1
|
Shahreen N, Chowdhury NB, Stone E, Knobbe E, Saha R. Enzyme-constrained metabolic model of Treponema pallidum identified glycerol-3-phosphate dehydrogenase as an alternate electron sink. mSystems 2025; 10:e0155524. [PMID: 40192314 PMCID: PMC12097511 DOI: 10.1128/msystems.01555-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Treponema pallidum, the causative agent of syphilis, poses a significant global health threat. Its strict reliance on host-derived nutrients and difficulties in in vitro cultivation have impeded detailed metabolic characterization. In this study, we present iTP251, the first genome-scale metabolic model of T. pallidum, reconstructed and extensively curated to capture its unique metabolic features. These refinements included the curation of key reactions such as pyrophosphate-dependent phosphorylation and pathways for nucleotide synthesis, amino acid synthesis, and cofactor metabolism. The model demonstrated high predictive accuracy, validated by a MEMOTE score of 92%. To further enhance its predictive capabilities, we developed ec-iTP251, an enzyme-constrained version of iTP251, incorporating enzyme turnover rate and molecular weight information for all reactions having gene-protein-reaction associations. Ec-iTP251 provides detailed insights into protein allocation across carbon sources, showing strong agreement with proteomics data (Pearson's correlation of 0.88) in the central carbon pathway. Moreover, the thermodynamic analysis revealed that lactate uptake serves as an additional ATP-generating strategy to utilize unused proteomes, albeit at the cost of reducing the driving force of the central carbon pathway by 27%. Subsequent analysis identified glycerol-3-phosphate dehydrogenase as an alternative electron sink, compensating for the absence of a conventional electron transport chain while maintaining cellular redox balance. These findings highlight T. pallidum's metabolic adaptations for survival and redox balance in nutrient-limited, extracellular host environments, providing a foundation for future research into its unique bioenergetics. IMPORTANCE This study advances our understanding of Treponema pallidum, the syphilis-causing pathogen, through the reconstruction of iTP251, the first genome-scale metabolic model for this organism, and its enzyme-constrained version, ec-iTP251. The work addresses the challenges of studying T. pallidum, an extracellular, host-adapted pathogen, due to its strict dependence on host-derived nutrients and challenges in in vitro cultivation. Validated with strong agreement to proteomics data, the model demonstrates high predictive reliability. Key insights include unique metabolic adaptations such as lactate uptake for ATP production and alternative redox-balancing mechanisms. These findings provide a robust framework for future studies aimed at unraveling the pathogen's survival strategies and identifying potential metabolic vulnerabilities.
Collapse
Affiliation(s)
- Nabia Shahreen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Edward Stone
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Elle Knobbe
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Gąsienica P, Toch K, Zając-Garlacz KS, Labocha-Derkowska M. Genetic Background and Gene Essentiality. Genes (Basel) 2025; 16:570. [PMID: 40428392 PMCID: PMC12111165 DOI: 10.3390/genes16050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Essential genes are those required for an organism's survival and reproduction. However, gene essentiality is not absolute; it can be highly context-dependent, varying across genetic and environmental conditions. Most previous studies have assessed gene essentiality in a single genetic background, limiting our understanding of its variability. The objective of this study was to investigate how genetic background influences gene essentiality in the multicellular model organism Caenorhabditis elegans. METHODS We examined gene essentiality in three genetically distinct C. elegans strains: N2, LKC34, and MY16. A total of 294 genes were selected for RNA interference (RNAi) knockdown: 101 previously classified as essential, 175 as nonessential and 18 as conditional (condition-dependent essentiality). Each gene-strain combination was tested in multiple biological and technical replicates, and rigorous quality control and statistical analyses were used to identify strain-specific effects. RESULTS Our results demonstrate substantial variation in gene essentiality across genetic backgrounds. Among the 101 genes previously identified as essential in the N2 strain, only 56% were consistently essential in all three strains. We identified 23 genes that were newly essential across all strains, 13 genes essential in two strains, and 9 genes essential in only one strain. These results reveal that a significant proportion of essential genes exhibit strain-dependent essentiality. CONCLUSIONS This study underscores the importance of genetic context in determining gene essentiality. Our findings suggest that relying on a single genetic background, such as N2, may lead to an incomplete or misleading view of gene essentiality. Understanding context-dependent gene essentiality has important implications for functional genomics, evolutionary biology, and potentially for translational research where genetic background can modulate phenotypic outcomes.
Collapse
Affiliation(s)
| | - Katarzyna Toch
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland (K.S.Z.-G.); (M.L.-D.)
| | | | | |
Collapse
|
3
|
Lee J, Jeon HH, Seo E, Park S, Choe D, Cho BK, Lee JW. Direct mRNA-to-sgRNA conversion generates design-free ultra-dense CRISPRi libraries for systematic phenotypic screening. Metab Eng 2025; 89:108-120. [PMID: 39993558 DOI: 10.1016/j.ymben.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/16/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
CRISPR interference (CRISPRi) is a versatile tool for high-throughput phenotypic screening. However, rational design and synthesis of the single-guide RNA (sgRNA) library required for each genome-wide CRISPRi application is time-consuming, expensive, and unfeasible if the target organisms lack comprehensive sequencing and characterization. We developed an ultra-dense random sgRNA library generation method applicable to any organism, including those that are not well-characterized. Our method converts transcriptome-wide mRNA into 20 nt of sgRNA spacer sequences through enzymatic reactions. The generated sgRNA library selectively binds to the non-template strand of the coding sequence, leading to more efficient repression compared to binding the template strand. We then generated a genome-scale library for Escherichia coli by applying this method and identified essential and auxotrophic genes through phenotypic screening. Furthermore, we tuned the production levels of lycopene and violacein and identified new repression targets for violacein production. Our results demonstrated that a genome-scale sgRNA library can be generated without rational design and can be utilized simultaneously in a range of phenotypic screenings.
Collapse
Affiliation(s)
- Jiseon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ha Hyeon Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Euijin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sehyeon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
4
|
Karp PD, Paley S, Caspi R, Kothari A, Krummenacker M, Midford PE, Moore LR, Subhraveti P, Gama-Castro S, Tierrafria VH, Lara P, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Sun G, Ahn-Horst TA, Choi H, Juenemann R, Knudsen CNM, Covert MW, Collado-Vides J, Paulsen I. The EcoCyc database (2025). EcoSal Plus 2025:eesp00192024. [PMID: 40304522 DOI: 10.1128/ecosalplus.esp-0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/18/2025] [Indexed: 05/02/2025]
Abstract
EcoCyc is a bioinformatics database (DB) available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project was to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed via EcoCyc.org. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc is also available. This review outlines the data content of EcoCyc and the procedures by which this content is generated.
Collapse
Affiliation(s)
- Peter D Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Ron Caspi
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Anamika Kothari
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Markus Krummenacker
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Peter E Midford
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Lisa R Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Pallavi Subhraveti
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor H Tierrafria
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Paloma Lara
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - César Bonavides-Martinez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Amanda Mackie
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gwanggyu Sun
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Travis A Ahn-Horst
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Heejo Choi
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Riley Juenemann
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Cyrus N M Knudsen
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ian Paulsen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Wessel AJ, Johnson DTT, Waters CM. DNA repair is essential for Vibrio cholerae growth on thiosulfate-citrate-bile salts-sucrose (TCBS) medium. J Bacteriol 2025; 207:e0000425. [PMID: 40135856 PMCID: PMC12004951 DOI: 10.1128/jb.00004-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Thiosulfate-citrate-bile salts-sucrose (TCBS) agar is a selective and differential media for the enrichment of pathogenic Vibrios. We observed that an exonuclease VII (exoVII) mutant of Vibrio cholerae failed to grow on TCBS agar, suggesting that DNA repair mutant strains may be hampered for growth in this selective media. Examination of the selective components of TCBS revealed that bile acids were primarily responsible for the toxicity of the exoVII mutant. Suppressor mutations in DNA gyrase restored growth of the exoVII mutants on TCBS, suggesting that TCBS inhibits DNA gyrase similar to the antibiotic ciprofloxacin. To better understand what factors are important for V. cholerae to grow on TCBS, we generated a randomly barcoded TnSeq (RB-TnSeq) library in V. cholerae and have used it to uncover a range of DNA repair mutants that also fail to grow on TCBS agar. The results of this study suggest that TCBS agar causes DNA damage to V. cholerae similarly to the mechanism of action of fluoroquinolones, and overcoming this DNA damage is critical for Vibrio growth on this selective medium.IMPORTANCETCBS is often used to diagnose cholera infection. We found that many mutant V. cholerae strains are attenuated for growth on TCBS agar, meaning they could remain undetected using this culture-dependent method. Hypermutator strains with defects in DNA repair pathways might be especially inhibited by TCBS. In addition, V. cholerae grown successively on TCBS agar develops resistance to ciprofloxacin.
