1
|
Gao PP, Liu HQ, Ye ZW, Zheng QW, Zou Y, Wei T, Guo LQ, Lin JF. The beneficial potential of protein hydrolysates as prebiotic for probiotics and its biological activity: a review. Crit Rev Food Sci Nutr 2023; 64:13045-13057. [PMID: 37811651 DOI: 10.1080/10408398.2023.2260467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Probiotics are not only a food supplement, but they have shown great potential in their nutritional, health and therapeutic effects. To maximize the beneficial effects of probiotics, it is commonly achieved by adding prebiotics. Prebiotics primarily comprise indigestible carbohydrates, specific peptides, proteins, and lipids, with oligosaccharides being the most extensively studied prebiotics. However, these rapidly fermenting oligosaccharides have many drawbacks and can cause diarrhea and flatulence in the body. Hence, the exploration of new prebiotic is of great interest. Besides oligosaccharides, protein hydrolysates have been demonstrated to enhance the expression of beneficial properties of probiotics. Consequently, this paper outlines the mechanism underlying the action of protein hydrolysates on probiotics, as well as the advantageous impacts of proteins hydrolysates derived from various food sources on probiotics. In addition, this paper also reviews the currently reported biological activities of protein hydrolysates. The aim is a theoretical basis for the development and implementation of novel prebiotics.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Han-Qing Liu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Zhi-Wei Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Qian-Wang Zheng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Yuan Zou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| |
Collapse
|
2
|
Jing Y, Mu C, Wang H, Shen J, Zoetendal EG, Zhu W. Amino acid utilization allows intestinal dominance of Lactobacillus amylovorus. THE ISME JOURNAL 2022; 16:2491-2502. [PMID: 35896730 PMCID: PMC9561148 DOI: 10.1038/s41396-022-01287-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/25/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The mammalian intestine harbors heterogeneous distribution of microbes among which specific taxa (e.g. Lactobacillus) dominate across mammals. Deterministic factors such as nutrient availability and utilization may affect microbial distributions. Due to physiological complexity, mechanisms linking nutrient utilization and the dominance of key taxa remain unclear. Lactobacillus amylovorus is a predominant species in the small intestine of pigs. Employing a pig model, we found that the small intestine was dominated by Lactobacillus and particularly L. amylovorus, and enriched with peptide-bound amino acids (PBAAs), all of which were further boosted after a peptide-rich diet. To investigate the bacterial growth dominance mechanism, a representative strain L. amylovorus S1 was isolated from the small intestine and anaerobically cultured in media with free amino acids or peptides as sole nitrogen sources. L. amylovorus S1 grew preferentially with peptide-rich rather than amino acid-rich substrates, as reflected by enhanced growth and PBAA utilization, and peptide transporter upregulations. Utilization of free amino acids (e.g. methionine, valine, lysine) and expressions of transporters and metabolic enzymes were enhanced simultaneously in peptide-rich substrate. Additionally, lactate was elevated in peptide-rich substrates while acetate in amino acid-rich substrates, indicating distinct metabolic patterns depending on substrate forms. These results suggest that an increased capability of utilizing PBAAs contributes to the dominance of L. amylovorus, indicating amino acid utilization as a deterministic factor affecting intestinal microbial distribution. These findings may provide new insights into the microbe-gut nutrition interplay and guidelines for dietary manipulations toward gut health especially small intestine health.
Collapse
Affiliation(s)
- Yujia Jing
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huisong Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhua Shen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erwin G Zoetendal
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Quantification of Extracellular DNA Network Abundance and Architecture within Streptococcus gordonii Biofilms Reveals Modulatory Factors. Appl Environ Microbiol 2022; 88:e0069822. [PMID: 35695569 PMCID: PMC9275248 DOI: 10.1128/aem.00698-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit.
Collapse
|
4
|
Wu J, Yan X, Weng P, Chen G, Wu Z. Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. J Basic Microbiol 2021; 61:576-590. [PMID: 33945164 DOI: 10.1002/jobm.202100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/27/2022]
Abstract
In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry.
