteria. During signal transduction, OmpR (OmpR-FL) undergoes phosphorylation at its conserved Asp residue in the N-terminal receiver domain (OmpRn) and recognizes the promoter DNA from its C-terminal DNA-binding domain (OmpRc) to elicit an adaptive response. Apart from that, OmpR regulates many genes in Escherichia coli and is important for virulence in several pathogens. However, the molecular mechanism of the regulation and the structural basis of OmpR-DNA binding is still not fully clear. In this study, we presented the crystal structure of OmpRc in complex with the F1 region of the ompF promoter DNA from E. coli. Our structural analysis suggested that OmpRc binds to its cognate DNA as a homodimer, only in a head-to-tail orientation. Also, the OmpRc apo-form showed a unique domain-swapped crystal structure under different crystallization conditions. Biophysical experimental data, such as NMR, fluorescent polarization and thermal stability, showed that inactive OmpR-FL (unphosphorylated) could bind to promoter DNA with a weaker binding affinity as compared with active OmpR-FL (phosphorylated) or OmpRc, and also confirmed that phosphorylation may only enhance DNA binding. Furthermore, the dimerization interfaces in the OmpRc-DNA complex structure identified in this study provide an opportunity to understand the regulatory role of OmpR and explore the potential for this "druggable" target.
Collapse
|
11
|
Xie M, Wu M, Han A. Structural insights into the signal transduction mechanism of the K +-sensing two-component system KdpDE. Sci Signal 2020; 13:13/643/eaaz2970. [PMID: 32753477 DOI: 10.1126/scisignal.aaz2970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two-component systems (TCSs), which consist of a histidine kinase (HK) sensor and a response regulator (RR), are important for bacteria to quickly sense and respond to various environmental signals. HKs and RRs typically function as a cognate pair, interacting only with one another to transduce signaling. Precise signal transduction in a TCS depends on the specific interactions between the receiver domain (RD) of the RR and the dimerization and histidine phosphorylation domain (DHp) of the HK. Here, we determined the complex structure of KdpDE, a TCS consisting of the HK KdpD and the RR KdpE, which is responsible for K+ homeostasis. Both the RD and the DNA binding domain (DBD) of KdpE interacted with KdpD. Although the RD of KdpE and the DHp of KdpD contributed to binding specificity, the DBD mediated a distinct interaction with the catalytic ATP-binding (CA) domain of KdpD that was indispensable for KdpDE-mediated signal transduction. Moreover, the DBD-CA interface largely overlapped with that of the DBD-DNA complex, leading to competition between KdpD and its target promoter in a KdpE phosphorylation-dependent manner. In addition, the extended C-terminal tail of the CA domain was critical for stabilizing the interaction with KdpDE and for signal transduction. Together, these data provide a molecular basis for specific KdpD and KdpE interactions that play key roles in efficient signal transduction and transcriptional regulation by this TCS.
Collapse
Affiliation(s)
- Mingquan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Mengyuan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
12
|
Shen WJ, Deshpande A, Hevener KE, Endres BT, Garey KW, Palmer KL, Hurdle JG. Constitutive expression of the cryptic vanGCd operon promotes vancomycin resistance in Clostridioides difficile clinical isolates. J Antimicrob Chemother 2020; 75:859-867. [PMID: 31873741 PMCID: PMC7069472 DOI: 10.1093/jac/dkz513] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/01/2019] [Accepted: 11/09/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES To describe, for the first time (to the best of our knowledge), the genetic mechanisms of vancomycin resistance in clinical isolates of Clostridioides difficile ribotype 027. METHODS Clinical isolates and laboratory mutants were analysed: genomically to identify resistance mutations; by transcriptional analysis of vanGCd, the vancomycin resistance operon encoding lipid II d-alanine-d-serine that is less bound by vancomycin than native lipid II d-alanine-d-alanine; by imaging of vancomycin binding to cell walls; and for changes in vancomycin bactericidal activity and autolysis. RESULTS Vancomycin-resistant laboratory mutants and clinical isolates acquired mutations to the vanSR two-component system that regulates vanGCd. The substitutions impaired VanSR's function, resulting in constitutive transcription of vanGCd. Resistance was reversed by silencing vanG, encoding d-alanine-d-serine ligase in the vanGCd operon. In resistant cells, vancomycin was less bound to the cell wall septum, the site where vancomycin interacts with lipid II. Vancomycin's bactericidal activity was reduced against clinical isolates and laboratory mutants (64 and ≥1024 mg/L, respectively) compared with WT strains (4 mg/L). Truncation of the potassium transporter TrkA occurred in laboratory mutants, which were refractory to autolysis, accounting for their survival in high drug concentrations. CONCLUSIONS Ribotype 027 evolved first-step resistance to vancomycin by constitutively expressing vanGCd, which is otherwise silent. Experimental evolutions and bactericidal assays show that ribotype 027 can acquire mutations to drastically enhance its tolerance to vancomycin. Thus, further epidemiological studies are warranted to examine the extent to which vancomycin resistance impacts clinical outcomes and the potential for these strains to evolve higher-level resistance, which would be devastating.
Collapse
Affiliation(s)
- Wan-Jou Shen
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Aditi Deshpande
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Kelli L Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Miyake Y, Yamamoto K. Epistatic Effect of Regulators to the Adaptive Growth of Escherichia coli. Sci Rep 2020; 10:3661. [PMID: 32108145 PMCID: PMC7046781 DOI: 10.1038/s41598-020-60353-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
Abstract
Bacteria survive in the environment with three steps: a sensing environmental conditions, a responding to sensed signals, and an adaptation for proper survival in the environment. An adapting bacterial cell occurs cell division to increase the number of sister cells, termed adaptive growth. Two-component systems (TCSs), representing the main bacterial signal transduction systems, consist of a pair of one sensor kinase (SK) and one response regulator (RR), and RR genes are abundant in most bacterial genomes as part of the core genome. The OmpR gene family, a group of RR genes, is conserved in 95% of known bacterial genomes. The Escherichia coli genome has an estimated 34 RR genes in total, including 14 genes of OmpR family genes. To reveal the contribution of TCSs for fast growth as an adaptive growth strategy of E. coli, we isolated a set of gene knockout strains by using newly developed genome editing technology, the HoSeI (Homologous Sequence Integration) method, based on CRISPR-Cas9. The statistics of single cell observation show a knockout of an arbitrary pair of phoP, phoB, and ompR genes, stably expressed by positive feedback regulation, dramatically inhibit the optimum adaptive growth of E. coli. These insights suggest that the adaptive growth of bacteria is fulfilled by the optimum high intracellular level of regulators acquired during growth under environmental conditions.
Collapse
Affiliation(s)
- Yukari Miyake
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Hosei University, Department of Frontier Bioscience, Koganei, Tokyo, 184-8584, Japan.
