1
|
Fulton KM, Mendoza-Barberà E, Tomás JM, Twine SM, Smith JC, Merino S. Polar flagellin glycan heterogeneity of Aeromonas hydrophila strain ATCC 7966 T. Bioorg Chem 2025; 158:108300. [PMID: 40058227 DOI: 10.1016/j.bioorg.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Motile pathogens often rely upon flagellar motility as an essential virulence factor and in many species the structural flagellin protein is glycosylated. Flagellin glycosylation has been shown to be important for proper function of the flagellar filament in a number of bacterial species. Aeromonas hydrophila is a ubiquitous aquatic pathogen with a constitutively expressed polar flagellum. Using a suite of mass spectrometry techniques, the flagellin FlaA and FlaB structural proteins of A. hydrophila strain ATCC 7966T were shown to be glycosylated with significant microheterogeneity, macroheterogeneity, and metaheterogeneity. The primary linking sugar in this strain was a novel and previously unreported pseudaminic acid derivative with a mass of 422 Da. The pseudaminic acid derivative was followed in sequence by two hexoses, an N-acetylglucosamine (with additional variable secondary modification), and a deoxy N-acetylglucosamine derivative. These pentasaccharide glycans were observed modifying all eight modification sites. Hexasaccharides, which included an additional N-acetylhexosamine residue as the capping sugar, were observed exclusively modifying a pair of isobaric peptides from FlaA and FlaB. Interestingly, these isobaric peptides are immediately adjacent to a toll-like receptor 5 binding site in both protein sequences. Glycosylation status was also linked to motility, a critical bacterial virulence factor.
Collapse
Affiliation(s)
- Kelly M Fulton
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada; Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada.
| | - Elena Mendoza-Barberà
- Departamento de Biologia, Sanidad y Medio Ambiente, Facultad de Farmacia y Ciencias de la Alimentación, Universidad de Barcelona, C/ Joan XXIII, 27, 08028 Barcelona, Barcelona, Spain; Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain
| | - Juan M Tomás
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1N 5A2, Canada; Department of Biology, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel By Dr., Ottawa, Ontario, K1S 5B6, Canada
| | - Susana Merino
- Instituto de Investigación en Nutrición y Seguridad Alimentaria (INSA), Universidad de Barcelona, Av. Prat de la Riba, 171, 08921, Santa Coloma de Gramenet, Barcelona, Spain; Departamento de Genética, Microbiología y Estadística, Facultad de Biología, Universidad de Barcelona, Avd. Diagonal 643, 08028 Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Song W, Geng S, Qi Q, Lu X. Ugd Is Involved in the Synthesis of Glycans of Glycoprotein and LPS and Is Important for Cellulose Degradation in Cytophaga hutchinsonii. Microorganisms 2025; 13:395. [PMID: 40005761 PMCID: PMC11858162 DOI: 10.3390/microorganisms13020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Cytophaga hutchinsonii, a member of the phylum Bacteroidetes, can rapidly degrade crystalline cellulose through direct cell-to-substrate contact. Most of its cellulases are secreted by the Type IX secretion system (T9SS) and anchored to the cell surface. Our previous study proved that the C-terminal domain (CTD) of the T9SS substrate cellulase Cel9A is glycosylated in C. hutchinsonii. However, its glycosylation mechanism has remained elusive. In this study, we found that chu_3394, which encodes UDP-glucose 6-dehydrogenase (Ugd), was important for the glycosylation of large amounts of periplasmic and outer membrane proteins in C. hutchinsonii. The contents of mannose, glucose, galactose, and xylose were detected to be reduced in the glycoproteins of the ∆ugd mutant compared to that of wild-type. They might be essential monosaccharides that contribute to the structure and function of glycans attached to proteins in C. hutchinsonii. The depletion of mannose, glucose, galactose, and xylose indicates a decrease in glycosylation modifications in the ∆ugd mutant strain. Then, we found that the deletion of ugd resulted in weakened glycosylation modification of the recombinant green fluorescent protein-tagged CTD of Cel9A. Additionally, the outer-membrane localization of Cel9A was affected in the mutant. Besides this, Ugd was also important for the synthesis of O-antigen of lipopolysaccharide (LPS). Thus, Ugd was involved in the synthesis of glycans in both glycoproteins and LPS in C. hutchinsonii. Moreover, the deletion of ugd affected the cellulose degradation, cell motility, and stress resistance of C. hutchinsonii.
Collapse
Affiliation(s)
| | | | | | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (W.S.); (S.G.); (Q.Q.)
| |
Collapse
|
3
|
Sunsunwal S, Khairnar A, Subramanian S, Ramya TNC. Harnessing the acceptor substrate promiscuity of Clostridium botulinum Maf glycosyltransferase to glyco-engineer mini-flagellin protein chimeras. Commun Biol 2024; 7:1029. [PMID: 39169227 PMCID: PMC11339370 DOI: 10.1038/s42003-024-06736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Several bacterial flagellins are O-glycosylated with nonulosonic acids on surface-exposed Serine/Threonine residues by Maf glycosyltransferases. The Clostridium botulinum Maf glycosyltransferase (CbMaf) displays considerable donor substrate promiscuity, enabling flagellin O-glycosylation with N-acetyl neuraminic acid (Neu5Ac) and 3-deoxy-D-manno-octulosonic acid in the absence of the native nonulosonic acid, a legionaminic acid derivative. Here, we have explored the sequence/structure attributes of the acceptor substrate, flagellin, required by CbMaf glycosyltransferase for glycosylation with Neu5Ac and KDO, by co-expressing C. botulinum flagellin constructs with CbMaf glycosyltransferase in an E. coli strain producing cytidine-5'-monophosphate (CMP)-activated Neu5Ac, and employing intact mass spectrometry analysis and sialic acid-specific flagellin biotinylation as readouts. We found that CbMaf was able to glycosylate mini-flagellin constructs containing shortened alpha-helical secondary structural scaffolds and reduced surface-accessible loop regions, but not non-cognate flagellin. Our experiments indicated that CbMaf glycosyltransferase recognizes individual Ser/Thr residues in their local surface-accessible conformations, in turn, supported in place by the secondary structural scaffold. Further, CbMaf glycosyltransferase also robustly glycosylated chimeric proteins constructed by grafting cognate mini-flagellin sequences onto an unrelated beta-sandwich protein. Our recombinant engineering experiments highlight the potential of CbMaf glycosyltransferase in future glycoengineering applications, especially for the neo-O-sialylation of proteins, employing E. coli strains expressing CMP-Neu5Ac (and not CMP-KDO).
Collapse
Affiliation(s)
- Sonali Sunsunwal
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Aasawari Khairnar
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | | | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
4
|
Brain O-GlcNAcylation: From Molecular Mechanisms to Clinical Phenotype. ADVANCES IN NEUROBIOLOGY 2023; 29:255-280. [DOI: 10.1007/978-3-031-12390-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Immunogenic Modification of Ligilactobacillus agilis by Specific Amino Acid Substitution of Flagellin. Appl Environ Microbiol 2022; 88:e0127722. [PMID: 36173204 PMCID: PMC9599256 DOI: 10.1128/aem.01277-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ligilactobacillus agilis is a flagellated motile commensal microbe that resides in the gastrointestinal tract of mammals and birds. Flagellin, the major subunit protein of flagellar filament, from pathogenic bacteria is generally a proinflammatory molecule that stimulates immune cells via Toll-like receptor 5 (TLR5). Interestingly, the flagellins of L. agilis are known to be immunologically attenuated despite the fact that the structure of the proteins, including the TLR5 recognition site, is highly conserved among bacteria. The results of our previous study suggested that this is attributed to the differences in three specific amino acids within the conserved TLR5 recognition site; however, this hypothesis remains to be confirmed. In this study, a series of recombinant L. agilis flagellins, with amino acid substitutions at the TLR5 recognition site, were constructed, and their immunogenic activity was evaluated in vitro. Then, an L. agilis strain with an active immunogenic TLR5 recognition site was generated. In vitro and in vivo immunological studies revealed that the mutant L. agilis strain with the modified flagellin was more immunogenic than the wild-type strain. In conclusion, the specific amino acid residues in L. agilis flagellins likely contribute to the discrimination between pathogens and commensals by the host defense system. Additionally, the immunogenically potent L. agilis mutants may serve as a useful platform for oral vaccine delivery. IMPORTANCE The interactions between gut microbes and immune cells play an important role in the health and disease of hosts. Ligilactobacillus agilis is a flagellated commensal bacterium found in the gut of mammals and birds. However, the flagellin proteins of L. agilis are immunologically attenuated and barely induce TLR5-dependent inflammation, unlike the flagellins of several pathogenic bacteria. This study demonstrated that three specific amino acids in the flagellin protein are responsible for this low immunogenicity in L. agilis. The results obtained herein improve our understanding of the symbiosis between gut microbes and their hosts.
