1
|
Higuchi K, Nukagawa Y, Wakinaka T, Watanabe J, Mogi Y. Application of a low acetate-producing strain of Tetragenococcus halophilus to soy sauce fermentation. J Biosci Bioeng 2025; 139:23-29. [PMID: 39426905 DOI: 10.1016/j.jbiosc.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
In soy sauce brewing, the halophilic lactic acid bacterium, Tetragenococcus halophilus is used as a fermentation starter and contributes to the taste and aroma of soy sauce, mainly by producing lactate. By lowering the pH of the soy sauce mash, lactate serves as a suitable growth environment for the halotolerant yeast Zygosaccharomyces rouxii. Acetate, which is produced by T. halophilus via the citrate metabolic pathway, is a critical growth inhibitory factor for Z. rouxii. Therefore, a T. halophilus strain that lacks acetate production could be an ideal fermentation starter to enhance ethanol production. In this study, we obtained a derivative of T. halophilus containing an insertion sequence in citC, which is an essential gene for citrate metabolism, and validated its performance as a soy sauce fermentation starter. The derivative neither metabolized citrate nor produced excessive acetate in soy sauce mash, resulting in vigorous alcohol fermentation by Z. rouxii. This study provides insights into the application of a low acetate-producing strain of T. halophilus as a starter to produce soy sauce with high alcohol content and low sour aroma.
Collapse
Affiliation(s)
- Keita Higuchi
- Manufacturing Division, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan.
| | - Yuya Nukagawa
- Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
| | - Takura Wakinaka
- Manufacturing Division, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan
| | - Jun Watanabe
- Manufacturing Division, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan; Faculty of Food and Agricultural Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan; Institute of Fermentation Sciences, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima 960-1296, Japan
| | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, 2-10-1 Araoi-cho, Choshi, Chiba 288-0056, Japan
| |
Collapse
|
2
|
Jian P, Liu J, Li L, Song Q, Zhang D, Zhang S, Chai C, Zhao H, Zhao G, Zhu H, Qiao J. AcrR1, a novel TetR/AcrR family repressor, mediates acid and antibiotic resistance and nisin biosynthesis in Lactococcus lactis F44. J Dairy Sci 2024; 107:6576-6591. [PMID: 38762103 DOI: 10.3168/jds.2024-24754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 05/20/2024]
Abstract
Lactococcus lactis, widely used in the manufacture of dairy products, encounters various environmental stresses both in natural habitats and during industrial processes. It has evolved intricate machinery of stress sensing and defense to survive harsh stress conditions. Here, we identified a novel TetR/AcrR family transcription regulator, designated AcrR1, to be a repressor for acid and antibiotic tolerance that was derepressed in the presence of vancomycin or under acid stress. The survival rates of acrR1 deletion strain ΔAcrR1 under acid and vancomycin stresses were about 28.7-fold (pH 3.0, HCl), 8.57-fold (pH 4.0, lactic acid) and 2.73-fold (300 ng/mL vancomycin) greater than that of original strain F44. We also demonstrated that ΔAcrR1 was better able to maintain intracellular pH homeostasis and had a lower affinity to vancomycin. No evident effects of AcrR1 deletion on the growth and morphology of strain F44 were observed. Subsequently, we characterized that the transcription level of genes associated with amino acids biosynthesis, carbohydrate transport and metabolism, multidrug resistance, and DNA repair proteins significantly upregulated in ΔAcrR1 using transcriptome analysis and quantitative reverse transcription-PCR assays. Additionally, AcrR1 could repress the transcription of the nisin post-translational modification gene, nisC, leading to a 16.3% increase in nisin yield after AcrR1 deletion. Our results not only refined the knowledge of the regulatory mechanism of TetR/AcrR family regulator in L. lactis, but presented a potential strategy to enhance industrial production of nisin.
Collapse
Affiliation(s)
- Pingqiu Jian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Jiaheng Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China.
| | - Li Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Qianqian Song
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Di Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Shenyi Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Chaofan Chai
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Hui Zhao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
3
|
Eicher C, Tran T, Munier E, Coulon J, Favier M, Alexandre H, Reguant C, Grandvalet C. Influence of pH on Oenococcus oeni metabolism: Can the slowdown of citrate consumption improve its acid tolerance? Food Res Int 2024; 179:114027. [PMID: 38342547 DOI: 10.1016/j.foodres.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Oenococcus oeni is the lactic acid bacteria most suited to carry out malolactic fermentation in wine, converting L-malic acid into L-lactic acid and carbon dioxide, thereby deacidifying wines. Indeed, wine is a harsh environment for microbial growth, partly because of its low pH. By metabolizing citrate, O. oeni maintains its homeostasis under acid conditions. Indeed, citrate consumption activates the proton motive force, helps to maintain intracellular pH, and enhances bacterial growth when it is co-metabolized with sugars. In addition, citrate metabolism is responsible for diacetyl production, an aromatic compound which bestows a buttery character to wine. However, an inhibitory effect of citrate on O. oeni growth at low pH has been highlighted in recent years. In order to understand how citrate metabolism can be linked to the acid tolerance of this bacterium, consumption of citrate was investigated in eleven O. oeni strains. In addition, malate and sugar consumptions were also monitored, as they can be impacted by citrate metabolism. This experiment highlighted the huge diversity of metabolisms between strains depending on their origin. It also showed the capacity of O. oeni to de novo metabolize certain end-products such as L-lactate and mannitol, a phenomenon never before demonstrated. It also enabled drawing hypotheses concerning the two positive effects that the slowing down of citrate metabolism could have on biomass production and malolactic fermentation occurring under low pH conditions.
Collapse
Affiliation(s)
- Camille Eicher
- UMR PAM, Université de Bourgogne, Institut Agro, INRAE, Dijon, France.
| | - Thierry Tran
- UMR PAM, Université de Bourgogne, Institut Agro, INRAE, Dijon, France
| | - Edouard Munier
- UMR PAM, Université de Bourgogne, Institut Agro, INRAE, Dijon, France
| | | | | | - Hervé Alexandre
- UMR PAM, Université de Bourgogne, Institut Agro, INRAE, Dijon, France
| | - Cristina Reguant
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Tarragona, Catalonia, Spain
| | | |
Collapse
|
4
|
Eicher C, Coulon J, Favier M, Alexandre H, Reguant C, Grandvalet C. Citrate metabolism in lactic acid bacteria: is there a beneficial effect for Oenococcus oeni in wine? Front Microbiol 2024; 14:1283220. [PMID: 38249489 PMCID: PMC10798043 DOI: 10.3389/fmicb.2023.1283220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria frequently used in the food industry for fermentation, mainly transformation of carbohydrates into lactic acid. In addition, these bacteria also have the capacity to metabolize citrate, an organic acid commonly found in food products. Its fermentation leads to the production of 4-carbon compounds such as diacetyl, resulting in a buttery flavor desired in dairy products. Citrate metabolism is known to have several beneficial effects on LAB physiology. Nevertheless, a controversial effect of citrate has been described on the acid tolerance of the wine bacterium Oenococcus oeni. This observation raises questions about the effect of citrate on the capacity of O. oeni to conduct malolactic fermentation in highly acidic wines. This review aims to summarize the current understanding of citrate metabolism in LAB, with a focus on the wine bacterium O. oeni. Metabolism with the related enzymes is detailed, as are the involved genes organized in cit loci. The known systems of cit locus expression regulation are also described. Finally, the beneficial effects of citrate catabolism on LAB physiology are reported and the negative impact observed in O. oeni is discussed.
