1
|
Cho E, Kim J, Hur JI, Ryu S, Jeon B. Pleiotropic cellular responses underlying antibiotic tolerance in Campylobacter jejuni. Front Microbiol 2024; 15:1493849. [PMID: 39651349 PMCID: PMC11622253 DOI: 10.3389/fmicb.2024.1493849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Antibiotic tolerance enables antibiotic-susceptible bacteria to withstand prolonged exposure to high concentrations of antibiotics. Although antibiotic tolerance presents a major challenge for public health, its underlying molecular mechanisms remain unclear. Previously, we have demonstrated that Campylobacter jejuni develops tolerance to clinically important antibiotics, including ciprofloxacin and tetracycline. To identify cellular responses associated with antibiotic tolerance, RNA-sequencing was conducted on C. jejuni after inducing antibiotic tolerance through exposure to ciprofloxacin or tetracycline. Additionally, knockout mutants were constructed for genes exhibiting significant changes in expression levels during antibiotic tolerance. The genes involved in protein chaperones, bacterial motility, DNA repair system, drug efflux pump, and iron homeostasis were significantly upregulated during antibiotic tolerance. These mutants displayed markedly reduced viability compared to the wild-type strain, indicating the critical role of these cellular responses in sustaining antibiotic tolerance. Notably, the protein chaperone mutants exhibited increased protein aggregation under antibiotic treatment, suggesting that protein chaperones play a critical role in managing protein disaggregation and facilitating survival during antibiotic tolerance. Our findings demonstrate that various cellular defense mechanisms collectively contribute to sustaining antibiotic tolerance in C. jejuni, providing novel insights into the molecular mechanisms underlying antibiotic tolerance.
Collapse
Affiliation(s)
- Eunshin Cho
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Republic of Korea
| | - Jeong In Hur
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
2
|
Delaporte E, Karki AB, Fakhr MK. Aerotolerancy of Campylobacter spp.: A Comprehensive Review. Pathogens 2024; 13:842. [PMID: 39452714 PMCID: PMC11510350 DOI: 10.3390/pathogens13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Campylobacter spp. constitute a group of microaerophilic bacteria that includes strains that are aerotolerant and capable of surviving in aerobic conditions. Recent studies have shown that aerotolerant strains are highly prevalent in meats, animals, and clinical settings. Changes in growth media and other environmental conditions can affect the aerotolerance of Campylobacter strains and must be considered when studying their aerotolerance in vitro. Polymicrobial interactions and biofilms also play a significant role in the ability of Campylobacter to survive oxygen exposure. Continuous subculturing may foster aerotolerance, and studies have demonstrated a positive correlation between aerotolerance and virulence and between aerotolerance and the ability to survive stressful environmental conditions. Various mechanisms and genetic origins for aerotolerance have been proposed; however, most of the potential genes involved in aerotolerance require further investigation, and many candidate genes remain unidentified. Research is also needed to investigate if there are any clinical implications for Campylobacter aerotolerance. Understanding the aerotolerance of Campylobacter remains an important target for further research, and it will be an important step towards identifying potential targets for intervention against this clinically important food-borne pathogen.
Collapse
Affiliation(s)
- Elise Delaporte
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| | - Anand B. Karki
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| | - Mohamed K. Fakhr
- Department of Biological Science, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
3
|
Hop HT, Huy TXN, Lee HJ, Kim S. Intracellular growth of Brucella is mediated by Dps-dependent activation of ferritinophagy. EMBO Rep 2023; 24:e55376. [PMID: 37503678 PMCID: PMC10481649 DOI: 10.15252/embr.202255376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Bacteria of the genus Brucella cause brucellosis, one of the world's most common zoonotic diseases. A major contributor to Brucella's virulence is the ability to circumvent host immune defense mechanisms. Here, we find that the DNA-binding protein Dps from Brucella is secreted within the macrophage cytosol, modulating host iron homeostasis and mediating intracellular growth of Brucella. In addition to dampening iron-dependent production of reactive oxygen species (ROS), a key immune effector required for immediate bacterial clearance, cytosolic Dps mediates ferritinophagy activation to elevate intracellular free-iron levels, thereby promoting Brucella growth and inducing host cell necrosis. Inactivation of the ferritinophagy pathway by Ncoa4 gene knockout significantly inhibits intracellular growth of Brucella and host cell death. Our study uncovers an unconventional role of bacterial Dps, identifying a crucial virulence mechanism used by Brucella to adapt to the harsh environment inside macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- University Center for Bioscience and BiotechnologyNational Cheng Kung UniversityTainanTaiwan
| | | | - Hu Jang Lee
- College of Veterinary MedicineGyeongsang National UniversityJinjuKorea
| | - Suk Kim
- College of Veterinary MedicineGyeongsang National UniversityJinjuKorea
| |
Collapse
|
4
|
Gouveia AG, Salgueiro BA, Ranmar DO, Antunes WDT, Kirchweger P, Golani O, Wolf SG, Elbaum M, Matias PM, Romão CV. Unraveling the multifaceted resilience of arsenic resistant bacterium Deinococcus indicus. Front Microbiol 2023; 14:1240798. [PMID: 37692390 PMCID: PMC10483234 DOI: 10.3389/fmicb.2023.1240798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Arsenic (As) is a toxic heavy metal widely found in the environment that severely undermines the integrity of water resources. Bioremediation of toxic compounds is an appellative sustainable technology with a balanced cost-effective setup. To pave the way for the potential use of Deinococcus indicus, an arsenic resistant bacterium, as a platform for arsenic bioremediation, an extensive characterization of its resistance to cellular insults is paramount. A comparative analysis of D. indicus cells grown in two rich nutrient media conditions (M53 and TGY) revealed distinct resistance patterns when cells are subjected to stress via UV-C and methyl viologen (MV). Cells grown in M53 demonstrated higher resistance to both UV-C and MV. Moreover, cells grow to higher density upon exposure to 25 mM As(V) in M53 in comparison with TGY. This analysis is pivotal for the culture of microbial species in batch culture bioreactors for bioremediation purposes. We also demonstrate for the first time the presence of polyphosphate granules in D. indicus which are also found in a few Deinococcus species. To extend our analysis, we also characterized DiArsC2 (arsenate reductase) involved in arsenic detoxification and structurally determined different states, revealing the structural evidence for a catalytic cysteine triple redox system. These results contribute for our understanding into the D. indicus resistance mechanism against stress conditions.
Collapse
Affiliation(s)
- André G. Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno A. Salgueiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dean O. Ranmar
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Wilson D. T. Antunes
- Instituto Universitário Militar, Centro de Investigação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Lisbon, Portugal
| | - Peter Kirchweger
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Pedro M. Matias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
5
|
Park JH, Lee ES, Jung YJ. Functional characterization of the DNA-binding protein from starved cells (DPS) as a molecular chaperone under heat stress. Biochem Biophys Res Commun 2023; 667:180-185. [PMID: 37229826 DOI: 10.1016/j.bbrc.2023.05.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
The DNA-binding protein from starved cells, known as DPS, has been characterized as a crucial factor in protecting E. coli from external stresses. The DPS functions in various cellular processes, including protein-DNA binding, ferroxidase activity, compaction of chromosome and regulation of stress resistance gene expression. DPS proteins exist as oligomeric complexes; however, the specific biochemical activity of oligomeric DPS in conferring heat shock tolerance has not been fully understood. Therefore, we investigated the novel functional role of DPS under heat shock. To elucidate the functional role of DPS under heat shock conditions, we purified recombinant GST-DPS protein and demonstrated its thermostability and existence in its highly oligomeric form. Furthermore, we discovered that the hydrophobic region of GST-DPS influenced the formation of oligomers, which exhibited molecular chaperone activity, thereby preventing the aggregation of substrate proteins. Collectively, our findings highlight the novel functional role of DPS, as a molecular chaperone and may confer thermotolerance to E. coli.