Collapse
|
6
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
7
|
Schwenk V, Dietrich R, Klingl A, Märtlbauer E, Jessberger N. Characterization of strain-specific Bacillus cereus swimming motility and flagella by means of specific antibodies. PLoS One 2022; 17:e0265425. [PMID: 35298545 PMCID: PMC8929632 DOI: 10.1371/journal.pone.0265425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
One of the multiple factors determining the onset of the diarrhoeal disease caused by enteropathogenic Bacillus cereus is the ability of the bacteria to actively move towards the site of infection. This ability depends on flagella, but it also varies widely between different strains. To gain more insights into these strain-specific variations, polyclonal rabbit antisera as well as monoclonal antibodies (mAbs) were generated in this study, which detected recombinant and natural B. cereus flagellin proteins in Western blots as well as in enzyme immunoassays (EIAs). Based on mAb 1A11 and HRP-labelled rabbit serum, a highly specific sandwich EIA was developed. Overall, it could be shown that strain-specific swimming motility correlates with the presence of flagella/flagellin titres obtained in EIAs. Interestingly, mAb 1A11, recognizing an epitope in the N-terminal region of the flagellin protein, proved to inhibit bacterial swimming motility, while the rabbit serum rather decreased growth of selected B. cereus strains. Altogether, powerful tools enabling the in-depth characterization of the strain-specific variations in B. cereus swimming motility were developed.
Collapse
Affiliation(s)
- Valerie Schwenk
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Andreas Klingl
- Department of Biology I, Plant Development and Electron Microscopy, Biocenter Ludwig-Maximilians Universität München, Planegg-Martinsried, München, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
8
|
Lee K, Lee J, Lee P, Jeon BC, Song MY, Kwak S, Lee J, Kim J, Kim D, Kim JH, Tesh VL, Lee M, Park S. Inhibition of O-GlcNAcylation protects from Shiga toxin-mediated cell injury and lethality in host. EMBO Mol Med 2022; 14:e14678. [PMID: 34842355 PMCID: PMC8749473 DOI: 10.15252/emmm.202114678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli (EHEC) are the major virulence factors responsible for hemorrhagic colitis, which can lead to life-threatening systemic complications including acute renal failure (hemolytic uremic syndrome) and neuropathy. Here, we report that O-GlcNAcylation, a type of post-translational modification, was acutely increased upon induction of endoplasmic reticulum (ER) stress in host cells by Stxs. Suppression of the abnormal Stx-mediated increase in O-GlcNAcylation effectively inhibited apoptotic and inflammatory responses in Stx-susceptible cells. The protective effect of O-GlcNAc inhibition for Stx-mediated pathogenic responses was also verified using three-dimensional (3D)-cultured spheroids or organoids mimicking the human kidney. Treatment with an O-GlcNAcylation inhibitor remarkably improved the major disease symptoms and survival rate for mice intraperitoneally injected with a lethal dose of Stx. In conclusion, this study elucidates O-GlcNAcylation-dependent pathogenic mechanisms of Stxs and demonstrates that inhibition of aberrant O-GlcNAcylation is a potential approach to treat Stx-mediated diseases.
Collapse
Affiliation(s)
- Kyung‐Soo Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Jieun Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Pureum Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Bong Chan Jeon
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
- Immunotherapy Convergence Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Min Yeong Song
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Sojung Kwak
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Jungwoon Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Jun‐Seob Kim
- Department of Nano‐BioengineeringIncheon National UniversityIncheonKorea
| | - Doo‐Jin Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Ji Hyung Kim
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M UniversityBryanTXUSA
| | - Moo‐Seung Lee
- Environmental Diseases Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
- Department of Biomolecular ScienceKRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Sung‐Kyun Park
- Infectious Disease Research CenterKorea Research Institute of Bioscience & Biotechnology (KRIBB)DaejeonKorea
| |
Collapse
|
9
|
Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int J Mol Sci 2021; 22:ijms22147521. [PMID: 34299141 PMCID: PMC8306008 DOI: 10.3390/ijms22147521] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a complex and dynamic nanomachine that propels bacteria through liquids. It consists of a basal body, a hook, and a long filament. The flagellar filament is composed of thousands of copies of the protein flagellin (FliC) arranged helically and ending with a filament cap composed of an oligomer of the protein FliD. The overall structure of the filament core is preserved across bacterial species, while the outer domains exhibit high variability, and in some cases are even completely absent. Flagellar assembly is a complex and energetically costly process triggered by environmental stimuli and, accordingly, highly regulated on transcriptional, translational and post-translational levels. Apart from its role in locomotion, the filament is critically important in several other aspects of bacterial survival, reproduction and pathogenicity, such as adhesion to surfaces, secretion of virulence factors and formation of biofilms. Additionally, due to its ability to provoke potent immune responses, flagellins have a role as adjuvants in vaccine development. In this review, we summarize the latest knowledge on the structure of flagellins, capping proteins and filaments, as well as their regulation and role during the colonization and infection of the host.
Collapse
|
10
|
Janež N, Škrlj B, Sterniša M, Klančnik A, Sabotič J. The role of the Listeria monocytogenes surfactome in biofilm formation. Microb Biotechnol 2021; 14:1269-1281. [PMID: 34106516 PMCID: PMC8313260 DOI: 10.1111/1751-7915.13847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.
Collapse
Affiliation(s)
- Nika Janež
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| | - Blaž Škrlj
- Department of Knowledge TechnologiesJožef Stefan InstituteLjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
| | - Meta Sterniša
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Anja Klančnik
- Department of Food Science and TechnologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Jerica Sabotič
- Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
| |
Collapse
|
11
|
Doghri I, Cherifi T, Goetz C, Malouin F, Jacques M, Fravalo P. Counteracting Bacterial Motility: A Promising Strategy to Narrow Listeria monocytogenes Biofilm in Food Processing Industry. Front Microbiol 2021; 12:673484. [PMID: 34149663 PMCID: PMC8206544 DOI: 10.3389/fmicb.2021.673484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes (L. monocytogenes) is often associated with processed food as it can form biofilms that represent a source of contamination at all stages of the manufacturing chain. The control and prevention of biofilms in food-processing plants are of utmost importance. This study explores the efficacy of prospect molecules for counteracting bacterial mechanisms leading to biofilm formation. The compounds included the phytomolecule tomatidine, zinc chloride (ZnCl2), ethylenediaminetetraacetic acid (EDTA), and a more complexed mixture of bacterial compounds from coagulase-negative staphylococci (CNS exoproducts). Significant inhibition of L. monocytogenes biofilm formation was evidenced using a microfluidic system and confocal microscopic analyses (p < 0.001). Active molecules were effective at an early stage of biofilm development (≥50% of inhibition) but failed to disperse mature biofilms of L. monocytogenes. According to our findings, prevention of surface attachment was associated with a disruption of bacterial motility. Indeed, agar cell motility assays demonstrated the effectiveness of these molecules. Overall, results highlighted the critical role of motility in biofilm formation and allow to consider flagellum-mediated motility as a promising molecular target in control strategies against L. monocytogenes in food processing environments.
Collapse
Affiliation(s)
- Ibtissem Doghri
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Montreal, QC, Cananda
| | - Tamazight Cherifi
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Chaire de Recherche en Salubrité des Viandes (CRSV), Montreal, QC, Cananda
| | - Coralie Goetz
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Montreal, QC, Cananda
| | - François Malouin
- Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Montreal, QC, Cananda.,Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mario Jacques
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Regroupement de Recherche pour un Lait de Qualité Optimale (Op+Lait), Montreal, QC, Cananda
| | - Philippe Fravalo
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Chaire de Recherche en Salubrité des Viandes (CRSV), Montreal, QC, Cananda
| |
Collapse
|
12
|
Eguchi N, Suzuki S, Yokota K, Igimi S, Kajikawa A. Ligilactobacillus agilis BKN88 possesses thermo-/acid-stable heteropolymeric flagellar filaments. MICROBIOLOGY-SGM 2021; 167. [PMID: 33502302 DOI: 10.1099/mic.0.001020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many flagellated bacteria possess multiple flagellins, but the roles and the compositions of each flagellin are diverse and poorly understood. In Ligilactobacillus agilis BKN88, there are two active flagellin gene paralogues but their function and composition in its flagellar filaments have not been described. The aim of this study is to find the function and composition of the flagellins by employing mutant strains each of which expresses a single flagellin or a modified flagellin. Two single flagellin-expressing strains were both flagellated while the number of flagella per cell in the single flagellin-expressing derivatives was lower than that in the wild type. Nonetheless, these derivative strains were apparently equally motile as the wild type. This indicates that either flagellin is sufficient for cell motility. The immunological activity via Toll-like receptor 5 of the single flagellin-expressing strains or purified single flagellins was readily detectable but mostly variably weaker than that of the wild type. The flagellar filaments of wild type L. agilis BKN88 were more acid-/thermo-stable than those of single flagellin-expressing derivatives. Using a combination of immunoprecipitation and flagellin-specific staining, wild type BKN88 appeared to possess heteropolymeric flagellar filaments consisting of both flagellins and each flagellin appeared to be equally distributed throughout the filaments. The results of this study suggest that the two flagellins together form a more robust filament than either alone and are thus functionally complementary.