- Hosei University, Research Institute of Micro-Nano Technology, Koganei, Tokyo, 184-8584, Japan.
| |
Collapse
|
14
|
New Insights into Multistep-Phosphorelay (MSP)/ Two-Component System (TCS) Regulation: Are Plants and Bacteria that Different? PLANTS 2019; 8:plants8120590. [PMID: 31835810 PMCID: PMC6963811 DOI: 10.3390/plants8120590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
The Arabidopsis multistep-phosphorelay (MSP) is a signaling mechanism based on a phosphorelay that involves three different types of proteins: Histidine kinases, phosphotransfer proteins, and response regulators. Its bacterial equivalent, the two-component system (TCS), is the most predominant device for signal transduction in prokaryotes. The TCS has been extensively studied and is thus generally well-understood. In contrast, the MSP in plants was first described in 1993. Although great advances have been made, MSP is far from being completely comprehended. Focusing on the model organism Arabidopsis thaliana, this review summarized recent studies that have revealed many similarities with bacterial TCSs regarding how TCS/MSP signaling is regulated by protein phosphorylation and dephosphorylation, protein degradation, and dimerization. Thus, comparison with better-understood bacterial systems might be relevant for an improved study of the Arabidopsis MSP.
Collapse
|
15
|
Abstract
Response regulators function as the output components of two-component systems, which couple the sensing of environmental stimuli to adaptive responses. Response regulators typically contain conserved receiver (REC) domains that function as phosphorylation-regulated switches to control the activities of effector domains that elicit output responses. This modular design is extremely versatile, enabling different regulatory strategies tuned to the needs of individual signaling systems. This review summarizes structural features that underlie response regulator function. An abundance of atomic resolution structures and complementary biochemical data have defined the mechanisms for response regulator enzymatic activities, revealed trends in regulatory strategies utilized by response regulators of different subfamilies, and provided insights into interactions of response regulators with their cognate histidine kinases. Among the hundreds of thousands of response regulators identified, variations abound. This article provides a framework for understanding structural features that enable function of canonical response regulators and a basis for distinguishing noncanonical configurations.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Sophie Bouillet
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| |
Collapse
|
16
|
Castro NSS, Laia CAT, Maiti BK, Cerqueira NMFSA, Moura I, Carepo MSP. Small phospho-donors phosphorylate MorR without inducing protein conformational changes. Biophys Chem 2018; 240:25-33. [PMID: 29883882 DOI: 10.1016/j.bpc.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/10/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Phosphorylation is an essential mechanism of protein control and plays an important role in biology. The two-component system (TCS) is a bacterial regulation mechanism mediated by a response regulator (RR) protein and a kinase protein, which synchronize the regulatory circuit according to the environment. Phosphorylation is a key element in TCS function as it controls RR activity. In the present study, we characterize the behavior of MorR, an RR associated with Mo homeostasis, upon acetylphosphate and phosphoramidate treatment in vitro. Our results show that MorR was phosphorylated by both phospho-donors. Fluorescence experiments showed that MorR tryptophan emission is quenched by phosphoramidate. Furthermore, theoretical and computational results demonstrate that phosphorylation by phosphoramidate is more favorable than that by acetylphosphate. In conclusion, phosphorylated MorR is a monomeric protein and phosphorylation does not appear to induce observable conformational changes in the protein structure.
Collapse
Affiliation(s)
- Nathália S S Castro
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - César A T Laia
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Biplab K Maiti
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno M F S A Cerqueira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Isabel Moura
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Marta S P Carepo
- LAQV-REQUIMTE, Departamento de Química, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
Glanville DG, Han L, Maule AF, Woodacre A, Thanki D, Abdullah IT, Morrissey JA, Clarke TB, Yesilkaya H, Silvaggi NR, Ulijasz AT. RitR is an archetype for a novel family of redox sensors in the streptococci that has evolved from two-component response regulators and is required for pneumococcal colonization. PLoS Pathog 2018; 14:e1007052. [PMID: 29750817 PMCID: PMC5965902 DOI: 10.1371/journal.ppat.1007052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/23/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023] Open
Abstract
To survive diverse host environments, the human pathogen Streptococcus pneumoniae must prevent its self-produced, extremely high levels of peroxide from reacting with intracellular iron. However, the regulatory mechanism(s) by which the pneumococcus accomplishes this balance remains largely enigmatic, as this pathogen and other related streptococci lack all known redox-sensing transcription factors. Here we describe a two-component-derived response regulator, RitR, as the archetype for a novel family of redox sensors in a subset of streptococcal species. We show that RitR works to both repress iron transport and enable nasopharyngeal colonization through a mechanism that exploits a single cysteine (Cys128) redox switch located within its linker domain. Biochemical experiments and phylogenetics reveal that RitR has diverged from the canonical two-component virulence regulator CovR to instead dimerize and bind DNA only upon Cys128 oxidation in air-rich environments. Atomic structures show that Cys128 oxidation initiates a "helical unravelling" of the RitR linker region, suggesting a mechanism by which the DNA-binding domain is then released to interact with its cognate regulatory DNA. Expanded computational studies indicate this mechanism could be shared by many microbial species outside the streptococcus genus.
Collapse
Affiliation(s)
- David G. Glanville
- Department of Microbiology and Immunology, Loyola University Chicago; Maywood, IL, United States of America
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Andrew F. Maule
- Department of Horticulture, University of Wisconsin–Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Alexandra Woodacre
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Devsaagar Thanki
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Iman Tajer Abdullah
- Department of Infection and Immunity, University of Leicester, Leicester, United Kingdom
| | - Julie A. Morrissey
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Thomas B. Clarke
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection and Immunity, University of Leicester, Leicester, United Kingdom
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago; Maywood, IL, United States of America
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Kou X, Liu Y, Li C, Liu M, Jiang L. Dimerization and Conformational Exchanges of the Receiver Domain of Response Regulator PhoB from Escherichia coli. J Phys Chem B 2018; 122:5749-5757. [DOI: 10.1021/acs.jpcb.8b01034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinhui Kou
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
19
|
Milton ME, Allen CL, Feldmann EA, Bobay BG, Jung DK, Stephens MD, Melander RJ, Theisen KE, Zeng D, Thompson RJ, Melander C, Cavanagh J. Structure of the Francisella response regulator QseB receiver domain, and characterization of QseB inhibition by antibiofilm 2-aminoimidazole-based compounds. Mol Microbiol 2017; 106:223-235. [PMID: 28755524 DOI: 10.1111/mmi.13759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 11/29/2022]
Abstract
With antibiotic resistance increasing at alarming rates, targets for new antimicrobial therapies must be identified. A particularly promising target is the bacterial two-component system. Two-component systems allow bacteria to detect, evaluate and protect themselves against changes in the environment, such as exposure to antibiotics and also to trigger production of virulence factors. Drugs that target the response regulator portion of two-component systems represent a potent new approach so far unexploited. Here, we focus efforts on the highly virulent bacterium Francisella tularensis tularensis. Francisella contains only three response regulators, making it an ideal system to study. In this study, we initially present the structure of the N-terminal domain of QseB, the response regulator responsible for biofilm formation. Subsequently, using binding assays, computational docking and cellular studies, we show that QseB interacts with2-aminoimidazole based compounds that impede its function. This information will assist in tailoring compounds to act as adjuvants that will enhance the effect of antibiotics.