Collapse
Affiliation(s)
- Joung Hun Park
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea
| | - Eun Seon Lee
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea
| | - Young Jun Jung
- Division of Ecological Safety, National Institute of Ecology, Seocheon, Republic of Korea.
| |
Collapse
|
6
|
Lin J, Yang J, Cheng J, Zhang W, Yang X, Ding W, Zhang H, Wang Y, Shen X. Pseudomonas aeruginosa H3-T6SS Combats H 2O 2 Stress by Diminishing the Amount of Intracellular Unincorporated Iron in a Dps-Dependent Manner and Inhibiting the Synthesis of PQS. Int J Mol Sci 2023; 24:1614. [PMID: 36675127 PMCID: PMC9866239 DOI: 10.3390/ijms24021614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
The type VI secretion system (T6SS), a protein translocation nanomachine, is widely distributed in Gram-negative bacteria and delivers effectors directly into target cells or the extracellular environment to help the bacteria gain a competitive fitness advantage and promote bacterial survival in harmful environments. In this study, we demonstrated that the synthesis of the Pseudomonas quinolone signal (PQS) in Pseudomonas aeruginosa PAO1 was inhibited by the H3-T6SS gene cluster under iron-rich conditions, and that this inhibition was relieved under iron starvation conditions. Conversely, PQS differentially regulated the expression of the H3-T6SS structural genes and the effector protein gene tseF. The expression of tseF was inhibited by PQS, while the expressions of the H3-T6SS structural genes were positively regulated by PQS. Further studies showed that the H3-T6SS was involved in the resistance of P. aeruginosa to oxidative stress caused by hydrogen peroxide (H2O2). Interestingly, H3-T6SS expression was neither induced by H2O2 stress nor regulated by OxyR (a global anti-oxidative transcriptional regulator) but was positively regulated by RpoS (a major transcription regulator of the stress response). In addition, we found that the clpV3 (a structural gene of H3-T6SS) mutation resulted in upregulation of two proteins related to PQS synthesis and many proteins related to oxidative stress resistance, while the expression of some iron storage proteins, especially Dps, were significantly downregulated. Furthermore, the clpV3 mutation led to an increase in the intracellular free Fe2+ content of P. aeruginosa. Further studies showed that both the PQS deficient mutation and overexpression of dps effectively restored the H2O2 sensitive phenotype of the H3-T6SS mutant. Finally, we proposed the following model of H3-T6SS-mediated resistance to H2O2 stress in P. aeruginosa. H3-T6SS not only reduces the intracellular free Fe2+ level by upregulating the expression of ferritin Dps, but also inhibits the synthesis of PQS to mediate the resistance of P. aeruginosa to H2O2 stress. This study highlights the important role of H3-T6SS in the ability of P. aeruginosa to combat H2O2 stress and provides a perspective for understanding the stress response mechanism of bacteria.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Heng Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Rzeznitzeck J, Breves G, Rychlik I, Hoerr FJ, von Altrock A, Rath A, Rautenschlein S. The effect of Campylobacter jejuni and Campylobacter coli colonization on the gut morphology, functional integrity, and microbiota composition of female turkeys. Gut Pathog 2022; 14:33. [PMID: 35922874 PMCID: PMC9347085 DOI: 10.1186/s13099-022-00508-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter (C.) species are the most common bacterial cause of foodborne diarrhea in humans. Despite colonization, most animals do not show clinical signs, making recognition of affected flocks and disruption of the infection chain before slaughter challenging. Turkeys are often cocolonized with C. jejuni and C. coli. To understand the pathogen-host-interaction in the context of two different Campylobacter species, we compared the colonization patterns and quantities in mono- and co-colonized female commercial turkeys. In three repeated experiments we investigated the impact on gut morphology, functional integrity, and microbiota composition as parameters of gut health at seven, 14, and 28 days post-inoculation. RESULTS Despite successful Campylobacter colonization, clinical signs or pathological lesions were not observed. C. coli persistently colonized the distal intestinal tract and at a higher load compared to C. jejuni. Both strains were isolated from livers and spleens, occurring more frequently in C. jejuni- and co-inoculated turkeys. Especially in C. jejuni-positive animals, translocation was accompanied by local heterophil infiltration, villus blunting, and shallower crypts. Increased permeability and lower electrogenic ion transport of the cecal mucosa were also observed. A lower relative abundance of Clostridia UCG-014, Lachnospiraceae, and Lactobacillaceae was noted in all inoculated groups compared to controls. CONCLUSIONS In sum, C. jejuni affects gut health and may interfere with productivity in turkeys. Despite a higher cecal load, the impact of C. coli on investigated parameters was less pronounced. Interestingly, gut morphology and functional integrity were also less affected in co-inoculated animals while the C. jejuni load decreased over time, suggesting C. coli may outcompete C. jejuni. Since a microbiota shift was observed in all inoculated groups, future Campylobacter intervention strategies may involve stabilization of the gut microbiota, making it more resilient to Campylobacter colonization in the first place.
Collapse
Affiliation(s)
- Janina Rzeznitzeck
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Frederic J Hoerr
- Veterinary Diagnostics Pathology, LLC, 638 South Fort Valley Road, VA, 22652, Fort Valley, United States of America
| | - Alexandra von Altrock
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Alexandra Rath
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
8
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
9
|
Mechanisms underlying interactions between two abundant oral commensal bacteria. THE ISME JOURNAL 2022; 16:948-957. [PMID: 34732850 PMCID: PMC8940909 DOI: 10.1038/s41396-021-01141-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
Complex polymicrobial biofilm communities are abundant in nature particularly in the human oral cavity where their composition and fitness can affect health. While the study of these communities during disease is essential and prevalent, little is known about interactions within the healthy plaque community. Here we describe interactions between two of the most abundant species in this healthy microbiome, Haemophilus parainfluenzae and Streptococcus mitis. We discovered that H. parainfluenzae typically exists adjacent to mitis group streptococci in vivo with which it is also positively correlated based on microbiome data. By comparing in vitro coculture data to ex vivo microscopy we revealed that this co-occurrence is density dependent and further influenced by H2O2 production. We discovered that H. parainfluenzae utilizes a more redundant, multifactorial response to H2O2 than related microorganisms and that this system's integrity enhances streptococcal fitness. Our results indicate that mitis group streptococci are likely the in vivo source of NAD for H. parainfluenzae and also evoke patterns of carbon utilization in vitro for H. parainfluenzae similar to those observed in vivo. Our findings describe mechanistic interactions between two of the most abundant and prevalent members of healthy supragingival plaque that contribute to their in vivo survival.
Collapse
|
10
|
|
11
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
12
|
Williams SM, Chatterji D. An Overview of Dps: Dual Acting Nanovehicles in Prokaryotes with DNA Binding and Ferroxidation Properties. Subcell Biochem 2021; 96:177-216. [PMID: 33252729 DOI: 10.1007/978-3-030-58971-4_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA binding proteins under starvation (Dps) are proteins belonging to the ferritin family with the capacity for DNA binding, in addition to iron storage and ferroxidation. Present only in the prokaryotes, these multifaceted proteins have been assigned with a number of roles, from pathogenesis to nucleoid condensation and protection. They have a significant role in protecting the cells from free radical assaults, indirectly by sequestration of iron and by directly binding to the DNA. Due to their symmetry, stability and biomineralization capacity, these proteins have ever increasing potential applications in biotechnology and drug delivery. This chapter tries to bring together all these aspects of Dps in the view of current understanding and older perspectives by studies of our group as well as other experts in the field.
Collapse
Affiliation(s)
- Sunanda Margrett Williams
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, WC1E 7HX, United Kingdom.
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
13
|
A cross-sectional study of the prevalence factors associated with fluoroquinolone resistant Campylobacter jejuni in broiler flocks in Canada. Prev Vet Med 2020; 186:105164. [PMID: 33285388 DOI: 10.1016/j.prevetmed.2020.105164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 11/20/2022]
Abstract
Campylobacter infections in humans are usually self-limiting; however, antibiotic intervention may be necessary in the case of severe infection. Fluoroquinolones are often the drug of choice for treatment of campylobacteriosis; however, resistance to these drugs can develop rapidly, complicating treatment protocols. Increasing resistance to fluoroquinolones in human infections has coincided with approval of use of fluoroquinolones in animals, therefore, isolation of fluoroquinolone resistant (FQr) Campylobacter in broiler flocks is concerning. This cross-sectional study utilized data collected from 2013-2018 by the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) on-farm surveillance program to investigate prevalence factors associated with the isolation of FQr C. jejuni from broiler faecal samples. Mixed effects logistic regression models accounting for clustering of flocks within hatcheries, with and without a fixed effect for the presence of flock level tetracycline resistance were used to assess prevalence factors among 536 C. jejuni isolates from 158 flocks. Both models indicated that the type of bird used (Ross versus Cobb or mixed), the use of virginiamycin as a feed additive, the use of traps to control rodent populations in the barn, and the total number of birds in the barn were significant prevalence factors for increased FQr C. jejuni in a flock. In the model where flock level tetracycline resistance was included as a fixed effect, the odds of FQr C. jejuni increased by 16 (95% CI: 3.74, 68), and the magnitude of the effect of each of the identified prevalence factors was larger. Both models indicated that methods of disinfection of water lines between production cycles is important, with the use of chlorine being protective in the model where tetracycline resistance was included as a fixed effect, and the use of hydrogen peroxide being a risk factor in the model where tetracycline resistance was not included as a fixed effect. The use of hot water to wash the barn between production cycles was also a significant protective factor in the model where tetracycline resistance was not included as a fixed effect. These results indicate that biosecurity and sanitation procedures play a role in the dissemination of FQr C. jejuni in broiler flocks. Future analysis should seek to understand the effect of different disinfectant products on the isolation of FQr C. jejuni. Gaining a better understanding of the management of these critical practices may allow for the reduction of this enteric pathogen in broiler flocks in Canada.