Collapse
Affiliation(s)
- Alex J. Wessel
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Drew T. T. Johnson
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Zhang J, Cui H, Zhang Z, Wang W, Jiang F, Sun E, Zhu Y, Li F, Bu Z, Zhao D. Identification of Escherichia coli 166 isolate as an effective inhibitor of African swine fever virus replication. Microbiol Spectr 2025; 13:e0300924. [PMID: 40008879 PMCID: PMC11960076 DOI: 10.1128/spectrum.03009-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
African swine fever is a lethal disease with mortality rates approaching 100% in both domestic pigs and wild boars. With no effective vaccines or treatments available, there is an urgent need for new biologics to combat the African swine fever virus (ASFV). In this study, we isolated bacteria from the intestinal contents of wild boar using culture-based methods and identified them through 16S ribosomal DNA (rDNA) sequencing. These isolates underwent high-throughput screening to evaluate their immunomodulatory effects on J774-Dual cells and their ability to inhibit ASFV replication in vitro. Among them, an Escherichia coli strain, designated as E. coli 166, exhibited strong inhibitory effects on various ASFV strains' replication, including three genotype II strains: virulent strain HLJ/18, moderately virulent strain HLJ/HRB1/20, genetically modified low-virulent strain HLJ/18-6GD, and one genotype I low-virulent strain SD/DY-I/21. Notably, this inhibition did not require direct interaction between the bacteria and porcine alveolar macrophages (PAMs). Both live and heat-inactivated E. coli 166 demonstrated a strong inhibitory effect on ASFV replication. Genetic modification of E. coli 166 did not alter its inhibitory phenotype. Further analysis revealed that PAMs pretreated with E. coli 166 showed upregulation of NF-κB and downregulation of CD163 at different time points post-infection, whereas PAMs only infected with ASFV exhibited the opposite trend. These findings suggest that E. coli 166 holds promise as a biological agent for controlling ASFV infection, through indirect mechanisms involving bacterial metabolites or lysis products. Future studies should focus on identifying the specific components responsible for its antiviral effects.IMPORTANCEThe emergence of the African swine fever virus (ASFV) as a devastating pathogen in swine populations necessitates the development of novel strategies for its control. In this study, Escherichia coli strain 166 (E. coli 166) demonstrated a remarkable ability to inhibit the replication of multiple ASFV strains in porcine alveolar macrophages (PAMs), even without direct bacterial contact. Both live and heat-inactivated E. coli 166 retained this inhibitory effect, suggesting that secreted metabolites or lysis products may play a key role. Furthermore, pretreatment of PAMs with E. coli 166 resulted in upregulated NF-κB activity and downregulated expression of the ASFV entry receptor CD163, presenting an immune-modulatory mechanism distinct from PAMs solely infected with ASFV. These findings highlight the potential of E. coli 166 as a biological agent to combat ASFV, offering a promising alternative or complementary approach to traditional antiviral strategies.
Collapse
MESH Headings
- African Swine Fever Virus/physiology
- Animals
- Swine
- Virus Replication
- Escherichia coli/isolation & purification
- Escherichia coli/genetics
- Escherichia coli/physiology
- Escherichia coli/classification
- African Swine Fever/virology
- Macrophages, Alveolar/virology
- Macrophages, Alveolar/immunology
- Sus scrofa/microbiology
- Cell Line
- CD163 Antigen
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Jinya Zhang
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenqing Wang
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fengwei Jiang
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Li
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Prevention and Control, National High Containment Facilities for Animal Diseases Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Wons E, Gucwa K, Lewandowska N, Wisniewska A, Kozlowski L, Mruk I. A transcription factor from the cryptic Escherichia coli Rac prophage controls both phage and host operons. Nucleic Acids Res 2025; 53:gkaf113. [PMID: 40037713 PMCID: PMC11879457 DOI: 10.1093/nar/gkaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Bacterial genomes are shaped by cryptic prophages, which are viral genomes integrated into the bacterial chromosome. Escherichia coli genomes have 10 prophages on average. Though usually inactive, prophage genes can profoundly impact host cell physiology. Among the phage genes in the E. coli chromosome, there are several putative transcription factors (TFs). These prophage TFs are predicted to control only phage promoters; however, their regulatory functions are not well characterized. The cohabitation of prophages and bacteria has led to conditions under which the majority of prophage genes are unexpressed, at least under normal growth conditions. We characterized a Rac prophage TF, YdaT, expression of which is normally inhibited by Rac TFs and, surprisingly, by the host global regulator OxyR. YdaT, when expressed, leads to a toxic phenotype manifested by drastic cell filamentation and cell death. We determined the binding sites and regulatory action for YdaT, finding two sites within the Rac locus, and one upstream of the host rcsA gene, which codes for the global regulator RcsA. The resulting increase in RcsA strongly impacts the bacterial RcsA/B regulon, which includes operons related to motility, capsule biosynthesis, colanic acid production, biofilm formation, and cell division. Our results provide novel insights into the host's genetic network, which appears to integrate YdaT in a complex manner, favoring its maintenance in the silenced state. The fact that the potentially toxic YdaT locus remains unmutated suggests its importance and potential benefits for the host, which may appear under stress conditions that are not yet known.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Natalia Lewandowska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
8
|
Wessel AJ, Johnson DTT, Waters CM. DNA repair is essential for Vibrio cholerae growth on Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS) Medium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632459. [PMID: 39829866 PMCID: PMC11741472 DOI: 10.1101/2025.01.10.632459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thiosulfate-citrate-bile salts-sucrose (TCBS) agar is a selective and differential media for the enrichment of pathogenic Vibrios. We observed that an exonuclease VII (exoVII) mutant of Vibrio cholerae failed to grow on TCBS agar, suggesting that DNA repair mutant strains may be hampered for growth in this selective media. Examination of the selective components of TCBS revealed that bile acids were primarily responsible for toxicity of the exoVII mutant. Suppressor mutations in DNA gyrase restored growth of the exoVII mutants on TCBS, suggesting that TCBS inhibits DNA gyrase similar to the antibiotic ciprofloxacin. To better understand what factors are important for V. cholerae to grow on TCBS, we generated a randomly-barcoded TnSeq (RB-TnSeq) library in V. cholerae and have used it to uncover a range of DNA repair mutants that also fail to grow on TCBS agar. The results of this study suggest that TCBS agar causes DNA damage to V. cholerae similarly to the mechanism of action of fluoroquinolones, and overcoming this DNA damage is critical for Vibrio growth on this selective medium.
Collapse
Affiliation(s)
- Alex J Wessel
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Drew T T Johnson
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M Waters
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Rahman N, Chaganti SR, Seth R, Heath DD. Comprehensive evaluation of UV inactivation of E. coli using multiple gene targets and real-time quantitative PCR. WATER RESEARCH X 2025; 26:100285. [PMID: 39687509 PMCID: PMC11648809 DOI: 10.1016/j.wroa.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
UV disinfection is extensively used for wastewater disinfection and disinfection efficiency is commonly monitored using culture-based enumeration of E. coli. While culture-independent real-time quantitative polymerase chain reaction (qPCR) based methods are attractive due to faster turnaround and easier application, previous attempts with qPCR to monitor disinfection have been unsuccessful. In this study, the effect of UV irradiation on a pure E. coli culture was examined in collimated beam (CB) experiments and monitored using both a culturing technique and DNA damage quantified using both short amplicon (SA; <∼200 bp) qPCR and longer amplicon (LA; ∼500-bp) qPCR. The results, covering a UV dose range of 0 - 20 mJ/cm2 commonly used for wastewater disinfection, indicate a correlation between DNA gene damage quantified by both SA- and LA-qPCR and the decline in E. coli observed through culture-based methods. This demonstrates the potential of qPCR to serve as rapid alternative for monitoring wastewater disinfection efficacy. Furthermore, LA-qPCR was observed to be more sensitive than SA-qPCR. The results using LA-qPCR also revealed that UV exposure caused widespread and indiscriminate damage to E. coli's genome, which is considered critical for its function and survival. The combined effect of UV on E. coli's ability to function, grow or repair damage is suggested as the reason for the decline in culturability observed.
Collapse
Affiliation(s)
- Natasha Rahman
- Department of Civil & Environmental Engineering, University of Windsor, 401Sunset Avenue, Windsor ON N9B 3P4, Canada
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor ON N9B 3P4, Canada
| | - Rajesh Seth
- Department of Civil & Environmental Engineering, University of Windsor, 401Sunset Avenue, Windsor ON N9B 3P4, Canada
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor ON N9B 3P4, Canada
| | - Daniel D. Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor ON N9B 3P4, Canada
- Department of Integrative Biology, University of Windsor, Windsor ON N9B 3P4, Canada
| |
Collapse
|
10
|
Qin J, Hong Y, Maczuga NT, Morona R, Totsika M. Tolerance mechanisms in polysaccharide biosynthesis: Implications for undecaprenol phosphate recycling in Escherichia coli and Shigella flexneri. PLoS Genet 2025; 21:e1011591. [PMID: 39883743 PMCID: PMC11813082 DOI: 10.1371/journal.pgen.1011591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
Bacterial polysaccharide synthesis is catalysed on the universal lipid carrier, undecaprenol phosphate (UndP). The cellular UndP pool is shared by different polysaccharide synthesis pathways including peptidoglycan biogenesis. Disruptions in cytosolic polysaccharide synthesis steps are detrimental to bacterial survival due to effects on UndP recycling. In contrast, bacteria can survive disruptions in the periplasmic steps, suggesting a tolerance mechanism to mitigate UndP sequestration. Here we investigated tolerance mechanisms to disruptions of polymerases that are involved in UndP-releasing steps in two related polysaccharide synthesis pathways: that for enterobacterial common antigen (ECA) and that for O antigen (OAg), in Escherichia coli and Shigella flexneri. Our study reveals that polysaccharide polymerisation is crucial for efficient UndP recycling. In E. coli K-12, cell survival upon disruptions in OAg polymerase is dependent on a functional ECA synthesis pathway and vice versa. This is because disruptions in OAg synthesis lead to the redirection of the shared lipid-linked sugar substrate UndPP-GlcNAc towards increased ECA production. Conversely, in S. flexneri, the OAg polymerase is essential due to its limited ECA production, which inadequately redirects UndP flow to support cell survival. We propose a model whereby sharing the initial sugar intermediate UndPP-GlcNAc between the ECA and OAg synthesis pathways allows UndP to be redirected towards ECA production, mitigating sequestration issues caused by disruptions in the OAg pathway. These findings suggest an evolutionary buffering mechanism that enhances bacterial survival when UndP sequestration occurs due to stalled polysaccharide biosynthesis, which may allow polysaccharide diversity in the species to increase over time.