Collapse
Affiliation(s)
- Jingyi Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xu Yan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Gong Chen
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, Sichuan, China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Delineating Novel Therapeutic Drug and Vaccine Targets for Staphylococcus cornubiensis NW1T Through Computational Analysis. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10076-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Defining the Environmental Adaptations of Genus Devosia: Insights into its Expansive Short Peptide Transport System and Positively Selected Genes. Sci Rep 2020; 10:1151. [PMID: 31980727 PMCID: PMC6981132 DOI: 10.1038/s41598-020-58163-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Devosia are well known for their dominance in soil habitats contaminated with various toxins and are best characterized for their bioremediation potential. In this study, we compared the genomes of 27 strains of Devosia with aim to understand their metabolic abilities. The analysis revealed their adaptive gene repertoire which was bared from 52% unique pan-gene content. A striking feature of all genomes was the abundance of oligo- and di-peptide permeases (oppABCDF and dppABCDF) with each genome harboring an average of 60.7 ± 19.1 and 36.5 ± 10.6 operon associated genes respectively. Apart from their primary role in nutrition, these permeases may help Devosia to sense environmental signals and in chemotaxis at stressed habitats. Through sequence similarity network analyses, we identified 29 Opp and 19 Dpp sequences that shared very little homology with any other sequence suggesting an expansive short peptidic transport system within Devosia. The substrate determining components of these permeases viz. OppA and DppA further displayed a large diversity that separated into 12 and 9 homologous clusters respectively in addition to large number of isolated nodes. We also dissected the genome scale positive evolution and found genes associated with growth (exopolyphosphatase, HesB_IscA_SufA family protein), detoxification (moeB, nifU-like domain protein, alpha/beta hydrolase), chemotaxis (cheB, luxR) and stress response (phoQ, uspA, luxR, sufE) were positively selected. The study highlights the genomic plasticity of the Devosia spp. for conferring adaptation, bioremediation and the potential to utilize a wide range of substrates. The widespread toxin-antitoxin loci and ‘open’ state of the pangenome provided evidence of plastic genomes and a much larger genetic repertoire of the genus which is yet uncovered.
Collapse
|
7
|
Yu J, Hui W, Cao C, Pan L, Zhang H, Zhang W. Integrative Genomic and Proteomic Analysis of the Response of Lactobacillus casei Zhang to Glucose Restriction. J Proteome Res 2018; 17:1290-1299. [DOI: 10.1021/acs.jproteome.7b00886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Wenyan Hui
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Chenxia Cao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Lin Pan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of
Education and §Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Inner Mongolia, Huhhot 010018, China
| |
Collapse
|
8
|
Olvera-García M, Sanchez-Flores A, Quirasco Baruch M. Genomic and functional characterisation of two Enterococcus strains isolated from Cotija cheese and their potential role in ripening. Appl Microbiol Biotechnol 2018; 102:2251-2267. [PMID: 29372297 DOI: 10.1007/s00253-018-8765-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Enterococcus spp. are present in the native microbiota of many traditional fermented foods. Their ability to produce antibacterial compounds, mainly against Listeria monocytogenes, has raised interest recently. However, there is scarce information about their proteolytic and lipolytic potential, and their biotechnological application is currently limited because enterococcal strains have been related to nosocomial infections. In this work, next-generation sequencing and optimised bioinformatic pipelines were used to annotate the genomes of two Enterococcus strains-one E. faecium and one E. faecalis-isolated from the Mexican artisanal ripened Cotija cheese. A battery of genes involved in their proteolytic system was annotated. Genes coding for lipases, esterases and other enzymes whose final products contribute to cheese aroma and flavour were identified as well. As for the production of antibacterial compounds, several peptidoglycan hydrolase- and bacteriocin-coding genes were identified in both genomes experimentally and by bioinformatic analyses. E. faecalis showed resistance to aminoglycosides and E. faecium to aminoglycosides and macrolides, as predicted by the genome functional annotation. No pathogenicity islands were found in any of the strains, although traits such as the ability of biofilm formation and cell aggregation were observed. Finally, a comparative genomic analysis was able to discriminate between the food strains isolated and nosocomial strains. In summary, pathogenic strains are resistant to a wide range of antibiotics and contain virulence factors that cause host damage; in contrast, food strains display less antibiotic resistance, include genes that encode class II bacteriocins and express virulence factors associated with host colonisation rather than invasion.