Collapse
Affiliation(s)
| | - C Leigh Allen
- Department of Structural and Molecular Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA
| | - Erik A Feldmann
- Department of Structural and Molecular Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA
| | - Benjamin G Bobay
- Department of Structural and Molecular Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA
| | - David K Jung
- Agile Sciences, Keystone Science Center, 1791 Varsity Dr #150, Raleigh, NC 27606, USA
| | - Matthew D Stephens
- Department of Chemistry, North Carolina State University, Campus Box 8204, 2620 Yarborough Drive, Raleigh, NC 27695, USA
| | - Roberta J Melander
- Department of Chemistry, North Carolina State University, Campus Box 8204, 2620 Yarborough Drive, Raleigh, NC 27695, USA
| | - Kelly E Theisen
- Department of Structural and Molecular Biochemistry, North Carolina State University, Campus Box 7622, 128 Polk Hall, Raleigh, NC 27695, USA
| | - Daina Zeng
- Agile Sciences, Keystone Science Center, 1791 Varsity Dr #150, Raleigh, NC 27606, USA
| | | | - Christian Melander
- Department of Chemistry, North Carolina State University, Campus Box 8204, 2620 Yarborough Drive, Raleigh, NC 27695, USA
| | - John Cavanagh
- RTI International, 3040 Cornwallis Rd, RTP, NC 27709, USA
| |
Collapse
|
20
|
Structural Alteration of OmpR as a Source of Ertapenem Resistance in a CTX-M-15-Producing Escherichia coli O25b:H4 Sequence Type 131 Clinical Isolate. Antimicrob Agents Chemother 2017; 61:AAC.00014-17. [PMID: 28264855 DOI: 10.1128/aac.00014-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/02/2017] [Indexed: 01/06/2023] Open
Abstract
In this study, an ertapenem-nonsusceptible Escherichia coli isolate was investigated to determine the genetic basis for its carbapenem resistance phenotype. This clinical strain was recovered from a patient that received, 1 year previously, ertapenem to treat a cholangitis due to a carbapenem-susceptible extended-spectrum-β-lactamase (ESBL)-producing E. coli isolate. Whole-genome sequencing of these strains was performed using Illumina and single-molecule real-time sequencing technologies. It revealed that they belonged to the ST131 clonal group, had the predicted O25b:H4 serotype, and produced the CTX-M-15 and TEM-1 β-lactamases. One nucleotide substitution was identified between these strains. It affected the ompR gene, which codes for a regulatory protein involved in the control of OmpC/OmpF porin expression, creating a Gly-63-Val substitution. The role of OmpR alteration was confirmed by a complementation experiment that fully restored the susceptibility to ertapenem of the clinical isolate. A modeling study showed that the Gly-63-Val change displaced the histidine-kinase phosphorylation site. SDS-PAGE analysis revealed that the ertapenem-nonsusceptible E. coli strain had a decreased expression of OmpC/OmpF porins. No significant defect in the growth rate or in the resistance to Dictyostelium discoideum amoeba phagocytosis was found in the ertapenem-nonsusceptible E. coli isolate compared to its susceptible parental strain. Our report demonstrates for the first time that ertapenem resistance may emerge clinically from ESBL-producing E. coli due to mutations that modulate the OmpR activity.
Collapse
|
21
|
Khosa S, Hoeppner A, Gohlke H, Schmitt L, Smits SHJ. Structure of the Response Regulator NsrR from Streptococcus agalactiae, Which Is Involved in Lantibiotic Resistance. PLoS One 2016; 11:e0149903. [PMID: 26930060 PMCID: PMC4773095 DOI: 10.1371/journal.pone.0149903] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/05/2016] [Indexed: 01/22/2023] Open
Abstract
Lantibiotics are antimicrobial peptides produced by Gram-positive bacteria. Interestingly, several clinically relevant and human pathogenic strains are inherently resistant towards lantibiotics. The expression of the genes responsible for lantibiotic resistance is regulated by a specific two-component system consisting of a histidine kinase and a response regulator. Here, we focused on a response regulator involved in lantibiotic resistance, NsrR from Streptococcus agalactiae, and determined the crystal structures of its N-terminal receiver domain and C-terminal DNA-binding effector domain. The C-terminal domain exhibits a fold that classifies NsrR as a member of the OmpR/PhoB subfamily of regulators. Amino acids involved in phosphorylation, dimerization, and DNA-binding were identified and demonstrated to be conserved in lantibiotic resistance regulators. Finally, a model of the full-length NsrR in the active and inactive state provides insights into protein dimerization and DNA-binding.
Collapse
Affiliation(s)
- Sakshi Khosa
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Astrid Hoeppner
- X-Ray Facility and Crystal Farm, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
22
|
Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA. Nat Commun 2015; 6:8838. [PMID: 26564787 PMCID: PMC4660055 DOI: 10.1038/ncomms9838] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/08/2015] [Indexed: 01/21/2023] Open
Abstract
PmrA, an OmpR/PhoB family response regulator, manages genes for antibiotic resistance. Phosphorylation of OmpR/PhoB response regulator induces the formation of a symmetric dimer in the N-terminal receiver domain (REC), promoting two C-terminal DNA-binding domains (DBDs) to recognize promoter DNA to elicit adaptive responses. Recently, determination of the KdpE-DNA complex structure revealed an REC-DBD interface in the upstream protomer that may be necessary for transcription activation. Here, we report the 3.2-Å-resolution crystal structure of the PmrA-DNA complex, which reveals a similar yet different REC-DBD interface. However, NMR studies show that in the DNA-bound state, two domains tumble separately and an REC-DBD interaction is transiently populated in solution. Reporter gene analyses of PmrA variants with altered interface residues suggest that the interface is not crucial for supporting gene expression. We propose that REC-DBD interdomain dynamics and the DBD-DBD interface help PmrA interact with RNA polymerase holoenzyme to activate downstream gene transcription.
Collapse
|
23
|
Nguyen MP, Yoon JM, Cho MH, Lee SW. Prokaryotic 2-component systems and the OmpR/PhoB superfamily. Can J Microbiol 2015; 61:799-810. [DOI: 10.1139/cjm-2015-0345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In bacteria, 2-component regulatory systems (TCSs) are the critical information-processing pathways that link stimuli to specific adaptive responses. Signals perceived by membrane sensors, which are generally histidine kinases, are transmitted by response regulators (RRs) to allow cells to cope rapidly and effectively with environmental challenges. Over the past few decades, genes encoding components of TCSs and their responsive proteins have been identified, crystal structures have been described, and signaling mechanisms have been elucidated. Here, we review recent findings and interesting breakthroughs in bacterial TCS research. Furthermore, we discuss structural features, mechanisms of activation and regulation, and cross-regulation of RRs, with a focus on the largest RR family, OmpR/PhoB, to provide a comprehensive overview of these critically important signaling molecules.
Collapse
Affiliation(s)
| | - Joo-Mi Yoon
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Man-Ho Cho
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Sang-Won Lee
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
24
|
Fan X, Zhang X, Zhu Y, Niu L, Teng M, Sun B, Li X. Structure of the DNA-binding domain of the response regulator SaeR fromStaphylococcus aureus. ACTA ACUST UNITED AC 2015; 71:1768-76. [DOI: 10.1107/s1399004715010287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/28/2015] [Indexed: 01/01/2023]
Abstract
The SaeR/S two-component regulatory system is essential for controlling the expression of many virulence factors inStaphylococcus aureus. SaeR, a member of the OmpR/PhoB family, is a response regulator with an N-terminal regulatory domain and a C-terminal DNA-binding domain. In order to elucidate how SaeR binds to the promoter regions of target genes, the crystal structure of the DNA-binding domain of SaeR (SaeRDBD) was solved at 2.5 Å resolution. The structure reveals that SaeRDBDexists as a monomer and has the canonical winged helix–turn–helix module. EMSA experiments suggested that full-length SaeR can bind to the P1 promoter and that the binding affinity is higher than that of its C-terminal DNA-binding domain. Five key residues on the winged helix–turn–helix module were verified to be important for binding to the P1 promoterin vitroand for the physiological function of SaeRin vivo.