Collapse
Affiliation(s)
- Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| | - Nicholas T. Maczuga
- School of Biological Sciences, Department of Molecular & Biomedical Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular & Biomedical Sciences, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Max Planck Queensland Centre, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
11
|
Mäkelä J, Papagiannakis A, Lin WH, Lanz MC, Glenn S, Swaffer M, Marinov GK, Skotheim JM, Jacobs-Wagner C. Genome concentration limits cell growth and modulates proteome composition in Escherichia coli. eLife 2024; 13:RP97465. [PMID: 39714909 DOI: 10.7554/elife.97465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions. This rapid-onset limitation on bulk transcription results in sub-linear scaling of total active ribosomes with cell size and sub-exponential growth. Such downstream effects on bulk translation and cell growth are near-immediately detectable in a nutrient-rich medium, but delayed in nutrient-poor conditions, presumably due to cellular buffering activities. RNA sequencing and tandem-mass-tag mass spectrometry experiments further reveal that genome dilution remodels the relative abundance of mRNAs and proteins with cell size at a global level. Altogether, our findings indicate that chromosome concentration is a limiting factor of transcription and a global modulator of the transcriptome and proteome composition in E. coli. Experiments in Caulobacter crescentus and comparison with eukaryotic cell studies identify broadly conserved DNA concentration-dependent scaling principles of gene expression.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandros Papagiannakis
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Wei-Hsiang Lin
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Michael Charles Lanz
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Skye Glenn
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, United States
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
12
|
Blattman SB, Jiang W, McGarrigle ER, Liu M, Oikonomou P, Tavazoie S. Identification and genetic dissection of convergent persister cell states. Nature 2024; 636:438-446. [PMID: 39506104 PMCID: PMC11634777 DOI: 10.1038/s41586-024-08124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Persister cells, rare phenotypic variants that survive normally lethal levels of antibiotics, present a major barrier to clearing bacterial infections1. However, understanding the precise physiological state and genetic basis of persister formation has been a longstanding challenge. Here we generated a high-resolution single-cell2 RNA atlas of Escherichia coli growth transitions, which revealed that persisters from diverse genetic and physiological models converge to transcriptional states that are distinct from standard growth phases and instead exhibit a dominant signature of translational deficiency. We then used ultra-dense CRISPR interference3 to determine how every E. coli gene contributes to persister formation across genetic models. Among critical genes with large effects, we found lon, which encodes a highly conserved protease4, and yqgE, a poorly characterized gene whose product strongly modulates the duration of post-starvation dormancy and persistence. Our work reveals key physiologic and genetic factors that underlie starvation-triggered persistence, a critical step towards targeting persisters in recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Sydney B Blattman
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wenyan Jiang
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Riley McGarrigle
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Menghan Liu
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Shahreen N, Chowdhury NB, Stone E, Knobbe E, Saha R. Enzyme-constrained Metabolic Model of Treponema pallidum Identified Glycerol-3-phosphate Dehydrogenase as an Alternate Electron Sink. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.624049. [PMID: 39605378 PMCID: PMC11601652 DOI: 10.1101/2024.11.17.624049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Treponema pallidum, the causative agent of syphilis, poses a significant global health threat. Its strict intracellular lifestyle and challenges in in vitro cultivation have impeded detailed metabolic characterization. In this study, we present iTP251, the first genome-scale metabolic model of T. pallidum, reconstructed and extensively curated to capture its unique metabolic features. These refinements included the curation of key reactions such as pyrophosphate-dependent phosphorylation and pathways for nucleotide synthesis, amino acid synthesis, and cofactor metabolism. The model demonstrated high predictive accuracy, validated by a MEMOTE score of 92%. To further enhance its predictive capabilities, we developed ec-iTP251, an enzyme-constrained version of iTP251, incorporating enzyme turnover rate and molecular weight information for all reactions having gene-protein-reaction associations. Ec-iTP251 provides detailed insights into protein allocation across carbon sources, showing strong agreement with proteomics data (Pearson's correlation of 0.88) in the central carbon pathway. Moreover, the thermodynamic analysis revealed that lactate uptake serves as an additional ATP-generating strategy to utilize unused proteomes, albeit at the cost of reducing the driving force of the central carbon pathway by 27%. Subsequent analysis identified glycerol-3-phosphate dehydrogenase as an alternative electron sink, compensating for the absence of a conventional electron transport chain while maintaining cellular redox balance. These findings highlight T. pallidum's metabolic adaptations for survival and redox balance in intracellular environments, providing a foundation for future research into its unique bioenergetics.
Collapse
Affiliation(s)
- Nabia Shahreen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln
| | - Niaz Bahar Chowdhury
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln
| | - Edward Stone
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln
| | - Elle Knobbe
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln
| |
Collapse
|
14
|
Zhou H, Zhang C, Li Z, Xia M, Li Z, Wang Z, Tan GY, Luo Y, Zhang L, Wang W. Systematic development of a highly efficient cell factory for 5-aminolevulinic acid production. Trends Biotechnol 2024; 42:1479-1502. [PMID: 39112275 DOI: 10.1016/j.tibtech.2024.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 11/17/2024]
Abstract
The versatile applications of 5-aminolevulinic acid (5-ALA) across the fields of agriculture, livestock, and medicine necessitate a cost-efficient biomanufacturing process. In this study, we achieved the economic viability of biomanufacturing this compound through a systematic engineering framework. First, we obtained a 5-ALA synthase (ALAS) with superior performance by exploring its natural diversity with divergent evolution. Subsequently, using a genome-scale model, we identified and modified four key targets from distinct pathways in Escherichia coli, resulting in a final enhancement of 5-ALA titers up to 21.82 g/l in a 5-l bioreactor. Furthermore, recognizing that an imbalance of redox equivalents hindered further titer improvement, we developed a dynamic control system that effectively balances redox status and carbon flux. Ultimately, we collaboratively optimized the artificial redox homeostasis system at the transcription level with other cofactors at the feeding level, demonstrating the highest recorded performance to date with a titer of 63.39 g/l for the biomanufacturing of 5-ALA.
Collapse
Affiliation(s)
- Houming Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Menglei Xia
- Metabolism and Fermentation Process Control, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhenghong Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
15
|
Mediati DG, Blair TA, Costas A, Monahan LG, Söderström B, Charles IG, Duggin IG. Genetic requirements for uropathogenic E. coli proliferation in the bladder cell infection cycle. mSystems 2024; 9:e0038724. [PMID: 39287381 PMCID: PMC11495030 DOI: 10.1128/msystems.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) requires an adaptable physiology to survive the wide range of environments experienced in the host, including gut and urinary tract surfaces. To identify UPEC genes required during intracellular infection, we developed a transposon-directed insertion-site sequencing approach for cellular infection models and searched for genes in a library of ~20,000 UTI89 transposon-insertion mutants that are specifically required at the distinct stages of infection of cultured bladder epithelial cells. Some of the bacterial functional requirements apparent in host bladder cell growth overlapped with those for M9-glycerol, notably nutrient utilization, polysaccharide and macromolecule precursor biosynthesis, and cell envelope stress tolerance. Two genes implicated in the intracellular bladder cell infection stage were confirmed through independent gene deletion studies: neuC (sialic acid capsule biosynthesis) and hisF (histidine biosynthesis). Distinct sets of UPEC genes were also implicated in bacterial dispersal, where UPEC erupts from bladder cells in highly filamentous or motile forms upon exposure to human urine, and during recovery from infection in a rich medium. We confirm that the dedD gene linked to septal peptidoglycan remodeling is required during UPEC dispersal from human bladder cells and may help stabilize cell division or the cell wall during envelope stress created by host cells. Our findings support a view that the host intracellular environment and infection cycle are multi-nutrient limited and create stress that demands an array of biosynthetic, cell envelope integrity, and biofilm-related functions of UPEC. IMPORTANCE Urinary tract infections (UTIs) are one of the most frequent infections worldwide. Uropathogenic Escherichia coli (UPEC), which accounts for ~80% of UTIs, must rapidly adapt to highly variable host environments, such as the gut, bladder sub-surface, and urine. In this study, we searched for UPEC genes required for bacterial growth and survival throughout the cellular infection cycle. Genes required for de novo synthesis of biomolecules and cell envelope integrity appeared to be important, and other genes were also implicated in bacterial dispersal and recovery from infection of cultured bladder cells. With further studies of individual gene function, their potential as therapeutic targets may be realized. This study expands knowledge of the UTI cycle and establishes an approach to genome-wide functional analyses of stage-resolved microbial infections.
Collapse
Affiliation(s)
- Daniel G. Mediati
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Tamika A. Blair
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
- Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Leigh G. Monahan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
16
|
Narasimha SM, Malpani T, Mohite OS, Nath JS, Raman K. Understanding flux switching in metabolic networks through an analysis of synthetic lethals. NPJ Syst Biol Appl 2024; 10:104. [PMID: 39289347 PMCID: PMC11408705 DOI: 10.1038/s41540-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Biological systems are robust and redundant. The redundancy can manifest as alternative metabolic pathways. Synthetic double lethals are pairs of reactions that, when deleted simultaneously, abrogate cell growth. However, removing one reaction allows the rerouting of metabolites through alternative pathways. Little is known about these hidden linkages between pathways. Understanding them in the context of pathogens is useful for therapeutic innovations. We propose a constraint-based optimisation approach to identify inter-dependencies between metabolic pathways. It minimises rerouting between two reaction deletions, corresponding to a synthetic lethal pair, and outputs the set of reactions vital for metabolic rewiring, known as the synthetic lethal cluster. We depict the results for different pathogens and show that the reactions span across metabolic modules, illustrating the complexity of metabolism. Finally, we demonstrate how the two classes of synthetic lethals play a role in metabolic networks and influence the different properties of a synthetic lethal cluster.