Collapse
Affiliation(s)
- Naoto Eguchi
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shunya Suzuki
- Department of Agricultural Chemistry, Graduate School of Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kenji Yokota
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shizunobu Igimi
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Akinobu Kajikawa
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
13
|
Forn-Cuní G, Fulton KM, Smith JC, Twine SM, Mendoza-Barberà E, Tomás JM, Merino S. Polar Flagella Glycosylation in Aeromonas: Genomic Characterization and Involvement of a Specific Glycosyltransferase (Fgi-1) in Heterogeneous Flagella Glycosylation. Front Microbiol 2021; 11:595697. [PMID: 33584564 PMCID: PMC7874193 DOI: 10.3389/fmicb.2020.595697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 01/27/2023] Open
Abstract
Polar flagella from mesophilic Aeromonas strains have previously been shown to be modified with a range of glycans. Mass spectrometry studies of purified polar flagellins suggested the glycan typically includes a putative pseudaminic acid like derivative; while some strains are modified with this single monosaccharide, others modified with a heterologous glycan. In the current study, we demonstrate that genes involved in polar flagella glycosylation are clustered in highly polymorphic genomic islands flanked by pseudaminic acid biosynthetic genes (pse). Bioinformatic analysis of mesophilic Aeromonas genomes identified three types of polar flagella glycosylation islands (FGIs), denoted Group I, II and III. FGI Groups I and III are small genomic islands present in Aeromonas strains with flagellins modified with a single monosaccharide pseudaminic acid derivative. Group II were large genomic islands, present in strains found to modify polar flagellins with heterogeneous glycan moieties. Group II, in addition to pse genes, contained numerous glycosyltransferases and other biosynthetic enzymes. All Group II strains shared a common glycosyltransferase downstream of luxC that we named flagella glycosylation island 1, fgi-1, in A. piscicola AH-3. We demonstrate that Fgi-1 transfers the first sugar of the heterogeneous glycan to the pseudaminic acid derivative linked to polar flagellins and could be used as marker for polysaccharidic glycosylation of Aeromonas polar flagella.
Collapse
Affiliation(s)
- Gabriel Forn-Cuní
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Kelly M. Fulton
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | | | - Susan M. Twine
- National Research Council Canada, Human Health Therapeutics Research Centre, Ottawa, ON, Canada
- Faculty of Science, Carleton University, Ottawa, ON, Canada
| | - Elena Mendoza-Barberà
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Juan M. Tomás
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| | - Susana Merino
- Departamento de Genética, Microbiología y Estadística, Sección Microbiología, Virología y Biotecnología, Facultad de Biología, Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Khairnar A, Sunsunwal S, Babu P, Ramya TNC. Novel serine/threonine-O-glycosylation with N-acetylneuraminic acid and 3-deoxy-D-manno-octulosonic acid by bacterial flagellin glycosyltransferases. Glycobiology 2020; 31:288-306. [PMID: 32886756 DOI: 10.1093/glycob/cwaa084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Some bacterial flagellins are O-glycosylated on surface-exposed serine/threonine residues with nonulosonic acids such as pseudaminic acid, legionaminic acid and their derivatives by flagellin nonulosonic acid glycosyltransferases, also called motility-associated factors (Maf). We report here two new glycosidic linkages previously unknown in any organism, serine/threonine-O-linked N-acetylneuraminic acid (Ser/Thr-O-Neu5Ac) and serine/threonine-O-linked 3-deoxy-D-manno-octulosonic acid or keto-deoxyoctulosonate (Ser/Thr-O-KDO), both catalyzed by Geobacillus kaustophilus Maf and Clostridium botulinum Maf. We identified these novel glycosidic linkages in recombinant G. kaustophilus and C. botulinum flagellins that were coexpressed with their cognate recombinant Maf protein in Escherichia coli strains producing the appropriate nucleotide sugar glycosyl donor. Our finding that both G. kaustophilus Maf (putative flagellin sialyltransferase) and C. botulinum Maf (putative flagellin legionaminic acid transferase) catalyzed Neu5Ac and KDO transfer on to flagellin indicates that Maf glycosyltransferases display donor substrate promiscuity. Maf glycosyltransferases have the potential to radically expand the scope of neoglycopeptide synthesis and posttranslational protein engineering.
Collapse
Affiliation(s)
- Aasawari Khairnar
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Sonali Sunsunwal
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Ponnusamy Babu
- Glycomics and Glycoproteomics & Biologics Characterization Facility, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-TIFR, Bengaluru, UAS-GKVK Campus, Bellary Road, 560065, India
| | - T N C Ramya
- Department of Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
16
|
Choudhary P, Badmalia MD, Rao A. Shape-function insights into bifunctional O-GlcNActransferase of Listeria monocytogenes EGD-e. Glycobiology 2020; 31:275-287. [PMID: 32776104 DOI: 10.1093/glycob/cwaa076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
O-GlcNAcylation is an important post-translational modification of proteins. O-GlcNAcylated proteins have crucial roles in several cellular contexts both in eukaryotes and bacteria. O-GlcNActransferase (OGT) is the enzyme instrumental in O-GlcNAcylation of proteins. OGT is conserved across eukaryotes. The first bacterial OGT discovered is GmaR in Listeria monocytogenes. GmaR is a GT-2 family bifunctional protein that catalyzes glycosylation of the flagellin protein FlaA and controls transcription of flagellar motility genes in a temperature-dependent manner. Here, we provide methods for heterologous expression and purification of recombinant GmaR and FlaA, in vivo/in vitro glycosylation assays, analysis of the molecular form of recombinant GmaR and detailed enzyme kinetics. We study the structure and functional dynamics of GmaR. Using solution small-angle X-ray scattering and molecular modeling, we show that GmaR adopts an extended shape with two distinctly spaced structural units in the presence of cofactor Mg2+ and with donor UDP-GlcNAc and cofactor combined. Comparisons of restored structures revealed that in-solution binding of Mg2+ ions brings about shape rearrangements and induces structural-rigidity in hyper-variable regions at the N-terminus of GmaR protein. Taking function and shape data together, we describe that Mg2+ binding enables GmaR to adopt a shape that can bind the substrate. The manuscript provides the first 3D solution structure of a bacterial OGT of GT-2 family and detailed biochemical characterization of GmaR to facilitate its future applications.
Collapse
Affiliation(s)
| | - Maulik D Badmalia
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | | - Alka Rao
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.,Academy of Scientific and Innovation Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, India
| |
Collapse
|
17
|
Type III Secretion Effectors with Arginine N-Glycosyltransferase Activity. Microorganisms 2020; 8:microorganisms8030357. [PMID: 32131463 PMCID: PMC7142665 DOI: 10.3390/microorganisms8030357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/31/2023] Open
Abstract
Type III secretion systems are used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, into the cytosol of host cells. These virulence factors interfere with a diverse array of host signal transduction pathways and cellular processes. Many effectors have catalytic activities to promote post-translational modifications of host proteins. This review focuses on a family of effectors with glycosyltransferase activity that catalyze addition of N-acetyl-d-glucosamine to specific arginine residues in target proteins, leading to reduced NF-κB pathway activation and impaired host cell death. This family includes NleB from Citrobacter rodentium, NleB1 and NleB2 from enteropathogenic and enterohemorrhagic Escherichia coli, and SseK1, SseK2, and SseK3 from Salmonella enterica. First, we place these effectors in the general framework of the glycosyltransferase superfamily and in the particular context of the role of glycosylation in bacterial pathogenesis. Then, we provide detailed information about currently known members of this family, their role in virulence, and their targets.