Collapse
|
14
|
de Alcântara NR, de Oliveira FM, Garcia W, Dos Santos OAL, Junqueira-Kipnis AP, Kipnis A. Dps protein is related to resistance of Mycobacterium abscessus subsp. massiliense against stressful conditions. Appl Microbiol Biotechnol 2020; 104:5065-5080. [PMID: 32253472 DOI: 10.1007/s00253-020-10586-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Mycobacterium abscessus subsp. massiliense (Mycma) belongs to the Mycobacterium abscessus complex and is a rapidly growing non-tuberculous mycobacterium. The chronic pulmonary, skin, and soft tissue infections that it causes may be difficult to treat due to its intrinsic resistance to the commonly used antimicrobial drugs, making it a serious world public health problem. Iron is an essential nutrient for the growth of microorganisms; nonetheless, it can be toxic when in excess. Thus, bacteria require an iron homeostasis mechanism to succeed in different environments. DNA-binding proteins from starved cells (Dps) are miniferritins with the property to act as additional iron storage proteins but also can bind to DNA, protecting it against hydroxyl radical. Annotation of the Mycma genome revealed the gene mycma_03135 with 79% sequential identity when compared to MSMEG_3242 gene from M. smegmatis mc2 155, which codifies for a known Dps. Recombinant Dps from M. abscessus (rMaDps) was produced in Escherichia coli, purified in soluble form and shown to form high mass oligomers in solution with ferroxidase activity, DNA binding, and protection against damage. The expression of the mycma_03135 gene was induced during Mycma growth in the presence of hydrogen peroxide (H2O2). Additionally, the expression of rMaDps by E. coli conferred greater resistance to H2O2. Thus, this study is the first to identify and characterize a Dps from M. abscessus. KEY POINTS: Mycobacterium abscessus subsp. massiliense express a miniferritin protein (Dps). Mycma Dps binds to DNA and protects against oxidative stress.
Collapse
Affiliation(s)
| | - Fábio Muniz de Oliveira
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | | | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
15
|
Godard T, Zühlke D, Richter G, Wall M, Rohde M, Riedel K, Poblete-Castro I, Krull R, Biedendieck R. Metabolic Rearrangements Causing Elevated Proline and Polyhydroxybutyrate Accumulation During the Osmotic Adaptation Response of Bacillus megaterium. Front Bioeng Biotechnol 2020; 8:47. [PMID: 32161752 PMCID: PMC7053513 DOI: 10.3389/fbioe.2020.00047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
For many years now, Bacillus megaterium serves as a microbial workhorse for the high-level production of recombinant proteins in the g/L-scale. However, efficient and stable production processes require the knowledge of the molecular adaptation strategies of the host organism to establish optimal environmental conditions. Here, we interrogated the osmotic stress response of B. megaterium using transcriptome, proteome, metabolome, and fluxome analyses. An initial transient adaptation consisted of potassium import and glutamate counterion synthesis. The massive synthesis of the compatible solute proline constituted the second longterm adaptation process. Several stress response enzymes involved in iron scavenging and reactive oxygen species (ROS) fighting proteins showed higher levels under prolonged osmotic stress induced by 1.8 M NaCl. At the same time, the downregulation of the expression of genes of the upper part of glycolysis resulted in the activation of the pentose phosphate pathway (PPP), generating an oversupply of NADPH. The increased production of lactate accompanied by the reduction of acetate secretion partially compensate for the unbalanced (NADH/NAD+) ratio. Besides, the tricarboxylic acid cycle (TCA) mainly supplies the produced NADH, as indicated by the higher mRNA and protein levels of involved enzymes, and further confirmed by 13C flux analyses. As a consequence of the metabolic flux toward acetyl-CoA and the generation of an excess of NADPH, B. megaterium redirected the produced acetyl-CoA toward the polyhydroxybutyrate (PHB) biosynthetic pathway accumulating around 30% of the cell dry weight (CDW) as PHB. This direct relation between osmotic stress and intracellular PHB content has been evidenced for the first time, thus opening new avenues for synthesizing this valuable biopolymer using varying salt concentrations under non-limiting nutrient conditions.
Collapse
Affiliation(s)
- Thibault Godard
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Daniela Zühlke
- Institute of Microbiology, Universität Greifswald, Greifswald, Germany
| | - Georg Richter
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Wall
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katharina Riedel
- Institute of Microbiology, Universität Greifswald, Greifswald, Germany
| | - Ignacio Poblete-Castro
- Biosystems Engineering Laboratory, Center for Bioinformatics and Integrative Biology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
16
|
Pan M, Hidalgo-Cantabrana C, Goh YJ, Sanozky-Dawes R, Barrangou R. Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts. Front Microbiol 2020; 10:3146. [PMID: 32038579 PMCID: PMC6988505 DOI: 10.3389/fmicb.2019.03146] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/29/2019] [Indexed: 12/24/2022] Open
Abstract
Lactobacillus crispatus and Lactobacillus gasseri are two of the main Lactobacillus species found in the healthy vaginal microbiome and have also previously been identified and isolated from the human gastrointestinal (GI) tract. These two ecological niches are fundamentally different, notably with regards to the epithelial cell type, nutrient availability, environmental conditions, pH, and microbiome composition. Given the dramatic differences between these two environments, we characterized strains within the same Lactobacillus species isolated from either the vaginal or intestinal tract to assess whether they are phenotypically and genetically different. We compared the genomes of the Lactobacillus strains selected in this study for genetic features of interest, and performed a series of comparative phenotypic assays including small intestinal juice and acid resistance, carbohydrate fermentation profiles, lactic acid production, and host interaction with intestinal Caco-2 and vaginal VK2 cell lines. We also developed a simulated vaginal fluid (SVF) to study bacterial growth in a proxy vaginal environment and conducted differential transcriptomic analysis between SVF and standard laboratory MRS medium. Overall, our results show that although strain-specific variation is observed, some phenotypic differences seem associated with the isolation source. We encourage future probiotic formulation to include isolation source and take into consideration genetic and phenotypic features for use at various body sites.
Collapse
Affiliation(s)
- Meichen Pan
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Claudio Hidalgo-Cantabrana
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rosemary Sanozky-Dawes
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
17
|
Copper and iron overload protect Escherichia coli from exogenous H2O2 by modulating membrane phospholipid composition. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00046-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
The food-borne pathogen Campylobacter jejuni responds to the bile salt deoxycholate with countermeasures to reactive oxygen species. Sci Rep 2017; 7:15455. [PMID: 29133896 PMCID: PMC5684402 DOI: 10.1038/s41598-017-15379-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022] Open
Abstract
Bile plays an important role in digestion, absorption of fats, and the excretion of waste products, while concurrently providing a critical barrier against colonization by harmful bacteria. Previous studies have demonstrated that gut pathogens react to bile by adapting their protein synthesis. The ability of pathogens to respond to bile is remarkably complex and still incompletely understood. Here we show that Campylobacter jejuni, a leading bacterial cause of human diarrheal illness worldwide, responds to deoxycholate, a component of bile, by altering global gene transcription in a manner consistent with a strategy to mitigate exposure to reactive oxygen stress. More specifically, continuous growth of C. jejuni in deoxycholate was found to: 1) induce the production of reactive oxygen species (ROS); 2) decrease succinate dehydrogenase activity (complex II of the electron transport chain); 3) increase catalase activity that is involved in H2O2 breakdown; and 4) result in DNA strand breaks. Congruently, the addition of 4-hydroxy-TEMPO (TEMPOL), a superoxide dismutase mimic that reacts with superoxide, rescued the growth of C. jejuni cultured in the presence of deoxycholate. We postulate that continuous exposure of a number of enteric pathogens to deoxycholate stimulates a conserved survival response to this stressor.