Collapse
Affiliation(s)
- Sowmya Manojna Narasimha
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Neuroscience Graduate Program, University of California San Diego, San Diego, CA, 92092, USA
| | - Tanisha Malpani
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
| | - Omkar S Mohite
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - J Saketha Nath
- Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Hyderabad, Hyderabad, 502 284, India
| | - Karthik Raman
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
- Department of Data Science and AI, Wadhwani School of Data Science and AI (WSAI), Indian Institute of Technology (IIT) Madras, Chennai, 600 036, India.
| |
Collapse
|
17
|
Mathimaran A, Nagarajan H, Mathimaran A, Huang YC, Chen CJ, Vetrivel U, Jeyaraman J. Deciphering the pH-dependent oligomerization of aspartate semialdehyde dehydrogenase from Wolbachia endosymbiont of Brugia malayi: An in vitro and in silico approaches. Int J Biol Macromol 2024; 276:133977. [PMID: 39029846 DOI: 10.1016/j.ijbiomac.2024.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The enzyme aspartate semialdehyde dehydrogenase (ASDH) plays a pivotal role in the amino acid biosynthesis pathway, making it an attractive target for the development of new antimicrobial drugs due to its absence in humans. This study aims to investigate the presence of ASDH in the filarial parasite Wolbachia endosymbiont of Brugia malayi (WBm) using both in vitro and in silico approaches. The size exclusion chromatography (SEC) and Native-PAGE analysis demonstrate that WBm-ASDH undergoes pH-dependent oligomerization and dimerization. To gain a deeper understanding of this phenomenon, the modelled monomer and dimer structures were subjected to pH-dependent dynamics simulations in various conditions. The results reveal that residues Val240, Gln161, Thr159, Tyr160, and Trp316 form strong hydrogen bond contacts in the intersurface area to maintain the structure in the dimeric form. Furthermore, the binding of NADP+ induces conformational changes, leading to an open or closed conformation in the structure. Importantly, the binding of NADP+ does not disturb either the dimerization or oligomerization of the protein, a finding confirmed through both in vitro and in silico analysis. These findings shed light on the structural characteristics of WBm-ASDH and offer valuable insights for the development of new inhibitors specific to WBm, thereby contributing to the development of potential therapies for filarial parasitic infections.
Collapse
Affiliation(s)
- Amala Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Ahila Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Umashankar Vetrivel
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu 600 031, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India.
| |
Collapse
|
18
|
Fu B, Chen M, Bao X, Lu J, Zhu Z, Guan F, Yan C, Wang P, Fu L, Yu P. Site-directed mutagenesis of bifunctional riboflavin kinase/FMN adenylyltransferase via CRISPR/Cas9 to enhance riboflavin production. Synth Syst Biotechnol 2024; 9:503-512. [PMID: 38680946 PMCID: PMC11047187 DOI: 10.1016/j.synbio.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Vitamin B2 is an essential water-soluble vitamin. For most prokaryotes, a bifunctional enzyme called FAD synthase catalyzes the successive conversion of riboflavin to FMN and FAD. In this study, the plasmid pNEW-AZ containing six key genes for the riboflavin synthesis was transformed into strain R2 with the deleted FMN riboswitch, yielding strain R5. The R5 strain could produce 540.23 ± 5.40 mg/L riboflavin, which was 10.61 % higher than the R4 strain containing plasmids pET-AE and pAC-Z harboring six key genes. To further enhance the production of riboflavin, homology matching and molecular docking were performed to identify key amino acid residues of FAD synthase. Nine point mutation sites were identified. By comparing riboflavin kinase activity, mutations of T203D and N210D, which respectively decreased by 29.90 % and 89.32 % compared to wild-type FAD synthase, were selected for CRISPR/Cas9 gene editing of the genome, generating engineered strains R203 and R210. pNEW-AZ was transformed into R203, generating R6. R6 produced 657.38 ± 47.48 mg/L riboflavin, a 21.69 % increase compared to R5. This study contributes to the high production of riboflavin in recombinant E. coli BL21.
Collapse
Affiliation(s)
- Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
- College of Forestry Science and Technology, Lishui Vocational and Technical College, 357 Zhongshan Street North, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Meng Chen
- Lishui Institute for Quality Inspection and Testing, 395 Zhongshan Street, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Xianfeng Bao
- College of Forestry Science and Technology, Lishui Vocational and Technical College, 357 Zhongshan Street North, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Fuyao Guan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Chuyang Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Peize Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Linglin Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| |
Collapse
|
19
|
Lo TW, Choi HJ, Huang D, Wiggins PA. Noise robustness and metabolic load determine the principles of central dogma regulation. SCIENCE ADVANCES 2024; 10:eado3095. [PMID: 39178264 PMCID: PMC11343026 DOI: 10.1126/sciadv.ado3095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/17/2024] [Indexed: 08/25/2024]
Abstract
The processes of gene expression are inherently stochastic, even for essential genes required for growth. How does the cell maximize fitness in light of noise? To answer this question, we build a mathematical model to explore the trade-off between metabolic load and growth robustness. The model provides insights for principles of central dogma regulation: Optimal protein expression levels for many genes are in vast overabundance. Essential genes are transcribed above a lower limit of one message per cell cycle. Gene expression is achieved by load balancing between transcription and translation. We present evidence that each of these regulatory principles is observed. These results reveal that robustness and metabolic load determine the global regulatory principles that govern gene expression processes, and these principles have broad implications for cellular function.
Collapse
Affiliation(s)
- Teresa W. Lo
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - H. James Choi
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Dean Huang
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Paul A. Wiggins
- Department of Physics, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Lo TW, James Choi H, Huang D, Wiggins PA. Noise robustness and metabolic load determine the principles of central dogma regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.563172. [PMID: 38826369 PMCID: PMC11142067 DOI: 10.1101/2023.10.20.563172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The processes of gene expression are inherently stochastic, even for essential genes required for growth. How does the cell maximize fitness in light of noise? To answer this question, we build a mathematical model to explore the trade-off between metabolic load and growth robustness. The model predicts novel principles of central dogma regulation: Optimal protein expression levels for many genes are in vast overabundance. Essential genes are transcribed above a lower limit of one message per cell cycle. Gene expression is achieved by load balancing between transcription and translation. We present evidence that each of these novel regulatory principles is observed. These results reveal that robustness and metabolic load determine the global regulatory principles that govern gene expression processes, and these principles have broad implications for cellular function.
Collapse
Affiliation(s)
- Teresa W. Lo
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Han James Choi
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Dean Huang
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Paul A. Wiggins
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
21
|
Kurmi A, Sen P, Dash M, Ray SK, Satapathy SS. Differentially used codons among essential genes in bacteria identified by machine learning-based analysis. Mol Genet Genomics 2024; 299:72. [PMID: 39060647 DOI: 10.1007/s00438-024-02163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Codon usage bias (CUB), the uneven usage of synonymous codons encoding the same amino acid, differs among genes within and across bacteria genomes. CUB is known to be influenced by gene expression and accordingly, CUB differs between the high-expression and low-expression genes in several bacteria. In this article, we have extended codon usage study considering gene essentiality as a feature. Using machine learning (ML) based approaches, we have analysed Relative Synonymous Codon Usage (RSCU) values between essential and non-essential genes in Escherichia coli and thirty-four other bacterial genomes whose gene essentiality features were available in public databases. We observed significant differences in codon usage patterns between essential and non-essential genes for majority of the bacterial genomes and accordingly, ML based classifiers achieved high area under curve (AUC) scores, with a minimum score of 70.0 across twenty-eight organisms. Further, importance of the codons towards classifying genes found to differ among the codons in each genome. Arg codon CGT and Gly codon GGT were observed to be the most preferred codons among essential genes in Escherichia coli. Interestingly, some of the codons like CGT, ATA, GGT and GGG observed to be contributing consistently towards classifying essential genes across thirty-five bacteria genomes studied. In other hand, codons TGY and CAY encoding amino acids Cys and His respectively were among the least contributing codons towards classification among all these bacteria. This study demonstrates the gene essentiality based differences in synonymous codon usage in bacteria genomes and presents a common codon usage pattern across bacteria.
Collapse
Affiliation(s)
- Annushree Kurmi
- Department of Computer Science and Engineering, Tezpur University, Napaam, Assam, 784028, India
- Department of Computer Science and Engineering, The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Piyali Sen
- Department of Computer Science and Engineering, Tezpur University, Napaam, Assam, 784028, India
| | - Madhusmita Dash
- Department of Electronics and Communication Engineering, NIT, Jote, Arunachal Pradesh, 791113, India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, 784028, India
| | | |
Collapse
|
22
|
Ma S, Su T, Lu X, Qi Q. Bacterial genome reduction for optimal chassis of synthetic biology: a review. Crit Rev Biotechnol 2024; 44:660-673. [PMID: 37380345 DOI: 10.1080/07388551.2023.2208285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/30/2023]
Abstract
Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| |
Collapse
|
23
|
Rachwalski K, Tu MM, Madden SJ, French S, Hansen DM, Brown ED. A mobile CRISPRi collection enables genetic interaction studies for the essential genes of Escherichia coli. CELL REPORTS METHODS 2024; 4:100693. [PMID: 38262349 PMCID: PMC10832289 DOI: 10.1016/j.crmeth.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Advances in gene editing, in particular CRISPR interference (CRISPRi), have enabled depletion of essential cellular machinery to study the downstream effects on bacterial physiology. Here, we describe the construction of an ordered E. coli CRISPRi collection, designed to knock down the expression of 356 essential genes with the induction of a catalytically inactive Cas9, harbored on the conjugative plasmid pFD152. This mobile CRISPRi library can be conjugated into other ordered genetic libraries to assess combined effects of essential gene knockdowns with non-essential gene deletions. As proof of concept, we probed cell envelope synthesis with two complementary crosses: (1) an Lpp deletion into every CRISPRi knockdown strain and (2) the lolA knockdown plasmid into the Keio collection. These experiments revealed a number of notable genetic interactions for the essential phenotype probed and, in particular, showed suppressing interactions for the loci in question.
Collapse
Affiliation(s)
- Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan M Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sean J Madden
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Drew M Hansen
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
24
|
Gómez Borrego J, Torrent Burgas M. Structural assembly of the bacterial essential interactome. eLife 2024; 13:e94919. [PMID: 38226900 PMCID: PMC10863985 DOI: 10.7554/elife.94919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
The study of protein interactions in living organisms is fundamental for understanding biological processes and central metabolic pathways. Yet, our knowledge of the bacterial interactome remains limited. Here, we combined gene deletion mutant analysis with deep-learning protein folding using AlphaFold2 to predict the core bacterial essential interactome. We predicted and modeled 1402 interactions between essential proteins in bacteria and generated 146 high-accuracy models. Our analysis reveals previously unknown details about the assembly mechanisms of these complexes, highlighting the importance of specific structural features in their stability and function. Our work provides a framework for predicting the essential interactomes of bacteria and highlight the potential of deep-learning algorithms in advancing our understanding of the complex biology of living organisms. Also, the results presented here offer a promising approach to identify novel antibiotic targets.