Collapse
Affiliation(s)
- Myrna Olvera-García
- Fac. de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U, 04510, Ciudad de México, Mexico
| | - Alejandro Sanchez-Flores
- Instituto de Biotecnología, Unidad de Secuenciación Masiva y Bioinformática, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Maricarmen Quirasco Baruch
- Fac. de Química, Departamento de Alimentos y Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, C. U, 04510, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Nasher F, Heller M, Hathaway LJ. Streptococcus pneumoniae Proteins AmiA, AliA, and AliB Bind Peptides Found in Ribosomal Proteins of Other Bacterial Species. Front Microbiol 2018; 8:2688. [PMID: 29379482 PMCID: PMC5775242 DOI: 10.3389/fmicb.2017.02688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
The nasopharynx is frequently colonized by both commensal and pathogenic bacteria including Streptococcus pneumoniae (pneumococcus). Pneumococcus is an important pathogen responsible for bacterial meningitis and community acquired pneumonia but is also commonly an asymptomatic colonizer of the nasopharynx. Understanding interactions between microbes may provide insights into pathogenesis. Here, we investigated the ability of the three oligopeptide-binding proteins AmiA, AliA, and AliB of an ATP-binding cassette transporter of pneumococcus to detect short peptides found in other bacterial species. We found three possible peptide ligands for AmiA and four each for AliA and AliB of which two for each protein matched ribosomal proteins of other bacterial species. Using synthetic peptides we confirmed the following binding: AmiA binds peptide AKTIKITQTR, matching 50S ribosomal subunit protein L30, AliA binds peptide FNEMQPIVDRQ, matching 30S ribosomal protein S20, and AliB binds peptide AIQSEKARKHN, matching 30S ribosomal protein S20, without excluding the possibility of binding of the other peptides. These Ami-AliA/AliB peptide ligands are found in multiple species in the class of Gammaproteobacteria which includes common colonizers of the nostrils and nasopharynx. Binding such peptides may enable pneumococcus to detect and respond to neighboring species in its environment and is a potential mechanism for interspecies communication and environmental surveillance.
Collapse
Affiliation(s)
- Fauzy Nasher
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Department of Clinical Research, Proteomics and Mass Spectrometry Core Facility, University of Bern, Bern, Switzerland
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P. Regulation of competence for natural transformation in streptococci. INFECTION GENETICS AND EVOLUTION 2015; 33:343-60. [DOI: 10.1016/j.meegid.2014.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 09/07/2014] [Indexed: 02/02/2023]
|
11
|
Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V, Monnet C, Irlinger F, Landaud S, Leclercq-Perlat MN, Bento P, Fraud S, Gibrat JF, Aubert J, Fer F, Guédon E, Pons N, Kennedy S, Beckerich JM, Swennen D, Bonnarme P. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS One 2015; 10:e0124360. [PMID: 25867897 PMCID: PMC4395090 DOI: 10.1371/journal.pone.0124360] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/02/2015] [Indexed: 11/18/2022] Open
Abstract
Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.
Collapse
Affiliation(s)
- Eric Dugat-Bony
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Cécile Straub
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Aurélie Teissandier
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Djamila Onésime
- INRA, Institut Micalis, F-78352, Jouy-en-Josas, France
- AgroParisTech, Institut Micalis, F-78352, Jouy-en-Josas, France
| | - Valentin Loux
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | - Christophe Monnet
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Françoise Irlinger
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Sophie Landaud
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Marie-Noëlle Leclercq-Perlat
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Pascal Bento
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | | | - Jean-François Gibrat
- INRA, UR1404 Mathématiques et Informatique Appliquées du Génome à l’Environnement, F-78352, Jouy-en-Josas, France
| | - Julie Aubert
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Frédéric Fer
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
- INRA, UMR 518 Mathématiques et Informatiques Appliquées, F-75231, Paris, France
| | - Eric Guédon
- INRA, Institut Micalis, F-78352, Jouy-en-Josas, France
- AgroParisTech, Institut Micalis, F-78352, Jouy-en-Josas, France
| | - Nicolas Pons
- INRA, US 1367 Metagenopolis, F-78352, Jouy-en-Josas, France
| | - Sean Kennedy
- INRA, US 1367 Metagenopolis, F-78352, Jouy-en-Josas, France
| | - Jean-Marie Beckerich
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Dominique Swennen
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
| | - Pascal Bonnarme
- INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, F-78850, Thiverval-Grignon, France
- AgroParisTech, UMR 782 Génie et microbiologie des procédés alimentaires, F-78850, Thiverval-Grignon, France
- * E-mail:
| |
Collapse
|
12
|
Kevvai K, Kütt ML, Nisamedtinov I, Paalme T. Utilization of (15)N-labelled yeast hydrolysate in Lactococcus lactis IL1403 culture indicates co-consumption of peptide-bound and free amino acids with simultaneous efflux of free amino acids. Antonie van Leeuwenhoek 2014; 105:511-22. [PMID: 24389760 DOI: 10.1007/s10482-013-0103-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
Lactococcus lactis subsp. lactis IL1403 was grown in medium containing unlabelled free amino acids and (15)N-labelled yeast hydrolysate to gain insight into the role of peptides as a source of amino acids under conditions where free amino acids are abundant. A mathematical model was composed to estimate the fluxes of free and peptide-derived amino acids into and out of the intracellular amino acid pool. We observed co-consumption of peptides and free amino acids and a considerable efflux of most free amino acids during growth. We did not observe significant differences between the peptide consumption patterns of essential and non-essential amino acids, which suggests that the incorporation of a particular amino acid is more dependent on its availability in a readily assimilated form than the organism's auxotrophy for it. For most amino acids the contribution of peptide-bound forms to the formation of biomass was initially between 30 and 60 % with the remainder originating from free amino acids. During the later stages of fermentation we observed a decrease in the utilization of peptide-bound amino acids, thus indicating that the more readily assimilated peptides are gradually exhausted from the medium during growth.
