1
|
Hasnat MA, Zupok A, Gorka M, Iobbi-Nivol C, Skirycz A, Jourlin-Castelli C, Bier F, Agarwal S, Irefo E, Leimkühler S. Iron limitation indirectly reduces the Escherichia coli torCAD operon expression by a reduction of molybdenum cofactor availability. Microbiol Spectr 2024; 12:e0348023. [PMID: 38193660 PMCID: PMC10845959 DOI: 10.1128/spectrum.03480-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The expression of most molybdoenzymes in Escherichia coli has so far been revealed to be regulated by anaerobiosis and requires the presence of iron, based on the necessity of the transcription factor FNR to bind one [4Fe-4S] cluster. One exception is trimethylamine-N-oxide reductase encoded by the torCAD operon, which has been described to be expressed independently from FNR. In contrast to other alternative anaerobic respiratory systems, the expression of the torCAD operon was shown not to be completely repressed by the presence of dioxygen. To date, the basis for the O2-dependent expression of the torCAD operon has been related to the abundance of the transcriptional regulator IscR, which represses the transcription of torS and torT, and is more abundant under aerobic conditions than under anaerobic conditions. In this study, we reinvestigated the regulation of the torCAD operon and its dependence on the presence of iron and identified a novel regulation that depends on the presence of the bis-molybdopterin guanine dinucleotide (bis-MGD) molybdenum cofactor . We confirmed that the torCAD operon is directly regulated by the heme-containing protein TorC and is indirectly regulated by ArcA and by the availability of iron via active FNR and Fur, both regulatory proteins that influence the synthesis of the molybdenum cofactor. Furthermore, we identified a novel regulation mode of torCAD expression that is dependent on cellular levels of bis-MGD and is not used by other bis-MGD-containing enzymes like nitrate reductase.IMPORTANCEIn bacteria, molybdoenzymes are crucial for anaerobic respiration using alternative electron acceptors. FNR is a very important transcription factor that represents the master switch for the expression of target genes in response to anaerobiosis. Only Escherichia coli trimethylamine-N-oxide (TMAO) reductase escapes this regulation by FNR. We identified that the expression of TMAO reductase is regulated by the amount of bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor synthesized by the cell itself, representing a novel regulation pathway for the expression of an operon coding for a molybdoenzyme. Furthermore, TMAO reductase gene expression is indirectly regulated by the presence of iron, which is required for the production of the bis-MGD cofactor in the cell.
Collapse
Affiliation(s)
- Muhammad Abrar Hasnat
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Arkadiusz Zupok
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michal Gorka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Chantal Iobbi-Nivol
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | | | - Cécile Jourlin-Castelli
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Frank Bier
- Department of Molecular Bioanalytics and Bioelectronics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Saloni Agarwal
- Department of Molecular Bioanalytics and Bioelectronics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ehizode Irefo
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Chang Y, Zhang X, Murchie AIH, Chen D. Transcriptome profiling in response to Kanamycin B reveals its wider non-antibiotic cellular function in Escherichia coli. Front Microbiol 2022; 13:937827. [DOI: 10.3389/fmicb.2022.937827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Aminoglycosides are not only antibiotics but also have wider and diverse non-antibiotic cellular functions. To elucidate the understanding of non-antibiotic cellular functions, here we report transcriptome-profiling analysis of Escherichia coli in the absence or presence of 0.5 and 1 μM of Kanamycin B, concentrations that are neither lethal nor inhibit growth, and identified the differentially expressed genes (DEGs) at two given concentrations of Kanamycin B. Functional classification of the DEGs revealed that they were mainly related to microbial metabolism including two-component systems, biofilm formation, oxidative phosphorylation and nitrogen metabolism in diverse environments. We further showed that Kanamycin B and other aminoglycosides can induce reporter gene expression through the 5′ UTR of napF gene or narK gene (both identified as DEG) and Kanamycin B can directly bind to the RNA. The results provide new insights into a better understanding of the wider aminoglycosides cellular function in E. coli rather than its known antibiotics function.
Collapse
|
3
|
Brosse A, Boudry P, Walburger A, Magalon A, Guillier M. Synthesis of the NarP response regulator of nitrate respiration in Escherichia coli is regulated at multiple levels by Hfq and small RNAs. Nucleic Acids Res 2022; 50:6753-6768. [PMID: 35748881 PMCID: PMC9262595 DOI: 10.1093/nar/gkac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Two-component systems (TCS) and small RNAs (sRNA) are widespread regulators that participate in the response and the adaptation of bacteria to their environments. TCSs and sRNAs mostly act at the transcriptional and post-transcriptional levels, respectively, and can be found integrated in regulatory circuits, where TCSs control sRNAs transcription and/or sRNAs post-transcriptionally regulate TCSs synthesis. In response to nitrate and nitrite, the paralogous NarQ-NarP and NarX-NarL TCSs regulate the expression of genes involved in anaerobic respiration of these alternative electron acceptors to oxygen. In addition to the previously reported repression of NarP synthesis by the SdsN137 sRNA, we show here that RprA, another Hfq-dependent sRNA, also negatively controls narP. Interestingly, the repression of narP by RprA actually relies on two independent mechanisms of control. The first is via the direct pairing of the central region of RprA to the narP translation initiation region and presumably occurs at the translation initiation level. In contrast, the second requires only the very 5' end of the narP mRNA, which is targeted, most likely indirectly, by the full-length or the shorter, processed, form of RprA. In addition, our results raise the possibility of a direct role of Hfq in narP control, further illustrating the diversity of post-transcriptional regulation mechanisms in the synthesis of TCSs.
