1
|
Safety evaluation of β-agarase preparations from Streptomyces coelicolor A3(2). Regul Toxicol Pharmacol 2019; 101:142-155. [DOI: 10.1016/j.yrtph.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
|
2
|
Roudnický P, Vorel J, Ilgová J, Benovics M, Norek A, Jedličková L, Mikeš L, Potěšil D, Zdráhal Z, Dvořák J, Gelnar M, Kašný M. Identification and partial characterization of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). ACTA ACUST UNITED AC 2018; 25:61. [PMID: 30516130 PMCID: PMC6280883 DOI: 10.1051/parasite/2018062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Background: Serpins are a superfamily of serine peptidase inhibitors that participate in the regulation of many physiological and cell peptidase-mediated processes in all organisms (e.g. in blood clotting, complement activation, fibrinolysis, inflammation, and programmed cell death). It was postulated that in the blood-feeding members of the monogenean family Diplozoidae, serpins could play an important role in the prevention of thrombus formation, activation of complement, inflammation in the host, and/or in the endogenous regulation of protein degradation. Results: In silico analysis showed that the DNA and primary protein structures of serpin from Eudiplozoon nipponicum (EnSerp1) are similar to other members of the serpin superfamily. The inhibitory potential of EnSerp1 on four physiologically-relevant serine peptidases (trypsin, factor Xa, kallikrein, and plasmin) was demonstrated and its presence in the worm’s excretory-secretory products (ESPs) was confirmed. Conclusion: EnSerp1 influences the activity of peptidases that play a role in blood coagulation, fibrinolysis, and complement activation. This inhibitory potential, together with the serpin’s presence in ESPs, suggests that it is likely involved in host-parasite interactions and could be one of the molecules involved in the control of feeding and prevention of inflammatory responses.
Collapse
Affiliation(s)
- Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Michal Benovics
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Adam Norek
- Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic - National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jan Dvořák
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom - Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic - Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844 Prague 2, Czech Republic
| |
Collapse
|
3
|
An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization. Proc Natl Acad Sci U S A 2016; 113:14318-14323. [PMID: 27911800 DOI: 10.1073/pnas.1612607113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thiostrepton (TSR), an archetypal bimacrocyclic thiopeptide antibiotic that arises from complex posttranslational modifications of a genetically encoded precursor peptide, possesses a quinaldic acid (QA) moiety within the side-ring system of a thiopeptide-characteristic framework. Focusing on selective engineering of the QA moiety, i.e., by fluorination or methylation, we have recently designed and biosynthesized biologically more active TSR analogs. Using these analogs as chemical probes, we uncovered an unusual indirect mechanism of TSR-type thiopeptides, which are able to act against intracellular pathogens through host autophagy induction in addition to direct targeting of bacterial ribosome. Herein, we report the accumulation of 6'-fluoro-7', 8'-epoxy-TSR, a key intermediate in the preparation of the analog 6'-fluoro-TSR. This unexpected finding led to unveiling of the TSR maturation process, which involves an unusual dual activity of TsrI, an α/β-hydrolase fold protein, for cascade C-N bond cleavage and formation during side-ring system construction. These two functions of TsrI rely on the same catalytic triad, Ser72-His200-Asp191, which first mediates endopeptidyl hydrolysis that occurs selectively between the residues Met-1 and Ile1 for removal of the leader peptide and then triggers epoxide ring opening for closure of the QA-containing side-ring system in a regio- and stereo-specific manner. The former reaction likely requires the formation of an acyl-Ser72 enzyme intermediate; in contrast, the latter is independent of Ser72. Consequently, C-6' fluorination of QA lowers the reactivity of the epoxide intermediate and, thereby, allows the dissection of the TsrI-associated enzymatic process that proceeds rapidly and typically is difficult to be realized during TSR biosynthesis.
Collapse
|
4
|
Gandotra S, Lebron MB, Ehrt S. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog 2010; 6:e1001040. [PMID: 20711362 PMCID: PMC2920845 DOI: 10.1371/journal.ppat.1001040] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/13/2010] [Indexed: 11/17/2022] Open
Abstract
Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects of the prcBA knockout (Delta prcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of Delta prcBA, revealing a function beyond NO defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during chronic mouse infections and that the proteasome serves a proteolysis-independent function.
Collapse
Affiliation(s)
- Sheetal Gandotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | | | | |
Collapse
|
5
|
Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 2007; 13:1515-20. [PMID: 18059281 PMCID: PMC3174471 DOI: 10.1038/nm1683] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 10/11/2007] [Indexed: 12/14/2022]
Abstract
The success of Mycobacterium tuberculosis (Mtb) as a human pathogen relies on its ability to resist eradication by the immune system. The identification of mechanisms that enable Mtb to persist is key for finding ways to limit latent tuberculosis, which affects one-third of the world's population. Here we show that conditional gene silencing can be used to determine whether an Mtb gene required for optimal growth in vitro is also important for virulence and, if so, during which phase of an infection it is required. Application of this approach to the prcBA genes, which encode the core of the mycobacterial proteasome, revealed an unpredicted requirement of the core proteasome for the persistence of Mtb during the chronic phase of infection in mice. Proteasome depletion also attenuated Mtb in interferon-gamma-deficient mice, pointing to a function of the proteasome beyond defense against the adaptive immune response. Genes that are essential for growth in vitro, in vivo or both account for approximately 20% of Mtb's genome. Conditional gene silencing could therefore facilitate the validation of up to 800 potential Mtb drug targets and improve our understanding of host-pathogen dynamics.