Collapse
Affiliation(s)
- Camille Eicher
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| | | | | | - Hervé Alexandre
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| | - Cristina Reguant
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Tarragona, Catalonia, Spain
| | - Cosette Grandvalet
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| |
Collapse
|
5
|
Zhi X, Vieira A, Huse KK, Martel PJ, Lobkowicz L, Li HK, Croucher N, Andrew I, Game L, Sriskandan S. Characterization of the RofA regulon in the pandemic M1 global and emergent M1 UK lineages of Streptococcus pyogenes. Microb Genom 2023; 9:001159. [PMID: 38117674 PMCID: PMC10763501 DOI: 10.1099/mgen.0.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023] Open
Abstract
The standalone regulator RofA is a positive regulator of the pilus locus in Streptococcus pyogenes. Found in only certain emm genotypes, RofA has been reported to regulate other virulence factors, although its role in the globally dominant emm1 S. pyogenes is unclear. Given the recent emergence of a new emm1 (M1UK) toxigenic lineage that is distinguished by three non-synonymous SNPs in rofA, we characterized the rofA regulon in six emm1 strains that are representative of the two contemporary major emm1 lineages (M1global and M1UK) using RNAseq analysis, and then determined the specific role of the M1UK-specific rofA SNPs. Deletion of rofA in three M1global strains led to altered expression of 14 genes, including six non-pilus locus genes. In M1UK strains, deletion of rofA led to altered expression of 16 genes, including nine genes that were unique to M1UK. Only the pilus locus genes were common to the RofA regulons of both lineages, while transcriptomic changes varied between strains even within the same lineage. Although introduction of the three SNPs into rofA did not impact gene expression in an M1global strain, reversal of three SNPs in an M1UK strain led to an unexpected number of transcriptomic changes that in part recapitulated transcriptomic changes seen when deleting RofA in the same strain. Computational analysis predicted that interactions with a key histidine residue in the PRD domain of RofA would differ between M1UK and M1global. RofA is a positive regulator of the pilus locus in all emm1 strains but effects on other genes are strain- and lineage-specific, with no clear, common DNA binding motif. The SNPs in rofA that characterize M1UK may impact regulation of RofA; whether they alter phosphorylation of the RofA PRD domain requires further investigation.
Collapse
Affiliation(s)
- Xiangyun Zhi
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Ana Vieira
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
| | - Kristin K. Huse
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | | | - Ludmila Lobkowicz
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ho Kwong Li
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nick Croucher
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London,, UK
| | - Ivan Andrew
- Genomics Facility, UKRI-MRC London Institute for Medical Sciences (LMS), Imperial College London, London, UK
| | - Laurence Game
- Genomics Facility, UKRI-MRC London Institute for Medical Sciences (LMS), Imperial College London, London, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, UK
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
- NIHR Health Protection Unit in Healthcare-associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
| |
Collapse
|
6
|
Integrative Physiological and Transcriptome Analysis Reveals the Mechanism for the Repair of Sub-Lethally Injured Escherichia coli O157:H7 Induced by High Hydrostatic Pressure. Foods 2022; 11:foods11152377. [PMID: 35954143 PMCID: PMC9368309 DOI: 10.3390/foods11152377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
The application of high hydrostatic pressure (HHP) technology in the food industry has generated potential safety hazards due to sub-lethally injured (SI) pathogenic bacteria in food products. To address these problems, this study explored the repair mechanisms of HHP-induced SI Escherichia coli O157:H7. First, the repair state of SI E. coli O157:H7 (400 MPa for 5 min) was identified, which was cultured for 2 h (37 °C) in a tryptose soya broth culture medium. We found that the intracellular protein content, adenosine triphosphate (ATP) content, and enzyme activities (superoxide dismutase, catalase, and ATPase) increased, and the morphology was repaired. The transcriptome was analyzed to investigate the molecular mechanisms of SI repair. Using cluster analysis, we identified 437 genes enriched in profile 1 (first down-regulated and then tending to be stable) and 731 genes in profile 2 (up-regulated after an initial down-regulation). KEGG analysis revealed that genes involved in cell membrane biosynthesis, oxidative phosphorylation, ribosome, and aminoacyl-tRNA biosynthesis pathways were enriched in profile 2, whereas cell-wall biosynthesis was enriched in profile 1. These findings provide insights into the repair process of SI E. coli O157:H7 induced by HHP.
Collapse
|
7
|
Organic Acid Profiles of Phosphate Solubilizing Bacterial Strains in the Presence of Different Insoluble Phosphatic Sources Under In vitro Buffered Conditions. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of weak organic acids by microorganisms has been attributed as the prime reason for the solubilization of insoluble phosphates under both in vitro and soil conditions. Literature seems to be heavily biased towards gluconic acid production by microbes and its subsequent release into the environment as the key factor responsible for phosphate solubilization. This has found credibility since gluconic acid being a product of the Kreb’s cycle is often detected in large quantities in the culture media, when assayed under in vitro conditions. In the present work, the organic acid profiles of four elite phosphate solubilising isolates were determined in the presence of different insoluble sources of phosphates, under in vitro buffered culture conditions by HPLC (High-Performance Liquid Chromatography). While most previous studies did not use a buffered culture media for elucidating the organic acid profile of phosphate solubilizing bacterial isolates, we used a buffered media for estimation of the organic acid profiles. The results revealed that apart from gluconic acid, malic acid is produced in significant levels by phosphate solubilizing bacterial isolates, and there seems to be a differential pattern of production of these two organic acids by the isolates in the presence of different insoluble phosphate sources.
Collapse
|
8
|
Caillaud MA, Abeilhou M, Gonzalez I, Audonnet M, Gaucheron F, Cocaign-Bousquet M, Tormo H, Daveran-Mingot ML. Precise Populations’ Description in Dairy Ecosystems Using Digital Droplet PCR: The Case of L. lactis Group in Starters. Front Microbiol 2020; 11:1906. [PMID: 32849476 PMCID: PMC7423877 DOI: 10.3389/fmicb.2020.01906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 01/15/2023] Open
Affiliation(s)
- Marie-Aurore Caillaud
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Université de Toulouse, Ecole d’Ingénieurs de Purpan, INPT, Toulouse, France
| | - Martine Abeilhou
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Ignacio Gonzalez
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Frédéric Gaucheron
- Centre National Interprofessionnel de l’Economie Laitière (CNIEL), Paris, France
| | - Muriel Cocaign-Bousquet
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- *Correspondence: Muriel Cocaign-Bousquet,
| | - Hélène Tormo
- Université de Toulouse, Ecole d’Ingénieurs de Purpan, INPT, Toulouse, France
| | | |
Collapse
|
9
|
Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Front Microbiol 2020; 11:369. [PMID: 32218777 PMCID: PMC7078163 DOI: 10.3389/fmicb.2020.00369] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Salinity stress is a major challenge to agricultural productivity and global food security in light of a dramatic increase of human population and climate change. Plant growth promoting bacteria can be used as an additional solution to traditional crop breeding and genetic engineering. In the present work, the induction of plant salt tolerance by the desert plant endophyte Cronobacter sp. JZ38 was examined on the model plant Arabidopsis thaliana using different inoculation methods. JZ38 promoted plant growth under salinity stress via contact and emission of volatile compounds. Based on the 16S rRNA and whole genome phylogenetic analysis, fatty acid analysis and phenotypic identification, JZ38 was identified as Cronobacter muytjensii and clearly separated and differentiated from the pathogenic C. sakazakii. Full genome sequencing showed that JZ38 is composed of one chromosome and two plasmids. Bioinformatic analysis and bioassays revealed that JZ38 can grow under a range of abiotic stresses. JZ38 interaction with plants is correlated with an extensive set of genes involved in chemotaxis and motility. The presence of genes for plant nutrient acquisition and phytohormone production could explain the ability of JZ38 to colonize plants and sustain plant growth under stress conditions. Gas chromatography-mass spectrometry analysis of volatiles produced by JZ38 revealed the emission of indole and different sulfur volatile compounds that may play a role in contactless plant growth promotion and antagonistic activity against pathogenic microbes. Indeed, JZ38 was able to inhibit the growth of two strains of the phytopathogenic oomycete Phytophthora infestans via volatile emission. Genetic, transcriptomic and metabolomics analyses, combined with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
D'Angelo M, Martino GP, Blancato VS, Espariz M, Hartke A, Sauvageot N, Benachour A, Alarcón SH, Magni C. Diversity of volatile organic compound production from leucine and citrate in Enterococcus faecium. Appl Microbiol Biotechnol 2019; 104:1175-1186. [PMID: 31828406 DOI: 10.1007/s00253-019-10277-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/23/2019] [Indexed: 01/22/2023]
Abstract
Enterococcus faecium is frequently isolated from fermented food; in particular, they positively contribute to the aroma compound generation in traditional cheese. Citrate fermentation is a desirable property in these bacteria, but this feature is not uniformly distributed among E. faecium strains. In the present study, three selected E. faecium strains, IQ110 (cit-), GM70 (cit+ type I), and Com12 (cit+ type II), were analyzed in their production of aroma compounds in milk. End products and volatile organic compounds (VOCs) were determined by solid-phase micro-extraction combined with gas chromatography mass spectrometry (SPME-GC-MS). Principal component analysis (PCA) of aroma compound profiles revealed a different VOC composition for the three strains. In addition, resting cell experiments of E. faecium performed in the presence of leucine, citrate, or pyruvate as aroma compound precursors allowed us to determine metabolic differences between the studied strains. GM70 (cit+ type I) showed an active citrate metabolism, with increased levels of diacetyl and acetoin generation relative to Com12 or to citrate defective IQ110 strains. In addition, in the experimental conditions tested, a defective citrate-fermenting phenotype for the Com12 strain was found, while its leucine degradation and pyruvate metabolism were conserved. In conclusion, rational selection of E. faecium strains could be performed based on genotypic and phenotypic analyses. This would result in a performing strain, such as GM70, that could positively contribute to flavor, with typical notes of diacetyl, acetoin, 3-methyl butanal, and 3-methyl butanol in an adjuvant culture.