Collapse
Affiliation(s)
- Kaspar Kevvai
- Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618, Tallinn, Estonia,
| | | | | | | |
Collapse
|
13
|
Yuan J, Wei B, Lipton MS, Gao H. Impact of ArcA loss in Shewanella oneidensis
revealed by comparative proteomics under aerobic and anaerobic conditions. Proteomics 2012; 12:1957-69. [DOI: 10.1002/pmic.201100651] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Yuan
- Institute of Microbiology and College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Buyun Wei
- Institute of Microbiology and College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| | - Mary S. Lipton
- Biological Sciences Division; Pacific Northwest National Laboratory; Richland WA USA
- U.S. Department of Energy Great Lakes Bioenergy Research Center; University of Wisconsin-Madison; Madison WI USA
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences; Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
14
|
Dressaire C, Redon E, Gitton C, Loubière P, Monnet V, Cocaign-Bousquet M. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information. Microb Cell Fact 2011; 10 Suppl 1:S18. [PMID: 21995707 PMCID: PMC3236307 DOI: 10.1186/1475-2859-10-s1-s18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Amino acid assimilation is crucial for bacteria and this is particularly true for Lactic Acid Bacteria (LAB) that are generally auxotroph for amino acids. The global response of the LAB model Lactococcus lactis ssp. lactis was characterized during progressive isoleucine starvation in batch culture using a chemically defined medium in which isoleucine concentration was fixed so as to become the sole limiting nutriment. Dynamic analyses were performed using transcriptomic and proteomic approaches and the results were analysed conjointly with fermentation kinetic data. Results The response was first deduced from transcriptomic analysis and corroborated by proteomic results. It occurred progressively and could be divided into three major mechanisms: (i) a global down-regulation of processes linked to bacterial growth and catabolism (transcription, translation, carbon metabolism and transport, pyrimidine and fatty acid metabolism), (ii) a specific positive response related to the limiting nutrient (activation of pathways of carbon or nitrogen metabolism and leading to isoleucine supply) and (iii) an unexpected oxidative stress response (positive regulation of aerobic metabolism, electron transport, thioredoxin metabolism and pyruvate dehydrogenase). The involvement of various regulatory mechanisms during this adaptation was analysed on the basis of transcriptomic data comparisons. The global regulator CodY seemed specifically dedicated to the regulation of isoleucine supply. Other regulations were massively related to growth rate and stringent response. Conclusion This integrative biology approach provided an overview of the metabolic pathways involved during isoleucine starvation and their regulations. It has extended significantly the physiological understanding of the metabolism of L. lactis ssp. lactis. The approach can be generalised to other conditions and will contribute significantly to the identification of the biological processes involved in complex regulatory networks of micro-organisms.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
15
|
Lamarque M, Aubel D, Piard JC, Gilbert C, Juillard V, Atlan D. The peptide transport system Opt is involved in both nutrition and environmental sensing during growth of Lactococcus lactis in milk. Microbiology (Reading) 2011; 157:1612-1619. [DOI: 10.1099/mic.0.048173-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis is known to take up extracellular peptides via at least three distinct peptide transporters. The well-described oligopeptide transporter Opp alone is able to ensure the growth of L. lactis in milk, while the di- and tripeptide transporter DtpT is involved in a peptide-dependent signalling mechanism. The oligopeptide Opt transporter displays two peptide-binding proteins, OptA and OptS. We previously demonstrated that OptA-dependent transport is dedicated to nutritional peptides, as an optABCDF mutant (of a strain devoid of Opp) has an impaired capacity to grow in milk. Using isogenic peptide transport mutants, this study shows that biosynthesis of the Opt transporter is much less sensitive to downregulation that is dependent on extracellular peptides taken up by DtpT than is Opp biosynthesis; this peptide-dependent regulation relies on the transcriptional repressor CodY. We demonstrate the dual function of the Opt system; while OptA contributes to the bacterial nutrition during growth in milk, OptS is involved in the transport of signalling peptides derived from milk and controlling opp expression. So, these results shed new light on the peptide-dependent regulation relying on two peptide transporters with different specificities: DtpT and Opt (via OptS).