Collapse
|
25
|
Ahmad A, Cai Y, Chen X, Shuai J, Han A. Conformational Dynamics of Response Regulator RegX3 from Mycobacterium tuberculosis. PLoS One 2015. [PMID: 26201027 PMCID: PMC4511772 DOI: 10.1371/journal.pone.0133389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two-component signal transduction systems (TCS) are vital for adaptive responses to various environmental stresses in bacteria, fungi and even plants. A TCS typically comprises of a sensor histidine kinase (SK) with its cognate response regulator (RR), which often has two domains—N terminal receiver domain (RD) and C terminal effector domain (ED). The histidine kinase phosphorylates the RD to activate the ED by promoting dimerization. However, despite significant progress on structural studies, how RR transmits activation signal from RD to ED remains elusive. Here we analyzed active to inactive transition process of OmpR/PhoB family using an active conformation of RegX3 from Mycobacterium tuberculosis as a model system by computational approaches. An inactive state of RegX3 generated from 150 ns molecular dynamic simulation has rotameric conformations of Thr79 and Tyr98 that are generally conserved in inactive RRs. Arg81 in loop β4α4 acts synergistically with loop β1α1 to change its interaction partners during active to inactive transition, potentially leading to the N-terminal movement of RegX3 helix α1. Global conformational dynamics of RegX3 is mainly dependent on α4β5 region, in particular seven ‘hot-spot’ residues (Tyr98 to Ser104), adjacent to which several coevolved residues at dimeric interface, including Ile76-Asp96, Asp97-Arg111 and Glu24-Arg113 pairs, are critical for signal transduction. Taken together, our computational analyses suggest a molecular linkage between Asp phosphorylation, proximal loops and α4β5α5 dimeric interface during RR active to inactive state transition, which is not often evidently defined from static crystal structures.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Yongfei Cai
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| | - Xingqiang Chen
- Department of Physics, Xiamen University, Siming, Xiamen, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Siming, Xiamen, China
| | - Aidong Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan, Xiamen, China
| |
Collapse
|
26
|
Regulation of the AbrA1/A2 two-component system in Streptomyces coelicolor and the potential of its deletion strain as a heterologous host for antibiotic production. PLoS One 2014; 9:e109844. [PMID: 25303210 PMCID: PMC4193843 DOI: 10.1371/journal.pone.0109844] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/27/2014] [Indexed: 12/16/2022] Open
Abstract
The Two-Component System (TCS) AbrA1/A2 from Streptomyces coelicolor M145 is a negative regulator of antibiotic production and morphological differentiation. In this work we show that it is able to auto-regulate its expression, exerting a positive induction of its own operon promoter, and that its activation is dependent on the presence of iron. The overexpression of the abrA2 response regulator (RR) gene in the mutant ΔabrA1/A2 results in a toxic phenotype. The reason is an excess of phosphorylated AbrA2, as shown by phosphoablative and phosphomimetic AbrA2 mutants. Therefore, non-cognate histidine kinases (HKs) or small phospho-donors may be responsible for AbrA2 phosphorylation in vivo. The results suggest that in the parent strain S. coelicolor M145 the correct amount of phosphorylated AbrA2 is adjusted through the phosphorylation-dephosphorylation activity rate of the HK AbrA1. Furthermore, the ABC transporter system, which is part of the four-gene operon comprising AbrA1/A2, is necessary to de-repress antibiotic production in the TCS null mutant. Finally, in order to test the possible biotechnological applications of the ΔabrA1/A2 strain, we demonstrate that the production of the antitumoral antibiotic oviedomycin is duplicated in this strain as compared with the production obtained in the wild type, showing that this strain is a good host for heterologous antibiotic production. Thus, this genetically modified strain could be interesting for the biotechnology industry.
Collapse
|
27
|
Lin W, Wang Y, Han X, Zhang Z, Wang C, Wang J, Yang H, Lu Y, Jiang W, Zhao GP, Zhang P. Atypical OmpR/PhoB subfamily response regulator GlnR of actinomycetes functions as a homodimer, stabilized by the unphosphorylated conserved Asp-focused charge interactions. J Biol Chem 2014; 289:15413-15425. [PMID: 24733389 PMCID: PMC4140898 DOI: 10.1074/jbc.m113.543504] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/18/2014] [Indexed: 11/06/2022] Open
Abstract
The OmpR/PhoB subfamily protein GlnR of actinomycetes is an orphan response regulator that globally coordinates the expression of genes related to nitrogen metabolism. Biochemical and genetic analyses reveal that the functional GlnR from Amycolatopsis mediterranei is unphosphorylated at the potential phosphorylation Asp(50) residue in the N-terminal receiver domain. The crystal structure of this receiver domain demonstrates that it forms a homodimer through the α4-β5-α5 dimer interface highly similar to the phosphorylated typical response regulator, whereas the so-called "phosphorylation pocket" is not conserved, with its space being occupied by an Arg(52) from the β3-α3 loop. Both in vitro and in vivo experiments confirm that GlnR forms a functional homodimer via its receiver domain and suggest that the charge interactions of Asp(50) with the highly conserved Arg(52) and Thr(9) in the receiver domain may be crucial in maintaining the proper conformation for homodimerization, as also supported by molecular dynamics simulations of the wild type GlnR versus the deficient mutant GlnR(D50A). This model is backed by the distinct phenotypes of the total deficient GlnR(R52A/T9A) double mutant versus the single mutants of GlnR (i.e. D50N, D50E, R52A and T9A), which have only minor effects upon both dimerization and physiological function of GlnR in vivo, albeit their DNA binding ability is weakened compared with that of the wild type. By integrating the supportive data of GlnRs from the model Streptomyces coelicolor and the pathogenic Mycobacterium tuberculosis, we conclude that the actinomycete GlnR is atypical with respect to its unphosphorylated conserved Asp residue being involved in the critical Arg/Asp/Thr charge interactions, which is essential for maintaining the biologically active homodimer conformation.
Collapse
Affiliation(s)
- Wei Lin
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Ying Wang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology, the State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaobiao Han
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Zilong Zhang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Chengyuan Wang
- State Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jin Wang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Huaiyu Yang
- the Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinhua Lu
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Weihong Jiang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology
| | - Guo-Ping Zhao
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology, the State Key Laboratory of Genetic Engineering, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China, the Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China, the Department of Microbiology and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China, and
| | - Peng Zhang
- From the Chinese Academy of Sciences Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,
| |
Collapse
|
28
|
Boudes M, Sanchez D, Graille M, van Tilbeurgh H, Durand D, Quevillon-Cheruel S. Structural insights into the dimerization of the response regulator ComE from Streptococcus pneumoniae. Nucleic Acids Res 2014; 42:5302-13. [PMID: 24500202 PMCID: PMC4005675 DOI: 10.1093/nar/gku110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/18/2022] Open
Abstract
Natural transformation contributes to the maintenance and to the evolution of the bacterial genomes. In Streptococcus pneumoniae, this function is reached by achieving the competence state, which is under the control of the ComD-ComE two-component system. We present the crystal and solution structures of ComE. We mimicked the active and non-active states by using the phosphorylated mimetic ComE(D58E) and the unphosphorylatable ComE(D58A) mutants. In the crystal, full-length ComE(D58A) dimerizes through its canonical REC receiver domain but with an atypical mode, which is also adopted by the isolated REC(D58A) and REC(D58E). The LytTR domain adopts a tandem arrangement consistent with the two direct repeats of its promoters. However ComE(D58A) is monomeric in solution, as seen by SAXS, by contrast to ComE(D58E) that dimerizes. For both, a relative mobility between the two domains is assumed. Based on these results we propose two possible ways for activation of ComE by phosphorylation.