Collapse
Affiliation(s)
- Matilde D'Angelo
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina
- Instituto de Química de Rosario (IQUIR), FBioyF, UNR-CONICET, Suipacha 570, Rosario, Argentina
| | - Gabriela P Martino
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina
| | - Victor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina
- U2RM Stress/Virulence, Normandie Univ, UNICAEN, 14000, Caen, France
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina
- U2RM Stress/Virulence, Normandie Univ, UNICAEN, 14000, Caen, France
| | - Axel Hartke
- U2RM Stress/Virulence, Normandie Univ, UNICAEN, 14000, Caen, France
| | | | | | - Sergio H Alarcón
- Instituto de Química de Rosario (IQUIR), FBioyF, UNR-CONICET, Suipacha 570, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), sede Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF), Universidad Nacional de Rosario (UNR), Consejo Nacional de Ciencia y Tecnología (CONICET), Suipacha 590, Rosario, Argentina.
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, FBioyF, UNR-Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina.
- U2RM Stress/Virulence, Normandie Univ, UNICAEN, 14000, Caen, France.
| |
Collapse
|
11
|
Pretorius N, Engelbrecht L, Du Toit M. Influence of sugars and pH on the citrate metabolism of different lactic acid bacteria strains in a synthetic wine matrix. J Appl Microbiol 2019; 127:1490-1500. [DOI: 10.1111/jam.14401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 12/01/2022]
Affiliation(s)
- N. Pretorius
- Institute for Wine Biotechnology and Department of Viticulture and Oenology Stellenbosch University Stellenbosch South Africa
| | - L. Engelbrecht
- Institute for Wine Biotechnology and Department of Viticulture and Oenology Stellenbosch University Stellenbosch South Africa
| | - M. Du Toit
- Institute for Wine Biotechnology and Department of Viticulture and Oenology Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
12
|
Zhu Z, Yang P, Wu Z, Zhang J, Du G. Systemic understanding of Lactococcus lactis response to acid stress using transcriptomics approaches. J Ind Microbiol Biotechnol 2019; 46:1621-1629. [PMID: 31414323 DOI: 10.1007/s10295-019-02226-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/07/2019] [Indexed: 11/25/2022]
Abstract
During fermentation, acid stress caused by the accumulation of acidic metabolites seriously affects the metabolic activity and production capacity of microbial cells. To elucidate the acid stress-tolerance mechanisms of microbial cells, we performed genome mutagenesis combined with high-throughput technologies to screen acid stress-tolerant strains. Mutant strain Lactococcus lactis WH101 showed a 16,000-fold higher survival rate than that of the parent strain after 5 h of acid shock at pH 4.0 and maintained higher ATP, NH4+, and intracellular pH (pHi) levels during acid stress. Additionally, comparative transcriptomics analysis revealed enhanced regulation of carbohydrate metabolism and sugar transport to provide additional energy, amino acid metabolism and transport to maintain pHi homeostasis and ATP generation, and fatty acid metabolism to enhance cellular acid tolerance. Moreover, overexpression of identified components resulted in 12.6- and 12.9-fold higher survival rates after acid shock for 3 h at pH 4.0 in L. lactis (ArcB) and L. lactis (MalQ) compared to the control strain, respectively. These findings provide valuable insight into the acid stress-response mechanisms of L. lactis and promote the further development of robust industrial strains.
Collapse
Affiliation(s)
- Zhengming Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Peishan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
13
|
Wels M, Siezen R, van Hijum S, Kelly WJ, Bachmann H. Comparative Genome Analysis of Lactococcus lactis Indicates Niche Adaptation and Resolves Genotype/Phenotype Disparity. Front Microbiol 2019; 10:4. [PMID: 30766512 PMCID: PMC6365430 DOI: 10.3389/fmicb.2019.00004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 01/21/2023] Open
Abstract
Lactococcus lactis is one of the most important micro-organisms in the dairy industry for the fermentation of cheese and buttermilk. Besides the conversion of lactose to lactate it is responsible for product properties such as flavor and texture, which are determined by volatile metabolites, proteolytic activity and exopolysaccharide production. While the species Lactococcus lactis consists of the two subspecies lactis and cremoris their taxonomic position is confused by a group of strains that, despite of a cremoris genotype, display a lactis phenotype. Here we compared and analyzed the (draft) genomes of 43 L. lactis strains, of which 19 are of dairy and 24 are of non-dairy origin. Machine-learning algorithms facilitated the identification of orthologous groups of protein sequences (OGs) that are predictors for either the taxonomic position or the source of isolation. This allowed the unambiguous categorization of the genotype/phenotype disparity of ssp. lactis and ssp. cremoris strains. A detailed analysis of phenotypic properties including plasmid-encoded genes indicates evolutionary changes during niche adaptations. The results are consistent with the hypothesis that dairy isolates evolved from plant isolates. The analysis further suggests that genomes of cremoris phenotype strains are so eroded that they are restricted to a dairy environment. Overall the genome comparison of a diverse set of strains allowed the identification of niche and subspecies specific genes. This explains evolutionary relationships and will aid the identification and selection of industrial starter cultures.
Collapse
Affiliation(s)
- Michiel Wels
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands
| | - Roland Siezen
- TI Food and Nutrition, Wageningen, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Microbial Bioinformatics, Ede, Netherlands
| | - Sacha van Hijum
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Herwig Bachmann
- NIZO Food Research B.V., Ede, Netherlands.,TI Food and Nutrition, Wageningen, Netherlands.,Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Torres Manno M, Zuljan F, Alarcón S, Esteban L, Blancato V, Espariz M, Magni C. Genetic and phenotypic features defining industrial relevant Lactococcus lactis, L. cremoris and L. lactis biovar. diacetylactis strains. J Biotechnol 2018; 282:25-31. [DOI: 10.1016/j.jbiotec.2018.06.345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
|
15
|
van Mastrigt O, Mager EE, Jamin C, Abee T, Smid EJ. Citrate, low pH and amino acid limitation induce citrate utilization in Lactococcus lactis biovar diacetylactis. Microb Biotechnol 2018; 11:369-380. [PMID: 29215194 PMCID: PMC5812246 DOI: 10.1111/1751-7915.13031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/07/2017] [Accepted: 11/05/2017] [Indexed: 11/27/2022] Open
Abstract
In Lactococcus lactis subsp. lactis biovar diacetylactis, citrate transport is facilitated by the plasmid-encoded citrate permease (CitP). In this work, we analysed regulation of citrate utilization by pH, nutrient limitation and the presence of citrate at four different levels: (i) plasmid copy number, (ii) citP transcription, (iii) citP mRNA processing and (iv) citrate utilization capacity. Citrate was supplied as cosubstrate together with lactose. The citP gene is known to be induced in cells grown at low pH. However, we demonstrated that transcription of citP was even higher in the presence of citrate (3.8-fold compared with 2.0-fold). The effect of citrate has been overlooked by other researchers because they determined the effect of citrate using M17 medium, which already contains 0.80 ± 0.07 mM citrate. The plasmid copy number increased in cells grown under amino acid limitation (1.6-fold) and/or at low pH (1.4-fold). No significant differences in citP mRNA processing were found. Citrate utilization rates increased from approximately 1 to 65 μmol min-1 gDW-1 from lowest to highest citP expression. Acetoin formation increased during growth in an acidic environment due to induction of the acetoin pathway. Quantification of the relative contributions allowed us to construct a model for regulation of citrate utilization in L. lactis biovar diacetylactis. This knowledge will help to select conditions to improve flavour formation from citrate.