Collapse
|
18
|
Nwabor OF, Vongkamjan K, Voravuthikunchai SP. Antioxidant Properties and Antibacterial Effects of Eucalyptus camaldulensis Ethanolic Leaf Extract on Biofilm Formation, Motility, Hemolysin Production, and Cell Membrane of the Foodborne Pathogen Listeria monocytogenes. Foodborne Pathog Dis 2019; 16:581-589. [PMID: 30998111 DOI: 10.1089/fpd.2019.2620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Consumer concerns toward chemical preservatives have resulted in increased search for healthy green alternative. In this study, the antioxidant activity and antibacterial effects of Eucalyptus camaldulensis ethanolic leaf extract against Listeria monocytogenes, a serious foodborne pathogen, was evaluated. Total phenolic and flavonoid contents of the extract were 11.10 mg garlic acid equivalent/mg extract and 15.05 mg quercetin equivalent/mg extract, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of the extract was 64-128 μg/mL and 256-512 μg/mL, respectively. Time-kill assay revealed growth inhibitory effects after 4-h treatment of the bacteria with the extract. A reduction of ≈2-3 log colony-forming units per milliliter was observed against the tested food and environmental isolates after challenging the pathogens with the extract at MIC for 6 h. Sub-MICs of the extract significantly inhibited motility and listeriolysin O production up to 80%, with 60% inhibition of biofilm formation (p < 0.05). Antioxidant assay revealed free radical scavenging activity with 50% inhibitory concentration (IC50) of 57.07 μg/mL for 2,2-diphenyl-1-picrylhydrazyl and 29.01 μg/mL for ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] assay. Ferric reducing antioxidant power assay further showed a total antioxidant power equivalent to 92.93 μM ascorbic acid equivalent/mg extract. As the extract exhibited profound antilisterial activity and good radical scavenging ability, it might serve as a potential alternative source of biopreservative agent against L. monocytogenes.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- 1Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand
| | - Kitiya Vongkamjan
- 2Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- 1Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
19
|
Gao H, Shi M, Wang R, Wang C, Shao C, Gu Y, Yu W. A widely compatible expression system for the production of highly O-GlcNAcylated recombinant protein in Escherichia coli. Glycobiology 2019; 28:949-957. [PMID: 30462203 DOI: 10.1093/glycob/cwy077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is a ubiquitous and dynamic post-translational modification on serine/threonine residues of nucleocytoplasmic proteins in metazoa, which plays a critical role in numerous physiological and pathological processes. But the O-GlcNAcylation on most proteins is often substoichiometric, which hinders the functional study of the O-GlcNAcylation. This study aimed to improve the production of highly O-GlcNAcylated recombinant proteins in Escherichia coli (E. coli). To achieve this goal, we constructed a bacterial artificial chromosome-based chloramphenicol-resistant expression vector co-expressing O-GlcNAc transferase (OGT) and key enzymes (phosphoglucose mutase, GlmM and N-acetylglucosamine-1-phosphate uridyltransferase, GlmU) of the uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis pathway in E. coli, which can effectively increase the O-GlcNAcylation of the OGT target protein expressed by another vector. The results revealed that the expression of GlmM and GlmU increases the cellular concentration of UDP-GlcNAc in E. coli, which markedly enhanced the activity of the co-expressed OGT to its target proteins, such as H2B, p53 and TAB1. Altogether, we established a widely compatible E. coli expression system for producing highly O-GlcNAcylated protein, which could be used for modifying OGT target proteins expressed by almost any commercial expression vectors in E. coli. This new expression system provides possibility for investigating the roles of O-GlcNAcylation in the enzymatic activity, protein-protein interaction and structure of OGT target proteins.
Collapse
Affiliation(s)
- Hong Gao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China
| | - Minghui Shi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China
| | - Ruihong Wang
- Outpatient Department, Qingdao Central Hospital, 127 Siliu Road, Qingdao, China
| | - Chaojie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Changlun Shao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| |
Collapse
|
20
|
Novais Â, Freitas AR, Rodrigues C, Peixe L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis 2018; 38:427-448. [DOI: 10.1007/s10096-018-3431-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023]
|
21
|
Zachara NE. Critical observations that shaped our understanding of the function(s) of intracellular glycosylation (O-GlcNAc). FEBS Lett 2018; 592:3950-3975. [PMID: 30414174 DOI: 10.1002/1873-3468.13286] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022]
Abstract
Almost 100 years after the first descriptions of proteins conjugated to carbohydrates (mucins), several studies suggested that glycoproteins were not restricted to the serum, extracellular matrix, cell surface, or endomembrane system. In the 1980s, key data emerged demonstrating that intracellular proteins were modified by monosaccharides of O-linked β-N-acetylglucosamine (O-GlcNAc). Subsequently, this modification was identified on thousands of proteins that regulate cellular processes as diverse as protein aggregation, localization, post-translational modifications, activity, and interactions. In this Review, we will highlight critical discoveries that shaped our understanding of the molecular events underpinning the impact of O-GlcNAc on protein function, the role that O-GlcNAc plays in maintaining cellular homeostasis, and our understanding of the mechanisms that regulate O-GlcNAc-cycling.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Liu W, Han G, Yin Y, Jiang S, Yu G, Yang Q, Yu W, Ye X, Su Y, Yang Y, Hart GW, Sun H. AANL (Agrocybe aegerita lectin 2) is a new facile tool to probe for O-GlcNAcylation. Glycobiology 2018; 28:363-373. [PMID: 29562282 PMCID: PMC6454498 DOI: 10.1093/glycob/cwy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 01/26/2023] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAcylation) is an important post-translational modification on serine or threonine of proteins, mainly observed in nucleus or cytoplasm. O-GlcNAcylation regulates many cell processes, including transcription, cell cycle, neural development and nascent polypeptide chains stabilization. However, the facile identification of O-GlcNAc is a major bottleneck in O-GlcNAcylation research. Herein, we report that a lectin, Agrocybe aegerita GlcNAc-specific lectin (AANL), also reported as AAL2, can be used as a powerful probe for O-GlcNAc identification. Glycan array analyses and surface plasmon resonance (SPR) assays show that AANL binds to GlcNAc with a dissociation constant (KD) of 94.6 μM, which is consistent with the result tested through isothiocyanate (ITC) assay reported before (Jiang S, Chen Y, Wang M, Yin Y, Pan Y, Gu B, Yu G, Li Y, Wong BH, Liang Y, et al. 2012. A novel lectin from Agrocybe aegerita shows high binding selectivity for terminal N-acetylglucosamine. Biochem J. 443:369-378.). Confocal imaging shows that AANL co-localizes extensively with NUP62, a heavily O-GlcNAcylated and abundant nuclear pore glycoprotein. Furthermore, O-GlcNAc-modified peptides could be effectively enriched in the late flow-through peak from simple samples by using affinity columns Sepharose 4B-AANL or POROS-AANL. Therefore, using AANL affinity column, we identified 28 high-confidence O-linked HexNAc-modified peptides mapped on 17 proteins involving diverse cellular progresses, including transcription, hydrolysis progress, urea cycle, alcohol metabolism and cell cycle. And most importantly, major proteins and sites were not annotated in the dbOGAP database. These results suggest that the AANL lectin is a new useful tool for enrichment and identification of O-GlcNAcylated proteins and peptides.
Collapse
Affiliation(s)
- Wei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Guanghui Han
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yalin Yin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Shuai Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Guojun Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Qing Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Wenhui Yu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Xiangdong Ye
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Yanting Su
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Yajun Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
| | - Gerald W Hart
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hui Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University
- Hubei Province key Laboratory of Allergy and Immunology
- Key laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan 430071, Hubei Province, P. R. China
| |
Collapse
|
23
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
24
|
Latousakis D, Juge N. How Sweet Are Our Gut Beneficial Bacteria? A Focus on Protein Glycosylation in Lactobacillus. Int J Mol Sci 2018; 19:ijms19010136. [PMID: 29301365 PMCID: PMC5796085 DOI: 10.3390/ijms19010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is emerging as an important feature in bacteria. Protein glycosylation systems have been reported and studied in many pathogenic bacteria, revealing an important diversity of glycan structures and pathways within and between bacterial species. These systems play key roles in virulence and pathogenicity. More recently, a large number of bacterial proteins have been found to be glycosylated in gut commensal bacteria. We present an overview of bacterial protein glycosylation systems (O- and N-glycosylation) in bacteria, with a focus on glycoproteins from gut commensal bacteria, particularly Lactobacilli. These emerging studies underscore the importance of bacterial protein glycosylation in the interaction of the gut microbiota with the host.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Nathalie Juge
- Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
25
|
Sulzenbacher G, Roig-Zamboni V, Lebrun R, Guérardel Y, Murat D, Mansuelle P, Yamakawa N, Qian XX, Vincentelli R, Bourne Y, Wu LF, Alberto F. Glycosylate and move! The glycosyltransferase Maf is involved in bacterial flagella formation. Environ Microbiol 2017; 20:228-240. [DOI: 10.1111/1462-2920.13975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Régine Lebrun
- Plate-forme Protéomique; Institut de Microbiologie de la Méditerranée, FR3479 Aix-Marseille Université and Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Yann Guérardel
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 Université de Lille and Centre National de la Recherche Scientifique; Lille 59000 France
| | - Dorothée Murat
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Pascal Mansuelle
- Plate-forme Protéomique; Institut de Microbiologie de la Méditerranée, FR3479 Aix-Marseille Université and Centre National de la Recherche Scientifique; Marseille 13402 France
| | - Nao Yamakawa
- Unité de Glycobiologie Structurale et Fonctionnelle; UMR 8576 Université de Lille and Centre National de la Recherche Scientifique; Lille 59000 France
| | - Xin-Xin Qian
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | | | - Yves Bourne
- Aix Marseille Univ, CNRS, AFMB UMR7257; Marseille 13288 France
| | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| | - François Alberto
- Aix Marseille Univ, CNRS, LCB UMR7283; Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Organisms (LIA-MagMC); Centre National de la Recherche Scientifique; Marseille 13402 France
| |
Collapse
|
26
|
OGT: a short overview of an enzyme standing out from usual glycosyltransferases. Biochem Soc Trans 2017; 45:365-370. [PMID: 28408476 DOI: 10.1042/bst20160404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
O-GlcNAcylation is a highly dynamic post-translational modification whose level depends on nutrient status. Only two enzymes regulate O-GlcNAcylation cycling, the glycosyltransferase OGT (O-GlcNAc transferase) and the glycoside hydrolase OGA (O-GlcNAcase), that add and remove the GlcNAc moiety to and from acceptor proteins, respectively. During the last 30 years, OGT has emerged as a master regulator of cell life with O-GlcNAcylation being found in viruses, bacteria, insects, protists and metazoans. The study of OGT in different biological systems opens new perspectives for understanding this enzyme in many kingdoms of life. In this review, we summarize recent and older findings regarding the distribution of OGT in living organisms.