Collapse
Affiliation(s)
- Jordi Gómez Borrego
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| | - Marc Torrent Burgas
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de BarcelonaCerdanyola del VallèsSpain
| |
Collapse
|
25
|
Li X, Zhou J, Han R, Yu F, Liu K, Zhao M, Liu Y, Xue Z, Zhao S. Phosphatase A1 accessory protein PlaS from Serratia marcescens controls cell membrane permeability, fluidity, hydrophobicity, and fatty acid composition in Escherichia coli BL21. Int J Biol Macromol 2023; 253:126776. [PMID: 37699461 DOI: 10.1016/j.ijbiomac.2023.126776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Phospholipase A1 (PlaA) plays a pivotal role in diverse applications within the food and biochemical medical industries. Herein, we investigate the impact of the accessory protein encoded by plaS from Serratia marcescens on PlaA activity in Escherichia coli. Notably, PlaS demonstrates the ability to enhance PlaA activity while concurrently exhibiting inhibitory effects on the growth of E. coli BL21 (DE3). Our study revolves around probing the inhibitory action of PlaS on E. coli BL21 (DE3). PlaS exhibits a propensity to heighten both the permeability of outer and inner cell membranes, leading to concomitant reductions in membrane fluidity and surface hydrophobicity. This phenomenon is validated through scanning electron microscopy (SEM) analysis, which highlights PlaS's capacity to compromise membrane integrity. Moreover, through a comprehensive comparative transcriptomic sequencing approach, we identify four down-regulated genes (galM, ybhC, ldtC, and kdpB) alongside two up-regulated genes (rbsB and degP). These genes are intricately associated with processes such as cell membrane synthesis and modification, energy metabolism, and transmembrane transport. Our investigation unveils the intricate gene-level mechanisms underpinning PlaS-mediated growth inhibition and membrane disruption. Consequently, our findings serve as a significant reference for the elucidation of membrane protein mechanisms, shedding light on potential avenues for future exploration.
Collapse
Affiliation(s)
- Xiangfei Li
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Jie Zhou
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Rumeng Han
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Fei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kun Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Ming Zhao
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Yan Liu
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Zhenglian Xue
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China.
| | - Shiguang Zhao
- Engineering Laboratory for Industrial Microbiology Molecular Beeding of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China.
| |
Collapse
|
26
|
Bonde NJ, Wood EA, Myers KS, Place M, Keck JL, Cox MM. Identification of recG genetic interactions in Escherichia coli by transposon sequencing. J Bacteriol 2023; 205:e0018423. [PMID: 38019006 PMCID: PMC10870727 DOI: 10.1128/jb.00184-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE DNA damage and subsequent DNA repair processes are mutagenic in nature and an important driver of evolution in prokaryotes, including antibiotic resistance development. Genetic screening approaches, such as transposon sequencing (Tn-seq), have provided important new insights into gene function and genetic relationships. Here, we employed Tn-seq to gain insight into the function of the recG gene, which renders Escherichia coli cells moderately sensitive to a variety of DNA-damaging agents when they are absent. The reported recG genetic interactions can be used in combination with future screens to aid in a more complete reconstruction of DNA repair pathways in bacteria.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth A. Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Place
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Karp PD, Paley S, Caspi R, Kothari A, Krummenacker M, Midford PE, Moore LR, Subhraveti P, Gama-Castro S, Tierrafria VH, Lara P, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Sun G, Ahn-Horst TA, Choi H, Covert MW, Collado-Vides J, Paulsen I. The EcoCyc Database (2023). EcoSal Plus 2023; 11:eesp00022023. [PMID: 37220074 PMCID: PMC10729931 DOI: 10.1128/ecosalplus.esp-0002-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 01/28/2024]
Abstract
EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.
Collapse
Affiliation(s)
- Peter D. Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Ron Caspi
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Anamika Kothari
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Markus Krummenacker
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Peter E. Midford
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Lisa R. Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Pallavi Subhraveti
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Victor H. Tierrafria
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Paloma Lara
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - César Bonavides-Martinez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gwanggyu Sun
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Travis A. Ahn-Horst
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Heejo Choi
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Markus W. Covert
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ian Paulsen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Lo TW, Choi HKJ, Huang D, Wiggins PA. The one-message-per-cell-cycle rule: A conserved minimum transcription level for essential genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548020. [PMID: 37461493 PMCID: PMC10350078 DOI: 10.1101/2023.07.06.548020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The inherent stochasticity of cellular processes leads to significant cell-to-cell variation in protein abundance. Although this noise has already been characterized and modeled, its broader implications and significance remain unclear. In this paper, we revisit the noise model and identify the number of messages transcribed per cell cycle as the critical determinant of noise. In yeast, we demonstrate that this quantity predicts the non-canonical scaling of noise with protein abundance, as well as quantitatively predicting its magnitude. We then hypothesize that growth robustness requires an upper ceiling on noise for the expression of essential genes, corresponding to a lower floor on the transcription level. We show that just such a floor exists: a minimum transcription level of one message per cell cycle is conserved between three model organisms: Escherichia coli, yeast, and human. Furthermore, all three organisms transcribe the same number of messages per gene, per cell cycle. This common transcriptional program reveals that robustness to noise plays a central role in determining the expression level of a large fraction of essential genes, and that this fundamental optimal strategy is conserved from E. coli to human cells.
Collapse
Affiliation(s)
- Teresa W. Lo
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Han Kyou James Choi
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Dean Huang
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Paul A. Wiggins
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
29
|
Lo TW, James Choi HK, Huang D, Wiggins PA. The one-message-per-cell-cycle rule: A conserved minimum transcription level for essential genes. ARXIV 2023:arXiv:2307.03324v1. [PMID: 37461416 PMCID: PMC10350099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The inherent stochasticity of cellular processes leads to significant cell-to-cell variation in protein abundance. Although this noise has already been characterized and modeled, its broader implications and significance remain unclear. In this paper, we revisit the noise model and identify the number of messages transcribed per cell cycle as the critical determinant of noise. In yeast, we demonstrate that this quantity predicts the non-canonical scaling of noise with protein abundance, as well as quantitatively predicting its magnitude. We then hypothesize that growth robustness requires an upper ceiling on noise for the expression of essential genes, corresponding to a lower floor on the transcription level. We show that just such a floor exists: a minimum transcription level of one message per cell cycle is conserved between three model organisms: Escherichia coli, yeast, and human. Furthermore, all three organisms transcribe the same number of messages per gene, per cell cycle. This common transcriptional program reveals that robustness to noise plays a central role in determining the expression level of a large fraction of essential genes, and that this fundamental optimal strategy is conserved from E. coli to human cells.
Collapse
Affiliation(s)
- Teresa W Lo
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Han Kyou James Choi
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Dean Huang
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
30
|
Wilkinson AJ, Ooi N, Finlayson J, Lee VE, Lyth D, Maskew KS, Newman R, Orr D, Ansell K, Birchall K, Canning P, Coombs P, Fusani L, McIver E, Pisco J, Ireland PM, Jenkins C, Norville IH, Southern SJ, Cowan R, Hall G, Kettleborough C, Savage VJ, Cooper IR. Evaluating the druggability of TrmD, a potential antibacterial target, through design and microbiological profiling of a series of potent TrmD inhibitors. Bioorg Med Chem Lett 2023; 90:129331. [PMID: 37187252 DOI: 10.1016/j.bmcl.2023.129331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
The post-transcriptional modifier tRNA-(N1G37) methyltransferase (TrmD) has been proposed to be essential for growth in many Gram-negative and Gram-positive pathogens, however previously reported inhibitors show only weak antibacterial activity. In this work, optimisation of fragment hits resulted in compounds with low nanomolar TrmD inhibition incorporating features designed to enhance bacterial permeability and covering a range of physicochemical space. The resulting lack of significant antibacterial activity suggests that whilst TrmD is highly ligandable, its essentiality and druggability are called into question.
Collapse
Affiliation(s)
- Andrew J Wilkinson
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK.
| | - Nicola Ooi
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Jonathan Finlayson
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Victoria E Lee
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - David Lyth
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Kathryn S Maskew
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Rebecca Newman
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - David Orr
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Keith Ansell
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Kristian Birchall
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Peter Canning
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Peter Coombs
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Lucia Fusani
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Ed McIver
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - João Pisco
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Philip M Ireland
- CBR division, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | | | | | | | - Richard Cowan
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Victoria J Savage
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Ian R Cooper
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| |
Collapse
|
31
|
Fatema N, Fan C. Studying lysine acetylation of citric acid cycle enzymes by genetic code expansion. Mol Microbiol 2023; 119:551-559. [PMID: 36890576 PMCID: PMC10636775 DOI: 10.1111/mmi.15052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
Lysine acetylation is one of the most abundant post-translational modifications in nature, affecting many key biological pathways in both prokaryotes and eukaryotes. It has not been long since technological advances led to understanding of the roles of acetylation in biological processes. Most of those studies were based on proteomic analyses, which have identified thousands of acetylation sites in a wide range of proteins. However, the specific role of individual acetylation event remains largely unclear, mostly due to the existence of multiple acetylation and dynamic changes of acetylation levels. To solve these problems, the genetic code expansion technique has been applied in protein acetylation studies, facilitating the incorporation of acetyllysine into a specific lysine position to generate a site-specifically acetylated protein. By this method, the effects of acetylation at a specific lysine residue can be characterized with minimal interferences. Here, we summarized the development of the genetic code expansion technique for lysine acetylation and recent studies on lysine acetylation of citrate acid cycle enzymes in bacteria by this approach, providing a practical application of the genetic code expansion technique in protein acetylation studies.