Collapse
|
19
|
Flint A, Stintzi A, Saraiva LM. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev 2016; 40:938-960. [PMID: 28201757 PMCID: PMC5091033 DOI: 10.1093/femsre/fuw025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Collapse
Affiliation(s)
- Annika Flint
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica, NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
20
|
Rodrigues RC, Haddad N, Chevret D, Cappelier JM, Tresse O. Comparison of Proteomics Profiles of Campylobacter jejuni Strain Bf under Microaerobic and Aerobic Conditions. Front Microbiol 2016; 7:1596. [PMID: 27790195 PMCID: PMC5061731 DOI: 10.3389/fmicb.2016.01596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection.
Collapse
Affiliation(s)
- Ramila C. Rodrigues
- LUNAM Université, Oniris, Université de NantesNantes, France
- INRA, UMR 1014 SECALIMNantes, France
| | - Nabila Haddad
- LUNAM Université, Oniris, Université de NantesNantes, France
- INRA, UMR 1014 SECALIMNantes, France
| | | | - Jean-Michel Cappelier
- LUNAM Université, Oniris, Université de NantesNantes, France
- INRA, UMR 1014 SECALIMNantes, France
| | - Odile Tresse
- LUNAM Université, Oniris, Université de NantesNantes, France
- INRA, UMR 1014 SECALIMNantes, France
| |
Collapse
|
21
|
Role and regulation of ferritin-like proteins in iron homeostasis and oxidative stress survival of Caulobacter crescentus. Biometals 2016; 29:851-62. [PMID: 27484774 DOI: 10.1007/s10534-016-9956-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
Iron is an essential nutrient that is poorly available to living organisms but can be harmful when in excess due to the production of reactive oxygen species. Bacteria and other organisms use iron storage proteins called ferritins to avoid iron toxicity and as a safe iron source in the cytosol. The alpha-proteobacterium Caulobacter crescentus has two putative ferritins, Bfr and Dps, and some other proteins belonging to the ferritin-like superfamily, among them the one encoded by CC_0557. In this work, we have analyzed the role and regulation of these three putative ferritin-like proteins. Using lacZ-transcriptional fusions, we found that bfr expression is positively regulated (2.5-fold induction) by the Fe-responsive regulator Fur in iron sufficiency, as expected for an iron storage protein. Expression of dps was induced 1.5-fold in iron limitation in a Fur-independent manner, while the expression of the product of CC_0557 was unaffected by either iron supply or Fur. With respect to growth phase, while bfr expression was constant during growth, expression of dps (1.4-fold) and CC_0557 (around seven times) increased in the transition from exponential to stationary phase. Deletion mutant strains for each gene and a double dps/bfr mutant were obtained and tested for oxidative stress resistance. The dps mutant was very sensitive to H2O2, and this phenotype was not relieved by the addition of the iron chelator 2',2-dipyridyl in the conditions tested. While bfr and CC_0557 showed no phenotype as to H2O2 resistance, the double dps/bfr mutant had a similar phenotype to the dps mutation alone. These findings indicate that in C. crescentus Bfr contributes to iron homeostasis and Dps has a role in protection against oxidative stress. The role of the protein CC_0557 containing a ferritin-like fold remains unclear.
Collapse
|
22
|
Bronnec V, Turoňová H, Bouju A, Cruveiller S, Rodrigues R, Demnerova K, Tresse O, Haddad N, Zagorec M. Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions. Front Microbiol 2016; 7:1002. [PMID: 27446042 PMCID: PMC4927563 DOI: 10.3389/fmicb.2016.01002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under aerobic atmosphere may result from the combination of insertions and mutations. In addition, the comparison of mRNA transcript levels of several genes targeted through genome analysis suggests the modification of regulatory processes in this strain.
Collapse
Affiliation(s)
| | - Hana Turoňová
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and MicrobiologyPrague, Czech Republic
| | | | - Stéphane Cruveiller
- CNRS-UMR 8030 and Commissariat à l’Energie Atomique et aux Energies Alternatives CEA/DRF/IG/Genoscope LABGeMEvry, France
| | | | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and MicrobiologyPrague, Czech Republic
| | | | | | | |
Collapse
|
23
|
He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnology 2016; 14:54. [PMID: 27349516 PMCID: PMC4924328 DOI: 10.1186/s12951-016-0202-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
Abstract
Background Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have considerable potential as antimicrobial agents in food safety applications due to their structure, surface properties, and stability. The aim of this work was to investigate the antibacterial effects and mechanism of action of MgO nanoparticles against several important foodborne pathogens. Results Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. The minimal inhibitory concentrations of MgO nanoparticles to 104 colony-forming unit/ml (CFU/ml) of Campylobacter jejuni, Escherichia coli O157:H7, and Salmonella Enteritidis were determined to be 0.5, 1 and 1 mg/ml, respectively. To completely inactivate 108−9 CFU/ml bacterial cells in 4 h, a minimal concentration of 2 mg/ml MgO nanoparticles was required for C. jejuni whereas E. coli O157:H7 and Salmonella Enteritidis required at least 8 mg/ml nanoparticles. Scanning electron microscopy examination revealed clear morphological changes and membrane structural damage in the cells treated with MgO nanoparticles. A quantitative real-time PCR combined with ethidium monoazide pretreatment confirmed cell membrane permeability was increased after exposure to the nanoparticles. In a cell free assay, a low level (1.1 μM) of H2O2 was detected in the nanoparticle suspensions. Consistently, MgO nanoparticles greatly induced the gene expression of KatA, a sole catalase in C. jejuni for breaking down H2O2 to H2O and O2. Conclusions MgO nanoparticles have strong antibacterial activity against three important foodborne pathogens. The interaction of nanoparticles with bacterial cells causes cell membrane leakage, induces oxidative stress, and ultimately leads to cell death.
Collapse
Affiliation(s)
- Yiping He
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | | | - Sue Reed
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Andrew Gehring
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Terence P Strobaugh
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Peter Irwin
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| |
Collapse
|
24
|
Sanchuki HBS, Valdameri G, Moure VR, Rodriguez JA, Pedrosa FO, Souza EM, Korolik V, Ribeiro RR, Huergo LF. Conserved histidine residues at the ferroxidase centre of the Campylobacter jejuni Dps protein are not strictly required for metal binding and oxidation. MICROBIOLOGY-SGM 2015; 162:156-163. [PMID: 26555736 DOI: 10.1099/mic.0.000210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Iron is an essential micronutrient for living organisms as it is involved in a broad variety of important biological processes. However, free iron inside the cell could be potentially toxic, generating hydroxyl radicals through the Fenton reaction. Dps (DNA-binding protein from starved cells) belongs to a subfamily of ferritins and can store iron atoms inside the dodecamer. The presence of a ferroxidase centre, composed of highly conserved residues, is a signature of this protein family. In this study, we analysed the role of two conserved histidine residues (H25 and H37) located at the ferroxidase centre of the Campylobacter jejuni Dps protein by replacing them with glycine residues. The C. jejuni H25G/H37G substituted variant showed reduced iron binding and ferroxidase activities in comparison with wt Dps, while DNA-binding activity remained unaffected. We also found that both CjDps wt and CjDps H25G/H37G were able to bind manganese atoms. These results indicate that the H25 and H37 residues at the ferroxidase centre of C. jejuni Dps are not strictly required for metal binding and oxidation.