Collapse
|
27
|
Eichler J, Koomey M. Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends Microbiol 2017; 25:662-672. [PMID: 28341406 DOI: 10.1016/j.tim.2017.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/19/2017] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
Long-held to be a post-translational modification unique to Eukarya, it is now clear that both Bacteria and Archaea also perform protein glycosylation, namely the covalent attachment of mono- to polysaccharides to specific protein targets. At the same time, many of the roles assigned to this protein-processing event in eukaryotes, such as guiding protein folding/quality control, intracellular trafficking, dictating cellular recognition events and others, do not apply or are even irrelevant to prokaryotes. As such, protein glycosylation must serve novel functions in Bacteria and Archaea. Recent efforts have begun to elucidate some of these prokaryote-specific roles, which are addressed in this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Michael Koomey
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
28
|
Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes. Appl Environ Microbiol 2017; 83:AEM.02091-16. [PMID: 27836852 DOI: 10.1128/aem.02091-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate's epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism. IMPORTANCE Listeria monocytogenes is the causative agent of listeriosis, a disease which manifests as gastroenteritis, meningoencephalitis, and abortion. Among Salmonella, Escherichia coli, Campylobacter, and Listeria-causing the most prevalent foodborne illnesses-infection by L. monocytogenes carries the highest mortality rate. The ability of L. monocytogenes to regulate its response to various harsh environments enables its persistence and transmission. Small-scale comparisons of L. monocytogenes focusing solely on genome contents reveal a highly syntenic genome yet fail to address the observed diversity in phenotypic regulation. This study provides a large-scale comparison of 302 L. monocytogenes isolates, revealing the importance of the epigenome and restriction-modification systems as major determinants of L. monocytogenes phylogenetic grouping and subsequent phenotypic expression. Further examination of virulence genes of select outbreak strains reveals an unprecedented diversity in methylation statuses despite high degrees of genome conservation.
Collapse
|
29
|
Kurniyati K, Kelly JF, Vinogradov E, Robotham A, Tu Y, Wang J, Liu J, Logan SM, Li C. A novel glycan modifies the flagellar filament proteins of the oral bacterium Treponema denticola. Mol Microbiol 2017; 103:67-85. [PMID: 27696564 PMCID: PMC5182079 DOI: 10.1111/mmi.13544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/12/2023]
Abstract
While protein glycosylation has been reported in several spirochetes including the syphilis bacterium Treponema pallidum and Lyme disease pathogen Borrelia burgdorferi, the pertinent glycan structures and their roles remain uncharacterized. Herein, a novel glycan with an unusual chemical composition and structure in the oral spirochete Treponema denticola, a keystone pathogen of periodontitis was reported. The identified glycan of mass 450.2 Da is composed of a monoacetylated nonulosonic acid (Non) with a novel extended N7 acyl modification, a 2-methoxy-4,5,6-trihydroxy-hexanoyl residue in which the Non has a pseudaminic acid configuration (L-glycero-L-manno) and is β-linked to serine or threonine residues. This novel glycan modifies the flagellin proteins (FlaBs) of T. denticola by O-linkage at multiple sites near the D1 domain, a highly conserved region of bacterial flagellins that interact with Toll-like receptor 5. Furthermore, mutagenesis studies demonstrate that the glycosylation plays an essential role in the flagellar assembly and motility of T. denticola. To our knowledge, this novel glycan and its unique modification sites have not been reported previously in any bacteria.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
| | - John F. Kelly
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Evgeny Vinogradov
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Anna Robotham
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Youbing Tu
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
| | - Juyu Wang
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health Science Center, Houston, Texas 77030, USA
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UT Health Science Center, Houston, Texas 77030, USA
| | - Susan M. Logan
- Vaccine Program, Human Health Therapeutics, National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | - Chunhao Li
- Department of Oral Biology, The State University of New York at Buffalo, New York 14214, USA
- Department of Microbiology and Immunology, The State University of New York at Buffalo, New York 14214, USA
| |
Collapse
|
30
|
Bouché L, Panico M, Hitchen P, Binet D, Sastre F, Faulds-Pain A, Valiente E, Vinogradov E, Aubry A, Fulton K, Twine S, Logan SM, Wren BW, Dell A, Morris HR. The Type B Flagellin of Hypervirulent Clostridium difficile Is Modified with Novel Sulfonated Peptidylamido-glycans. J Biol Chem 2016; 291:25439-25449. [PMID: 27758867 PMCID: PMC5207245 DOI: 10.1074/jbc.m116.749481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/12/2016] [Indexed: 01/15/2023] Open
Abstract
Glycosylation of flagellins is a well recognized property of many bacterial species. In this study, we describe the structural characterization of novel flagellar glycans from a number of hypervirulent strains of C. difficile. We used mass spectrometry (nano-LC-MS and MS/MS analysis) to identify a number of putative glycopeptides that carried a variety of glycoform substitutions, each of which was linked through an initial N-acetylhexosamine residue to Ser or Thr. Detailed analysis of a LLDGSSTEIR glycopeptide released by tryptic digestion, which carried two variant structures, revealed that the glycopeptide contained, in addition to carbohydrate moieties, a novel structural entity. A variety of electrospray-MS strategies using Q-TOF technology were used to define this entity, including positive and negative ion collisionally activated decomposition MS/MS, which produced unique fragmentation patterns, and high resolution accurate mass measurement to allow derivation of atomic compositions, leading to the suggestion of a taurine-containing peptidylamido-glycan structure. Finally, NMR analysis of flagellin glycopeptides provided complementary information. The glycan portion of the modification was assigned as α-Fuc3N-(1→3)-α-Rha-(1→2)-α-Rha3OMe-(1→3)-β-GlcNAc-(1→)Ser, and the novel capping moiety was shown to be comprised of taurine, alanine, and glycine. This is the first report of a novel O-linked sulfonated peptidylamido-glycan moiety decorating a flagellin protein.
Collapse
Affiliation(s)
- Laura Bouché
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Maria Panico
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paul Hitchen
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Daniel Binet
- BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| | - Federico Sastre
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Alexandra Faulds-Pain
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Esmeralda Valiente
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Evgeny Vinogradov
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Annie Aubry
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Kelly Fulton
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Susan Twine
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Susan M Logan
- the Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, Ontario K1A 0R6, Canada, and
| | - Brendan W Wren
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Anne Dell
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom,
| | - Howard R Morris
- From the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.,BioPharmaSpec, Suite 3.1 Lido Medical Centre, St. Saviours Road, Jersey JE2 7LA, United Kingdom
| |
Collapse
|
31
|
Li H, Debowski AW, Liao T, Tang H, Nilsson HO, Marshall BJ, Stubbs KA, Benghezal M. Understanding protein glycosylation pathways in bacteria. Future Microbiol 2016; 12:59-72. [PMID: 27689684 DOI: 10.2217/fmb-2016-0166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Through advances in analytical methods to detect glycoproteins and to determine glycan structures, there have been increasing reports of protein glycosylation in bacteria. In this review, we summarize the known pathways for bacterial protein glycosylation: lipid carrier-mediated 'en bloc' glycosylation; and cytoplasmic stepwise protein glycosylation. The exploitation of bacterial protein glycosylation systems, especially the 'mix and match' of three independent but similar pathways (oligosaccharyltransferase-mediated protein glycosylation, lipopolysaccharide and peptidoglycan biosynthesis) in Gram-negative bacteria for glycoengineering recombinant glycoproteins is also discussed.