Collapse
Affiliation(s)
- Anaïs Brosse
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Pierre Boudry
- UMR8261, CNRS, Université de Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402Marseille, France
| | - Maude Guillier
- To whom correspondence should be addressed. Tel: +33 01 58 41 51 49; Fax: +33 01 58 41 50 25;
| |
Collapse
|
4
|
Leimkühler S. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 2020; 22:2007-2026. [PMID: 32239579 DOI: 10.1111/1462-2920.15003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
5
|
Zupok A, Iobbi-Nivol C, Méjean V, Leimkühler S. The regulation of Moco biosynthesis and molybdoenzyme gene expression by molybdenum and iron in bacteria. Metallomics 2019; 11:1602-1624. [DOI: 10.1039/c9mt00186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The regulation of the operons involved in Moco biosynthesis is dependent on the availability of Fe–S clusters in the cell.
Collapse
Affiliation(s)
- Arkadiusz Zupok
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Vincent Méjean
- Aix-Marseille Université
- Institut de Microbiologie de la Méditerranée
- Laboratoire de Bioénergétique et Ingénierie des Protéines
- Centre National de la Recherche Scientifique
- Marseille
| | - Silke Leimkühler
- University of Potsdam
- Institute of Biochemistry and Biology
- Molecular Enzymology
- Potsdam-Golm
- Germany
| |
Collapse
|
6
|
Stoian N, Kaganjo J, Zeilstra-Ryalls J. Resolving the roles of the Rhodobacter sphaeroides HemA and HemT 5-aminolevulinic acid synthases. Mol Microbiol 2018; 110:1011-1029. [PMID: 30232811 DOI: 10.1111/mmi.14133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022]
Abstract
Strains of the phototrophic alpha-proteobacterium Rhodobacter sphaeroides vary in the number of enzymes catalyzing the formation of 5-aminolevulinic acid (ALA synthases) that are encoded in their genomes. All have hemA, but not all have hemT. This study compared transcription of these genes, and also properties of their products among three wild-type strains; 2.4.3 has hemA alone, 2.4.1 and 2.4.9 have both hemA and hemT. Using lacZ reporter plasmids all hemA genes were found to be upregulated under anaerobic conditions, but induction amplitudes differ. hemT is transcriptionally silent in 2.4.1 but actively transcribed in 2.4.9, and strongly upregulated under anaerobic-dark growth conditions when cells are respiring dimethyl sulfoxide, vs. aerobic-dark or phototrophic (anaerobic-light) conditions. Two extracytoplasmic function (ECF)-type sigma factors present in 2.4.9, but absent from 2.4.1 are directly involved in hemT transcription. Kinetic properties of the ALA synthases of all three strains were similar, but HemT enzymes are far less sensitive to feedback inhibition by hemin than HemA enzymes, and HemT is less active under oxidizing conditions. A model is presented that compares and contrast events in strains 2.4.1 and 2.4.9.