Collapse
Affiliation(s)
- Heloisa B S Sanchuki
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Brazil
| | - Glaucio Valdameri
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Brazil
| | - Vivian R Moure
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Brazil
| | - Jorge A Rodriguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Guadalajara, Mexico
| | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Brazil
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | | | - Luciano F Huergo
- Setor Litoral, UFPR, Matinhos, PR, Brazil.,Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Brazil
| |
Collapse
|
25
|
Gil C, Dorca-Arévalo J, Blasi J. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide. PLoS One 2015; 10:e0140321. [PMID: 26452234 PMCID: PMC4599917 DOI: 10.1371/journal.pone.0140321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/24/2015] [Indexed: 12/23/2022] Open
Abstract
Epsilon toxin (Etx) is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx) that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction) and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3)-phosphate and phosphatidylinositol (5)-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
- * E-mail: (JB); (CG)
| | - Jonatan Dorca-Arévalo
- Laboratory of Cellular and Molecular Neuroscience, Department of Pathology and Experimental Therapeutics, School of Medicine, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
- IDIBELL-Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Blasi
- Laboratory of Cellular and Molecular Neuroscience, Department of Pathology and Experimental Therapeutics, School of Medicine, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
- IDIBELL-Bellvitge Biomedical Research Institute, L’Hospitalet de Llobregat, Barcelona, Spain
- * E-mail: (JB); (CG)
| |
Collapse
|
26
|
Santos SP, Mitchell EP, Franquelim HG, Castanho MARB, Abreu IA, Romão CV. Dps fromDeinococcus radiodurans: oligomeric forms of Dps1 with distinct cellular functions and Dps2 involved in metal storage. FEBS J 2015; 282:4307-27. [DOI: 10.1111/febs.13420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/30/2015] [Accepted: 08/14/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Sandra P. Santos
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| | | | - Henri G. Franquelim
- Instituto de Medicina Molecular; Faculdade de Medicina da Universidade de Lisboa; Portugal
| | | | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Biologia Experimental e Tecnológica; Oeiras Portugal
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
27
|
Varsaki A, Murphy C, Barczynska A, Jordan K, Carroll C. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays. Microb Biotechnol 2015. [PMID: 26221965 PMCID: PMC4621450 DOI: 10.1111/1751-7915.12302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains.
Collapse
Affiliation(s)
- Athanasia Varsaki
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Caroline Murphy
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alicja Barczynska
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Cyril Carroll
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
28
|
Kim JC, Oh E, Kim J, Jeon B. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front Microbiol 2015; 6:751. [PMID: 26284041 PMCID: PMC4518328 DOI: 10.3389/fmicb.2015.00751] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis. Due to the increasing rates of human campylobacteriosis, C. jejuni is considered as a serious public health concern worldwide. C. jejuni is a microaerophilic, fastidious bacterium. C. jejuni must overcome a wide range of stress conditions during foodborne transmission to humans, such as food preservation and processing conditions, and even in infection of the gastrointestinal tracts of humans. Particularly, this microaerophilic foodborne pathogen must survive in the atmospheric conditions prior to the initiation of infection. C. jejuni possesses unique regulatory mechanisms for oxidative stress resistance. Lacking OxyR and SoxRS that are highly conserved in other Gram-negative foodborne pathogens, C. jejuni modulates the expression of genes involved in oxidative stress resistance mainly via the peroxide resistance regulator and Campylobacter oxidative stress regulator. Based on recent findings of ours and others, in this review, we described how C. jejuni regulates the expression of oxidative stress defense.
Collapse
Affiliation(s)
| | | | | | - Byeonghwa Jeon
- School of Public Health, University of Alberta, EdmontonAB, Canada
| |
Collapse
|
29
|
Abstract
Background Ureaplasma urealyticum is a major pathogen associated with many diseases. The ability of U. urealyticum to protect itself from oxidative stress is likely to be important for its pathogenesis and survival, but its oxidative stress tolerance mechanisms remain unclear. This study investigates the antioxidant activity of a ferritin-like protein from U. urealyticum. Results The uuferritin gene, which was up regulated when U. urealyticum was subjected to oxidative stress, was cloned from U. urealyticum and the corresponding recombinant protein uuferritin was purified. Uuferritin protein reduced the levels of hydroxyl radicals generated by the Fenton reaction as a consequence of its ferroxidase activity, and thus the protein protected DNA from oxidative damage. Furthermore, oxidation-sensitive Escherichia coli mutants transformed with pTrc99a-uuferritin showed significantly improved tolerance to oxidative stress compared to E. coli mutants transformed with an empty pTrc99a vector. Conclusions The present work shows that uuferritin protein confers resistance to oxidative stress in vitro and in E. coli. The protective role of uuferritin provides a foundation for understanding the mechanisms of oxidative stress tolerance in U. urealyticum.
Collapse
|
30
|
Allen MS, Hurst GB, Lu TYS, Perry LM, Pan C, Lankford PK, Pelletier DA. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response. J Proteome Res 2015; 14:2158-68. [PMID: 25853567 DOI: 10.1021/pr5012558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. To begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σ(RPA4225) (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Taken together, these data suggest that ECF σ(RPA4225) and the three additional genes make up a sigma factor mimicry system in R. palustris.
Collapse
Affiliation(s)
- Michael S Allen
- §Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States.,∥Center for Biosafety and Biosecurity Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | | | | | - Leslie M Perry
- §Department of Biological Sciences, University of North Texas, Denton, Texas 76203-5017, United States
| | | | | | | |
Collapse
|
31
|
Lechowicz J, Krawczyk-Balska A. An update on the transport and metabolism of iron in Listeria monocytogenes: the role of proteins involved in pathogenicity. Biometals 2015; 28:587-603. [PMID: 25820385 PMCID: PMC4481299 DOI: 10.1007/s10534-015-9849-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is a Gram-positive bacterium that causes a rare but severe human disease with high mortality rate. The microorganism is widespread in the natural environment where it shows a saprophytic lifestyle. In the human body it infects many different cell types, where it lives intracellularly, however it may also temporarily live extracellularly. The ability to survive and grow in such diverse niches suggests that this bacterium has a wide range of mechanisms for both the acquisition of various sources of iron and effective management of this microelement. In this review, data about the mechanisms of transport, metabolism and regulation of iron, including recent findings in these areas, are summarized with focus on the importance of these mechanisms for the virulence of L. monocytogenes. These data indicate the key role of haem transport and maintenance of intracellular iron homeostasis for the pathogenesis of L. monocytogenes. Furthermore, some of the proteins involved in iron homeostasis like Fri and FrvA seem to deserve special attention due to their potential use in the development of new therapeutic antilisterial strategies.
Collapse
Affiliation(s)
- Justyna Lechowicz
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | | |
Collapse
|
32
|
Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol 2014; 48:99-108. [PMID: 25790997 DOI: 10.1016/j.fm.2014.11.017] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
Abstract
Despite over 30 years of research, campylobacteriosis is the most prevalent foodborne bacterial infection in many countries including in the European Union and the United States of America. However, relatively little is known about the virulence factors in Campylobacter or how an apparently fragile organism can survive in the food chain, often with enhanced pathogenicity. This review collates information on the virulence and survival determinants including motility, chemotaxis, adhesion, invasion, multidrug resistance, bile resistance and stress response factors. It discusses their function in transition through the food processing environment and human infection. In doing so it provides a fundamental understanding of Campylobacter, critical for improved diagnosis, surveillance and control.
Collapse
Affiliation(s)
- Declan J Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
33
|
Effect of nonheme iron-containing ferritin Dpr in the stress response and virulence of pneumococci. Infect Immun 2014; 82:3939-47. [PMID: 25001605 DOI: 10.1128/iai.01829-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) produces hydrogen peroxide as a by-product of metabolism and provides a competitive advantage against cocolonizing bacteria. As pneumococci do not produce catalase or an inducible regulator of hydrogen peroxide, the mechanism of resistance to hydrogen peroxide is unclear. A gene responsible for resistance to hydrogen peroxide and iron in other streptococci is that encoding nonheme iron-containing ferritin, dpr, but previous attempts to study this gene in pneumococcus by generating a dpr mutant were unsuccessful. In the current study, we found that dpr is in an operon with the downstream genes dhfr and clpX. We generated a dpr deletion mutant which displayed normal early-log-phase and mid-log-phase growth in bacteriologic medium but survived less well at stationary phase; the addition of catalase partially rescued the growth defect. We showed that the dpr mutant is significantly more sensitive to pH, heat, iron concentration, and oxidative stress due to hydrogen peroxide. Using a mouse model of colonization, we also showed that the dpr mutant displays a reduced ability to colonize and is more rapidly cleared from the nasopharynx. Our results thus suggest that Dpr is important for pneumococcal resistance to stress and for nasopharyngeal colonization.