Collapse
Affiliation(s)
- Hong Li
- West China Marshall Research Centre for Infectious Diseases, Centre of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.,Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Aleksandra W Debowski
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia.,School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Tingting Liao
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Hong Tang
- West China Marshall Research Centre for Infectious Diseases, Centre of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hans-Olof Nilsson
- Ondek Pty Ltd, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Barry J Marshall
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Keith A Stubbs
- School of Chemistry & Biochemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mohammed Benghezal
- Helicobacter Pylori Research Laboratory, School of Pathology & Laboratory Medicine, Marshall Centre for Infectious Disease Research & Training, The University of Western Australia, M504, L Block, QEII Medical Centre, Nedlands, WA 6009, Australia.,Swiss Vitamin Institute, Route de la Corniche 1, CH-1066 Epalinges, Switzerland
| |
Collapse
|
32
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
33
|
Sugar and Spice Make Bacteria Not Nice: Protein Glycosylation and Its Influence in Pathogenesis. J Mol Biol 2016; 428:3206-3220. [DOI: 10.1016/j.jmb.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
34
|
Colagiorgi A, Di Ciccio P, Zanardi E, Ghidini S, Ianieri A. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix. Microorganisms 2016; 4:E22. [PMID: 27681916 PMCID: PMC5039582 DOI: 10.3390/microorganisms4030022] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS's). In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM) of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.
Collapse
Affiliation(s)
- Angelo Colagiorgi
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Pierluigi Di Ciccio
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Emanuela Zanardi
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Sergio Ghidini
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Adriana Ianieri
- Department of Food Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| |
Collapse
|
35
|
Kajikawa A, Midorikawa E, Masuda K, Kondo K, Irisawa T, Igimi S, Okada S. Characterization of flagellins isolated from a highly motile strain of Lactobacillus agilis. BMC Microbiol 2016; 16:49. [PMID: 27001290 PMCID: PMC4802830 DOI: 10.1186/s12866-016-0667-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Background Most lactic acid bacteria are non-motile but some of them are flagellated and exhibit motility. So far, motile lactobacilli have rarely been studied, and characteristics of their flagellins are poorly understood. In this study, a highly motile strain of Lactobacillus agilis was recruited for transcriptional analysis and characterization of its flagellins. Results Unlike another motile lactic acid bacteria of intestinal isolate, Lactobacillus ruminis, flagellar filaments of the L. agilis strain probably consist of two homologous but distinct flagellins. Glycosylation of the flagellar filaments and their resistance to heat, acid and SDS were also observed. The immunological activity of the flagellins was evaluated through the stimulation of Caco-2 cells. The results show that TLR5-stimulating activity of the protein is attenuated, likely due to an incomplete TLR5-recognition site. Conclusions The flagella filaments of L. agilis BKN88 consist of two homologous glycosylated flagellins, which likely have an incomplete TLR5-recognition site. The characteristics of the flagellin are presumably a consequence of adaptation as a commensal microbe in the gastrointestinal tract.
Collapse
Affiliation(s)
- Akinobu Kajikawa
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| | - Emiko Midorikawa
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Kazuya Masuda
- Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo, 158-8501, Japan
| | - Kazuho Kondo
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Tomohiro Irisawa
- Department of Animal Science, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, 243-0034, Japan
| | - Shizunobu Igimi
- Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo, 158-8501, Japan
| | - Sanae Okada
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| |
Collapse
|
36
|
Janesch B, Schirmeister F, Maresch D, Altmann F, Messner P, Kolarich D, Schäffer C. Flagellin glycosylation in Paenibacillus alvei CCM 2051T. Glycobiology 2015; 26:74-87. [PMID: 26405108 DOI: 10.1093/glycob/cwv087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
Flagellin glycosylation impacts, in several documented cases, the functionality of bacterial flagella. The basis of flagellin glycosylation has been studied for various Gram-negative bacteria, but less is known about flagellin glycans of Gram-positive bacteria including Paenibacillus alvei, a secondary invader of honeybee colonies diseased with European foulbrood. Paenibacillus alvei CCM 2051(T) swarms vigorously on solidified culture medium, with swarming relying on functional flagella as evidenced by abolished biofilm formation of a non-motile P. alvei mutant defective in the flagellin protein Hag. Here, the glycobiology of the polar P. alvei flagella was investigated. Analysis on purified flagellin demonstrated that the 30-kDa Hag protein (PAV_2c01710) is modified with an O-linked trisaccharide comprised of one hexose and two N-acetyl-hexosamine residues, at three sites of glycosylation. Downstream of the hag gene on the bacterial chromosome, two open reading frames (PAV_2c01630, PAV_2c01640) encoding putative glycosyltransferases were shown to constitute a flagellin glycosylation island. Mutants defective in these genes exhibited altered migration in sodium dodecyl sulfate polyacrylamide gel electrophoresis as well as loss of extracellular flagella production and bacterial motility. This study reveals that flagellin glycosylation in P. alvei is pivotal to flagella formation and bacterial motility in vivo, and simultaneously identifies flagella glycosylation as a second protein O-glycosylation system in this bacterium, in addition to the well-investigated S-layer tyrosine O-glycosylation pathway.
Collapse
Affiliation(s)
- Bettina Janesch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna A-1190, Austria
| | - Falko Schirmeister
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, Berlin 14195, Germany
| | - Daniel Maresch
- Department of Chemistry, Division of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, Vienna A-1190, Austria
| | - Friedrich Altmann
- Department of Chemistry, Division of Biochemistry, Universität für Bodenkultur Wien, Muthgasse 18, Vienna A-1190, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna A-1190, Austria
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, Muthgasse 11, Vienna A-1190, Austria
| |
Collapse
|
37
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
38
|
Selvan N, Mariappa D, van den Toorn HWP, Heck AJR, Ferenbach AT, van Aalten DMF. The Early Metazoan Trichoplax adhaerens Possesses a Functional O-GlcNAc System. J Biol Chem 2015; 290:11969-82. [PMID: 25778404 PMCID: PMC4424335 DOI: 10.1074/jbc.m114.628750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 01/09/2023] Open
Abstract
Protein O-GlcNAcylation is a reversible post-translational signaling modification of nucleocytoplasmic proteins that is essential for embryonic development in bilateria. In a search for a reductionist model to study O-GlcNAc signaling, we discovered the presence of functional O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and nucleocytoplasmic protein O-GlcNAcylation in the most basal extant animal, the placozoan Trichoplax adhaerens. We show via enzymatic characterization of Trichoplax OGT/OGA and genetic rescue experiments in Drosophila melanogaster that these proteins possess activities/functions similar to their bilaterian counterparts. The acquisition of O-GlcNAc signaling by metazoa may have facilitated the rapid and complex signaling mechanisms required for the evolution of multicellular organisms.
Collapse
Affiliation(s)
| | - Daniel Mariappa
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom and
| | - Henk W P van den Toorn
- the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- the Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | - Daan M F van Aalten
- From the Division of Molecular Microbiology and MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom and
| |
Collapse
|
39
|
Contribution of the multiple Type I signal peptidases to the secretome of Listeria monocytogenes: Deciphering their specificity for secreted exoproteins by exoproteomic analysis. J Proteomics 2015; 117:95-105. [DOI: 10.1016/j.jprot.2015.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/18/2014] [Accepted: 01/13/2015] [Indexed: 12/29/2022]
|
40
|
The putative eukaryote-like O-GlcNAc transferase of the cyanobacterium Synechococcus elongatus PCC 7942 hydrolyzes UDP-GlcNAc and is involved in multiple cellular processes. J Bacteriol 2014; 197:354-61. [PMID: 25384478 DOI: 10.1128/jb.01948-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The posttranslational addition of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine or threonine residues regulates numerous metazoan cellular processes. The enzyme responsible for this modification, O-GlcNAc transferase (OGT), is conserved among a wide variety of organisms and is critical for the viability of many eukaryotes. Although OGTs with domain structures similar to those of eukaryotic OGTs are predicted for many bacterial species, the cellular roles of these OGTs are unknown. We have identified a putative OGT in the cyanobacterium Synechococcus elongatus PCC 7942 that shows active-site homology and similar domain structure to eukaryotic OGTs. An OGT deletion mutant was created and found to exhibit several phenotypes. Without agitation, mutant cells aggregate and settle out of the medium. The mutant cells have higher free inorganic phosphate levels, wider thylakoid lumen, and differential accumulation of electron-dense inclusion bodies. These phenotypes are rescued by reintroduction of the wild-type OGT but are not fully rescued by OGTs with single amino acid substitutions corresponding to mutations that reduce eukaryotic OGT activity. S. elongatus OGT purified from Escherichia coli hydrolyzed the sugar donor, UDP-GlcNAc, while the mutant OGTs that did not fully rescue the deletion mutant phenotypes had reduced or no activity. These results suggest that bacterial eukaryote-like OGTs, like their eukaryotic counterparts, influence multiple processes.