Collapse
Affiliation(s)
- Mauld Lamarque
- Université de Lyon, CNRS UMR 5240, Université Lyon 1, 10 rue Dubois F-69622 Villeurbanne, France
| | - Dominique Aubel
- Université de Lyon, CNRS UMR 5240, Université Lyon 1, 10 rue Dubois F-69622 Villeurbanne, France
| | - Jean-Christophe Piard
- UMR1319 MICALIS, INRA, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| | - Christophe Gilbert
- Université de Lyon, CNRS UMR 5240, Université Lyon 1, 10 rue Dubois F-69622 Villeurbanne, France
| | - Vincent Juillard
- UMR1319 MICALIS, INRA, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| | - Danièle Atlan
- Université de Lyon, CNRS UMR 5240, Université Lyon 1, 10 rue Dubois F-69622 Villeurbanne, France
| |
Collapse
|
16
|
Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int J Food Microbiol 2011; 146:1-13. [DOI: 10.1016/j.ijfoodmicro.2011.01.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 11/23/2022]
|
17
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
18
|
Kinetic study of Lactococcus lactis strains (SLT6 and SLT10) growth on papain-hydrolysed whey. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0407-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Ritt JF, Remize F, Grandvalet C, Guzzo J, Atlan D, Alexandre H. Peptidases specific for proline-containing peptides and their unusual peptide-dependent regulation in Oenococcus oeni. J Appl Microbiol 2010; 106:801-13. [PMID: 19302100 DOI: 10.1111/j.1365-2672.2008.04032.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Growth of the lactic acid bacterium (LAB) Oenococcus oeni, which is involved in malolactic fermentation during the winemaking process, is stimulated by peptides originating from yeast. In this study, we investigated the impact of peptides on O. oeni growth, peptidase activity and the expression of genes encoding the studied peptidases. METHODS AND RESULTS Low levels of PepN activity and very high levels of PepI activity were observed in O. oeni, whereas levels of PepX activity were intermediate. The level of biosynthesis of these O. oeni peptidases was shown to depend on peptides present in the culture medium. These results were confirmed by transcriptional analyses of putative pep genes. The mechanism of repression by peptides did not involve a CodY-like regulator. CONCLUSIONS Peptides from yeast decrease the levels of enzymatic activity and relative gene expression of O. oeni peptidases. Peptidases specific for proline-containing peptides are important for O. oeni nitrogen metabolism. SIGNIFICANCE AND IMPACT OF THE STUDY We report here for the first time that the enzymes involved in the assimilation of proline-containing peptides by O. oeni differ from the well-described proteolytic system of milk LAB. This may reflect a specific adaptation to the wine environment.
Collapse
Affiliation(s)
- J-F Ritt
- Laboratoire de Recherche en Vigne et Vin, Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | | | | | | | | | | |
Collapse
|
20
|
Picon A, García-Casado M, Nuñez M. Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Drici H, Gilbert C, Kihal M, Atlan D. Atypical citrate-fermentingLactococcus lactisstrains isolated from dromedaryâs milk. J Appl Microbiol 2010; 108:647-57. [DOI: 10.1111/j.1365-2672.2009.04459.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Hiron A, Borezée-Durant E, Piard JC, Juillard V. Only one of four oligopeptide transport systems mediates nitrogen nutrition in Staphylococcus aureus. J Bacteriol 2007; 189:5119-29. [PMID: 17496096 PMCID: PMC1951871 DOI: 10.1128/jb.00274-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oligopeptides internalized by oligopeptide permease (Opp) transporters play key roles in bacterial nutrition, signaling, and virulence. To date, two opp operons, opp-1 and opp-2, have been identified in Staphylococcus aureus. Systematic in silico analysis of 11 different S. aureus genomes revealed the existence of two new opp operons, opp-3 and opp-4, plus an opp-5A gene encoding a putative peptide-binding protein. With the exception of opp-4, the opp operons were present in all S. aureus strains. Within a single strain, the different opp operons displayed little sequence similarity and distinct genetic organization. Transcriptional studies showed that opp-1, opp-2, opp-3, and opp-4 operons were polycistronic and that opp-5A is monocistronic. We designed a minimal chemically defined medium for S. aureus RN6390 and showed that all opp genes were expressed but at different levels. Where tested, OppA protein production paralleled transcriptional profiles. opp-3, which encodes proteins most similar to known peptide transport proteins, displayed the highest expression level and was the only transporter to be regulated by specific amino acids, tyrosine and phenylalanine. Defined deletion mutants in one or several peptide permeases were constructed and tested for their capacity to grow in peptide-containing medium. Among the four putative Opp systems, Opp-3 was the only system able to provide oligopeptides for growth, ranging in length from 3 to 8 amino acids. Dipeptides were imported exclusively by DtpT, a proton-driven di- and tripeptide permease. These data provide a first complete inventory of the peptide transport systems opp and dtpT of S. aureus. Among them, the newly identified Opp-3 appears to be the main Opp system supplying the cell with peptides as nutritional sources.