Collapse
|
34
|
Watson E, Sherry A, Inglis NF, Lainson A, Jyothi D, Yaga R, Manson E, Imrie L, Everest P, Smith DGE. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity. EUPA OPEN PROTEOMICS 2014; 4:184-194. [PMID: 27525220 PMCID: PMC4975774 DOI: 10.1016/j.euprot.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 12/24/2022]
Abstract
Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Aileen Sherry
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil F Inglis
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Alex Lainson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | | | - Raja Yaga
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Erin Manson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Lisa Imrie
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Paul Everest
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David G E Smith
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
35
|
Yan X, Budin-Verneuil A, Auffray Y, Pichereau V. Proteome phenotyping of ΔrelA mutants in Enterococcus faecalis V583. Can J Microbiol 2014; 60:525-31. [PMID: 25050451 DOI: 10.1139/cjm-2014-0254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. A 2-dimensional electrophoresis proteomic analysis of 2 relA mutants, i.e., ΔrelA carrying a complete deletion of the relA gene, and ΔrelAsp that is deleted from only its 3' extremity, showed that 31 proteins were deregulated in 1 or both of these mutants. Mass spectrometry identification of these proteins showed that 10 are related to translation, including 5 ribosomal proteins, 3 proteins involved in translation elongation, and 2 proteins in tRNA synthesis; 14 proteins are involved in diverse metabolisms and biosynthesis (8 in sugar and energy metabolisms, 2 in fatty acid biosynthesis, 2 in amino acid biosynthesis, and 2 in nucleotide metabolism). Five proteins were relevant to the adaptation to different environmental stresses, i.e., SodA and a Dps family protein, 2 cold-shock domain proteins, and Ef1744, which is a general stress protein that plays an important role in the response to ethanol stress. The potential role of these proteins in the development of stress phenotypes associated with these mutations is discussed.
Collapse
Affiliation(s)
- Xue Yan
- a Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence, Université de Caen Basse-Normandie, 14032 Caen, France
| | | | | | | |
Collapse
|
36
|
Phenotypic screening of a targeted mutant library reveals Campylobacter jejuni defenses against oxidative stress. Infect Immun 2014; 82:2266-75. [PMID: 24643543 DOI: 10.1128/iai.01528-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During host colonization, Campylobacter jejuni is exposed to harmful reactive oxygen species (ROS) produced from the host immune system and from the gut microbiota. Consequently, identification and characterization of oxidative stress defenses are important for understanding how C. jejuni survives ROS stress during colonization of the gastrointestinal tract. Previous transcriptomic studies have defined the genes belonging to oxidant stimulons within C. jejuni. We have constructed isogenic deletion mutants of these identified genes to assess their role in oxidative stress survival. Phenotypic screening of 109 isogenic deletion mutants identified 22 genes which were either hypersensitive or hyposensitive to oxidants, demonstrating important roles for these genes in oxidant defense. The significance of these genes in host colonization was also assessed in an in vivo chick model of C. jejuni colonization. Overall, our findings identify an indirect role for motility in resistance to oxidative stress. We found that a nonmotile flagellum mutant, the ΔmotAB mutant, displayed increased sensitivity to oxidants. Restoration of sensitivity to superoxide in the ΔmotAB mutant was achieved by fumarate supplementation or tandem deletion of motAB with ccoQ, suggesting that disruption of the proton gradient across the inner membrane resulted in increased superoxide production in this strain. Furthermore, we have identified genes involved in cation transport and binding, detoxification, and energy metabolism that are also important factors in oxidant defense. This report describes the first isogenic deletion mutant library construction for screening of relevant oxidative stress defense genes within C. jejuni, thus providing a comprehensive analysis of the total set of oxidative stress defenses.
Collapse
|
37
|
Kassem II, Khatri M, Sanad YM, Wolboldt M, Saif YM, Olson JW, Rajashekara G. The impairment of methylmenaquinol:fumarate reductase affects hydrogen peroxide susceptibility and accumulation in Campylobacter jejuni. Microbiologyopen 2014; 3:168-81. [PMID: 24515965 PMCID: PMC3996566 DOI: 10.1002/mbo3.158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/07/2013] [Accepted: 12/26/2013] [Indexed: 12/18/2022] Open
Abstract
The methylmenaquinol:fumarate reductase (Mfr) of Campylobacter jejuni is a periplasmic respiratory (redox) protein that contributes to the metabolism of fumarate and displays homology to succinate dehydrogenase (Sdh). Since chemically oxidized redox-enzymes, including fumarate reductase and Sdh, contribute to the generation of oxidative stress in Escherichia coli, we assessed the role of Mfr in C. jejuni after exposure to hydrogen peroxide (H2 O2 ). Our results show that a Mfr mutant (∆mfrA) strain was less susceptible to H2 O2 as compared to the wildtype (WT). Furthermore, the H2 O2 concentration in the ∆mfrA cultures was significantly higher than that of WT after exposure to the oxidant. In the presence of H2 O2 , catalase (KatA) activity and katA expression were significantly lower in the ∆mfrA strain as compared to the WT. Exposure to H2 O2 resulted in a significant decrease in total intracellular iron in the ∆mfrA strain as compared to WT, while the addition of iron to the growth medium mitigated H2 O2 susceptibility and accumulation in the mutant. The ∆mfrA strain was significantly more persistent in RAW macrophages as compared to the WT. Scanning electron microscopy showed that infection with the ∆mfrA strain caused prolonged changes to the macrophages' morphology, mainly resulting in spherical-shaped cells replete with budding structures and craters. Collectively, our results suggest a role for Mfr in maintaining iron homeostasis in H2 O2 stressed C. jejuni, probably via affecting the concentrations of intracellular iron.
Collapse
Affiliation(s)
- Issmat I Kassem
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, Ohio
| | | | | | | | | | | | | |
Collapse
|
38
|
Shu JC, Soo PC, Chen JC, Hsu SH, Chen LC, Chen CY, Liang SH, Buu LM, Chen CC. Differential regulation and activity against oxidative stress of Dps proteins in Bacillus cereus. Int J Med Microbiol 2013; 303:662-73. [DOI: 10.1016/j.ijmm.2013.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
39
|
Krawczyk-Balska A, Lipiak M. Critical role of a ferritin-like protein in the control of Listeria monocytogenes cell envelope structure and stability under β-lactam pressure. PLoS One 2013; 8:e77808. [PMID: 24204978 PMCID: PMC3812014 DOI: 10.1371/journal.pone.0077808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/05/2013] [Indexed: 02/08/2023] Open
Abstract
The human pathogen Listeria monocytogenes is susceptible to the β-lactam antibiotics penicillin G and ampicillin, and these are the drugs of choice for the treatment of listerial infections. However, these antibiotics exert only a bacteriostatic effect on this bacterium and consequently, L. monocytogenes is regarded as β-lactam tolerant. It is widely accepted that the phenomenon of bacterial tolerance to β-lactams is due to the lack of adequate autolysin activity, but the mechanisms of L. monocytogenes tolerance to this class of antibiotics are poorly characterized. A ferritin-like protein (Fri) was recently identified as a mediator of β-lactam tolerance in L. monocytogenes, but its function in this process remains unknown. The present study was undertaken to improve our understanding of L. monocytogenes tolerance to β-lactams and to characterize the role of Fri in this phenomenon. A comparative physiological analysis of wild-type L. monocytogenes and a fri deletion mutant provided evidence of a multilevel mechanism controlling autolysin activity in cells grown under β-lactam pressure, which leads to a reduction in the level and/or activity of cell wall-associated autolysins. This is accompanied by increases in the amount of teichoic acids, cell wall thickness and cell envelope integrity of L. monocytogenes grown in the presence of penicillin G, and provides the basis for the innate β-lactam tolerance of this bacterium. Furthermore, this study revealed the inability of the L. monocytogenes Δ fri mutant to deplete autolysins from the cell wall, to adjust the content of teichoic acids and to maintain their D-alanylation at the correct level when treated with penicillin G, thus providing further evidence that Fri is involved in the control of L. monocytogenes cell envelope structure and stability under β-lactam pressure.