Collapse
|
41
|
N-Glycosylation of the archaellum filament is not important for archaella assembly and motility, although N-Glycosylation is essential for motility in Sulfolobus acidocaldarius. Biochimie 2014; 118:294-301. [PMID: 25447136 DOI: 10.1016/j.biochi.2014.10.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/17/2014] [Indexed: 12/29/2022]
Abstract
N-Glycosylation is one of the predominant posttranslational modifications, which is found in all three domains of life. N-Glycosylation has been shown to influence many biological aspects of proteins, like protein folding, stability or activity. In this study we demonstrate that the archaellum filament subunit FlaB of Sulfolobus acidocaldarius is N-glycosylated. Each of the six predicted N-Glycosylation sites within FlaB are modified with the attachment of an N-glycan. Although, it has been previously shown that N-Glycosylation is essential for motility in S. acidocaldarius, as defects in the N-Glycosylation process resulted in none or reduced motile cells, strains lacking one to all six N-Glycosylation sites within FlaB still remained motile. Deletion of the first five N-Glycosylation sites in FlaB did not significantly affect the motility, whereas removal of all six N-Glycosylation sites reduced motility by about 40%. Transmission electron microscopy analyses of non glycosylated and glycosylated archaellum filament revealed no structural change in length. Therefore N-Glycosylation does not appear to be important for the stability and assembly of the archaellum filament itself, but plays a role in other parts of the archaellum assembly.
Collapse
|
42
|
Tagawa Y. Isolation and characterization of flagellar filaments from Bacillus cereus ATCC 14579. Antonie Van Leeuwenhoek 2014; 106:1157-65. [PMID: 25227778 DOI: 10.1007/s10482-014-0285-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Isolated flagellar filaments from the type strain of Bacillus cereus, ATCC 14579, were shown to consist of 34, 32 and 31 kDa proteins in similar proportions as judged by band intensities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequences of these three proteins of strain ATCC 14579 were identical with the deduced sequences of three flagellin genes BC1657, BC1658 and BC1659 in the whole genome sequence. Strain ATCC 14579 was classified into serotype T2 by a flagellar serotyping scheme for B. cereus strains that are untypeable into known flagellar serotypes H1 to H23. Flagellar filaments from a reference strain of serotype T2 contained two protein bands at 34 and 32 kDa, but a single protein band at 39 kDa was detected in flagellar filaments of a reference strain of serotype H1. Two murine monoclonal antibodies, 1A5 and 2A5, which recognize both the 34 and 32 kDa flagellins and a single flagellin of 32 kDa, respectively, were specifically reactive with B. cereus strains ATCC 14579 and serotype T2 in whole-cell ELISA and bacterial motility inhibition tests. In immunoelectron microscopy with monoclonal antibodies 1A5 and 2A5, colloidal gold spheres were shown to localize almost evenly over the entire part of flagellar filaments. Since strain ATCC 14579, and presumably strain serotype T2, are unusual among B. cereus strains in possessing multiple genes that encode flagellin subunits, a possible unique mechanism may contribute to assembly of multiple flagellin subunits into the filament over its entire length.
Collapse
Affiliation(s)
- Yuichi Tagawa
- National Institute of Animal Health, NARO, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan,
| |
Collapse
|
43
|
Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P, Kačániová M, Riedel CU, Knøchel S. Surface adhesins and exopolymers of selected foodborne pathogens. MICROBIOLOGY-SGM 2014; 160:2561-2582. [PMID: 25217529 DOI: 10.1099/mic.0.075887-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.
Collapse
Affiliation(s)
- Zoran Jaglic
- Veterinary Research Institute, Brno, Czech Republic
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Agnes Weiss
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 5, Prague, 166 28, Czech Republic
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, 81400 Myrina, Lemnos Island, Greece
| | | | - Pilar Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C 1958, Denmark
| |
Collapse
|
44
|
Characterization of wheat germ agglutinin lectin-reactive glycosylated OmpA-like proteins derived from Porphyromonas gingivalis. Infect Immun 2014; 82:4563-71. [PMID: 25135681 DOI: 10.1128/iai.02069-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycosylation is one of the common posttranslational modifications in eukaryotes. Recently, glycosylated proteins have also been identified in prokaryotes. A few glycosylated proteins, including gingipains, have been identified in Porphyromonas gingivalis, a major pathogen associated with chronic periodontitis. However, no other glycosylated proteins have been found. The present study identified glycoproteins in P. gingivalis cell lysates by lectin blotting. Whole-cell lysates reacted with concanavalin A (ConA), Lens culinaris agglutinin (LCA), Phaseolus vulgaris erythroagglutinin (PHA-E4), and wheat germ agglutinin (WGA), suggesting the presence of mannose-, N-acetylgalactosamine-, or N-acetylglucosamine (GlcNAc)-modified proteins. Next, glycoproteins were isolated by ConA-, LCA-, PHA-E4-, or WGA-conjugated lectin affinity chromatography although specific proteins were enriched only by the WGA column. Mass spectrometry analysis showed that an OmpA-like, heterotrimeric complex formed by Pgm6 and Pgm7 (Pgm6/7) was the major glycoprotein isolated from P. gingivalis. Deglycosylation experiments and Western blotting with a specific antibody indicated that Pgm6/7 was modified with O-GlcNAc. When whole-cell lysates from P. gingivalis mutant strains with deletions of Pgm6 and Pgm7 were applied to a WGA column, homotrimeric Pgm7, but not Pgm6, was isolated. Heterotrimeric Pgm6/7 had the strongest affinity for fibronectin of all the extracellular proteins tested, whereas homotrimeric Pgm7 showed reduced binding activity. These findings suggest that the heterotrimeric structure is important for the biological activity of glycosylated WGA-binding OmpA-like proteins in P. gingivalis.
Collapse
|
45
|
Cabrita P, Trigo MJ, Ferreira RB, Brito L. Is the exoproteome important for bacterial pathogenesis? Lessons learned from interstrain exoprotein diversity in Listeria monocytogenes grown at different temperatures. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:553-69. [PMID: 25127015 DOI: 10.1089/omi.2013.0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial exoproteomes vary in composition and quantity among species and within each species, depending on the environmental conditions to which the cells are exposed. This article critically reviews the literature available on exoproteins synthesized by the foodborne pathogenic bacterium Listeria monocytogenes grown at different temperatures. The main challenges posed for exoproteome analyses and the strategies that are being used to overcome these constraints are discussed. Over thirty exoproteins from L. monocytogenes are considered, and the multifunctionality of some of them is discussed. Thus, at the host temperature of 37°C, good examples are provided by Lmo0443, a potential marker for low virulence, and by the virulence factors internalin C (InlC) and listeriolysin O (LLO). Based on the reported LLO-induced mucin exocytosis, a model is proposed for the involvement of extracellular LLO in optimizing the conditions for InlC intervention in the invasion of intestinal epithelial cells. At lower growth temperatures, exoproteins such as flagellin (FlaA) and oligopeptide permease (OppA) may explain the persistence of particular strains in the food industry environment, eventually allowing the development of new tools to eradicate L. monocytogenes, a major concern for public health.
Collapse
Affiliation(s)
- Paula Cabrita
- 1 CBAA/DRAT-Departamento dos Recursos Naturais, Ambiente e Território, Instituto Superior de Agronomia, University of Lisbon , Lisbon, Portugal
| | | | | | | |
Collapse
|
46
|
Identification and characterization of glycoproteins on the spore surface of Clostridium difficile. J Bacteriol 2014; 196:2627-37. [PMID: 24816601 DOI: 10.1128/jb.01469-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we identify a major spore surface protein, BclA, and provide evidence that this protein is glycosylated. Following extraction of the spore surface, solubilized proteins were separated by one-dimensional PAGE and stained with glycostain to reveal a reactive high-molecular-mass region of approximately 600 kDa. Tandem mass spectrometry analysis of in-gel digests showed this band to contain peptides corresponding to a putative exosporangial glycoprotein (BclA3) and identified a number of glycopeptides modified with multiple N-acetyl hexosamine moieties and, in some cases, capped with novel glycans. In addition, we demonstrate that the glycosyltransferase gene sgtA (gene CD3350 in strain 630 and CDR3194 in strain R20291), which is located immediately upstream of the bclA3 homolog, is involved in the glycosylation of the spore surface, and is cotranscribed with bclA3. The presence of anti-β-O-GlcNAc-reactive material was demonstrated on the surface of spores by immunofluorescence and in surface extracts by Western blotting, although each strain produced a distinct pattern of reactivity. Reactivity of the spore surface with the anti-β-O-GlcNAc antibody was abolished in the 630 and R20291 glycosyltransferase mutant strains, while complementation with a wild-type copy of the gene restored the β-O-GlcNAc reactivity. Phenotypic testing of R20291 glycosyltransferase mutant spores revealed no significant change in sensitivity to ethanol or lysozyme. However, a change in the resistance to heat of R20291 glycosyltransferase mutant spores compared to R20291 spores was observed, as was the ability to adhere to and be internalized by macrophages.