Collapse
Affiliation(s)
- Aurelia Hiron
- Unité Bactéries Lactiques et pathogènes Opportunistes, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| | | | | | | |
Collapse
|
23
|
Alloing G, Travers I, Sagot B, Le Rudulier D, Dupont L. Proline betaine uptake in Sinorhizobium meliloti: Characterization of Prb, an opp-like ABC transporter regulated by both proline betaine and salinity stress. J Bacteriol 2006; 188:6308-17. [PMID: 16923898 PMCID: PMC1595395 DOI: 10.1128/jb.00585-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti uses proline betaine (PB) as an osmoprotectant when osmotically stressed and as an energy source in low-osmolarity environments. To fulfill this dual function, two separate PB transporters, BetS and Hut, that contribute to PB uptake at high and low osmolarity, respectively, have been previously identified. Here, we characterized a novel transport system that mediates the uptake of PB at both high and low osmolarities. Sequence analysis of Tn5-luxAB chromosomal insertions from several PB-inducible mutants has revealed the presence of a four-gene locus encoding the components of an ABC transporter, Prb, which belongs to the oligopeptide permease (Opp) family. Surprisingly, prb mutants were impaired in their ability to transport PB, and oligopeptides were not shown to be competitors for PB uptake. Further analysis of Prb specificity has shown its ability to take up other quaternary ammonium compounds such as choline and, to a lesser extent, glycine betaine. Interestingly, salt stress and PB were found to control prb expression in a positive and synergistic way and to increase Prb transport activity. At low osmolarity, Prb is largely implicated in PB uptake by stationary-phase cells, likely to provide PB as a source of carbon and nitrogen. Furthermore, at high osmolarity, the analysis of prb and betS single and double mutants demonstrated that Prb, together with BetS, is a key system for protection by PB.
Collapse
Affiliation(s)
- Geneviève Alloing
- Unité Interactions Plantes-Microorganismes et Santé Végétale, UMR6192 CNRS-INRA-Université de Nice Sophia Antipolis, Centre INRA Agrobiotech, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cédex, France.
| | | | | | | | | |
Collapse
|
24
|
Remize F, Gaudin A, Kong Y, Guzzo J, Alexandre H, Krieger S, Guilloux-Benatier M. Oenococcus oeni preference for peptides: qualitative and quantitative analysis of nitrogen assimilation. Arch Microbiol 2006; 185:459-69. [PMID: 16775752 DOI: 10.1007/s00203-006-0116-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/31/2006] [Accepted: 04/18/2006] [Indexed: 11/29/2022]
Abstract
Optimization of malolactic fermentation in wine depends mainly on better understanding of nitrogen nutritional requirements of Oenococcus oeni. Four widely used starter strains and the reference ATCC BAA-1163 strain were grown in media containing different N sources: free amino acids, oligopeptides (0.5-10 kDa) or polypeptides (> 10 kDa). Amino acid auxotrophies were determined by the single omission technique. The tested strains were indifferent to only two to four amino acids and two of the starter strains appeared to be particularly demanding. Nitrogen consumption was investigated and a significant level of nitrogen was consumed by O. oeni only in the free amino acid medium. In media containing complex nitrogen sources, a global balance above 5 mg N l(-1) was enough to ensure biomass formation of all tested strains. Moreover, for all strains, bacterial growth yield was higher in the presence of nitrogen from peptides than that from free amino acids. However, no direct relationship between the bacterial growth level and the amount of nitrogen metabolized could be established. These findings were discussed in relation to the physiology of wine malolactic bacteria.