Collapse
Affiliation(s)
- Oscar van Mastrigt
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Emma E. Mager
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Casper Jamin
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Tjakko Abee
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| | - Eddy J. Smid
- Laboratory of Food MicrobiologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
16
|
Lo R, Ho VTT, Bansal N, Turner MS. The genetic basis underlying variation in production of the flavour compound diacetyl by Lactobacillus rhamnosus strains in milk. Int J Food Microbiol 2018; 265:30-39. [DOI: 10.1016/j.ijfoodmicro.2017.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/01/2017] [Accepted: 10/28/2017] [Indexed: 01/16/2023]
|
17
|
Ren J, Sang Y, Qin R, Cui Z, Yao YF. 6S RNA is involved in acid resistance and invasion of epithelial cells in Salmonella enterica serovar Typhimurium. Future Microbiol 2017; 12:1045-1057. [PMID: 28796533 DOI: 10.2217/fmb-2017-0055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Acid is an important environmental condition encountered frequently by Salmonella enterica serovar Typhimurium during its pathogenesis, but the role of small-noncoding RNAs (sRNAs) in response to acid stress is poorly understood. METHODS We used RNA sequencing to explore acid-responsive sRNAs in S. Typhimurium. RESULTS It identified that 6S RNA encoded by the ssrS was significantly upregulated at pH 3.0. The 6S RNA knockout strain showed a reduced ability to survive at pH 3.0. Additionally, genes in Salmonella pathogenicity island-1 were downregulated in the 6S RNA knockout strain. The loss of 6S RNA significantly reduced S. Typhimurium invasion ability in HeLa cells and virulence in a mouse model. CONCLUSION These findings demonstrate that 6S RNA plays an important role in S. Typhimurium survival under extremely acid conditions and for invasion of epithelial cells.
Collapse
Affiliation(s)
- Jie Ren
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Sang
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ran Qin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Feng Yao
- Department of Microbiology & Immunology, Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
18
|
Ouattara HD, Ouattara HG, Droux M, Reverchon S, Nasser W, Niamke SL. Lactic acid bacteria involved in cocoa beans fermentation from Ivory Coast: Species diversity and citrate lyase production. Int J Food Microbiol 2017; 256:11-19. [PMID: 28578265 DOI: 10.1016/j.ijfoodmicro.2017.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/02/2017] [Accepted: 05/13/2017] [Indexed: 11/16/2022]
Abstract
Microbial fermentation is an indispensable process for high quality chocolate from cocoa bean raw material. lactic acid bacteria (LAB) are among the major microorganisms responsible for cocoa fermentation but their exact role remains to be elucidated. In this study, we analyzed the diversity of LAB in six cocoa producing regions of Ivory Coast. Ribosomal 16S gene sequence analysis showed that Lactobacillus plantarum and Leuconostoc mesenteroides are the dominant LAB species in these six regions. In addition, other species were identified as the minor microbial population, namely Lactobacillus curieae, Enterococcus faecium, Fructobacillus pseudoficulneus, Lactobacillus casei, Weissella paramesenteroides and Weissella cibaria. However, in each region, the LAB microbial population was composed of a restricted number of species (maximum 5 species), which varied between the different regions. LAB implication in the breakdown of citric acid was investigated as a fundamental property for a successful cocoa fermentation process. High citrate lyase producer strains were characterized by rapid citric acid consumption, as revealed by a 4-fold decrease in citric acid concentration in the growth medium within 12h, concomitant with an increase in acetic acid and lactic acid concentration. The production of citrate lyase was strongly dependent on environmental conditions, with optimum production at acidic pH (pH<5), and moderate temperature (30-40°C), which corresponds to conditions prevailing in the early stage of natural cocoa fermentation. This study reveals that one of the major roles of LAB in the cocoa fermentation process involves the breakdown of citric acid during the early stage of cocoa fermentation through the activity of citrate lyase.
Collapse
Affiliation(s)
- Hadja D Ouattara
- Laboratoire de Biotechnologies, UFR Biosciences, Université Félix HOUPHOUET-BOIGNY Abidjan, 22 bp 582 Abidjan, Côte d'Ivoire; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois, F-69622 Villeurbanne, France
| | - Honoré G Ouattara
- Laboratoire de Biotechnologies, UFR Biosciences, Université Félix HOUPHOUET-BOIGNY Abidjan, 22 bp 582 Abidjan, Côte d'Ivoire.
| | - Michel Droux
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois, F-69622 Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois, F-69622 Villeurbanne, France
| | - William Nasser
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois, F-69622 Villeurbanne, France
| | - Sébastien L Niamke
- Laboratoire de Biotechnologies, UFR Biosciences, Université Félix HOUPHOUET-BOIGNY Abidjan, 22 bp 582 Abidjan, Côte d'Ivoire
| |
Collapse
|
19
|
Zuljan FA, Mortera P, Alarcón SH, Blancato VS, Espariz M, Magni C. Lactic acid bacteria decarboxylation reactions in cheese. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Krzyżanowska DM, Ossowicki A, Rajewska M, Maciąg T, Jabłońska M, Obuchowski M, Heeb S, Jafra S. When Genome-Based Approach Meets the "Old but Good": Revealing Genes Involved in the Antibacterial Activity of Pseudomonas sp. P482 against Soft Rot Pathogens. Front Microbiol 2016; 7:782. [PMID: 27303376 PMCID: PMC4880745 DOI: 10.3389/fmicb.2016.00782] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/09/2016] [Indexed: 11/13/2022] Open
Abstract
Dickeya solani and Pectobacterium carotovorum subsp. brasiliense are recently established species of bacterial plant pathogens causing black leg and soft rot of many vegetables and ornamental plants. Pseudomonas sp. strain P482 inhibits the growth of these pathogens, a desired trait considering the limited measures to combat these diseases. In this study, we determined the genetic background of the antibacterial activity of P482, and established the phylogenetic position of this strain. Pseudomonas sp. P482 was classified as Pseudomonas donghuensis. Genome mining revealed that the P482 genome does not contain genes determining the synthesis of known antimicrobials. However, the ClusterFinder algorithm, designed to detect atypical or novel classes of secondary metabolite gene clusters, predicted 18 such clusters in the genome. Screening of a Tn5 mutant library yielded an antimicrobial negative transposon mutant. The transposon insertion was located in a gene encoding an HpcH/HpaI aldolase/citrate lyase family protein. This gene is located in a hypothetical cluster predicted by the ClusterFinder, together with the downstream homologs of four nfs genes, that confer production of a non-fluorescent siderophore by P. donghuensis HYST. Site-directed inactivation of the HpcH/HpaI aldolase gene, the adjacent short chain dehydrogenase gene, as well as a homolog of an essential nfs cluster gene, all abolished the antimicrobial activity of the P482, suggesting their involvement in a common biosynthesis pathway. However, none of the mutants showed a decreased siderophore yield, neither was the antimicrobial activity of the wild type P482 compromised by high iron bioavailability. A genomic region comprising the nfs cluster and three upstream genes is involved in the antibacterial activity of P. donghuensis P482 against D. solani and P. carotovorum subsp. brasiliense. The genes studied are unique to the two known P. donghuensis strains. This study illustrates that mining of microbial genomes is a powerful approach for predictingthe presence of novel secondary-metabolite encoding genes especially when coupled with transposon mutagenesis.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Adam Ossowicki
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Magdalena Jabłońska
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Medical University of Gdansk Gdansk, Poland
| | - Stephan Heeb
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham Nottingham, UK
| | - Sylwia Jafra
- Laboratory of Biological Plant Protection, Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
21
|
Draft Genome Sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a Citrate-Fermenting Strain. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01575-15. [PMID: 26847906 PMCID: PMC4742675 DOI: 10.1128/genomea.01575-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Lactococcus lactis subsp. lactis bv. diacetylactis CRL264, a natural strain isolated from artisanal cheese from northwest Argentina. L. lactis subsp. lactis bv. diacetylactis is one of the most important microorganisms used as starter culture around the world. The CRL264 strain constitutes a model microorganism in the studies on the generation of aroma compounds (diacetyl, acetoin, and 2,3-butanediol) by lactic acid bacteria. Our genome analysis shows similar genetic organization to other available genomes of L. lactis bv. diacetylactis strains.