Collapse
Affiliation(s)
- Nour Fatema
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
32
|
Zeng X, Hinenoya A, Guan Z, Xu F, Lin J. Critical role of the RpoE stress response pathway in polymyxin resistance of Escherichia coli. J Antimicrob Chemother 2023; 78:732-746. [PMID: 36658759 PMCID: PMC10396327 DOI: 10.1093/jac/dkad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Polymyxins, including colistin, are the drugs of last resort to treat MDR bacterial infections in humans. In-depth understanding of the molecular basis and regulation of polymyxin resistance would provide new therapeutic opportunities to combat increasing polymyxin resistance. Here we aimed to identify novel targets that are crucial for polymyxin resistance using Escherichia coli BL21(DE3), a unique colistin-resistant model strain. METHODS BL21(DE3) was subjected to random transposon mutagenesis for screening colistin-susceptible mutants. The insertion sites of desired mutants were mapped; the key genes of interest were also inactivated in different strains to examine functional conservation. Specific genes in the known PmrAB and PhoPQ regulatory network were inactivated to examine crosstalk among different pathways. Lipid A species and membrane phospholipids were analysed by normal phase LC/MS. RESULTS Among eight mutants with increased susceptibility to colistin, five mutants contained different mutations in three genes (rseP, degS and surA) that belong to the RpoE stress response pathway. Inactivation of rpoE, pmrB, eptA or pmrD led to significantly increased susceptibility to colistin; however, inactivation of phoQ or eptB did not change colistin MIC. RpoE mutation in different E. coli and Salmonella resistant strains all led to significant reduction in colistin MIC (16-32-fold). Inactivation of rpoE did not change the lipid A profile but significantly altered the phospholipid profile. CONCLUSIONS Inactivation of the important members of the RpoE regulon in polymyxin-resistant strains led to a drastic reduction in polymyxin MIC and an increase of lysophospholipids with no change in lipid A modifications.
Collapse
Affiliation(s)
- Ximin Zeng
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| | - Atsushi Hinenoya
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Asian Health Science Research Institute, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Fuzhou Xu
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
33
|
Francis N, Behera MR, Natarajan K, Laishram RS. Tyrosine phosphorylation controlled poly(A) polymerase I activity regulates general stress response in bacteria. Life Sci Alliance 2023; 6:6/3/e202101148. [PMID: 36535710 PMCID: PMC9764084 DOI: 10.26508/lsa.202101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
RNA 3'-end polyadenylation that marks transcripts for degradation is implicated in general stress response in Escherichia coli Yet, the mechanism and regulation of poly(A) polymerase I (PAPI) in stress response are obscure. We show that pcnB (that encodes PAPI)-null mutation widely stabilises stress response mRNAs and imparts cellular tolerance to multiple stresses, whereas PAPI ectopic expression renders cells stress-sensitive. We demonstrate that there is a substantial loss of PAPI activity on stress exposure that functionally phenocopies pcnB-null mutation stabilising target mRNAs. We identify PAPI tyrosine phosphorylation at the 202 residue (Y202) that is enormously enhanced on stress exposure. This phosphorylation inhibits PAPI polyadenylation activity under stress. Consequentially, PAPI phosphodeficient mutation (tyrosine 202 to phenylalanine, Y202F) fails to stimulate mRNA expression rendering cells stress-sensitive. Bacterial tyrosine kinase Wzc phosphorylates PAPI-Y202 residue, and that wzc-null mutation renders cells stress-sensitive. Accordingly, wzc-null mutation has no effect on stress sensitivity in the presence of pcnB-null or pcnB-Y202F mutation. We also establish that PAPI phosphorylation-dependent stress tolerance mechanism is distinct and operates downstream of the primary stress regulator RpoS.
Collapse
Affiliation(s)
- Nimmy Francis
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Malaya R Behera
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Kathiresan Natarajan
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
34
|
Adaptation to Overflow Metabolism by Mutations That Impair tRNA Modification in Experimentally Evolved Bacteria. mBio 2023; 14:e0028723. [PMID: 36853041 PMCID: PMC10128029 DOI: 10.1128/mbio.00287-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
When microbes grow in foreign nutritional environments, selection may enrich mutations in unexpected pathways connecting growth and homeostasis. An evolution experiment designed to identify beneficial mutations in Burkholderia cenocepacia captured six independent nonsynonymous substitutions in the essential gene tilS, which modifies tRNAIle2 by adding a lysine to the anticodon for faithful AUA recognition. Further, five additional mutants acquired mutations in tRNAIle2, which strongly suggests that disrupting the TilS-tRNAIle2 interaction was subject to strong positive selection. Mutated TilS incurred greatly reduced enzymatic function but retained capacity for tRNAIle2 binding. However, both mutant sets outcompeted the wild type by decreasing the lag phase duration by ~3.5 h. We hypothesized that lysine demand could underlie fitness in the experimental conditions. As predicted, supplemental lysine complemented the ancestral fitness deficit, but so did the additions of several other amino acids. Mutant fitness advantages were also specific to rapid growth on galactose using oxidative overflow metabolism that generates redox imbalance, not resources favoring more balanced metabolism. Remarkably, 13 tilS mutations also evolved in the long-term evolution experiment with Escherichia coli, including four fixed mutations. These results suggest that TilS or unknown binding partners contribute to improved growth under conditions of rapid sugar oxidation at the predicted expense of translational accuracy. IMPORTANCE There is growing evidence that the fundamental components of protein translation can play multiple roles in maintaining cellular homeostasis. Enzymes that interact with transfer RNAs not only ensure faithful decoding of the genetic code but also help signal the metabolic state by reacting to imbalances in essential building blocks like free amino acids and cofactors. Here, we present evidence of a secondary function for the essential enzyme TilS, whose only prior known function is to modify tRNAIle(CAU) to ensure accurate translation. Multiple nonsynonymous substitutions in tilS, as well as its cognate tRNA, were selected in evolution experiments favoring rapid, redox-imbalanced growth. These mutations alone decreased lag phase and created a competitive advantage, but at the expense of most primary enzyme function. These results imply that TilS interacts with other factors related to the timing of exponential growth and that tRNA-modifying enzymes may serve multiple roles in monitoring metabolic health.
Collapse
|
35
|
Pu W, Chen J, Zhou Y, Qiu H, Shi T, Zhou W, Guo X, Cai N, Tan Z, Liu J, Feng J, Wang Y, Zheng P, Sun J. Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:31. [PMID: 36829220 PMCID: PMC9951541 DOI: 10.1186/s13068-023-02280-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (5-ALA) is a promising biostimulant, feed nutrient, and photodynamic drug with wide applications in modern agriculture and therapy. Although microbial production of 5-ALA has been improved realized by using metabolic engineering strategies during the past few years, there is still a gap between the present production level and the requirement of industrialization. RESULTS In this study, pathway, protein, and cellular engineering strategies were systematically employed to construct an industrially competitive 5-ALA producing Escherichia coli. Pathways involved in precursor supply and product degradation were regulated by gene overexpression and synthetic sRNA-based repression to channel metabolic flux to 5-ALA biosynthesis. 5-ALA synthase was rationally engineered to release the inhibition of heme and improve the catalytic activity. 5-ALA transport and antioxidant defense systems were targeted to enhance cellular tolerance to intra- and extra-cellular 5-ALA. The final engineered strain produced 30.7 g/L of 5-ALA in bioreactors with a productivity of 1.02 g/L/h and a yield of 0.532 mol/mol glucose, represent a new record of 5-ALA bioproduction. CONCLUSIONS An industrially competitive 5-ALA producing E. coli strain was constructed with the metabolic engineering strategies at multiple layers (protein, pathway, and cellular engineering), and the strategies here can be useful for developing industrial-strength strains for biomanufacturing.
Collapse
Affiliation(s)
- Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Huamin Qiu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Wenjuan Zhou
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Zijian Tan
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Jinhui Feng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin, 300308 China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
36
|
Revealing Causes for False-Positive and False-Negative Calling of Gene Essentiality in Escherichia coli Using Transposon Insertion Sequencing. mSystems 2023; 8:e0089622. [PMID: 36507678 PMCID: PMC9948719 DOI: 10.1128/msystems.00896-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The massive sequencing of transposon insertion mutant libraries (Tn-Seq) represents a commonly used method to determine essential genes in bacteria. Using a hypersaturated transposon mutant library consisting of 400,096 unique Tn insertions, 523 genes were classified as essential in Escherichia coli K-12 MG1655. This provided a useful genome-wide gene essentiality landscape for rapidly identifying 233 of 301 essential genes previously validated by a knockout study. However, there was a discrepancy in essential gene sets determined by conventional gene deletion methods and Tn-Seq, although different Tn-Seq studies reported different extents of discrepancy. We have elucidated two causes of this discrepancy. First, 68 essential genes not detected by Tn-Seq contain nonessential subgenic domains that are tolerant to transposon insertion, which leads to the false assignment of an essential gene as a nonessential or dispensable gene. These genes exhibited a high level of transposon insertion in their subgenic nonessential domains. In contrast, 290 genes were additionally categorized as essential by Tn-Seq, although their knockout mutants were available. The comparative analysis of Tn-Seq and high-resolution footprinting of nucleoid-associated proteins (NAPs) revealed that a protein-DNA interaction hinders transposon insertion. We identified 213 false-positive genes caused by NAP-genome interactions. These two limitations have to be considered when addressing essential bacterial genes using Tn-Seq. Furthermore, a comparative analysis of high-resolution Tn-Seq with other data sets is required for a more accurate determination of essential genes in bacteria. IMPORTANCE Transposon mutagenesis is an efficient way to explore gene essentiality of a bacterial genome. However, there was a discrepancy between the essential gene set determined by transposon mutagenesis and that determined using single-gene knockout strains. In this study, we generated a hypersaturated Escherichia coli transposon mutant library comprising approximately 400,000 different mutants. Determination of transposon insertion sites using next-generation sequencing provided a high-resolution essentiality landscape of the E. coli genome. We identified false negatives of essential gene discovery due to the permissive insertion of transposons in the C-terminal region. Comparisons between the transposon insertion landscape with binding profiles of DNA-binding proteins revealed interference of nucleoid-associated proteins to transposon insertion, generating false positives of essential gene discovery. Consideration of these findings is required to avoid the misinterpretation of transposon mutagenesis results.