Collapse
Affiliation(s)
- Marion Boudes
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Dyana Sanchez
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Marc Graille
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Herman van Tilbeurgh
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Dominique Durand
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| | - Sophie Quevillon-Cheruel
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud XI, UMR8619, Bât 430, 91405 Orsay, France and Centre National de la Recherche Scientifique, Orsay, 91405, France
| |
Collapse
|
29
|
Barta ML, Hickey JM, Anbanandam A, Dyer K, Hammel M, Hefty PS. Atypical response regulator ChxR from Chlamydia trachomatis is structurally poised for DNA binding. PLoS One 2014; 9:e91760. [PMID: 24646934 PMCID: PMC3960148 DOI: 10.1371/journal.pone.0091760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/14/2014] [Indexed: 01/23/2023] Open
Abstract
ChxR is an atypical two-component signal transduction response regulator (RR) of the OmpR/PhoB subfamily encoded by the obligate intracellular bacterial pathogen Chlamydia trachomatis. Despite structural homology within both receiver and effector domains to prototypical subfamily members, ChxR does not require phosphorylation for dimer formation, DNA binding or transcriptional activation. Thus, we hypothesized that ChxR is in a conformation optimal for DNA binding with limited interdomain interactions. To address this hypothesis, the NMR solution structure of the ChxR effector domain was determined and used in combination with the previously reported ChxR receiver domain structure to generate a full-length dimer model based upon SAXS analysis. Small-angle scattering of ChxR supported a dimer with minimal interdomain interactions and effector domains in a conformation that appears to require only subtle reorientation for optimal major/minor groove DNA interactions. SAXS modeling also supported that the effector domains were in a head-to-tail conformation, consistent with ChxR recognizing tandem DNA repeats. The effector domain structure was leveraged to identify key residues that were critical for maintaining protein - nucleic acid interactions. In combination with prior analysis of the essential location of specific nucleotides for ChxR recognition of DNA, a model of the full-length ChxR dimer bound to its cognate cis-acting element was generated.
Collapse
Affiliation(s)
- Michael L. Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - John M. Hickey
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Asokan Anbanandam
- Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas, United States of America
| | - Kevin Dyer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Michal Hammel
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - P. Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Lou YC, Wang I, Rajasekaran M, Kao YF, Ho MR, Hsu STD, Chou SH, Wu SH, Chen C. Solution structure and tandem DNA recognition of the C-terminal effector domain of PmrA from Klebsiella pneumoniae. Nucleic Acids Res 2013; 42:4080-93. [PMID: 24371275 PMCID: PMC3973317 DOI: 10.1093/nar/gkt1345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Klebsiella pneumoniae PmrA is a polymyxin-resistance-associated response regulator. The C-terminal effector/DNA-binding domain of PmrA (PmrAC) recognizes tandem imperfect repeat sequences on the promoters of genes to induce antimicrobial peptide resistance after phosphorylation and dimerization of its N-terminal receiver domain (PmrAN). However, structural information concerning how phosphorylation of the response regulator enhances DNA recognition remains elusive. To gain insights, we determined the nuclear magnetic resonance solution structure of PmrAC and characterized the interactions between PmrAC or BeF3(-)-activated full-length PmrA (PmrAF) and two DNA sequences from the pbgP promoter of K. pneumoniae. We showed that PmrAC binds to the PmrA box, which was verified to contain two half-sites, 5'-CTTAAT-3' and 5'-CCTAAG-3', in a head-to-tail fashion with much stronger affinity to the first than the second site without cooperativity. The structural basis for the PmrAC-DNA complex was investigated using HADDOCK docking and confirmed by paramagnetic relaxation enhancement. Unlike PmrAC, PmrAF recognizes the two sites simultaneously and specifically. In the PmrAF-DNA complex, PmrAN may maintain an activated homodimeric conformation analogous to that in the free form and the interactions between two PmrAC molecules aid in bending and binding of the DNA duplex for transcription activation.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Institute of Biological Chemistry, Academia Sinica, Taipei 115, Institute of Biochemistry and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fridman M, Williams GD, Muzamal U, Hunter H, Siu KWM, Golemi-Kotra D. Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry 2013; 52:7975-86. [PMID: 24102310 DOI: 10.1021/bi401177n] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Stk1/Stp1 and GraSR signal-transduction pathways are two distinct pathways in Staphylococcus aureus that rely on a reversible phosphorylation process in transducing external stimuli intracellularly. Stk1/Stp1 is an eukaryote-like Ser/Thr kinase phosphatase pair involved in purine biosynthesis, cell-wall metabolism, and autolysis. GraSR is a two-component system involved in resistance to cationic antimicrobial peptides. Both systems are implicated in S. aureus virulence and resistance to cell-wall inhibitors. Our study shows that the response regulator protein GraR undergoes phosphorylation by Stk1 at three threonine residues in the DNA-binding domain. Phosphorylation by Stk1 depends on the structural integrity of GraR as well as the amino acid sequences flanking the phosphorylation sites. Its homologue in Bacillus subtilis , BceR, which harbors two of the three phosphorylation sites in GraR, does not undergo Stk1-dependent phosphorylation. GraR is involved in regulation of the dltABCD operon, the gene products of which add the d-Ala on wall teichoic acid (WTA). Investigation of WTA isolated from the S. aureus RN6390 ΔgraR strain by NMR spectroscopy showed a clear negative effect that graR deletion has on the d-Ala content of WTA. Moreover, complementation of ΔgraR mutant with graR lacking the Stk1 phosphorylation sites mirrors this effect. These findings provide evidence that GraR is a target of Stk1 in vivo and suggest that modification of WTA by d-Ala is modulated by Stk1. The crosstalk between these two otherwise independent signaling pathways may facilitate S. aureus interaction with its environment to modulate processes such as cell growth and division and virulence.
Collapse
Affiliation(s)
- Michael Fridman
- Department of Biology and ‡Department of Chemistry, York University , Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Choudhury HG, Beis K. The dimeric form of the unphosphorylated response regulator BaeR. Protein Sci 2013; 22:1287-93. [PMID: 23868292 DOI: 10.1002/pro.2311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 11/09/2022]
Abstract
Bacterial response regulators (RRs) can regulate the expression of genes that confer antibiotic resistance; they contain a receiver and an effector domain and their ability to bind DNA is based on the dimerization state. This is triggered by phosphorylation of the receiver domain by a kinase. However, even in the absence of phosphorylation RRs can exist in equilibrium between monomers and dimers with phosphorylation shifting the equilibrium toward the dimer form. We have determined the crystal structure of the unphosphorylated dimeric BaeR from Escherichia coli. The dimer interface is formed by a domain swap at the receiver domain. In comparison with the unphosphorylated dimeric PhoP from Mycobacterium tuberculosis, BaeR displays an asymmetry of the effector domains.