Collapse
|
22
|
Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster. Int J Food Microbiol 2016; 218:27-37. [DOI: 10.1016/j.ijfoodmicro.2015.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/24/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023]
|
23
|
Chen Y, Zhao W, Wu R, Sun Z, Zhang W, Wang J, Bilige M, Zhang H. Proteome analysis of Lactobacillus helveticus H9 during growth in skim milk. J Dairy Sci 2014; 97:7413-25. [DOI: 10.3168/jds.2014-8520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022]
|
24
|
Zuljan FA, Repizo GD, Alarcon SH, Magni C. α-Acetolactate synthase of Lactococcus lactis contributes to pH homeostasis in acid stress conditions. Int J Food Microbiol 2014; 188:99-107. [DOI: 10.1016/j.ijfoodmicro.2014.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/03/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
|
25
|
Laëtitia G, Pascal D, Yann D. The Citrate Metabolism in Homo- and Heterofermentative LAB: A Selective Means of Becoming Dominant over Other Microorganisms in Complex Ecosystems. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.510106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Suárez C, Espariz M, Blancato VS, Magni C. Expression of the agmatine deiminase pathway in Enterococcus faecalis is activated by the AguR regulator and repressed by CcpA and PTS(Man) systems. PLoS One 2013; 8:e76170. [PMID: 24155893 PMCID: PMC3796520 DOI: 10.1371/journal.pone.0076170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/21/2013] [Indexed: 11/29/2022] Open
Abstract
Although the agmatine deiminase system (AgDI) has been investigated in Enterococcus faecalis, little information is available with respect to its gene regulation. In this study we demonstrate that the presence of exogenous agmatine induces the expression of agu genes in this bacterium. In contrast to the homologous and extensively characterized AgDI system of S. mutants, the aguBDAC operon in E. faecalis is not induced in response to low pH. In spite of this, agmatine catabolism in this bacterium contributes by neutralizing the external medium while enhancing bacterial growth. Our results indicate that carbon catabolic repression (CCR) operates on the AgDI system via a mechanism that involves interaction of CcpA and P-Ser-HPr with a cre site found in an unusual position considering the aguB promoter (55 nt upstream the +1 position). In addition, we found that components of the mannose phosphotransferase (PTSMan) system also contributed to CCR in E. faecalis since a complete relief of the PTS-sugars repressive effect was observed only in a PTSMan and CcpA double defective strain. Our gene context analysis revealed that aguR is present in oral and gastrointestinal microorganisms. Thus, regulation of the aguBDAC operon in E. faecalis seems to have evolved to obtain energy and resist low pH conditions in order to persist and colonize gastrointestinal niches.
Collapse
Affiliation(s)
- Cristian Suárez
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Rosario, Santa Fe, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Rosario, Santa Fe, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Víctor S. Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Rosario, Santa Fe, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET), Rosario, Santa Fe, Argentina
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- * E-mail:
| |
Collapse
|
27
|
Whole-genome transcriptional analysis of Escherichia coli during heat inactivation processes related to industrial cooking. Appl Environ Microbiol 2013; 79:4940-50. [PMID: 23770902 DOI: 10.1128/aem.00958-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 was grown to the stationary phase, for maximum physiological resistance, in brain heart infusion (BHI) broth at 37°C. Cells were then heated at 58°C or 60°C to reach a process lethality value \[\mathbf{\left(}{{\mathit{F}}^{\mathit{o}}}_{\mathbf{70}}^{\mathbf{10}}\mathbf{\right)} \] of 2 or 3 or to a core temperature of 71°C (control industrial cooking temperature). Growth recovery and cell membrane integrity were evaluated immediately after heating, and a global transcription analysis was performed using gene expression microarrays. Only cells heated at 58°C with F(o) = 2 were still able to grow on liquid or solid BHI broth after heat treatment. However, their transcriptome did not differ from that of bacteria heated at 58°C with F(o) = 3 (P value for the false discovery rate [P-FDR] > 0.01), where no growth recovery was observed posttreatment. Genome-wide transcriptomic data obtained at 71°C were distinct from those of the other treatments without growth recovery. Quantification of heat shock gene expression by real-time PCR revealed that dnaK and groEL mRNA levels decreased significantly above 60°C to reach levels similar to those of control cells at 37°C (P < 0.0001). Furthermore, despite similar levels of cell inactivation measured by growth on BHI media after heating, 132 and 8 genes were differentially expressed at 71°C compared to 58°C and 60°C at F(o) = 3, respectively (P-FDR < 0.01). Among them, genes such as aroA, citE, glyS, oppB, and asd, whose expression was upregulated at 71°C, may be worth investigating as good biomarkers for accurately determining the efficiency of heat treatments, especially when cells are too injured to be enumerated using growth media.
Collapse
|
28
|
Biochemical and genetic characterization of the Enterococcus faecalis oxaloacetate decarboxylase complex. Appl Environ Microbiol 2013; 79:2882-90. [PMID: 23435880 DOI: 10.1128/aem.03980-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.
Collapse
|
29
|
Gene expression profile of probiotic Lactobacillus casei Zhang during the late stage of milk fermentation. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.10.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Fine-tuned transcriptional regulation of malate operons in Enterococcus faecalis. Appl Environ Microbiol 2012; 78:1936-45. [PMID: 22247139 DOI: 10.1128/aem.07280-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Enterococcus faecalis, the mae locus is constituted by two putative divergent operons, maePE and maeKR. The first operon encodes a putative H(+)/malate symporter (MaeP) and a malic enzyme (MaeE) previously shown to be essential for malate utilization in this bacterium. The maeKR operon encodes two putative proteins with significant similarity to two-component systems involved in sensing malate and activating its assimilation in bacteria. Our transcriptional and genetic assays showed that maePE and maeKR are induced in response to malate by the response regulator MaeR. In addition, we observed that both operons were partially repressed in the presence of glucose. Accordingly, the cometabolism of this sugar and malate was detected. The binding of the complex formed by CcpA and its corepressor P-Ser-HPr to a cre site located in the mae region was demonstrated in vitro and explains the carbon catabolite repression (CCR) observed for the maePE operon. However, our results also provide evidence for a CcpA-independent CCR mechanism regulating the expression of both operons. Finally, a biomass increment of 40 or 75% was observed compared to the biomass of cells grown only on glucose or malate, respectively. Cells cometabolizing both carbon sources exhibit a higher rate of glucose consumption and a lower rate of malate utilization. The growth improvement achieved by E. faecalis during glucose-malate cometabolism might explain why this microorganism employs different regulatory systems to tightly control the assimilation of both carbon sources.