Collapse
Affiliation(s)
- Natalie Stoian
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - James Kaganjo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| | - Jill Zeilstra-Ryalls
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
7
|
Öztürk S, Ergün BG, Çalık P. Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 2017; 101:7459-7475. [DOI: 10.1007/s00253-017-8487-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/19/2023]
|
8
|
What a difference a cluster makes: The multifaceted roles of IscR in gene regulation and DNA recognition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1101-12. [PMID: 25641558 DOI: 10.1016/j.bbapap.2015.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/21/2015] [Indexed: 11/22/2022]
Abstract
Iron-sulfur clusters are essential cofactors in a myriad of metabolic pathways. Therefore, their biogenesis is tightly regulated across a variety of organisms and environmental conditions. In Gram-negative bacteria, two pathways - ISC and SUF - concur for maintaining intracellular iron-sulfur cluster balance. Recently, the mechanism of iron-sulfur cluster biosynthesis regulation by IscR, an iron-sulfur cluster-containing regulator encoded by the isc operon, was found to be conserved in some Gram-positive bacteria. Belonging to the Rrf2 family of transcriptional regulators, IscR displays a single helix-turn-helix DNA-binding domain but is able to recognize two distinct DNA sequence motifs, switching its specificity upon cluster ligation. This review provides an overview of gene regulation by iron-sulfur cluster-containing sensors, in the light of the recent structural characterization of cluster-less free and DNA-bound IscR, which provided insights into the molecular mechanism of nucleotide sequence recognition and discrimination of this unique transcription factor. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
|
9
|
SlnM gene overexpression with different promoters on natamycin production in Streptomyces lydicus A02. J Ind Microbiol Biotechnol 2013; 41:163-72. [PMID: 24174215 DOI: 10.1007/s10295-013-1370-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Natamycin is an important polyene macrolide antifungal agent produced by several Streptomyces strains and is widely used as a food preservative and fungicide in food, medicinal and veterinary products. In order to increase the yield of natamycin, this study aimed at cloning and overexpressing a natamycin-positive regulator, slnM2, with different promoters in the newly isolated strain Streptomyces lydicus A02, which is capable of producing natamycin. The slnM gene in S. lydicus is highly similar to gene pimM (scnRII), the pathway-specific positive regulator of natamycin biosynthesis in S. natalensis and S. chattanoogensis, which are PAS-LuxR regulators. Three engineered strains of S. lydicus, AM01, AM02 and AM03, were generated by inserting an additional copy of slnM2 with an ermEp* promoter, inserting an additional copy of slnM2 with dual promoters, ermEp* and its own promoter, and inserting an additional copy of slnM2 with its own promoter, respectively. No obvious changes in growth were observed between the engineered and wild-type strains. However, natamycin production in the engineered strains was significantly enhanced, by 2.4-fold in strain AM01, 3.0-fold in strain AM02 and 1.9-fold in strain AM03 when compared to the strain A02 in YEME medium without sucrose. These results indicated that the ermEp* promoter was more active than the native promoter of slnM2. Overall, dual promoters displayed the highest transcription of biosynthetic genes and yield of natamycin.
Collapse
|
10
|
Yang Y, Huang S, Zhang Y, Xu F. Nitrogen Removal by Chelatococcus daeguensis TAD1 and Its Denitrification Gene Identification. Appl Biochem Biotechnol 2013; 172:829-39. [DOI: 10.1007/s12010-013-0590-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
|
11
|
Dong Y, Wang J, Fu H, Zhou G, Shi M, Gao H. A Crp-dependent two-component system regulates nitrate and nitrite respiration in Shewanella oneidensis. PLoS One 2012; 7:e51643. [PMID: 23240049 PMCID: PMC3519889 DOI: 10.1371/journal.pone.0051643] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/02/2012] [Indexed: 11/21/2022] Open
Abstract
We have previously illustrated the nitrate/nitrite respiratory pathway of Shewanella oneidensis, which is renowned for its remarkable versatility in respiration. Here we investigated the systems regulating the pathway with a reliable approach which enables characterization of mutants impaired in nitrate/nitrite respiration by guaranteeing biomass. The S. oneidensis genome encodes an Escherichia coli NarQ/NarX homolog SO3981 and two E. coli NarP/NarL homologs SO1860 and SO3982. Results of physiological characterization and mutational analyses demonstrated that S. oneidensis possesses a single two-component system (TCS) for regulation of nitrate/nitrite respiration, consisting of the sensor kinase SO3981(NarQ) and the response regulator SO3982(NarP). The TCS directly controls the transcription of nap and nrfA (genes encoding nitrate and nitrite reductases, respectively) but regulates the former less tightly than the latter. Additionally, phosphorylation at residue 57 of SO3982 is essential for its DNA-binding capacity. At the global control level, Crp is found to regulate expression of narQP as well as nap and nrfA. In contrast to NarP-NarQ, Crp is more essential for nap rather than nrfA.
Collapse
Affiliation(s)
- Yangyang Dong
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jixuan Wang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guangqi Zhou
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Miaomiao Shi
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
12
|
Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in Salmonella enterica serovar Typhimurium. Biochem J 2011; 441:755-62. [DOI: 10.1042/bj20110971] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The production of cytotoxic nitric oxide (NO) and conversion into the neuropharmacological agent and potent greenhouse gas nitrous oxide (N2O) is linked with anoxic nitrate catabolism by Salmonella enterica serovar Typhimurium. Salmonella can synthesize two types of nitrate reductase: a membrane-bound form (Nar) and a periplasmic form (Nap). Nitrate catabolism was studied under nitrate-rich and nitrate-limited conditions in chemostat cultures following transition from oxic to anoxic conditions. Intracellular NO production was reported qualitatively by assessing transcription of the NO-regulated genes encoding flavohaemoglobin (Hmp), flavorubredoxin (NorV) and hybrid cluster protein (Hcp). A more quantitative analysis of the extent of NO formation was gained by measuring production of N2O, the end-product of anoxic NO-detoxification. Under nitrate-rich conditions, the nar, nap, hmp, norV and hcp genes were all induced following transition from the oxic to anoxic state, and 20% of nitrate consumed in steady-state was released as N2O when nitrite had accumulated to millimolar levels. The kinetics of nitrate consumption, nitrite accumulation and N2O production were similar to those of wild-type in nitrate-sufficient cultures of a nap mutant. In contrast, in a narG mutant, the steady-state rate of N2O production was ~30-fold lower than that of the wild-type. Under nitrate-limited conditions, nap, but not nar, was up-regulated following transition from oxic to anoxic metabolism and very little N2O production was observed. Thus a combination of nitrate-sufficiency, nitrite accumulation and an active Nar-type nitrate reductase leads to NO and thence N2O production, and this can account for up to 20% of the nitrate catabolized.