Collapse
Affiliation(s)
- Hassanul G Choudhury
- Division of Molecular Biosciences, Imperial College London, London, South Kensington, SW7 2AZ, United Kingdom; Membrane Protein Lab, Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX11 0DE, United Kingdom; Research Complex at Harwell, Harwell Oxford, Didcot, Oxforsdhire OX11 0FA, United Kingdom
| | | |
Collapse
|
33
|
Crystal structure of the response regulator spr1814 from Streptococcus pneumoniae reveals unique interdomain contacts among NarL family proteins. Biochem Biophys Res Commun 2013; 434:65-9. [PMID: 23545256 DOI: 10.1016/j.bbrc.2013.03.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/18/2013] [Indexed: 12/20/2022]
Abstract
Spr1814 belongs to the NarL/FixJ subfamily of signal transduction response regulators (RR), and has been predicted to regulate the neighboring ABC transporter, which translocates antibiotic molecules in Streptococcus pneumoniae. Here, we report the crystal structure of full-length unphosphorylated spr1814 at 1.7Å resolution. The asymmetric unit contains two spr1814 molecules, which display very different conformations. Through comparisons with other RRs structures, we concluded that one molecule adopts a general inactive conformation, whereas the other molecule adopts an intermediate conformation. The superposition of each molecule showed that rotational change of the effector domain occurred in intermediate conformational state, implying that domain rearrangement could occur upon phosphorylation.
Collapse
|
34
|
Chim N, Owens CP, Contreras H, Goulding CW. Withdrawn. Infect Disord Drug Targets 2012:CDTID-EPUB-20121116-2. [PMID: 23167715 PMCID: PMC3695056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Withdrawn by the publisher.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Cedric P. Owens
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Heidi Contreras
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine CA 92697, USA
| |
Collapse
|
35
|
Structural insights into the regulatory mechanism of the response regulator RocR from Pseudomonas aeruginosa in cyclic Di-GMP signaling. J Bacteriol 2012; 194:4837-46. [PMID: 22753070 DOI: 10.1128/jb.00560-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide messenger cyclic di-GMP (c-di-GMP) plays a central role in the regulation of motility, virulence, and biofilm formation in many pathogenic bacteria. EAL domain-containing phosphodiesterases are the major signaling proteins responsible for the degradation of c-di-GMP and maintenance of its cellular level. We determined the crystal structure of a single mutant (R286W) of the response regulator RocR from Pseudomonas aeruginosa to show that RocR exhibits a highly unusual tetrameric structure arranged around a single dyad, with the four subunits adopting two distinctly different conformations. Subunits A and B adopt a conformation with the REC domain located above the c-di-GMP binding pocket, whereas subunits C and D adopt an open conformation with the REC domain swung to the side of the EAL domain. Remarkably, the access to the substrate-binding pockets of the EAL domains of the open subunits C and D are blocked in trans by the REC domains of subunits A and B, indicating that only two of the four active sites are engaged in the degradation of c-di-GMP. In conjunction with biochemical and biophysical data, we propose that the structural changes within the REC domains triggered by the phosphorylation are transmitted to the EAL domain active sites through a pathway that traverses the dimerization interfaces composed of a conserved regulatory loop and the neighboring motifs. This exquisite mechanism reinforces the crucial role of the regulatory loop and suggests that similar regulatory mechanisms may be operational in many EAL domain proteins, considering the preservation of the dimerization interface and the spatial arrangement of the regulatory domains.
Collapse
|
36
|
Tung CS, McMahon BH. A structural model of the E. coli PhoB dimer in the transcription initiation complex. BMC STRUCTURAL BIOLOGY 2012; 12:3. [PMID: 22433509 PMCID: PMC3348028 DOI: 10.1186/1472-6807-12-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND There exist > 78,000 proteins and/or nucleic acids structures that were determined experimentally. Only a small portion of these structures corresponds to those of protein complexes. While homology modeling is able to exploit knowledge-based potentials of side-chain rotomers and backbone motifs to infer structures for new proteins, no such general method exists to extend our understanding of protein interaction motifs to novel protein complexes. RESULTS We use a Motif Binding Geometries (MBG) approach, to infer the structure of a protein complex from the database of complexes of homologous proteins taken from other contexts (such as the helix-turn-helix motif binding double stranded DNA), and demonstrate its utility on one of the more important regulatory complexes in biology, that of the RNA polymerase initiating transcription under conditions of phosphate starvation. The modeled PhoB/RNAP/σ-factor/DNA complex is stereo-chemically reasonable, has sufficient interfacial Solvent Excluded Surface Areas (SESAs) to provide adequate binding strength, is physically meaningful for transcription regulation, and is consistent with a variety of known experimental constraints. CONCLUSIONS Based on a straightforward and easy to comprehend concept, "proteins and protein domains that fold similarly could interact similarly", a structural model of the PhoB dimer in the transcription initiation complex has been developed. This approach could be extended to enable structural modeling and prediction of other bio-molecular complexes. Just as models of individual proteins provide insight into molecular recognition, catalytic mechanism, and substrate specificity, models of protein complexes will provide understanding into the combinatorial rules of cellular regulation and signaling.
Collapse
Affiliation(s)
- Chang-Shung Tung
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
37
|
Cole SD, Schleif R. A new and unexpected domain-domain interaction in the AraC protein. Proteins 2012; 80:1465-75. [DOI: 10.1002/prot.24044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/12/2012] [Accepted: 01/19/2012] [Indexed: 11/07/2022]
|
38
|
Liu Y, Gao ZQ, She Z, Qu K, Wang WJ, Shtykova EV, Xu JH, Ji CN, Dong YH. The structural basis of the response regulator DrRRA from Deinococcus radiodurans. Biochem Biophys Res Commun 2012; 417:1206-12. [DOI: 10.1016/j.bbrc.2011.12.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
|
39
|
Liang Y, Wang X, Hong S, Li Y, Zuo J. Deletion of the initial 45 residues of ARR18 induces cytokinin response in Arabidopsis. J Genet Genomics 2011; 39:37-46. [PMID: 22293116 DOI: 10.1016/j.jgg.2011.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 01/11/2023]
Abstract
The plant hormone cytokinin plays important roles in various aspects of plant growth and development. Cytokinin signaling is mediated by a multistep phosphorelay similar to bacterial two-component system. Type-B ARRs lie at the end of the cytokinin signaling, typically mediating the output response. However, it is still unclear how type-B ARRs are regulated in response to cytokinin. Typical type-B ARR contains an N-terminal receiver domain and a C-terminal effector domain. In this study, we performed a genome-wild comparative analysis by overexpressing full length and C-terminal effector domain of seven representative type-B ARRs. Our results indicated that overexpression of C-terminal effector domain causes short primary roots and short hypocotyls without the addition of cytokinin, suggesting that the inhibitory role of the receiver domain in the activity of the effector domain is a common mechanism in type-B ARRs. To investigate how the receiver domain inhibits the activity of the effector domain, we performed a deletion analysis. We found that deletion of the initial 45 residues of ARR18 (the 45 residues from N-terminus) causes pleiotropic growth defects by directly inducing cytokinin responsive genes. Together, our results suggest that the initial 45 residues are critical for the inhibitory role of the receiver domain to the effector domain in ARR18.