Collapse
|
31
|
Suárez CA, Blancato VS, Poncet S, Deutscher J, Magni C. CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites. BMC Microbiol 2011; 11:227. [PMID: 21989394 PMCID: PMC3198936 DOI: 10.1186/1471-2180-11-227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Enterococcus faecalis the genes encoding the enzymes involved in citrate metabolism are organized in two divergent operons, citHO and oadHDB-citCDEFX-oadA-citMG (citCL locus). Expression of both operons is specifically activated by adding citrate to the medium. This activation is mediated by binding of the GntR-like transcriptional regulator (CitO) to the cis-acting sequences located in the cit intergenic region. Early studies indicated that citrate and glucose could not be co-metabolized suggesting some form of catabolite repression, however the molecular mechanism remained unknown. RESULTS In this study, we observed that the citHO promoter is repressed in the presence of sugars transported by the Phosphoenolpyruvate:carbohydrate Phosphotranserase System (PTS sugars). This result strongly suggested that Carbon Catabolic Repression (CCR) impedes the expression of the activator CitO and the subsequent induction of the cit pathway. In fact, we demonstrate that CCR is acting on both promoters. It is partially relieved in a ccpA-deficient E. faecalis strain indicating that a CcpA-independent mechanism is also involved in regulation of the two operons. Furthermore, sequence analysis of the citH/oadH intergenic region revealed the presence of three putative catabolite responsive elements (cre). We found that they are all active and able to bind the CcpA/P-Ser-HPr complex, which downregulates the expression of the cit operons. Systematic mutation of the CcpA/P-Ser-HPr binding sites revealed that cre1 and cre2 contribute to citHO repression, while cre3 is involved in CCR of citCL. CONCLUSION In conclusion, our study establishes that expression of the cit operons in E. faecalis is controlled by CCR via CcpA-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Cristian A Suárez
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | | | | | | | | |
Collapse
|
32
|
Complex transcriptional regulation of citrate metabolism in Clostridium perfringens. Anaerobe 2011; 18:48-54. [PMID: 21945821 DOI: 10.1016/j.anaerobe.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/26/2011] [Accepted: 09/12/2011] [Indexed: 11/23/2022]
Abstract
A Gram-positive, spore-forming bacterium, Clostridium perfringens, possesses genes for citrate metabolism, which might play an important role in the utilization of citrate as a sole carbon source. In this study, we identified a chromosomal citCDEFX-mae-citS operon in C. perfringens strain 13, which is transcribed on three mRNAs of different sizes. Expression of the cit operon was significantly induced when 5 mM extracellular citrate was added to the growth medium. Most interestingly, three regulatory systems were found to be involved in the regulation of the expression of cit genes: 1) the two upstream divergent genes citG and citI; 2) two different two-component regulatory systems, CitA/CitB (TCS6 consisted of CPE0531/CPE0532) and TCS5 (CPE0518/CPE0519); and 3) the global two-component VirR/VirS-VR-RNA regulatory system known to regulate various genes for toxins and degradative enzymes. Our results suggest that in C. perfringens the citrate metabolism might be strictly controlled by a complex regulatory system.
Collapse
|
33
|
Repizo GD, Mortera P, Magni C. Disruption of the alsSD operon of Enterococcus faecalis impairs growth on pyruvate at low pH. Microbiology (Reading) 2011; 157:2708-2719. [DOI: 10.1099/mic.0.047662-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diacetyl and acetoin are pyruvate-derived metabolites excreted by many micro-organisms, and are important in their physiology. Although generation of these four-carbon (C4) compounds in Enterococcus faecalis is a well-documented phenotype, little is known about the gene regulation of their biosynthetic pathway and the physiological role of the pathway in this bacterium. In this work, we identified the genes involved in C4 compound biosynthesis in Ent. faecalis and report their transcriptional analysis. These genes are part of the alsSD bicistronic operon, which encodes α-acetolactate synthase (AlsS) and α-acetolactate decarboxylase (AlsD). Our studies showed that alsSD operon transcription levels are maximal during the exponential phase of growth, decreasing thereafter. Furthermore, we found that this transcription is enhanced upon addition of pyruvate to the growth medium. In order to study the functional role of the alsSD operon, an isogenic alsSD mutant strain was constructed. This strain lost its capacity to generate C4 compounds, confirming the role of alsSD genes in this metabolic pathway. In contrast to the wild-type strain, the alsSD-deficient strain was unable to grow in LB medium supplemented with pyruvate at an initial pH of 4.5. This dramatic reduction in growth parameters for the mutant strain was simultaneously accompanied by the inability to alkalinize the internal and external medium under these conditions. In sum, these results suggest that the decarboxylation reactions related to the C4 biosynthetic pathway give enterococcal cells a competitive advantage during pyruvate metabolism at low pH.
Collapse
Affiliation(s)
- Guillermo D. Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Pablo Mortera
- Instituto de Química Orgánica de Rosario (IQUIR-CONICET) and Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| | - Christian Magni
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina
| |
Collapse
|
34
|
Multigenic expression analysis as an approach to understanding the behaviour of Oenococcus oeni in wine-like conditions. Int J Food Microbiol 2010; 144:88-95. [DOI: 10.1016/j.ijfoodmicro.2010.08.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/26/2010] [Accepted: 08/31/2010] [Indexed: 11/22/2022]
|
35
|
Drici H, Gilbert C, Kihal M, Atlan D. Atypical citrate-fermentingLactococcus lactisstrains isolated from dromedaryâs milk. J Appl Microbiol 2010; 108:647-57. [DOI: 10.1111/j.1365-2672.2009.04459.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
A simple expression system for Lactococcus lactis and Enterococcus faecalis. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0262-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Margolles A, Moreno JA, Ruiz L, Marelli B, Magni C, de Los Reyes-Gavilán CG, Ruas-Madiedo P. Production of human growth hormone by Lactococcus lactis. J Biosci Bioeng 2009; 109:322-4. [PMID: 20226370 DOI: 10.1016/j.jbiosc.2009.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/06/2009] [Indexed: 11/16/2022]
Abstract
A synthetic gene coding for human growth hormone was expressed in Lactococcus lactis. The presence of the recombinant protein was assayed and quantified using ELISA tests. Human growth hormone was detected at high concentrations and displayed a biological activity similar to the one shown by commercial human growth hormone.
Collapse
Affiliation(s)
- Abelardo Margolles
- Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (CSIC), Carretera de Infiesto s/n 3300 Villaviciosa, Asturias, Spain.
| | | | | | | | | | | | | |
Collapse
|
38
|
Russell HH, Zhou L, Sriskandan S. Rapid screen for epithelial internalization of Tn917-mutagenized Streptococcus pyogenes. J Microbiol Methods 2009; 78:34-9. [PMID: 19371765 DOI: 10.1016/j.mimet.2009.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
Abstract
Group A streptococci (GAS) cause a number of human diseases ranging from pharyngitis to necrotizing fasciitis. GAS are hypothesized to escape killing by either the immune system or beta lactam antibiotics by internalization into epithelial cells. A Tn917 library of transposon mutants was screened for capacity to invade and survive in human epithelial cells using a novel blood agar overlay method. Although the screen revealed that a majority of Tn917 insertions occurred within a 10 kb region of the genome, GAS genes identified as essential for internalization into epithelial cells included ABC transporters, and DNA maintenance proteins, and citrate metabolism enzymes, underlining the importance of adaptation to the intracellular environment.
Collapse
Affiliation(s)
- Hugh H Russell
- Department of Infectious Diseases & Immunity, Hammersmith Campus, Imperial College London, UK
| | | | | |
Collapse
|
39
|
Influence of ethanol and pH on the gene expression of the citrate pathway in Oenococcus oeni. Food Microbiol 2008; 26:197-203. [PMID: 19171263 DOI: 10.1016/j.fm.2008.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/21/2022]
Abstract
The consumption of citrate by the malolactic bacterium Oenococcus oeni changes the aromatic profile of wines due to the production of volatile compounds such as diacetyl and acetic acid. In this study, the expression of genes related to citrate utilization in the O. oeni strain PSU-1 was investigated to further understand the role of this metabolic pathway in the adaptation to wine environment and its impact on organoleptic qualities. Different conditions of ethanol content (0% and 10%) and pH (3.5 and 4.0) were assayed to evaluate the transcriptional response to both these stress factors. In the presence of ethanol, metabolic and transcriptional behavior was different than the observed when ethanol was absent. The expression of citrate pathway genes was mainly affected by ethanol, while pH showed a lower effect. Among the studied genes, citE, ackA and alsD were the genes revealing a distinctive transcriptional response. The differences observed in gene expression were in correlation with the different content of end products such as acetic acid and diacetyl. The increment of gene expression observed in the presence of ethanol at low pH suggests the participation of citrate metabolism in the response to stress conditions.