Collapse
|
13
|
Cruz-García C, Murray AE, Rodrigues JLM, Gralnick JA, McCue LA, Romine MF, Löffler FE, Tiedje JM. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1. BMC Microbiol 2011; 11:64. [PMID: 21450087 PMCID: PMC3078092 DOI: 10.1186/1471-2180-11-64] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 03/30/2011] [Indexed: 11/17/2022] Open
Abstract
Background EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is complex and not well understood. Results The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down-regulated at least 2-fold in the mutant, which, showed lower or no reduction of these electron acceptors when compared to the wild type, suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down-regulation of genes implicated in aerobic metabolism. Conclusion In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and, in conjunction with other regulators, fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1. Transcriptomic and sequence analyses of the genes differentially expressed showed that those mostly affected by the mutation belonged to the "Energy metabolism" category, while stress-related genes were indirectly regulated in the mutant possibly as a result of a secondary perturbation (e.g. oxidative stress, starvation). We also conclude based on sequence, physiological and expression analyses that this regulator is more appropriately termed Fnr and recommend this descriptor be used in future publications.
Collapse
Affiliation(s)
- Claribel Cruz-García
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824-1325, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lin AV, Stewart V. Functional roles for the GerE-family carboxyl-terminal domains of nitrate response regulators NarL and NarP of Escherichia coli K-12. MICROBIOLOGY-SGM 2010; 156:2933-2943. [PMID: 20634237 PMCID: PMC3068693 DOI: 10.1099/mic.0.040469-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
NarL and NarP are paralogous response regulators that control anaerobic gene expression in response to the favoured electron acceptors nitrate and nitrite. Their DNA-binding carboxyl termini are in the widespread GerE–LuxR–FixJ subfamily of tetrahelical helix–turn–helix domains. Previous biochemical and crystallographic studies with NarL suggest that dimerization and DNA binding by the carboxyl-terminal domain (CTD) is inhibited by the unphosphorylated amino-terminal receiver domain. We report here that NarL-CTD and NarP-CTD, liberated from their receiver domains, activated transcription in vivo from the class II napF and yeaR operon control regions, but failed to activate from the class I narG and fdnG operon control regions. Alanine substitutions were made to examine requirements for residues in the NarL DNA recognition helix. Substitutions for Val-189 and Arg-192 blocked DNA binding as assayed both in vivo and in vitro, whereas substitution for Arg-188 had a strong effect only in vivo. Similar results were obtained with the corresponding residues in NarP. Finally, Ala substitutions identified residues within the NarL CTD as important for transcription activation. Overall, results are congruent with those obtained for other GerE-family members, including GerE, TraR, LuxR and FixJ.
Collapse
Affiliation(s)
- Alice V Lin
- Biochemistry and Molecular Biology Graduate Group, University of California, Davis, CA 95616-8665, USA
| | - Valley Stewart
- Department of Microbiology, University of California, Davis, CA 95616-8665, USA.,Biochemistry and Molecular Biology Graduate Group, University of California, Davis, CA 95616-8665, USA
| |
Collapse
|
15
|
Van Alst NE, Sherrill LA, Iglewski BH, Haidaris CG. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase. Can J Microbiol 2010; 55:1133-44. [PMID: 19935885 DOI: 10.1139/w09-065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrate serves as a terminal electron acceptor under anaerobic conditions in Pseudomonas aeruginosa. Reduction of nitrate to nitrite generates a transmembrane proton motive force allowing ATP synthesis and anaerobic growth. The inner membrane-bound nitrate reductase NarGHI is encoded within the narK1K2GHJI operon, and the periplasmic nitrate reductase NapAB is encoded within the napEFDABC operon. The roles of the 2 dissimilatory nitrate reductases in anaerobic growth, and the regulation of their expressions, were examined by use of a set of deletion mutants in P. aeruginosa PAO1. NarGHI mutants were unable to grow anaerobically, but plate cultures remained viable up to 120 h. In contrast, the nitrate sensor-response regulator mutant DeltanarXL displayed growth arrest initially, but resumed growth after 72 h and reached the early stationary phase in liquid culture after 120 h. Genetic, transcriptional, and biochemical studies demonstrated that anaerobic growth recovery by the NarXL mutant was the result of NapAB periplasmic nitrate reductase expression. A novel transcriptional start site for napEFDABC expression was identified in the NarXL mutant grown anaerobically. Furthermore, mutagenesis of a consensus NarL-binding site monomer upstream of the novel transcriptional start site restored anaerobic growth recovery in the NarXL mutant. The data suggest that during anaerobic growth of wild-type P. aeruginosa PAO1, the nitrate response regulator NarL directly represses expression of periplasmic nitrate reductase, while inducing maximal expression of membrane nitrate reductase.