Collapse
|
37
|
Hoang MD, Doan DT, Schmidt M, Kranz H, Kremling A, Heins A. Application of an Escherichia coli triple reporter strain for at-line monitoring of single-cell physiology during L-phenylalanine production. Eng Life Sci 2023; 23:e2100162. [PMID: 36619877 PMCID: PMC9815085 DOI: 10.1002/elsc.202100162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Biotechnological production processes are sustainable approaches for the production of biobased components such as amino acids for food and feed industry. Scale-up from ideal lab-scale bioreactors to large-scale processes is often accompanied by loss in productivity. This may be related to population heterogeneities of cells originating from isogenic cultures that arise due to dynamic non-ideal conditions in the bioreactor. To better understand this phenomenon, deeper insights into single-cell physiologies in bioprocesses are mandatory before scale-up. Here, a triple reporter strain (3RP) was developed by chromosomally integrating the fluorescent proteins mEmerald, CyOFP1, and mTagBFP2 into the L-phenylalanine producing Escherichia coli strain FUS4 (pF81kan) to allow monitoring of growth, oxygen availability, and general stress response of the single cells. Functionality of the 3RP was confirmed in well-mixed lab-scale fed-batch processes with glycerol as carbon source in comparison to the strain without fluorescent proteins, leading to no difference in process performance. Fluorescence levels could successfully reflect the course of related process state variables, revealed population heterogeneities during the transition between different process phases and potentially subpopulations that exhibit superior process performance. Furthermore, indications were found for noise in gene expression as regulation strategy against environmental perturbation.
Collapse
Affiliation(s)
- Manh Dat Hoang
- Chair of Biochemical EngineeringDepartment of Energy and Process EngineeringTUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Dieu Thi Doan
- Systems BiotechnologyDepartment of Energy and Process EngineeringTUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Marlen Schmidt
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
| | - Harald Kranz
- Gen‐H Genetic Engineering Heidelberg GmbHHeidelbergGermany
| | - Andreas Kremling
- Systems BiotechnologyDepartment of Energy and Process EngineeringTUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| | - Anna‐Lena Heins
- Chair of Biochemical EngineeringDepartment of Energy and Process EngineeringTUM School of Engineering and DesignTechnical University of MunichGarchingGermany
| |
Collapse
|
38
|
Jansma J, Thome NU, Schwalbe M, Chatziioannou AC, Elsayed SS, van Wezel GP, van den Abbeele P, van Hemert S, El Aidy S. Dynamic effects of probiotic formula ecologic®825 on human small intestinal ileostoma microbiota: a network theory approach. Gut Microbes 2023; 15:2232506. [PMID: 37417553 PMCID: PMC10332219 DOI: 10.1080/19490976.2023.2232506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
The gut microbiota plays a pivotal role in health and disease. The use of probiotics as microbiota-targeted therapies is a promising strategy to improve host health. However, the molecular mechanisms involved in such therapies are often not well understood, particularly when targeting the small intestinal microbiota. In this study, we investigated the effects of a probiotic formula (Ecologic®825) on the adult human small intestinal ileostoma microbiota. The results showed that supplementation with the probiotic formula led to a reduction in the growth of pathobionts, such as Enterococcaceae and Enterobacteriaceae, and a decrease in ethanol production. These changes were associated with significant alterations in nutrient utilization and resistance to perturbations. These probiotic mediated alterations which coincided with an initial increase in lactate production and decrease in pH were followed by a sharp increase in the levels of butyrate and propionate. Moreover, the probiotic formula increased the production of multiple N-acyl amino acids in the stoma samples. The study demonstrates the utility of network theory in identifying novel microbiota-targeted therapies and improving existing ones. Overall, the findings provide insights into the dynamic molecular mechanisms underlying probiotic therapies, which can aid in the development of more effective treatments for a range of conditions.
Collapse
Affiliation(s)
- Jack Jansma
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Nicola U. Thome
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Markus Schwalbe
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | | | - Somayah S. Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P. van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | - Sahar El Aidy
- Host-Microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Spoto M, Riera Puma JP, Fleming E, Guan C, Ondouah Nzutchi Y, Kim D, Oh J. Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors Implicated in Lifestyle Versatility. mBio 2022; 13:e0263222. [PMID: 36409086 PMCID: PMC9765180 DOI: 10.1128/mbio.02632-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus epidermidis is a ubiquitous human commensal skin bacterium that is also one of the most prevalent nosocomial pathogens. The genetic factors underlying this remarkable lifestyle plasticity are incompletely understood, mainly due to the difficulties of genetic manipulation, precluding high-throughput functional profiling of this species. To probe the versatility of S. epidermidis to survive across a diversity of environmental conditions, we developed a large-scale CRISPR interference (CRISPRi) screen complemented by transcriptional profiling (RNA sequencing) across 24 diverse conditions and piloted a droplet-based CRISPRi approach to enhance throughput and sensitivity. We identified putative essential genes, importantly revealing amino acid metabolism as crucial to survival across diverse environments, and demonstrated the importance of trace metal uptake for survival under multiple stress conditions. We identified pathways significantly enriched and repressed across our range of stress and nutrient-limited conditions, demonstrating the considerable plasticity of S. epidermidis in responding to environmental stressors. Additionally, we postulate a mechanism by which nitrogen metabolism is linked to lifestyle versatility in response to hyperosmotic challenges, such as those encountered on human skin. Finally, we examined the survival of S. epidermidis under acid stress and hypothesize a role for cell wall modification as a vital component of the survival response under acidic conditions. Taken together, this study integrates large-scale CRISPRi and transcriptomics data across multiple environments to provide insights into a keystone member of the human skin microbiome. Our results additionally provide a valuable benchmarking analysis for CRISPRi screens and are a rich resource for other staphylococcal researchers. IMPORTANCE Staphylococcus epidermidis is a bacteria that broadly inhabits healthy human skin, yet it is also a common cause of skin infections and bloodstream infections associated with implanted medical devices. Because human skin has many different types of S. epidermidis, each containing different genes, our goal is to determine how these different genes allow S. epidermidis to switch from healthy growth in the skin to being an infectious pathogen. Understanding this switch is critical to developing new strategies to prevent and treat S. epidermidis infections.
Collapse
Affiliation(s)
- Michelle Spoto
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- The University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Elizabeth Fleming
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Changhui Guan
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | | | - Dean Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| |
Collapse
|
40
|
Rao TVP, Kuzminov A. Robust linear DNA degradation supports replication-initiation-defective mutants in Escherichia coli. G3 (BETHESDA, MD.) 2022; 12:jkac228. [PMID: 36165702 PMCID: PMC9635670 DOI: 10.1093/g3journal/jkac228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
RecBCD helicase/nuclease supports replication fork progress via recombinational repair or linear DNA degradation, explaining recBC mutant synthetic lethality with replication elongation defects. Since replication initiation defects leave chromosomes without replication forks, these should be insensitive to the recBCD status. Surprisingly, we found that both Escherichia coli dnaA46(Ts) and dnaC2(Ts) initiation mutants at semi-permissive temperatures are also recBC-colethal. Interestingly, dnaA46 recBC lethality suppressors suggest underinitiation as the problem, while dnaC2 recBC suppressors signal overintiation. Using genetic and physical approaches, we studied the dnaA46 recBC synthetic lethality, for the possibility that RecBCD participates in replication initiation. Overproduced DnaA46 mutant protein interferes with growth of dnaA+ cells, while the residual viability of the dnaA46 recBC mutant depends on the auxiliary replicative helicase Rep, suggesting replication fork inhibition by the DnaA46 mutant protein. The dnaA46 mutant depends on linear DNA degradation by RecBCD, rather than on recombinational repair. At the same time, the dnaA46 defect also interacts with Holliday junction-moving defects, suggesting reversal of inhibited forks. However, in contrast to all known recBC-colethals, which fragment their chromosomes, the dnaA46 recBC mutant develops no chromosome fragmentation, indicating that its inhibited replication forks are stable. Physical measurements confirm replication inhibition in the dnaA46 mutant shifted to semi-permissive temperatures, both at the level of elongation and initiation, while RecBCD gradually restores elongation and then initiation. We propose that RecBCD-catalyzed resetting of inhibited replication forks allows replication to displace the "sticky" DnaA46(Ts) protein from the chromosomal DNA, mustering enough DnaA for new initiations.
Collapse
Affiliation(s)
| | - Andrei Kuzminov
- Corresponding author: Department of Microbiology, University of Illinois at Urbana-Champaign, B103 C&LSL, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
41
|
Thomson NM, Turner AK, Yasir M, Bastkowski S, Lott M, Webber MA, Charles IG. A whole-genome assay identifies four principal gene functions that confer tolerance of meropenem stress upon Escherichia coli. FRONTIERS IN ANTIBIOTICS 2022; 1:957942. [PMID: 39816415 PMCID: PMC11731830 DOI: 10.3389/frabi.2022.957942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2025]
Abstract
We report here the identification of four gene functions of principal importance for the tolerance of meropenem stress in Escherichia coli: cell division, cell envelope synthesis and maintenance, ATP metabolism, and transcription regulation. The primary mechanism of β-lactam antibiotics such as meropenem is inhibition of penicillin binding proteins, thus interfering with peptidoglycan crosslinking, weakening the cell envelope, and promoting cell lysis. However, recent systems biology approaches have revealed numerous downstream effects that are triggered by cell envelope damage and involve diverse cell processes. Subpopulations of persister cells can also arise, which can survive elevated concentrations of meropenem despite the absence of a specific resistance factor. We used Transposon-Directed Insertion Sequencing with inducible gene expression to simultaneously assay the effects of upregulation, downregulation, and disruption of every gene in a model E. coli strain on survival of exposure to four concentrations of meropenem. Automated Gene Functional Classification and manual categorization highlighted the importance at all meropenem concentrations of genes involved in peptidoglycan remodeling during cell division, suggesting that cell division is the primary function affected by meropenem. Genes involved in cell envelope synthesis and maintenance, ATP metabolism, and transcriptional regulation were generally important at higher meropenem concentrations, suggesting that these three functions are therefore secondary or downstream targets. Our analysis revealed the importance of multiple two-component signal transduction mechanisms, suggesting an as-yet unexplored coordinated transcriptional response to meropenem stress. The inclusion of an inducible, transposon-encoded promoter allowed sensitive detection of genes involved in proton transport, ATP production and tRNA synthesis, for which modulation of expression affects survival in the presence of meropenem: a finding that would not be possible with other technologies. We were also able to suggest new targets for future antibiotic development or for synergistic effects between gene or protein inhibitors and existing antibiotics. Overall, in a single massively parallel assay we were able to recapitulate many of the findings from decades of research into β-lactam antibiotics, add to the list of genes known to be important for meropenem tolerance, and categorize the four principal gene functions involved.