Collapse
|
40
|
Transcriptional regulation of the citrate gene cluster of Enterococcus faecalis Involves the GntR family transcriptional activator CitO. J Bacteriol 2008; 190:7419-30. [PMID: 18805984 DOI: 10.1128/jb.01704-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the gram-positive bacterium Enterococcus faecalis contains the genes that encode the citrate lyase complex. This complex splits citrate into oxaloacetate and acetate and is involved in all the known anaerobic bacterial citrate fermentation pathways. Although citrate fermentation in E. faecalis has been investigated before, the regulation and transcriptional pattern of the cit locus has still not been fully explored. To fill this gap, in this paper we demonstrate that the GntR transcriptional regulator CitO is a novel positive regulator involved in the expression of the cit operons. The transcriptional analysis of the cit clusters revealed two divergent operons: citHO, which codes for the transporter (citH) and the regulatory protein (citO), and upstream from it and in the opposite direction the oadHDB-citCDEFX-oadA-citMG operon, which includes the citrate lyase subunits (citD, citE, and citF), the soluble oxaloacetate decarboxylase (citM), and also the genes encoding a putative oxaloacetate decarboxylase complex (oadB, oadA, oadD and oadH). This analysis also showed that both operons are specifically activated by the addition of citrate to the medium. In order to study the functional role of CitO, a mutant strain with an interrupted citO gene was constructed, causing a total loss of the ability to degrade citrate. Reintroduction of a functional copy of citO to the citO-deficient strain restored the response to citrate and the Cit(+) phenotype. Furthermore, we present evidence that CitO binds to the cis-acting sequences O(1) and O(2), located in the cit intergenic region, increasing its affinity for these binding sites when citrate is present and allowing the induction of both cit promoters.
Collapse
|
41
|
Abstract
Ers has been qualified as the PrfA-like transcriptional regulator of Enterococcus faecalis. In a previous study we reported that Ers is important for the survival within macrophages of this opportunist pathogenic bacterium. In the present work we have used proteomic and microarray expression profiling of E. faecalis JH2-2 and an ers-deleted mutant (Delta ers mutant) strains to define the Ers regulon. In addition to EF_0082 (encoding a putative facilitator family transporter), already known to be under Ers regulation, three genes or operons displayed a significant decrease (confirmed by reverse transcription quantitative PCR) in expression in the Delta ers mutant. The first locus corresponds to three genes: arcA, arcB, and arcC1 (arcABC). These genes are members of the ADI operon, encoding enzymes of the arginine deiminase system. The second is the EF_1459 gene, which encodes a hypothetical protein and is located within a putative phage genetic element. Lastly, Ef_3319 is annotated as the alpha subunit of the citrate lyase encoded by citF. citF is a member of a putative 12-gene operon involved in citrate catabolism. Moreover, the promoter sequence, similar to the "PrfA box" and found in the promoter regions of ers and EF_0082, has been shown to be included in the DNA segment recognized by Ers. Phenotypic analysis of the Delta ers mutant strain revealed a growth defect when cultured with arginine or citrate as the energy source; this was not seen for the wild type. As expected, similar results were obtained with mutants in which arcA and citF were inactivated. In addition, in the mouse peritonitis model of virulence, the Delta ers mutant appeared significantly less lethal than the JH2-2 wild-type strain. Taken together, these results indicate that the regulator Ers has a pleiotropic effect, especially in the cellular metabolism and virulence of E. faecalis.
Collapse
|
42
|
Activation of the diacetyl/acetoin pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by acidic growth. Appl Environ Microbiol 2008; 74:1988-96. [PMID: 18245243 DOI: 10.1128/aem.01851-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis subsp. lactis bv. diacetylactis strains are aroma-producing organisms used in starter cultures for the elaboration of dairy products. This species is essentially a fermentative microorganism, which cometabolizes glucose and citrate to yield aroma compounds through the diacetyl/acetoin biosynthetic pathway. Our previous results have shown that under acidic growth Lactococcus bv. diacetylactis CRL264 expresses coordinately the genes responsible for citrate transport and its conversion into pyruvate. In the present work the impact of acidic growth on glucose, citrate, and pyruvate metabolism of Lactococcus bv. diacetylactis CRL264 has been investigated by proteomic analysis. The results indicated that acid growth triggers the conversion of citrate, but not glucose, into alpha-acetolactate via pyruvate. Moreover, they showed that low pH has no influence on levels of lactate dehydrogenase and pyruvate dehydrogenase. Therefore, the influence of external pH on regulation of the diacetyl/acetoin biosynthetic pathway in Lactococcus bv. diacetylactis CRL264 has been analyzed at the transcriptional level. Expression of the als, aldB, aldC, and butBA genes encoding the enzymes involved in conversion of pyruvate into aroma compounds has been investigated by primer extension, reverse transcription-PCR analysis, and transcriptional fusions. The results support that this biosynthetic pathway is induced at the transcriptional level by acidic growth conditions, presumably contributing to lactococcal pH homeostasis by synthesis of neutral compounds and by decreasing levels of pyruvate.
Collapse
|
43
|
Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl Environ Microbiol 2007; 74:1136-44. [PMID: 18156322 DOI: 10.1128/aem.01061-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis subsp. lactis biovar diacetylactis CRL264 is a natural strain isolated from cheese (F. Sesma, D. Gardiol, A. P. de Ruiz Holgado, and D. de Mendoza, Appl. Environ. Microbiol. 56:2099-2103, 1990). The effect of citrate on the growth parameters at a very acidic pH value was studied with this strain and with derivatives whose citrate uptake capacity was genetically manipulated. The culture pH was maintained at 4.5 to prevent alkalinization of the medium, a well-known effect of citrate metabolism. In the presence of citrate, the maximum specific growth rate and the specific glucose consumption rate were stimulated. Moreover, a more efficient energy metabolism was revealed by analysis of the biomass yields relative to glucose consumption or ATP production. Thus, it was shown that the beneficial effect of citrate on growth under acid stress conditions is not primarily due to the concomitant alkalinization of the medium but stems from less expenditure of ATP, derived from glucose catabolism, to achieve pH homeostasis. After citrate depletion, a deleterious effect on the final biomass was apparent due to organic acid accumulation, particularly acetic acid. On the other hand, citrate metabolism endowed cells with extra ability to counteract lactic and acetic acid toxicity. In vivo 13C nuclear magnetic resonance provided strong evidence for the operation of a citrate/lactate exchanger. Interestingly, the greater capacity for citrate transport correlated positively with the final biomass and growth rates of the citrate-utilizing strains. We propose that increasing the citrate transport capacity of CRL264 could be a useful strategy to improve further the ability of this strain to cope with strongly acidic conditions.
Collapse
|
44
|
Augagneur Y, Garmyn D, Guzzo J. Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism. J Appl Microbiol 2007; 104:260-8. [PMID: 17927748 DOI: 10.1111/j.1365-2672.2007.03582.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions. METHODS AND RESULTS A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis. CONCLUSIONS The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.
Collapse
Affiliation(s)
- Y Augagneur
- Laboratoire ReVV, Université de Bourgogne, IUVV, Dijon, France
| | | | | |
Collapse
|
45
|
Augagneur Y, Ritt JF, Linares DM, Remize F, Tourdot-Maréchal R, Garmyn D, Guzzo J. Dual effect of organic acids as a function of external pH in Oenococcus oeni. Arch Microbiol 2007; 188:147-57. [PMID: 17406856 DOI: 10.1007/s00203-007-0230-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
In this study we analyzed under various pH conditions including low pH, the effects of L-malic acid and citric acid, combined or not, on the growth, the proton motive force components and the transcription level of selected genes of the heterolactic bacterium Oenococcus oeni. It is shown here that L-malate enhanced the growth yield at pH equal or below 4.5 while the presence of citrate in media led to a complete and unexpected inhibition of the growth at pH 3.2. Nevertheless, whatever the growth conditions, both L-malate and citrate participated in the enhancement of the transmembrane pH gradient, whereas the membrane potential decreased with the pH. These results suggested that it was not citrate that was directly responsible for the inhibition observed in cultures done at low pH, but probably its end products. This was confirmed since, in media containing L-malate, the addition of acetate substantially impaired the growth rate of the bacterium and slightly the membrane potential and pH gradient. Finally, study of the expression of genes involved in the metabolism of organic acids showed that at pH 4.5 and 3.2 the presence of L-malate led to an increased amount of mRNA of mleP encoding a malate transporter.