Collapse
Affiliation(s)
- Nadine E Van Alst
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
16
|
Resistance of Haemophilus influenzae to reactive nitrogen donors and gamma interferon-stimulated macrophages requires the formate-dependent nitrite reductase regulator-activated ytfE gene. Infect Immun 2009; 77:1945-58. [PMID: 19289513 DOI: 10.1128/iai.01365-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Haemophilus influenzae efficiently colonizes and persists at the human nasopharyngeal mucosa, causing disease when it spreads to other sites. Nitric oxide (NO) represents a major antimicrobial defense deployed by host cells in locations colonized by H. influenzae during pathogenesis that are likely to vary in oxygen levels. Formate-dependent nitrite reductase regulator (FNR) is an oxygen-sensitive regulator in several bacterial pathogens. We report that fnr of H. influenzae is required for anaerobic defense against exposure to NO donors and to resist NO-dependent effects of gamma interferon (IFN-gamma)-activated murine bone marrow-derived macrophages. To understand the mechanism of resistance, we investigated the role of FNR-regulated genes in defense against NO sources. Expression analysis revealed FNR-dependent activation of nrfA, dmsA, napA, and ytfE. Nonpolar deletion mutants of nrfA and ytfE exhibited sensitivity to NO donors, and the ytfE gene was more critical for survival. Compared to the wild-type strain, the ytfE mutant exhibited decreased survival when exposed to macrophages, a defect that was more pronounced after prior stimulation of macrophages with IFN-gamma or lipopolysaccharide. Complementation restored survival of the mutant to the level in the parental strain. Increased sensitivity of the ytfE mutant relative to that of the parent was abrogated by treatment of macrophages with a NO synthase inhibitor, implicating YtfE in resistance to a NO-dependent pathway. These results identify a requirement for FNR in positive control of ytfE and indicate a critical role for ytfE in resistance of H. influenzae to reactive nitrogen species and the antibacterial effects of macrophages.
Collapse
|
17
|
Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J Bacteriol 2008; 191:996-1005. [PMID: 19060147 DOI: 10.1128/jb.00873-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli, a facultative aerobe, expresses two distinct respiratory nitrate reductases. The periplasmic NapABC enzyme likely functions during growth in nitrate-limited environments, whereas the membrane-bound NarGHI enzyme functions during growth in nitrate-rich environments. Maximal expression of the napFDAGHBC operon encoding periplasmic nitrate reductase results from synergistic transcription activation by the Fnr and phospho-NarP proteins, acting in response to anaerobiosis and nitrate or nitrite, respectively. Here, we report that, during anaerobic growth with no added nitrate, less-preferred carbon sources stimulated napF operon expression by as much as fourfold relative to glucose. Deletion analysis identified a cyclic AMP receptor protein (Crp) binding site upstream of the NarP and Fnr sites as being required for this stimulation. The napD and nrfA operon control regions from Shewanella spp. also have apparent Crp and Fnr sites, and expression from the Shewanella oneidensis nrfA control region cloned in E. coli was subject to catabolite repression. In contrast, the carbon source had relatively little effect on expression of the narGHJI operon encoding membrane-bound nitrate reductase under any growth condition tested. Carbon source oxidation state had no influence on synthesis of either nitrate reductase. The results suggest that the Fnr and Crp proteins may act synergistically to enhance NapABC synthesis during growth with poor carbon sources to help obtain energy from low levels of nitrate.
Collapse
|
18
|
Morozkina EV, Zvyagilskaya RA. Nitrate reductases: structure, functions, and effect of stress factors. BIOCHEMISTRY (MOSCOW) 2008; 72:1151-60. [PMID: 18021072 DOI: 10.1134/s0006297907100124] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural and functional peculiarities of four types of nitrate reductases are considered: assimilatory nitrate reductase of eukaryotes, as well as cytoplasmic assimilatory, membrane-bound respiratory, and periplasmic dissimilatory bacterial nitrate reductases. Arguments are presented showing that eukaryotic organisms are capable of nitrate dissimilation. Data concerning new classes of extremophil nitrate reductases, whose active center does not contain molybdocofactor, are summarized.