Collapse
Affiliation(s)
- Fabienne Remize
- Laboratoire de Microbiologie UMR uB/INRA 1232, Université de Bourgogne, 1 Esplanade Erasme, 21000, Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Gitton C, Meyrand M, Wang J, Caron C, Trubuil A, Guillot A, Mistou MY. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk. Appl Environ Microbiol 2005; 71:7152-63. [PMID: 16269754 PMCID: PMC1287624 DOI: 10.1128/aem.71.11.7152-7163.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have compared the proteomic profiles of L. lactis subsp. cremoris NCDO763 growing in the synthetic medium M17Lac, skim milk microfiltrate (SMM), and skim milk. SMM was used as a simple model medium to reproduce the initial phase of growth of L. lactis in milk. To widen the analysis of the cytoplasmic proteome, we used two different gel systems (pH ranges of 4 to 7 and 4.5 to 5.5), and the proteins associated with the cell envelopes were also studied by two-dimensional electrophoresis. In the course of the study, we analyzed about 800 spots and identified 330 proteins by mass spectrometry. We observed that the levels of more than 50 and 30 proteins were significantly increased upon growth in SMM and milk, respectively. The large redeployment of protein synthesis was essentially associated with an activation of pathways involved in the metabolism of nitrogenous compounds: peptidolytic and peptide transport systems, amino acid biosynthesis and interconversion, and de novo biosynthesis of purines. We also showed that enzymes involved in reactions feeding the purine biosynthetic pathway in one-carbon units and amino acids have an increased level in SMM and milk. The analysis of the proteomic data suggested that the glutamine synthetase (GS) would play a pivotal role in the adaptation to SMM and milk. The analysis of glnA expression during growth in milk and the construction of a glnA-defective mutant confirmed that GS is an essential enzyme for the development of L. lactis in dairy media. This analysis thus provides a proteomic signature of L. lactis, a model lactic acid bacterium, growing in its technological environment.
Collapse
Affiliation(s)
- Christophe Gitton
- Unité Biochimie et Structure des Protéines, INRA, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Juille O, Bars DL, Juillard V. The specificity of oligopeptide transport by Streptococcus thermophilus resembles that of Lactococcus lactis and not that of pathogenic streptococci. MICROBIOLOGY-SGM 2005; 151:1987-1994. [PMID: 15942005 DOI: 10.1099/mic.0.27730-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptide transport is a crucial step in the growth of Streptococcus thermophilus in protein- or peptide-containing media. The objective of the present work was to determine the specificity of peptide utilization by this widely used lactic acid bacterium. To reach that goal, complementary approaches were employed. The capability of a proteinase-negative S. thermophilus strain to grow in a chemically defined medium containing a mixture of peptides isolated from milk as the source of amino acids was analysed. Peptides were separated into three size classes by ultrafiltration. The strain was able to use peptides up to 3.5 kDa during growth, as revealed by liquid chromatography and mass spectrometry analyses. The same strain was grown in chemically defined medium containing a tryptic digest of casein, and the respective time-course consumption of the peptides during growth was estimated. The ability to consume large peptides (up to 23 residues) was confirmed, as long as they are cationic and hydrophobic. These results were confirmed by peptide transport studies. Extension of the study to 11 other strains revealed that they all shared these preferences.
Collapse
Affiliation(s)
- Odile Juille
- Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| | - Dominique Le Bars
- Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| | - Vincent Juillard
- Useful Bacterial Surface Proteins, Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| |
Collapse
|
27
|
Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. THE PLANT CELL 2005. [PMID: 16243904 DOI: 10.1105/tpc.105.035816.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Members of the ABC (for ATP binding cassette) superfamily of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More recently, members of the multidrug resistance P-glycoprotein (MDR/PGP) subfamily of ABC transporters have been shown to function in the transport of the phytohormone auxin in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR/PGP PGP4 functions in the basipetal redirection of auxin from the root tip. Reporter gene studies showed that PGP4 was strongly expressed in root cap and epidermal cells. PGP4 exhibits apolar plasma membrane localization in the root cap and polar localization in tissues above. Root gravitropic bending and elongation as well as lateral root formation were reduced in pgp4 mutants compared with the wild type. pgp4 exhibited reduced basipetal auxin transport in roots and a small decrease in shoot-to-root transport consistent with a partial loss of the redirective auxin sink in the root. Seedlings overexpressing PGP4 exhibited increased shoot-to-root auxin transport. Heterologous expression of PGP4 in mammalian cells resulted in 1-N-naphthylthalamic acid-reversible net uptake of [3H]indole-3-acetic acid. These results indicate that PGP4 functions primarily in the uptake of redirected or newly synthesized auxin in epidermal root cells.