Collapse
Affiliation(s)
- Yoann Augagneur
- Laboratoire de Microbiologie, UMR UB/INRA 1232, ENSBANA, Université de Bourgogne, 1 Esplanade Erasme, 21000, Dijon, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Vlaminckx BJM, Schuren FHJ, Montijn RC, Caspers MPM, Fluit AC, Wannet WJB, Schouls LM, Verhoef J, Jansen WTM. Determination of the relationship between group A streptococcal genome content, M type, and toxic shock syndrome by a mixed genome microarray. Infect Immun 2007; 75:2603-11. [PMID: 17325055 PMCID: PMC1865738 DOI: 10.1128/iai.01291-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Group A streptococci (GAS), or Streptococcus pyogenes, are associated with a remarkable variety of diseases, ranging from superficial infections to life-threatening diseases such as toxic-shock-like syndrome (TSS). GAS strains belonging to M types M1 and M3 are associated with TSS. This study aims to obtain insight into the gene profiles underlying different M types and disease manifestations. Genomic differences between 76 clinically well characterized GAS strains collected in The Netherlands were examined using a mixed-genome microarray. Inter-M-type genomic differences clearly outweighed intra-M-type genome variation. Phages were major contributors to observed genome diversification. We identified four novel genes, including two genes encoding fibronectin-binding-like proteins, which are highly specific to a subset of M types and thus may contribute to M-type-associated disease manifestations. All M12 strains were characterized by the unique absence of the citrate lyase complex and reduced growth under hypoxic, nutrient-deprived conditions. Furthermore, six virulence factors, including genes encoding a complement-inhibiting protein (sic), an exotoxin (speA), iron(III) binding factor, collagen binding factor (cpa), and fibrinogen binding factor (prt2-like), were unique to M1 and/or M3 strains. These virulence factors may contribute to the potential of these strains to cause TSS. Finally, in contrast to M-type-specific virulence profiles, we did not identify a common virulence profile among strains associated with TSS irrespective of their M type.
Collapse
Affiliation(s)
- Bart J M Vlaminckx
- University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Smeianov VV, Wechter P, Broadbent JR, Hughes JE, Rodríguez BT, Christensen TK, Ardö Y, Steele JL. Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl Environ Microbiol 2007; 73:2661-72. [PMID: 17322329 PMCID: PMC1855617 DOI: 10.1128/aem.00005-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus helveticus CNRZ32 is used by the dairy industry to modulate cheese flavor. The compilation of a draft genome sequence for this strain allowed us to identify and completely sequence 168 genes potentially important for the growth of this organism in milk or for cheese flavor development. The primary aim of this study was to investigate the expression of these genes during growth in milk and MRS medium by using microarrays. Oligonucleotide probes against each of the completely sequenced genes were compiled on maskless photolithography-based DNA microarrays. Additionally, the entire draft genome sequence was used to produce tiled microarrays in which noninterrupted sequence contigs were covered by consecutive 24-mer probes and associated mismatch probe sets. Total RNA isolated from cells grown in skim milk or in MRS to mid-log phase was used as a template to synthesize cDNA, followed by Cy3 labeling and hybridization. An analysis of data from annotated gene probes identified 42 genes that were upregulated during the growth of CNRZ32 in milk (P < 0.05), and 25 of these genes showed upregulation after applying Bonferroni's adjustment. The tiled microarrays identified numerous additional genes that were upregulated in milk versus MRS. Collectively, array data showed the growth of CNRZ32 in milk-induced genes encoding cell-envelope proteinases, oligopeptide transporters, and endopeptidases as well as enzymes for lactose and cysteine pathways, de novo synthesis, and/or salvage pathways for purines and pyrimidines and other functions. Genes for a hypothetical phosphoserine utilization pathway were also differentially expressed. Preliminary experiments indicate that cheese-derived, phosphoserine-containing peptides increase growth rates of CNRZ32 in a chemically defined medium. These results suggest that phosphoserine is used as an energy source during the growth of L. helveticus CNRZ32.
Collapse
Affiliation(s)
- Vladimir V Smeianov
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz M, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB, Paulsen IT. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 2006; 16:1031-40. [PMID: 16825665 PMCID: PMC1524862 DOI: 10.1101/gr.5238106] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen.
Collapse
Affiliation(s)
- Garry S.A. Myers
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - David A. Rasko
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jackie K. Cheung
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Jacques Ravel
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Rekha Seshadri
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Robert T. DeBoy
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Qinghu Ren
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - John Varga
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24601, USA
| | - Milena M. Awad
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | | | | | - Daniel H. Haft
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Robert J. Dodson
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Ramana Madupu
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | - M.J. Rosovitz
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | - Hoda Khouri
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | - Kisha L. Watkins
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | - Jonathan Benton
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Diana Radune
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Derek J. Fisher
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Helen S. Atkins
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Tom Hiscox
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - B. Helen Jost
- Department of Veterinary Science, University of Arizona, Tucson, Arizona 85721, USA
| | | | - J. Glenn Songer
- Department of Veterinary Science, University of Arizona, Tucson, Arizona 85721, USA
| | - Bruce A. McClane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Richard W. Titball
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | - Julian I. Rood
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Stephen B. Melville
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24601, USA
| | - Ian T. Paulsen
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
- Corresponding author.E-mail ; fax (301) 838-0208
| |
Collapse
|
49
|
Repizo GD, Blancato VS, Sender PD, Lolkema J, Magni C. Catabolite repression of the citST two-component system in Bacillus subtilis. FEMS Microbiol Lett 2006; 260:224-31. [PMID: 16842348 DOI: 10.1111/j.1574-6968.2006.00318.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In Bacillus subtilis, expression of the citrate transporter CitM is under strict control. Transcription of the citM gene is induced by citrate in the medium mediated by the CitS-CitT two-component system and repressed by rapidly degraded carbon sources mediated by carbon catabolite repression (CCR). In this study, we demonstrate that citST genes are part of a bicistronic operon. The promoter region was localized in a stretch of 58 base pairs upstream of the citS gene by deletion experiments. Transcription of the operon was repressed in the presence of glucose by the general transcription factor CcpA. A distal consensus cre site in the citS-coding sequence was implicated in the mechanism of repression. Furthermore, this repression was relieved in Bacillus subtilis mutants deficient in CcpA or Hpr/Crh, components essential to CCR. Thus, we demonstrate that CCR represses the expression of the citST operon, which is responsible for the induction of citM, through the cre site located 1326 bp from transcriptional start site of citST.
Collapse
Affiliation(s)
- Guillermo D Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
50
|
Larsen N, Boye M, Siegumfeldt H, Jakobsen M. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp. lactis grown in synthetic medium and reconstituted skim milk. Appl Environ Microbiol 2006; 72:1173-9. [PMID: 16461664 PMCID: PMC1392913 DOI: 10.1128/aem.72.2.1173-1179.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated protein and gene expression in the lag phase of Lactococcus lactis subsp. lactis CNRZ 157 and compared it to the exponential and stationary phases. By means of two-dimensional polyacrylamide gel electrophoresis, 28 highly expressed lag-phase proteins, implicated in nucleotide metabolism, glycolysis, stress response, translation, transcription, cell division, amino acid metabolism, and coenzyme synthesis, were identified. Among the identified proteins, >2-fold induction and down-regulation in the lag phase were determined for 12 proteins in respect to the exponential phase and for 18 proteins in respect to the stationary phase. Transcriptional changes of the lag-phase proteins in L. lactis were studied by oligonucleotide microarrays. Good correlation between protein and gene expression studies was demonstrated for several differentially expressed proteins, including nucleotide biosynthetic enzymes, adenylosuccinate synthase (PurA), IMP dehydrogenase (GuaB), and aspartate carbamoyl transferase (PyrB); heat-shock protein DnaK; serine hydroxymethyl transferase (GlyA); carbon catabolite control protein (CcpA); elongation factor G (FusA); and cell division protein (FtsZ).
Collapse
Affiliation(s)
- Nadja Larsen
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, D-1958 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|