Collapse
Affiliation(s)
- E V Morozkina
- Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
| | | |
Collapse
|
19
|
Jones SA, Chowdhury FZ, Fabich AJ, Anderson A, Schreiner DM, House AL, Autieri SM, Leatham MP, Lins JJ, Jorgensen M, Cohen PS, Conway T. Respiration of Escherichia coli in the mouse intestine. Infect Immun 2007; 75:4891-9. [PMID: 17698572 PMCID: PMC2044527 DOI: 10.1128/iai.00484-07] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/01/2007] [Accepted: 07/30/2007] [Indexed: 12/24/2022] Open
Abstract
Mammals are aerobes that harbor an intestinal ecosystem dominated by large numbers of anaerobic microorganisms. However, the role of oxygen in the intestinal ecosystem is largely unexplored. We used systematic mutational analysis to determine the role of respiratory metabolism in the streptomycin-treated mouse model of intestinal colonization. Here we provide evidence that aerobic respiration is required for commensal and pathogenic Escherichia coli to colonize mice. Our results showed that mutants lacking ATP synthase, which is required for all respiratory energy-conserving metabolism, were eliminated by competition with respiratory-competent wild-type strains. Mutants lacking the high-affinity cytochrome bd oxidase, which is used when oxygen tensions are low, also failed to colonize. However, the low-affinity cytochrome bo(3) oxidase, which is used when oxygen tension is high, was found not to be necessary for colonization. Mutants lacking either nitrate reductase or fumarate reductase also had major colonization defects. The results showed that the entire E. coli population was dependent on both microaerobic and anaerobic respiration, consistent with the hypothesis that the E. coli niche is alternately microaerobic and anaerobic, rather than static. The results indicate that success of the facultative anaerobes in the intestine depends on their respiratory flexibility. Despite competition for relatively scarce carbon sources, the energy efficiency provided by respiration may contribute to the widespread distribution (i.e., success) of E. coli strains as commensal inhabitants of the mammalian intestine.
Collapse
Affiliation(s)
- Shari A Jones
- Advanced Center for Genome Technology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Van Alst NE, Picardo KF, Iglewski BH, Haidaris CG. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect Immun 2007; 75:3780-90. [PMID: 17526746 PMCID: PMC1952006 DOI: 10.1128/iai.00201-07] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection by the bacterial opportunist Pseudomonas aeruginosa frequently assumes the form of a biofilm, requiring motility for biofilm formation and dispersal and an ability to grow in nutrient- and oxygen-limited environments. Anaerobic growth by P. aeruginosa is accomplished through the denitrification enzyme pathway that catalyzes the sequential reduction of nitrate to nitrogen gas. Mutants mutated in the two-component nitrate sensor-response regulator and in membrane nitrate reductase displayed altered motility and biofilm formation compared to wild-type P. aeruginosa PAO1. Analysis of additional nitrate dissimilation mutants demonstrated a second level of regulation in P. aeruginosa motility that is independent of nitrate sensor-response regulator function and is associated with nitric oxide production. Because motility and biofilm formation are important for P. aeruginosa pathogenicity, we examined the virulence of selected regulatory and structural gene mutants in the surrogate model host Caenorhabditis elegans. Interestingly, the membrane nitrate reductase mutant was avirulent in C. elegans, while nitrate sensor-response regulator mutants were fully virulent. The data demonstrate that nitrate sensing, response regulation, and metabolism are linked directly to factors important in P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Nadine E Van Alst
- Department of Microbiology and Immunology, Box 672, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
21
|
Rediers H, Vanderleyden J, De Mot R. Nitrate respiration in Pseudomonas stutzeri A15 and its involvement in rice and wheat root colonization. Microbiol Res 2007; 164:461-8. [PMID: 17467964 DOI: 10.1016/j.micres.2007.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/22/2007] [Accepted: 03/05/2007] [Indexed: 11/28/2022]
Abstract
Unlike most bacteria, the nitrogen-fixing rice-associated Pseudomonas stutzeri A15 disposes of three different nitrate reductases that enable conversion of nitrate to nitrite through three physiologically distinct processes, called nitrate assimilation, nitrate respiration and nitrate dissimilation. To study the role of nitrate respiration in rhizosphere fitness, a Pseudomonas stutzeri narG mutant was constructed and characterized by assessing its growth characteristics and whole-cell nitrate reductase activity in different oxygen tensions. Unexpectedly, the Pseudomonas stutzeri A15 narG mutant appeared to be a better root colonizer, outcompeting the wild type strain in a wheat and rice hydroponic system.