Collapse
Affiliation(s)
- Kazuyoshi Terasaka
- Laboratory of Molecular and Cellular Biology of Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K. PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. THE PLANT CELL 2005; 17:2922-39. [PMID: 16243904 PMCID: PMC1276020 DOI: 10.1105/tpc.105.035816] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Members of the ABC (for ATP binding cassette) superfamily of integral membrane transporters function in cellular detoxification, cell-to-cell signaling, and channel regulation. More recently, members of the multidrug resistance P-glycoprotein (MDR/PGP) subfamily of ABC transporters have been shown to function in the transport of the phytohormone auxin in both monocots and dicots. Here, we report that the Arabidopsis thaliana MDR/PGP PGP4 functions in the basipetal redirection of auxin from the root tip. Reporter gene studies showed that PGP4 was strongly expressed in root cap and epidermal cells. PGP4 exhibits apolar plasma membrane localization in the root cap and polar localization in tissues above. Root gravitropic bending and elongation as well as lateral root formation were reduced in pgp4 mutants compared with the wild type. pgp4 exhibited reduced basipetal auxin transport in roots and a small decrease in shoot-to-root transport consistent with a partial loss of the redirective auxin sink in the root. Seedlings overexpressing PGP4 exhibited increased shoot-to-root auxin transport. Heterologous expression of PGP4 in mammalian cells resulted in 1-N-naphthylthalamic acid-reversible net uptake of [3H]indole-3-acetic acid. These results indicate that PGP4 functions primarily in the uptake of redirected or newly synthesized auxin in epidermal root cells.
Collapse
Affiliation(s)
- Kazuyoshi Terasaka
- Laboratory of Molecular and Cellular Biology of Totipotency, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
den Hengst CD, van Hijum SAFT, Geurts JMW, Nauta A, Kok J, Kuipers OP. The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element. J Biol Chem 2005; 280:34332-42. [PMID: 16040604 DOI: 10.1074/jbc.m502349200] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CodY of Lactococcus lactis MG1363 is a transcriptional regulator that represses the expression of several genes encoding proteins of the proteolytic system. DNA microarray analysis, comparing the expression profiles of L. lactis MG1363 and an isogenic strain in which codY was mutated, was used to determine the CodY regulon. In peptide-rich medium and exponentially growing cells, where CodY exerts strong repressing activity, the expression of over 30 genes was significantly increased upon removal of codY. The differentially expressed genes included those predominantly involved in amino acid transport and metabolism. In addition, several genes belonging to other functional categories were derepressed, stressing the pleiotropic role of CodY. Scrutinizing the transcriptome data with bioinformatics tools revealed the presence of a novel over-represented motif in the upstream regions of several of the genes derepressed in L. lactis MG1363DeltacodY. Evidence is presented that this 15-bp cis-sequence, AATTTTCWGAAAATT, serves as a high affinity binding site for CodY, as shown by electrophoretic mobility shift assays and DNase I footprinting analyses. The presence of this CodY-box is sufficient to evoke CodY-mediated regulation in vivo. A copy of this motif is also present in the upstream region of codY itself. It is shown that CodY regulates its own synthesis and requires the CodY-box and branched-chain amino acids to interact with its promoter.
Collapse
Affiliation(s)
- Chris D den Hengst
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren and Friesland Foods Corporate Research, P. O. Box 87, 7400 AB Deventer, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Doeven MK, Kok J, Poolman B. Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Mol Microbiol 2005; 57:640-9. [PMID: 16045610 DOI: 10.1111/j.1365-2958.2005.04698.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peptide transport in microorganisms is important for nutrition of the cell and various signalling processes including regulation of gene expression, sporulation, chemotaxis, competence and virulence development. Peptide transport is mediated via different combinations of ion-linked and ATP-binding cassette (ABC) transporters, the latter utilizing single or multiple peptide-binding proteins with overlapping specificities. The paradigm for research on peptide transport is Lactococcus lactis, in which the uptake of peptides containing essential amino acids is vital for growth on milk proteins. Differential expression and characteristics of peptide-binding proteins in several Lactococcus lactis strains resulted in apparent conflicts with older literature. Recent developments and new data now make the pieces of the puzzle fall back into place again and confirm the view that the oligopeptide-binding proteins determine the uptake selectivity of their cognate ABC transporters. Besides reviewing the current data on binding specificity and transport selectivity of peptide transporters in L. lactis, the possible implications for peptide utilization by other bacterial species are discussed.
Collapse
Affiliation(s)
- Mark K Doeven
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | | | | |
Collapse
|