Collapse
Affiliation(s)
- Yan Liang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | |
Collapse
|
40
|
Menon S, Wang S. Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 2011; 50:5948-57. [PMID: 21634789 DOI: 10.1021/bi2005575] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving α4-β5-α5, a common interface for activated receiver domain dimers. However, the switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.
Collapse
Affiliation(s)
- Smita Menon
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | | |
Collapse
|
41
|
Qi Y, Chuah MLC, Dong X, Xie K, Luo Z, Tang K, Liang ZX. Binding of cyclic diguanylate in the non-catalytic EAL domain of FimX induces a long-range conformational change. J Biol Chem 2010; 286:2910-7. [PMID: 21098028 DOI: 10.1074/jbc.m110.196220] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FimX is a multidomain signaling protein required for type IV pilus biogenesis and twitching motility in the opportunistic pathogen Pseudomonas aeruginosa. FimX is localized to the single pole of the bacterial cell, and the unipolar localization is crucial for the correct assembly of type IV pili. FimX contains a non-catalytic EAL domain that lacks cyclic diguanylate (c-di-GMP) phosphodiesterase activity. It was shown that deletion of the EAL domain or mutation of the signature EVL motif affects the unipolar localization of FimX. However, it was not understood how the C-terminal EAL domain could influence protein localization considering that the localization sequence resides in the remote N-terminal region of the protein. Using hydrogen/deuterium exchange-coupled mass spectrometry, we found that the binding of c-di-GMP to the EAL domain triggers a long-range (∼ca. 70 Å) conformational change in the N-terminal REC domain and the adjacent linker. In conjunction with the observation that mutation of the EVL motif of the EAL domain abolishes the binding of c-di-GMP, the hydrogen/deuterium exchange results provide a molecular explanation for the mediation of protein localization and type IV pilus biogenesis by c-di-GMP through a remarkable allosteric regulation mechanism.
Collapse
Affiliation(s)
- Yaning Qi
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | | | | | | |
Collapse
|
42
|
Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM. Regulation of response regulator autophosphorylation through interdomain contacts. J Biol Chem 2010; 285:32325-35. [PMID: 20702407 PMCID: PMC2952233 DOI: 10.1074/jbc.m110.157164] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/29/2010] [Indexed: 11/17/2022] Open
Abstract
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.
Collapse
Affiliation(s)
- Christopher M. Barbieri
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Timothy R. Mack
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Graduate School of Biomedical Sciences, and
| | - Victoria L. Robinson
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| | - Matthew T. Miller
- From the Center for Advanced Biotechnology and Medicine
- the Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854-8066
| | - Ann M. Stock
- From the Center for Advanced Biotechnology and Medicine
- the Department of Biochemistry
- the Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635 and
| |
Collapse
|
43
|
Pathak A, Goyal R, Sinha A, Sarkar D. Domain structure of virulence-associated response regulator PhoP of Mycobacterium tuberculosis: role of the linker region in regulator-promoter interaction(s). J Biol Chem 2010; 285:34309-18. [PMID: 20814030 DOI: 10.1074/jbc.m110.135822] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The PhoP and PhoR proteins from Mycobacterium tuberculosis form a highly specific two-component system that controls expression of genes involved in complex lipid biosynthesis and regulation of unknown virulence determinants. The several functions of PhoP are apportioned between a C-terminal effector domain (PhoPC) and an N-terminal receiver domain (PhoPN), phosphorylation of which regulates activation of the effector domain. Here we show that PhoPN, on its own, demonstrates PhoR-dependent phosphorylation. PhoPC, the truncated variant bearing the DNA binding domain, binds in vitro to the target site with affinity similar to that of the full-length protein. To complement the finding that residues spanning Met(1) to Arg(138) of PhoP constitute the minimal functional PhoPN, we identified Arg(150) as the first residue of the distal PhoPC domain capable of DNA binding on its own, thereby identifying an interdomain linker. However, coupling of two functional domains together in a single polypeptide chain is essential for phosphorylation-coupled DNA binding by PhoP. We discuss consequences of tethering of two domains on DNA binding and demonstrate that linker length and not individual residues of the newly identified linker plays a critical role in regulating interdomain interactions. Together, these results have implications for the molecular mechanism of transmission of conformation change associated with phosphorylation of PhoP that results in the altered DNA recognition by the C-terminal domain.
Collapse
Affiliation(s)
- Anuj Pathak
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh 160036, India
| | | | | | | |
Collapse
|
44
|
Das AK, Pathak A, Sinha A, Datt M, Singh B, Karthikeyan S, Sarkar D. A single-amino-acid substitution in the C terminus of PhoP determines DNA-binding specificity of the virulence-associated response regulator from Mycobacterium tuberculosis. J Mol Biol 2010; 398:647-56. [PMID: 20363229 DOI: 10.1016/j.jmb.2010.03.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/24/2010] [Accepted: 03/27/2010] [Indexed: 11/30/2022]
Abstract
The Mycobacterium tuberculosis PhoP-PhoR two-component system is essential for virulence in animal models of tuberculosis. Genetic and biochemical studies indicate that PhoP regulates the expression of more than 110 genes in M. tuberculosis. The C-terminal effector domain of PhoP exhibits a winged helix-turn-helix motif with the molecular surfaces around the recognition helix (alpha 8) displaying strong positive electrostatic potential, suggesting its role in DNA binding and nucleotide sequence recognition. Here, the relative importance of interfacial alpha 8-DNA contacts has been tested through rational mutagenesis coupled with in vitro binding-affinity studies. Most PhoP mutants, each with a potential DNA contacting residue replaced with Ala, had significantly reduced DNA binding affinity. However, substitution of nonconserved Glu215 had a major effect on the specificity of recognition. Although lack of specificity does not necessarily correlate with gross change in the overall DNA binding properties of PhoP, structural superposition of the PhoP C-domain on the Escherichia coli PhoB C-domain-DNA complex suggests a base-specific interaction between Glu215 of PhoP and the ninth base of the DR1 repeat motif. Biochemical experiments corroborate these results, showing that DNA recognition specificity can be altered by as little as a single residue change of the protein or a single base change of the DNA. The results have implications for the mechanism of sequence-specific DNA binding by PhoP.
Collapse
Affiliation(s)
- Arijit Kumar Das
- Institute of Microbial Technology (CSIR), Sector-39A, Chandigarh-160036, India
| | | | | | | | | | | | | |
Collapse
|
45
|
Wise AA, Fang F, Lin YH, He F, Lynn DG, Binns AN. The receiver domain of hybrid histidine kinase VirA: an enhancing factor for vir gene expression in Agrobacterium tumefaciens. J Bacteriol 2010; 192:1534-42. [PMID: 20081031 PMCID: PMC2832513 DOI: 10.1128/jb.01007-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 12/22/2009] [Indexed: 11/20/2022] Open
Abstract
The plant pathogen Agrobacterium tumefaciens expresses virulence (vir) genes in response to chemical signals found at the site of a plant wound. VirA, a hybrid histidine kinase, and its cognate response regulator, VirG, regulate vir gene expression. The receiver domain at the carboxyl end of VirA has been described as an inhibitory element because its removal increased vir gene expression relative to that of full-length VirA. However, experiments that characterized the receiver region as an inhibitory element were performed in the presence of constitutively expressed virG. We show here that VirA's receiver domain is an activating factor if virG is expressed from its native promoter on the Ti plasmid. When virADeltaR was expressed from a multicopy plasmid, both sugar and the phenolic inducer were essential for vir gene expression. Replacement of wild-type virA on pTi with virADeltaR precluded vir gene induction, and the cells did not accumulate VirG or induce transcription of a virG-lacZ fusion in response to acetosyringone. These phenotypes were corrected if the virG copy number was increased. In addition, we show that the VirA receiver domain can interact with the VirG DNA-binding domain.