Collapse
Affiliation(s)
- Sheetal Gandotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
- Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
- Program in Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Mercedes Monteleone
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Wolfgang Hillen
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
- Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| |
Collapse
|
6
|
De Mot R, Schoofs G, Nagy I. Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch Microbiol 2007; 188:257-71. [PMID: 17486317 DOI: 10.1007/s00203-007-0243-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 02/19/2007] [Accepted: 04/02/2007] [Indexed: 12/17/2022]
Abstract
Prokaryotic 20S proteasomes are confined to archaebacteria and actinomycetes. Bacterial targets of this compartmentalized multi-subunit protease have not yet been identified and its physiological function in prokaryotes remains unknown. In this study, intracellular and extracellular proteomes of Streptomyces coelicolor A3(2) mutants affected in the structural genes of the 20S proteasome, in the gene encoding the presumed proteasome-accessory AAA ATPase ARC, or in two putative proteasome-associated actinomycete-specific genes (sco1646, sco1647) were analysed, revealing modified patterns of stress-responsive proteins. In addition, the extracellular protease profile of the sco1647 mutant was significantly altered. The most prominent change, common to the four mutants, was a strongly increased level of the non-heme chloroperoxidase SCO0465, coinciding with an increased resistance to cumene hydroperoxide.
Collapse
Affiliation(s)
- René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
7
|
Staats CC, Boldo J, Broetto L, Vainstein M, Schrank A. Comparative genome analysis of proteases, oligopeptide uptake and secretion systems in Mycoplasma spp. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
|
8
|
Hong B, Wang L, Lammertyn E, Geukens N, Van Mellaert L, Li Y, Anné J. Inactivation of the 20S proteasome in Streptomyces lividans and its influence on the production of heterologous proteins. Microbiology (Reading) 2005; 151:3137-3145. [PMID: 16151224 DOI: 10.1099/mic.0.28034-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteasomes are self-compartmentalizing proteases first discovered in eukaryotes but also occurring in archaea and in bacteria belonging to the order Actinomycetales. In bacteria, proteasomes have so far no known function. In order to evaluate the influence of the 20S proteasome on the production of heterologous proteins by Streptomyces lividans TK24, the production of a number of heterologous proteins, including soluble human tumour necrosis factor receptor II (shuTNFRII) and salmon calcitonin (sCT), was compared with the wild-type TK24, a proteasome-deficient mutant designated PRO41 and a strain complemented for the disrupted proteasome genes (strain PRO41R). S. lividans cells lacking intact proteasome genes are phenotypically indistinguishable from the wild-type or the complemented strain containing functional proteasomes. Using the expression and secretion signals of the subtilisin inhibitor of Streptomyces venezuelae CBS762.70 (Vsi) for shuTNFRII and those of tyrosinase of Streptomyces antibioticus (MelC1) for the production of sCT, both proteins were secreted in significantly higher amounts in the strain PRO41 than in the wild-type S. lividans TK24 or the complemented strain PRO41R. However, the secretion of other heterologous proteins such as shuTNFRI was not enhanced in the proteasome-deficient strain. This suggests that S. lividans TK24 can degrade some heterologous proteins in a proteasome-dependent fashion. The proteasome-deficient strain may therefore be useful for the efficient production of these heterologous proteins.
Collapse
Affiliation(s)
- Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Lifei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Elke Lammertyn
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Nick Geukens
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Lieve Van Mellaert
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Yuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical University, No. 1 Tiantanxili, Beijing 100050, China
| | - Jozef Anné
- Laboratory of Bacteriology, Rega Institute, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Zhang X, Stoffels K, Wurzbacher S, Schoofs G, Pfeifer G, Banerjee T, Parret AHA, Baumeister W, De Mot R, Zwickl P. The N-terminal coiled coil of the Rhodococcus erythropolis ARC AAA ATPase is neither necessary for oligomerization nor nucleotide hydrolysis. J Struct Biol 2004; 146:155-65. [PMID: 15037247 DOI: 10.1016/j.jsb.2003.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2003] [Revised: 10/17/2003] [Indexed: 11/18/2022]
Abstract
Deletion mutants of the Rhodococcus erythropolis ARC AAA ATPase were generated and characterized by biochemical analysis and electron microscopy. Based on sequence comparisons the ARC protein was divided into three consecutive regions, the N-terminal coiled coil, the central ARC-specific inter domain and the C-terminal AAA domain. When the ARC AAA domain was expressed separately it formed aggregates of undefined structure. However, when the AAA domain was expressed in conjunction with the preceeding inter domain, but without the N-terminal coiled coil, high-molecular weight-complexes were formed (ARC-DeltaCC) which showed an N-ethylmaleimide-sensitive ATPase activity. In 2D crystallization experiments the ARC-DeltaCC particles yielded crystals nearly identical to those formed by the wild-type ARC complexes. Thus, the N-terminal coiled coil, which was proposed to have a role in the assembly of and/or interaction between the eukaryotic AAA ATPases in the 26S proteasome, is neither essential for assembly nor for ATP hydrolysis of the ARC ATPase. The N-terminal domain of related AAA ATPases mediates the interaction with substrates or co-factors, suggesting a regulatory function for the N-terminal coiled coil of the ARC ATPase. Surprisingly, the mutant ARC protein ARC-DeltaAAA consisting of the N-terminal coiled coil and the central inter domain, but deleted for the C-terminal AAA domain, was shown to form a dodecameric complex with sixfold symmetry. This suggests an important role of the inter domain for the ordered assembly of the ARC ATPase.
Collapse
Affiliation(s)
- Xujia Zhang
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|