Collapse
Affiliation(s)
- Agata Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Lipiak
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
40
|
Facey PD, Hitchings MD, Williams JS, Skibinski DOF, Dyson PJ, Del Sol R. The evolution of an osmotically inducible dps in the genus Streptomyces. PLoS One 2013; 8:e60772. [PMID: 23560105 PMCID: PMC3613396 DOI: 10.1371/journal.pone.0060772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/02/2013] [Indexed: 11/25/2022] Open
Abstract
Dps proteins are found almost ubiquitously in bacterial genomes and there is now an appreciation of their multifaceted roles in various stress responses. Previous studies have shown that this family of proteins assemble into dodecamers and their quaternary structure is entirely critical to their function. Moreover, the numbers of dps genes per bacterial genome is variable; even amongst closely related species - however, for many genera this enigma is yet to be satisfactorily explained. We reconstruct the most probable evolutionary history of Dps in Streptomyces genomes. Typically, these bacteria encode for more than one Dps protein. We offer the explanation that variation in the number of dps per genome among closely related Streptomyces can be explained by gene duplication or lateral acquisition, and the former preceded a subsequent shift in expression patterns for one of the resultant paralogs. We show that the genome of S. coelicolor encodes for three Dps proteins including a tailless Dps. Our in vivo observations show that the tailless protein, unlike the other two Dps in S. coelicolor, does not readily oligomerise. Phylogenetic and bioinformatic analyses combined with expression studies indicate that in several Streptomyces species at least one Dps is significantly over-expressed during osmotic shock, but the identity of the ortholog varies. In silico analysis of dps promoter regions coupled with gene expression studies of duplicated dps genes shows that paralogous gene pairs are expressed differentially and this correlates with the presence of a sigB promoter. Lastly, we identify a rare novel clade of Dps and show that a representative of these proteins in S. coelicolor possesses a dodecameric quaternary structure of high stability.
Collapse
Affiliation(s)
- Paul D Facey
- Institute of Life Science, College of Medicine, Swansea University, Swansea, United Kingdom.
| | | | | | | | | | | |
Collapse
|
41
|
Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide. J Bacteriol 2013; 195:1970-8. [PMID: 23435977 DOI: 10.1128/jb.00059-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Iron is an essential cofactor for many enzymes; however, this metal can lead to the formation of reactive oxygen species. Ferritin proteins bind and oxidize Fe(2+) to Fe(3+), storing this metal in a nonreactive form. In some organisms, a particular subfamily of ferritins, namely, Dps proteins, have the ability to bind DNA. Here we show that the Campylobacter jejuni Dps has DNA binding activity that is uniquely activated by Fe(2+) or H2O2 at below neutral pH. The Dps-DNA binding activity correlated with the ability of Dps to self-aggregate. The Dps-DNA interaction was inhibited by NaCl and Mg(2+), suggesting the formation of ionic interactions between Dps and DNA. Alkylation of cysteines affected DNA binding in the presence of H2O2 but not in the presence of Fe(2+). Replacement of all cysteines in C. jejuni Dps with serines did not affect DNA binding, excluding the participation of cysteine in H2O2 sensing. Dps was able to protect DNA in vitro from enzymatic cleavage and damage by hydroxyl radicals. A C. jejuni dps mutant was less resistant to H2O2 in vivo. The concerted activation of Dps-DNA binding in response to low pH, H2O2, and Fe(2+) may protect C. jejuni DNA during host colonization.
Collapse
|
42
|
Gao JL, Lu Y, Browne G, Yap BCM, Trewhella J, Hunter N, Nguyen KA. The role of heme binding by DNA-protective protein from starved cells (Dps) in the Tolerance of Porphyromonas gingivalis to heme toxicity. J Biol Chem 2012; 287:42243-58. [PMID: 23086936 DOI: 10.1074/jbc.m112.392787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The widely expressed DNA-protective protein from starved-cells (Dps) family proteins are considered major contributors to prokaryotic resistance to stress. We show here that Porphyromonas gingivalis Dps (PgDps), previously described as an iron-storage and DNA-binding protein, also mediates heme sequestration. We determined that heme binds strongly to PgDps with an apparent K(d) of 3.7 × 10(-8) m and is coordinated by a single surface-located cysteine at the fifth axial ligand position. Heme and iron sequestered in separate sites by PgDps provide protection of DNA from H(2)O(2)-mediated free radical damage and were found to be important for growth of P. gingivalis under excess heme as the only iron source. Conservation of the heme-coordinating cysteine among Dps isoforms from the Bacteroidales order suggests that this function may be a common feature within these anaerobic bacteria.
Collapse
Affiliation(s)
- Jin-Long Gao
- University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance. BMC Microbiol 2012; 12:174. [PMID: 22889088 PMCID: PMC3528441 DOI: 10.1186/1471-2180-12-174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/20/2012] [Indexed: 11/23/2022] Open
Abstract
Background During the transmission route from poultry to the human host, the major foodborne pathogen C. jejuni may experience many types of stresses, including low pH caused by different acids. However, not all strains are equally sensitive to the stresses. The aim of this study was to investigate the response to acid stress of three sequenced C. jejuni strains with different acid tolerances using HCl and acetic acid. Results Two-dimensional gel electrophoresis was used for proteomic analysis and proteins were radioactively labelled with methionine to identify proteins only related to acid exposure. To allow added radioactive methionine to be incorporated into induced proteins, a modified chemically defined broth was developed with the minimal amount of methionine necessary for satisfactory growth of all strains. Protein spots were analyzed using image software and identification was done with MALDI-TOF-TOF. The most acid-sensitive isolate was C. jejuni 327, followed by NCTC 11168 and isolate 305 as the most tolerant. Overall, induction of five proteins was observed within the pI range investigated: 19 kDa periplasmic protein (p19), thioredoxin-disulfide (TrxB), a hypothetical protein Cj0706 (Cj0706), molybdenum cofactor biosynthesis protein (MogA), and bacterioferritin (Dps). Strain and acid type dependent differences in the level of response were observed. For strain NCTC 11168, the induced proteins and the regulator fur were analysed at the transcriptomic level using qRT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. Conclusions A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced during acid stress of C. jejuni. Both strain and acid type affected sensitivity and response.
Collapse
|
44
|
The Campylobacter jejuni Dps homologue is important for in vitro biofilm formation and cecal colonization of poultry and may serve as a protective antigen for vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1426-31. [PMID: 22787197 DOI: 10.1128/cvi.00151-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, we investigated the Campylobacter jejuni dps (DNA binding protein from starved cells) gene for a role in biofilm formation and cecal colonization in poultry. In vitro biofilm formation assays were conducted with stationary-phase cells in cell culture plates under microaerophilic conditions. These studies demonstrated a significant (>50%) reduction in biofilm formation by the C. jejuni dps mutant compared to that by the wild-type strain. Studies in poultry also demonstrated the importance of the dps gene in host colonization by C. jejuni. Real-time PCR analysis of mRNA extracted from the cecal contents of poultry infected with wild-type C. jejuni indicated that the dps gene is upregulated 20-fold during poultry colonization. Cecal colonization was greater than 5 log CFU lower in chicks infected with the dps mutant than chicks infected with the wild-type C. jejuni strain. Moreover, the dps mutant failed to colonize 75% of the chicks following challenge with 10(5) CFU. Preliminary studies were conducted in chicks by parenteral vaccination with a recombinant Dps protein or through oral vaccination with a recombinant attenuated Salmonella enterica strain synthesizing the C. jejuni Dps protein. No reduction in C. jejuni was noted in chicks vaccinated with the parenteral recombinant protein, whereas, a 2.5-log-unit reduction of C. jejuni was achieved in chicks vaccinated with the attenuated Salmonella vector after homologous challenge. Taken together, this work demonstrated the importance of Dps for biofilm formation and poultry colonization, and the study also provides a basis for continued work using the Dps protein as a vaccine antigen when delivered through a Salmonella vaccine vector.
Collapse
|
45
|
Harrison A, Bakaletz LO, Munson RS. Haemophilus influenzae and oxidative stress. Front Cell Infect Microbiol 2012; 2:40. [PMID: 22919631 PMCID: PMC3417577 DOI: 10.3389/fcimb.2012.00040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 12/16/2022] Open
Abstract
Haemophilus influenzae is a commensal of the human upper respiratory tract. H. influenzae can, however, move out of its commensal niche and cause multiple respiratory tract diseases. Such diseases include otitis media in young children, as well as exacerbations of chronic obstructive pulmonary disease (COPD), sinusitis, conjunctivitis, and bronchitis. During the course of colonization and infection, H. influenzae must withstand oxidative stress generated by multiple reactive oxygen species produced endogenously, by other co-pathogens and by host cells. H. influenzae has, therefore, evolved multiple mechanisms that protect the cell against oxygen-generated stresses. In this review, we will describe these systems relative to the well-described systems in Escherichia coli. Moreover, we will compare how H. influenzae combats the effect of oxidative stress as a necessary phenotype for its roles as both a successful commensal and pathogen.