Collapse
Affiliation(s)
- Arlene A Wise
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Gao R, Stock AM. Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr Opin Microbiol 2010; 13:160-7. [PMID: 20080056 DOI: 10.1016/j.mib.2009.12.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 12/21/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Response regulator (RR) proteins exploit different molecular surfaces in their inactive and active conformations for a variety of regulatory intramolecular and/or intermolecular protein-protein interactions that either inhibit or activate effector domain activities. This versatile strategy enables numerous regulatory mechanisms among RRs. The recent accumulation of structures of inactive and active forms of multidomain RRs and RR complexes has revealed many different domain arrangements that have provided insight into regulatory mechanisms. Although diversity is the rule, even among subfamily members containing homologous domains, several structural modes of interaction and mechanisms of regulation recur frequently. These themes involve interactions at the alpha4-beta5-alpha5 face of the receiver domain, modes of dimerization of receiver domains, and inhibitory or activating heterodomain interactions.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson, Medical School and Howard Hughes Medical Institute, Piscataway, NJ, USA
| | | |
Collapse
|
47
|
Koclega KD, Chruszcz M, Zimmerman MD, Bujacz G, Minor W. 'Hot' macromolecular crystals. CRYSTAL GROWTH & DESIGN 2009; 10:580. [PMID: 20161694 PMCID: PMC2809425 DOI: 10.1021/cg900971h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transcriptional regulator protein TM1030 from the hyperthermophile Thermotoga maritima, as well as its complex with DNA, was crystallized at a wide range of temperatures. Crystallization plates were incubated at 4, 20, 37 and 50° C over 3 weeks. The best crystals of TM1030 in complex with DNA were obtained at 4, 20 and 37° C, while TM1030 alone crystallized almost equally well in all temperatures. The crystals grown at different temperatures were used for X-ray diffraction experiments and their structures were compared. Surprisingly, the models of TM1030 obtained from crystals grown at different temperatures are similar in quality. While there are some examples of structures of proteins grown at elevated temperatures in the PDB, these temperatures appear to be underrepresented. Our studies show that crystals of some proteins may be grown and are stable at broad range of temperatures. We suggest that crystallization experiments at elevated temperatures could be used as a standard part of the crystallization protocol.
Collapse
Affiliation(s)
- Katarzyna D. Koclega
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Technical University of Lodz, Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Stefanowskiego 4/10, 90-924 Lodz, Poland
- Midwest Center for Structural Genomics
| | - Maksymilian Chruszcz
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
| | - Matthew D. Zimmerman
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
| | - Grzegorz Bujacz
- Technical University of Lodz, Faculty of Biotechnology and Food Sciences, Institute of Technical Biochemistry, Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
- Midwest Center for Structural Genomics
| |
Collapse
|
48
|
Mack TR, Gao R, Stock AM. Probing the roles of the two different dimers mediated by the receiver domain of the response regulator PhoB. J Mol Biol 2009; 389:349-64. [PMID: 19371748 DOI: 10.1016/j.jmb.2009.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/08/2009] [Accepted: 04/08/2009] [Indexed: 12/28/2022]
Abstract
Structural analysis of the Escherichia coli response regulator transcription factor PhoB indicates that the protein dimerizes in two different orientations that are both mediated by the receiver domain. The two dimers exhibit 2-fold rotational symmetry: one involves the alpha 4-beta 5-alpha 5 surface and the other involves the alpha1/alpha 5 surface. The alpha 4-beta 5-alpha 5 dimer is observed when the protein is crystallized in the presence of the phosphoryl analog BeF(3)(-), while the alpha1/alpha 5 dimer is observed in its absence. From these studies, a model of the inactive and active states of PhoB has been proposed that involves the formation of two distinct dimers. In order to gain further insight into the roles of these dimers, we have engineered a series of mutations in PhoB intended to perturb each of them selectively. Our results indicate that perturbation of the alpha 4-beta 5-alpha 5 surface disrupts phosphorylation-dependent dimerization and DNA binding as well as PhoB-mediated transcriptional activation of phoA, while perturbations to the alpha1/alpha 5 surface do not. Furthermore, experiments with a GCN4 leucine zipper/PhoB chimera protein indicate that PhoB is activated through an intermolecular mechanism. Together, these results support a model of activation of PhoB in which phosphorylation promotes dimerization via the alpha 4-beta 5-alpha 5 face, which enhances DNA binding and thus the ability of PhoB to regulate transcription.
Collapse
Affiliation(s)
- Timothy R Mack
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
49
|
Daly RA, Lostroh CP. Genetic analysis of the Salmonella transcription factor HilA. Can J Microbiol 2009; 54:854-60. [PMID: 18923554 DOI: 10.1139/w08-075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HilA, a Salmonella transcription factor, activates the invF-1 and prgH promoters through binding to the HilA box, which contains 2 copies of a TTKHAT motif separated by a T centered at -45 relative to the start sites of transcription. The N-terminal 112 amino acids of HilA are similar to winged helix-turn-helix DNA binding/transcription activation domains (wHTH DBDs). The remaining 441 amino acids are not similar in sequence to any other well-characterized transcription factors. Here, we report that the wHTH DBD is essential for activation of both promoters, but amino acids 113-554 are only required for normal activation of invF-1. Some alanine substitutions in the putative alpha loop, which connects the recognition and positioning helices in wHTH DBDs, cause a loss-of-activation phenotype. A hilA allele encoding a protein with an alanine substituted for arginine at position 71 in the alpha loop has a loss-of-activation defect exclusively at the prgH promoter. The results suggest distinct roles for one or more domains formed by amino acids 113-554 and for arginine 71 in activation of the 2 promoters.
Collapse
Affiliation(s)
- Rebecca A Daly
- Department of Biology, Colorado College, 14 E Cache La Poudre Avenue, Colorado Springs, CO 80903, USA
| | | |
Collapse
|
50
|
Abstract
Two-component signal transduction based on phosphotransfer from a histidine protein kinase to a response regulator protein is a prevalent strategy for coupling environmental stimuli to adaptive responses in bacteria. In both histidine kinases and response regulators, modular domains with conserved structures and biochemical activities adopt different conformational states in the presence of stimuli or upon phosphorylation, enabling a diverse array of regulatory mechanisms based on inhibitory and/or activating protein-protein interactions imparted by different domain arrangements. This review summarizes some of the recent structural work that has provided insight into the functioning of bacterial histidine kinases and response regulators. Particular emphasis is placed on identifying features that are expected to be conserved among different two-component proteins from those that are expected to differ, with the goal of defining the extent to which knowledge of previously characterized two-component proteins can be applied to newly discovered systems.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School and Howard Hughes Medical Institute, Piscataway, New Jersey 08854-5627
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School and Howard Hughes Medical Institute, Piscataway, New Jersey 08854-5627
| |
Collapse
|