Collapse
Affiliation(s)
- Hans Rediers
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Heverlee, Belgium.
| | | | | |
Collapse
|
22
|
Giel JL, Rodionov D, Liu M, Blattner FR, Kiley PJ. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol 2006; 60:1058-75. [PMID: 16677314 DOI: 10.1111/j.1365-2958.2006.05160.x] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IscR is an iron-sulphur (Fe-S) cluster-containing transcription factor that represses transcription of the operon containing its own gene and the iscSUA-hscBA-fdx genes, whose products are involved in Fe-S cluster biogenesis. In this study, global transcriptional profiling of Escherichia coli IscR(+) and IscR(-) strains grown under aerobic and anaerobic conditions indicated that 40 genes in 20 predicted operons were regulated by IscR. DNase I footprinting and/or in vitro transcription reactions identified seven new promoters under direct IscR control. Among these were genes encoding known or proposed functions in Fe-S cluster biogenesis (sufABCDSE, yadR and yhgI) and Fe-S cluster-containing anaerobic respiratory enzymes (hyaABCDEF, hybOABCDEFG and napFDAGHBC). The finding that IscR repressed expression of the hyaA, hybO and napF promoters specifically under aerobic growth conditions suggests a new mechanism to explain their upregulation under anaerobic growth conditions. Phylogenetic footprinting of the DNase I protected regions of seven promoters implies that there are at least two different classes of IscR binding sites conserved among many bacteria. The findings presented here indicate a more general role of IscR in the regulation of Fe-S cluster biogenesis and that IscR contributes to the O(2) regulation of several promoters controlling the expression of anaerobic Fe-S proteins.
Collapse
Affiliation(s)
- Jennifer L Giel
- Microbiology Doctoral Training Program, Department of Biomolecular Chemistry, University of Winsconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
23
|
Overton TW, Griffiths L, Patel MD, Hobman JL, Penn CW, Cole JA, Constantinidou C. Microarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology. Biochem Soc Trans 2006; 34:104-7. [PMID: 16417494 DOI: 10.1042/bst0340104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA was isolated from cultures of Escherichia coli strain MG1655 and derivatives defective in fnr, narXL, or narXL with narP, during aerobic growth, or anaerobic growth in the presence or absence of nitrate or nitrite, in non-repressing media in which both strain MG1655 and an fnr deletion mutant grew at similar rates. Glycerol was used as the non-repressing carbon source and both trimethylamine-N-oxide and fumarate were added as terminal electron acceptors. Microarray data supplemented with bioinformatic data revealed that the FNR (fumarate and nitrate reductase regulator) regulon includes at least 104, and possibly as many as 115, operons, 68 of which are activated and 36 are repressed during anaerobic growth. A total of 51 operons were directly or indirectly activated by NarL in response to nitrate; a further 41 operons were repressed. Four subgroups of genes implicated in management of reactive nitrogen compounds, NO and products of NO metabolism, were identified; they included proteins of previously unknown function. Global repression by the nitrate- and nitrite-responsive two-component system, NarQ-NarP, was shown for the first time. In contrast with the frdABCD, aspA and ansB operons that are repressed only by NarL, the dcuB-fumB operon was among 37 operons that are repressed by NarP.
Collapse
Affiliation(s)
- T W Overton
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
González PJ, Correia C, Moura I, Brondino CD, Moura JJG. Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. J Inorg Biochem 2006; 100:1015-23. [PMID: 16412515 DOI: 10.1016/j.jinorgbio.2005.11.024] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 11/30/2022]
Abstract
Nitrogen is a vital component in living organisms as it participates in the making of essential biomolecules such as proteins, nucleic acids, etc. In the biosphere, nitrogen cycles between the oxidation states +V and -III producing many species that constitute the biogeochemical cycle of nitrogen. All reductive branches of this cycle involve the conversion of nitrate to nitrite, which is catalyzed by the enzyme nitrate reductase. The characterization of nitrate reductases from prokaryotic organisms has allowed us to gain considerable information on the molecular basis of nitrate reduction. Prokaryotic nitrate reductases are mononuclear Mo-containing enzymes sub-grouped as respiratory nitrate reductases, periplasmic nitrate reductases and assimilatory nitrate reductases. We review here the biological and molecular properties of these three enzymes along with their gene organization and expression, which are necessary to understand the biological processes involved in nitrate reduction.
Collapse
Affiliation(s)
- P J González
- REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | | | | | |
Collapse
|
25
|
Constantinidou C, Hobman JL, Griffiths L, Patel MD, Penn CW, Cole JA, Overton TW. A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 2005; 281:4802-15. [PMID: 16377617 DOI: 10.1074/jbc.m512312200] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor FNR, the regulator of fumarate and nitrate reduction, regulates major changes as Escherichia coli adapts from aerobic to anaerobic growth. In an anaerobic glycerol/trimethylamine N-oxide/fumarate medium, the fnr mutant grew as well as the parental strain, E. coli K12 MG1655, enabling us to reveal the response to oxygen, nitrate, and nitrite in the absence of glucose repression or artifacts because of variations in growth rate. Hence, many of the discrepancies between previous microarray studies of the E. coli FNR regulon were resolved. The current microarray data confirmed 31 of the previously characterized FNR-regulated operons. Forty four operons not previously known to be included in the FNR regulon were activated by FNR, and a further 28 operons appeared to be repressed. For each of these operons, a match to the consensus FNR-binding site sequence was identified. The FNR regulon therefore minimally includes at least 103, and possibly as many as 115, operons. Comparison of transcripts in the parental strain and a narXL deletion mutant revealed that transcription of 51 operons is activated, directly or indirectly, by NarL, and a further 41 operons are repressed. The narP gene was also deleted from the narXL mutant to reveal the extent of regulation by phosphorylated NarP. Fourteen promoters were more active in the narP+ strain than in the mutant, and a further 37 were strongly repressed. This is the first report that NarP might function as a global repressor as well as a transcription activator. The data also revealed possible new defense mechanisms against reactive nitrogen species.