Collapse
|
47
|
Chaze T, Guillot A, Valot B, Langella O, Chamot-Rooke J, Di Guilmi AM, Trieu-Cuot P, Dramsi S, Mistou MY. O-Glycosylation of the N-terminal region of the serine-rich adhesin Srr1 of Streptococcus agalactiae explored by mass spectrometry. Mol Cell Proteomics 2014; 13:2168-82. [PMID: 24797265 DOI: 10.1074/mcp.m114.038075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine-rich (Srr) proteins exposed at the surface of Gram-positive bacteria are a family of adhesins that contribute to the virulence of pathogenic staphylococci and streptococci. Lectin-binding experiments have previously shown that Srr proteins are heavily glycosylated. We report here the first mass-spectrometry analysis of the glycosylation of Streptococcus agalactiae Srr1. After Srr1 enrichment and trypsin digestion, potential glycopeptides were identified in collision induced dissociation spectra using X! Tandem. The approach was then refined using higher energy collisional dissociation fragmentation which led to the simultaneous loss of sugar residues, production of diagnostic oxonium ions and backbone fragmentation for glycopeptides. This feature was exploited in a new open source software tool (SpectrumFinder) developed for this work. By combining these approaches, 27 glycopeptides corresponding to six different segments of the N-terminal region of Srr1 [93-639] were identified. Our data unambiguously indicate that the same protein residue can be modified with different glycan combinations including N-acetylhexosamine, hexose, and a novel modification that was identified as O-acetylated-N-acetylhexosamine. Lectin binding and monosaccharide composition analysis strongly suggested that HexNAc and Hex correspond to N-acetylglucosamine and glucose, respectively. The same protein segment can be modified with a variety of glycans generating a wide structural diversity of Srr1. Electron transfer dissociation was used to assign glycosylation sites leading to the unambiguous identification of six serines and one threonine residues. Analysis of purified Srr1 produced in mutant strains lacking accessory glycosyltransferase encoding genes demonstrates that O-GlcNAcylation is an initial step in Srr1 glycosylation that is likely required for subsequent decoration with Hex. In summary, our data obtained by a combination of fragmentation mass spectrometry techniques associated to a new software tool, demonstrate glycosylation heterogeneity of Srr1, characterize a new protein modification, and identify six glycosylation sites located in the N-terminal region of the protein.
Collapse
Affiliation(s)
- Thibault Chaze
- From the ‡INRA, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; §AgroParisTech, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; ¶¶Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, 28 rue du Dr Roux, 75015 Paris, France
| | - Alain Guillot
- ¶INRA, PAPPSO, MICALIS UMR-1319, 78352 Jouy en Josas cedex, France
| | - Benoît Valot
- ‖INRA, PAPPSO, Génétique végétale UMR-320, Ferme du Moulon, 91190 Gif sur Yvette, France
| | - Olivier Langella
- ‖INRA, PAPPSO, Génétique végétale UMR-320, Ferme du Moulon, 91190 Gif sur Yvette, France
| | - Julia Chamot-Rooke
- ¶¶Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, 28 rue du Dr Roux, 75015 Paris, France; ‖‖CNRS UMR 3528, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Anne-Marie Di Guilmi
- **CEA, Institut de Biologie Structurale Jean-Pierre Ebel, F-38027 Grenoble, France
| | - Patrick Trieu-Cuot
- ‡‡Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram+, 28, rue du Dr Roux, 75015 Paris, France; §§Centre National de la Recherche Scientifique, CNRS ERL3526, Paris, France
| | - Shaynoor Dramsi
- ‡‡Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram+, 28, rue du Dr Roux, 75015 Paris, France; §§Centre National de la Recherche Scientifique, CNRS ERL3526, Paris, France
| | - Michel-Yves Mistou
- From the ‡INRA, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; §AgroParisTech, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France;
| |
Collapse
|
48
|
Parker JL, Lowry RC, Couto NAS, Wright PC, Stafford GP, Shaw JG. Maf-dependent bacterial flagellin glycosylation occurs before chaperone binding and flagellar T3SS export. Mol Microbiol 2014; 92:258-72. [PMID: 24527847 PMCID: PMC4065374 DOI: 10.1111/mmi.12549] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 02/06/2023]
Abstract
Bacterial swimming is mediated by rotation of a filament that is assembled via polymerization of flagellin monomers after secretion via a dedicated flagellar Type III secretion system. Several bacteria decorate their flagellin with sialic acid related sugars that is essential for motility. Aeromonas caviae is a model organism for this process as it contains a genetically simple glycosylation system and decorates its flagellin with pseudaminic acid (Pse). The link between flagellin glycosylation and export has yet to be fully determined. We examined the role of glycosylation in the export and assembly process in a strain lacking Maf1, a protein involved in the transfer of Pse onto flagellin at the later stages of the glycosylation pathway. Immunoblotting, established that glycosylation is not required for flagellin export but is essential for filament assembly since non-glycosylated flagellin is still secreted. Maf1 interacts directly with its flagellin substrate in vivo, even in the absence of pseudaminic acid. Flagellin glycosylation in a flagellin chaperone mutant (flaJ) indicated that glycosylation occurs in the cytoplasm before chaperone binding and protein secretion. Preferential chaperone binding to glycosylated flagellin revealed its crucial role, indicating that this system has evolved to favour secretion of the polymerization competent glycosylated form.
Collapse
Affiliation(s)
- Jennifer L Parker
- Department of Infection and Immunity, University of Sheffield, Sheffield, S10 2RX, UK
| | | | | | | | | | | |
Collapse
|
49
|
Gram-negative flagella glycosylation. Int J Mol Sci 2014; 15:2840-57. [PMID: 24557579 PMCID: PMC3958885 DOI: 10.3390/ijms15022840] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 01/11/2023] Open
Abstract
Protein glycosylation had been considered as an eccentricity of a few bacteria. However, through advances in analytical methods and genome sequencing, it is now established that bacteria possess both N-linked and O-linked glycosylation pathways. Both glycosylation pathways can modify multiple proteins, flagellins from Archaea and Eubacteria being one of these. Flagella O-glycosylation has been demonstrated in many polar flagellins from Gram-negative bacteria and in only the Gram-positive genera Clostridium and Listeria. Furthermore, O-glycosylation has also been demonstrated in a limited number of lateral flagellins. In this work, we revised the current advances in flagellar glycosylation from Gram-negative bacteria, focusing on the structural diversity of glycans, the O-linked pathway and the biological function of flagella glycosylation.
Collapse
|
50
|
GtfA and GtfB are both required for protein O-glycosylation in Lactobacillus plantarum. J Bacteriol 2014; 196:1671-82. [PMID: 24532775 DOI: 10.1128/jb.01401-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L. plantarum WCFS1 genes with significant homology to Gtf1, namely, tagE1 to tagE6. These candidate genes were targeted by systematic gene deletion, followed by assessment of the consequences on glycosylation of Acm2. We observed a changed mobility of Acm2 on SDS-PAGE in the tagE5E6 deletion strain, while deletion of other tagE genes resulted in Acm2 mobility comparable to that of the wild type. Subsequent mass spectrometry analysis of excised and in-gel-digested Acm2 confirmed the loss of glycosylation on Acm2 in the tagE5E6 deletion mutant, whereas a lectin blot using GlcNAc-specific succinylated wheat germ agglutinin (sWGA) revealed that besides Acm2, tagE5E6 deletion also abolished all but one other sWGA-reactive, protease-sensitive signal. Only complementation of both tagE5 and tagE6 restored those sWGA lectin signals, establishing that TagE5 and TagE6 are both required for the glycosylation of Acm2 as well as the vast majority of other sWGA-reactive proteins. Finally, sWGA lectin blotting experiments using a panel of 8 other L. plantarum strains revealed that protein glycosylation is a common feature in L. plantarum strains. With the establishment of these enzymes as protein glycosyltransferases, we propose to rename TagE5 and TagE6 as GtfA and GtfB, respectively.
Collapse
|