Collapse
Affiliation(s)
- Alistair Harrison
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus OH, USA. alistair.harrison@ nationwidechildrens.org
| | | | | |
Collapse
|
46
|
Ping L, Platzer M, Wen G, Delaroque N. Coevolution of aah: a dps-like gene with the host bacterium revealed by comparative genomic analysis. ScientificWorldJournal 2012; 2012:504905. [PMID: 22454608 PMCID: PMC3289904 DOI: 10.1100/2012/504905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/14/2011] [Indexed: 11/17/2022] Open
Abstract
A protein named AAH was isolated from the bacterium Microbacterium arborescens SE14, a gut commensal of the lepidopteran larvae. It showed not only a high sequence similarity to Dps-like proteins (DNA-binding proteins from starved cell) but also reversible hydrolase activity. A comparative genomic analysis was performed to gain more insights into its evolution. The GC profile of the aah gene indicated that it was evolved from a low GC ancestor. Its stop codon usage was also different from the general pattern of Actinobacterial genomes. The phylogeny of dps-like proteins showed strong correlation with the phylogeny of host bacteria. A conserved genomic synteny was identified in some taxonomically related Actinobacteria, suggesting that the ancestor genes had incorporated into the genome before the divergence of Micrococcineae from other families. The aah gene had evolved new function but still retained the typical dodecameric structure.
Collapse
Affiliation(s)
- Liyan Ping
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | | | | | | |
Collapse
|
47
|
Characterization of outer membrane vesicles from Brucella melitensis and protection induced in mice. Clin Dev Immunol 2011; 2012:352493. [PMID: 22242036 PMCID: PMC3254011 DOI: 10.1155/2012/352493] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/29/2011] [Accepted: 09/12/2011] [Indexed: 01/18/2023]
Abstract
The outer membrane vesicles (OMVs) from smooth B. melitensis 16 M and a derived rough mutant, VTRM1 strain, were purified and characterized with respect to protein content and induction of immune responses in mice. Proteomic analysis showed 29 proteins present in OMVs from B. melitensis 16 M; some of them are well-known Brucella immunogens such as SOD, GroES, Omp31, Omp25, Omp19, bp26, and Omp16. OMVs from a rough VTRM1 induced significantly higher expression of IL-12, TNFα, and IFNγ genes in bone marrow dendritic cells than OMVs from smooth strain 16 M. Relative to saline control group, mice immunized intramuscularly with rough and smooth OMVs were protected from challenge with virulent strain B. melitensis 16 M just as well as the group immunized with live strain B. melitensis Rev1 (P < 0.005). Additionally, the levels of serum IgG2a increased in mice vaccinated with OMVs from rough strain VTRM1 consistent with the induction of cell-mediated immunity.
Collapse
|
48
|
The iron-binding protein Dps2 confers peroxide stress resistance on Bacillus anthracis. J Bacteriol 2011; 194:925-31. [PMID: 22155779 DOI: 10.1128/jb.06005-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential nutrient that is implicated in most cellular oxidation reactions. However, iron is a highly reactive element that, if not appropriately chaperoned, can react with endogenously and exogenously generated oxidants such as hydrogen peroxide to generate highly toxic hydroxyl radicals. Dps proteins (DNA-binding proteins from starved cells) form a distinct class (the miniferritins) of iron-binding proteins within the ferritin superfamily. Bacillus anthracis encodes two Dps-like proteins, Dps1 and Dps2, the latter being one of the main iron-containing proteins in the cytoplasm. In this study, the function of Dps2 was characterized in vivo. A B. anthracis Δdps2 mutant was constructed by double-crossover mutagenesis. The growth of the Δdps2 mutant was unaffected by excess iron or iron-limiting conditions, indicating that the primary role of Dps2 is not that of iron sequestration and storage. However, the Δdps2 mutant was highly sensitive to H(2)O(2), and pretreatment of the cells with the iron chelator deferoxamine mesylate (DFM) significantly reduced its sensitivity to H(2)O(2) stress. In addition, the transcription of dps2 was upregulated by H(2)O(2) treatment and derepressed in a perR mutant, indicating that dps2 is a member of the regulon controlled by the PerR regulator. This indicates that the main role of Dps2 is to protect cells from peroxide stress by inhibiting the iron-catalyzed production of OH.
Collapse
|
49
|
Mu W, Guan L, Yan Y, Liu Q, Zhang Y. A novel in vivo inducible expression system in Edwardsiella tarda for potential application in bacterial polyvalence vaccine. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1097-1105. [PMID: 21964456 DOI: 10.1016/j.fsi.2011.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/20/2011] [Accepted: 09/19/2011] [Indexed: 05/31/2023]
Abstract
Recombinant bacterial vector vaccine is an attractive vaccination strategy to induce the immune response to a carried protective antigen, and the main concern of bacterial vector vaccine is to establish a stable antigen expression system in vector bacteria. Edwardsiella tarda is an important facultative intracellular pathogen of both animals and humans, and its attenuated derivates are excellent bacterial vectors for use in recombinant vaccine design. In this study, we design an in vivo inducible expression system in E. tarda and establish potential recombinant E. tarda vector vaccines. With wild type strain E. tarda EIB202 as a vector, 53 different bacteria-originated promoters were examined for iron-responsive transcription in vitro, and the promoters P(dps) and P(yncE) showed high transcription activity. The transcription profiles in vivo of two promoters were further assayed, and P(dps) revealed an enhanced in vivo inducible transcription in macrophage, larvae and adult zebra fish. The gapA34 gene, encoding the protective antigen GAPDH from the fish pathogen Aeromonas hydrophila LSA34, was introduced into the P(dps)-based protein expression system, and transformed into attenuated E. tarda strains. The resultant recombinant vector vaccine WED/pUTDgap was evaluated in turbot (Scophtalmus maximus). Over 60% of the vaccinated fish survived under the challenge with A. hydrophila LSA34 and E. tarda EIB202, suggesting that the P(dps)-based antigen delivery system had great potential in bacterial vector vaccine application.
Collapse
Affiliation(s)
- Wei Mu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|
50
|
Zheng WJ, Hu YH, Sun L. The two Dps of Edwardsiella tarda are involved in resistance against oxidative stress and host infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:985-992. [PMID: 21907291 DOI: 10.1016/j.fsi.2011.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/03/2011] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
DNA-binding protein from starved cells (Dps) is a member of ferritin-like proteins that exhibit properties of nonspecific DNA binding and iron oxidation and storage. Although studies of Dps from many bacterial species have been reported, no investigations on Dps from fish pathogens have been documented. In this study, we examined the biological function of two Dps proteins, Dps1 and Dps2, from Edwardsiella tarda, an important fish bacterial pathogen that can also infect humans. Dps1 and Dps2 are, respectively, 163- and 174-residue in length and each contains the conserved ferroxidase center of Dps. Expression of dps1 and dps2 was growth phase-dependent and reached high levels in stationary phase. Purified recombinant Dps1 and Dps2 were able to mediate iron oxidation by H(2)O(2) and bind DNA. Compared to the wild type strain, (i) the dps1 mutant (TXDps1) and the dps2 mutant (TXDps2) were unaffected in growth, while the dps2 mutant with interfered dps1 expression (TXDps2RI) exhibited a prolonged lag phase; (ii) TXDps1, TXDps2, and especially TXDps2RI were significantly reduced in H(2)O(2) and UV tolerance and impaired in the capacity to invade into host tissues and replicate in head kidney macrophages; (iii) TXDps1, TXDps2, and TXDps2RI induced stronger macrophage respiratory burst activity and thus were defective in the ability to block the bactericidal response of macrophages. Taken together, these results indicate that Dps1 and Dps2 are functional analogues that possess ferroxidase activity and DNA binding capacity and are required for optimum oxidative stress resistance and full bacterial virulence.
Collapse
Affiliation(s)
- Wen-jiang Zheng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|