Collapse
|
26
|
Stewart V, Bledsoe PJ. Fnr-, NarP- and NarL-dependent regulation of transcription initiation from the Haemophilus influenzae Rd napF (periplasmic nitrate reductase) promoter in Escherichia coli K-12. J Bacteriol 2005; 187:6928-35. [PMID: 16199562 PMCID: PMC1251606 DOI: 10.1128/jb.187.20.6928-6935.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periplasmic nitrate reductase (napFDAGHBC operon product) functions in anaerobic respiration. Transcription initiation from the Escherichia coli napF operon control region is activated by the Fnr protein in response to anaerobiosis and by the NarQ-NarP two-component regulatory system in response to nitrate or nitrite. The binding sites for the Fnr and phospho-NarP proteins are centered at positions -64.5 and -44.5, respectively, with respect to the major transcription initiation point. The E. coli napF operon is a rare example of a class I Fnr-activated transcriptional control region, in which the Fnr protein binding site is located upstream of position -60. To broaden our understanding of napF operon transcriptional control, we studied the Haemophilus influenzae Rd napF operon control region, expressed as a napF-lacZ operon fusion in the surrogate host E. coli. Mutational analysis demonstrated that expression required binding sites for the Fnr and phospho-NarP proteins centered at positions -81.5 and -42.5, respectively. Transcription from the E. coli napF operon control region is activated by phospho-NarP but antagonized by the orthologous protein, phospho-NarL. By contrast, expression from the H. influenzae napF-lacZ operon fusion in E. coli was stimulated equally well by nitrate in both narP and narL null mutants, indicating that phospho-NarL and -NarP are equally effective regulators of this promoter. Overall, the H. influenzae napF operon control region provides a relatively simple model for studying synergistic transcription by the Fnr and phospho-NarP proteins acting from class I and class II locations, respectively.
Collapse
Affiliation(s)
- Valley Stewart
- Section of Microbiology, University of California, One Shields Avenue, Davis, CA 95616-8665, USA.
| | | |
Collapse
|
27
|
Tabata A, Yamamoto I, Matsuzaki M, Satoh T. Differential regulation of periplasmic nitrate reductase gene (napKEFDABC) expression between aerobiosis and anaerobiosis with nitrate in a denitrifying phototroph Rhodobacter sphaeroides f. sp. denitrificans. Arch Microbiol 2005; 184:108-16. [PMID: 16136296 DOI: 10.1007/s00203-005-0029-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 04/26/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
A denitrifying phototroph, Rhodobacter sphaeroides f. sp. denitrificans, has the ability to denitrify by respiring nitrate. The periplasmic respiratory nitrate reductase (Nap) catalyses the first step in denitrification and is encoded by the genes, napKEFDABC. By assaying the ss-galactosidase activity of napKEFD-lacZ fusions in wild type and nap mutant cells grown under various growth conditions, the environmental signal for inducing nap expression was examined. Under anoxic conditions with nitrate, nap genes expression in the wild-type strain was highest in the dark, and somewhat lowered by incident light, but that of the napA, napB, and napC mutant strains was low, showing that nap expression is dependent on nitrate respiration. Under oxic conditions, both the wild type and nap mutant cells showed high ss-galactosidase activities, comparable to the wild-type grown under anoxic conditions with nitrate. Myxothiazol, a specific inhibitor of the cytochrome bc (1) complex, did not affect the beta-galactosidase activity in the wild-type cells grown aerobically, suggesting that the redox state of the quinone pool was not a candidate for the activation signal for aerobic nap expression. These results suggested that the trans-acting regulatory signals for nap expression differ between anoxic and oxic conditions. Deletion analysis showed that the nucleotide sequence from -135 to -88 with respect to the translational start point is essential for nap expression either under anoxic or oxic conditions, suggesting that the same cis-acting element is involved in regulating nap expression under either anoxic with nitrate or oxic conditions.
Collapse
Affiliation(s)
- Atsuya Tabata
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, 739-8526 Higashi-Hiroshima, Japan
| | | | | | | |
Collapse
|