Collapse
Affiliation(s)
- Nicholas M. Thomson
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - A. Keith Turner
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Muhammad Yasir
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Sarah Bastkowski
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Martin Lott
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Mark A. Webber
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Ian G. Charles
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
42
|
Ma X, Wei B, Wang E. Efficient incorporation of p-azido-l-phenylalanine into the protein using organic solvents. Protein Expr Purif 2022; 200:106158. [PMID: 36007861 DOI: 10.1016/j.pep.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Azide, the most used photo-crosslinking group, facilitates the analysis of protein structure and function. This group is particularly useful when photochemically label antibodies and examine protein-protein interactions. The use of the expanded genetic code technique allows the special labeling of the functional azide group in proteins by adding the unnatural amino acid (UAA), p-azido-l-phenylalanine (AzF), in response to the amber codon during translation. However, a low UAA uptake rate due to mass transfer resistance in the cell membrane may lead to the early termination of the full-length protein. This study reports a general method for the efficient in vivo incorporation of AzF into the target protein by improving cell permeability using organic solvents. As expected, the yield of the full-length protein was significantly increased, which indicated that the AzF uptake was greatly improved due to the addition of organic solvents. Our method can serve as a good reference for improving the genetic incorporation of other kinds of UAAs into proteins.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Gynecology and Obstetrics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing Wei
- Department of Gynecology and Obstetrics, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Enlin Wang
- The College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
43
|
Structural characterization of aspartate-semialdehyde dehydrogenase from Pseudomonas aeruginosa and Neisseria gonorrhoeae. Sci Rep 2022; 12:14010. [PMID: 35977963 PMCID: PMC9385607 DOI: 10.1038/s41598-022-17384-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022] Open
Abstract
Gonorrhoea infection rates and the risk of infection from opportunistic pathogens including P. aeruginosa have both risen globally, in part due to increasing broad-spectrum antibiotic resistance. Development of new antimicrobial drugs is necessary and urgent to counter infections from drug resistant bacteria. Aspartate-semialdehyde dehydrogenase (ASADH) is a key enzyme in the aspartate biosynthetic pathway, which is critical for amino acid and metabolite biosynthesis in most microorganisms including important human pathogens. Here we present the first structures of two ASADH proteins from N. gonorrhoeae and P. aeruginosa solved by X-ray crystallography. These high-resolution structures present an ideal platform for in silico drug design, offering potential targets for antimicrobial drug development as emerging multidrug resistant strains of bacteria become more prevalent.
Collapse
|
44
|
Synthetic Genetic Interactions Reveal a Dense and Cryptic Regulatory Network of Small Noncoding RNAs in Escherichia coli. mBio 2022; 13:e0122522. [PMID: 35920556 PMCID: PMC9426594 DOI: 10.1128/mbio.01225-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Over the past 20 years, we have learned that bacterial small noncoding RNAs (sRNAs) can rapidly effect changes in gene expression in response to stress. However, the broader role and impact of sRNA-mediated regulation in promoting bacterial survival has remained elusive. Indeed, there are few examples where disruption of sRNA-mediated gene regulation results in a discernible change in bacterial growth or survival. The lack of phenotypes attributable to loss of sRNA function suggests that either sRNAs are wholly dispensable or functional redundancies mask the impact of deleting a single sRNA. We investigated synthetic genetic interactions among sRNA genes in Escherichia coli by constructing pairwise deletions in 54 genes, including 52 sRNAs. Some 1,373 double deletion strains were studied for growth defects under 32 different nutrient stress conditions and revealed 1,131 genetic interactions. In one example, we identified a profound synthetic lethal interaction between ArcZ and CsrC when E. coli was grown on pyruvate, lactate, oxaloacetate, or d-/l-alanine, and we provide evidence that the expression of ppsA is dysregulated in the double deletion background, causing the conditionally lethal phenotype. This work employs a unique platform for studying sRNA-mediated gene regulation and sheds new light on the genetic network of sRNAs that underpins bacterial growth.
Collapse
|
45
|
Guo HX, Zhu SB, Deng Z, Guo FB. EcoliGD: An Online Tool for Designing Escherichia coli Genome. ACS Synth Biol 2022; 11:2267-2274. [PMID: 35770895 DOI: 10.1021/acssynbio.2c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic biology is an important interdisciplinary field that has emerged in this century, focusing on the rewriting and reprogramming of DNA through the cycles of "design-edit", and so, the cell's own operating system, its genome, is naturally coming into focus. Here, we propose EcoliGD, an online genome design tool with a visual interactive interface and the function of browsing information, as well as the ability to perform insertion, exchange, deletion, and codon replacement operations on the E. coli genome and display the results in real-time. Users can utilize EcoliGD to check various functional characteristic about E. coli genes, to help them build their genomes. Furthermore, we also collected experimentally verified large genomic segments that have been successfully deleted from the genome for users to choose from and simplify the genome. EcoliGD can help recode the entire E. coli genome, providing a novel way to explore the diversity and function of this microorganism. The EcoliGD web tool is available at http://guolab.whu.edu.cn/EcoliGD/.
Collapse
Affiliation(s)
- Hai-Xia Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Sen-Bin Zhu
- School of Life Science and Technology, University of Electronic Science and Technology of China, 611731, Chengdu, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Feng-Biao Guo
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| |
Collapse
|
46
|
Pfanzelt M, Maher TE, Absmeier RM, Schwarz M, Sieber SA. Tailored Pyridoxal Probes Unravel Novel Cofactor-Dependent Targets and Antibiotic Hits in Critical Bacterial Pathogens. Angew Chem Int Ed Engl 2022; 61:e202117724. [PMID: 35199904 PMCID: PMC9321722 DOI: 10.1002/anie.202117724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 01/21/2023]
Abstract
Unprecedented bacterial targets are urgently needed to overcome the resistance crisis. Herein we systematically mine pyridoxal phosphate‐dependent enzymes (PLP‐DEs) in bacteria to focus on a target class which is involved in crucial metabolic processes. For this, we tailored eight pyridoxal (PL) probes bearing modifications at various positions. Overall, the probes exceeded the performance of a previous generation and provided a detailed map of PLP‐DEs in clinically relevant pathogens including challenging Gram‐negative strains. Putative PLP‐DEs with unknown function were exemplarily characterized via in‐depth enzymatic assays. Finally, we screened a panel of PLP binders for antibiotic activity and unravelled the targets of hit molecules. Here, an uncharacterized enzyme, essential for bacterial growth, was assigned as PLP‐dependent cysteine desulfurase and confirmed to be inhibited by the marketed drug phenelzine. Our approach provides a basis for deciphering novel PLP‐DEs as essential antibiotic targets along with corresponding ways to decipher small molecule inhibitors.
Collapse
Affiliation(s)
- Martin Pfanzelt
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Thomas E Maher
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany.,Department of Chemistry, Molecular Sciences Research Hub, White City Campus and Institute of Chemical Biology, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Ramona M Absmeier
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Markus Schwarz
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Stephan A Sieber
- Center for Functional Protein Assemblies (CPA), Department of Chemistry, Chair of Organic Chemistry II, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
47
|
Fu X, Huang Y, Shen Y. Improving the Efficiency and Orthogonality of Genetic Code Expansion. BIODESIGN RESEARCH 2022; 2022:9896125. [PMID: 37850140 PMCID: PMC10521639 DOI: 10.34133/2022/9896125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/20/2022] [Indexed: 10/19/2023] Open
Abstract
The site-specific incorporation of the noncanonical amino acid (ncAA) into proteins via genetic code expansion (GCE) has enabled the development of new and powerful ways to learn, regulate, and evolve biological functions in vivo. However, cellular biosynthesis of ncAA-containing proteins with high efficiency and fidelity is a formidable challenge. In this review, we summarize up-to-date progress towards improving the efficiency and orthogonality of GCE and enhancing intracellular compatibility of introduced translation machinery in the living cells by creation and optimization of orthogonal translation components, constructing genomically recoded organism (GRO), utilization of unnatural base pairs (UBP) and quadruplet codons (four-base codons), and spatial separation of orthogonal translation.
Collapse
Affiliation(s)
- Xian Fu
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120China
| | - Yijian Huang
- BGI-Shenzhen, Shenzhen 518083, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Shen
- BGI-Shenzhen, Shenzhen 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
48
|
Malekian N, Agrawal AA, Berendonk TU, Al-Fatlawi A, Schroeder M. A genome-wide scan of wastewater E. coli for genes under positive selection: focusing on mechanisms of antibiotic resistance. Sci Rep 2022; 12:8037. [PMID: 35577863 PMCID: PMC9110714 DOI: 10.1038/s41598-022-11432-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance is a global health threat and consequently, there is a need to understand the mechanisms driving its emergence. Here, we hypothesize that genes and mutations under positive selection may contribute to antibiotic resistance. We explored wastewater E. coli, whose genomes are highly diverse. We subjected 92 genomes to a statistical analysis for positively selected genes. We obtained 75 genes under positive selection and explored their potential for antibiotic resistance. We found that eight genes have functions relating to antibiotic resistance, such as biofilm formation, membrane permeability, and bacterial persistence. Finally, we correlated the presence/absence of non-synonymous mutations in positively selected sites of the genes with a function in resistance against 20 most prescribed antibiotics. We identified mutations associated with antibiotic resistance in two genes: the porin ompC and the bacterial persistence gene hipA. These mutations are located at the surface of the proteins and may hence have a direct effect on structure and function. For hipA, we hypothesize that the mutations influence its interaction with hipB and that they enhance the capacity for dormancy as a strategy to evade antibiotics. Overall, genomic data and positive selection analyses uncover novel insights into mechanisms driving antibiotic resistance.
Collapse
|
49
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
50
|
Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Front Mol Biosci 2022; 9:871121. [PMID: 35573737 PMCID: PMC9099147 DOI: 10.3389/fmolb.2022.871121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and – for polytopic membrane proteins – the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
Collapse
|