1
|
Jin Y, Jana S, Abbasov ME, Lin H. Antibiotic target discovery by integrated phenotypic and activity-based profiling of electrophilic fragments. Cell Chem Biol 2025; 32:434-448.e9. [PMID: 40020665 PMCID: PMC11995724 DOI: 10.1016/j.chembiol.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/05/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025]
Abstract
The emergence of antibiotic resistance necessitates the discovery of novel bacterial targets and antimicrobial agents. Here, we present a bacterial target discovery framework that integrates phenotypic screening of cysteine-reactive fragments with competitive activity-based protein profiling to map and functionally characterize the targets of screening hits. Using this approach, we identify β-ketoacyl-acyl carrier protein synthase III (FabH) and MiaA tRNA prenyltransferase as primary targets of a hit fragment, 10-F05, that confer bacterial stress resistance and virulence in Shigella flexneri. Mechanistic investigations elucidate that covalent C112 modification in FabH, an enzyme involved in bacterial fatty acid synthesis, results in its inactivation and consequent growth inhibition. We further demonstrate that irreversible C273 modification at the MiaA RNA-protein interaction interface abrogates substrate tRNA binding, attenuating resistance and virulence through decreased translational accuracy. Our findings underscore the efficacy of integrating phenotypic and activity-based profiling of electrophilic fragments to accelerate the identification and pharmacologic validation of new therapeutic targets.
Collapse
Affiliation(s)
- Yizhen Jin
- Graduate Program of Biochemistry, Molecular and Cell Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Medicine and Department of Chemistry, The University of Chicago, 900 E. 57(th) Street, Chicago, IL 60637, USA
| | - Sadhan Jana
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Medicine and Department of Chemistry, The University of Chicago, 900 E. 57(th) Street, Chicago, IL 60637, USA
| | - Mikail E Abbasov
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, Department of Medicine and Department of Chemistry, The University of Chicago, 900 E. 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
De Vitto H, Belfon KKJ, Sharma N, Toay S, Abendroth J, Dranow DM, Lukacs CM, Choi R, Udell HS, Willis S, Barrera G, Beyer O, Li TD, Hicks KA, Torelli AT, French JB. Characterization of an Acinetobacter baumannii Monofunctional Phosphomethylpyrimidine Kinase That Is Inhibited by Pyridoxal Phosphate. Biochemistry 2024. [PMID: 38306231 PMCID: PMC11426312 DOI: 10.1021/acs.biochem.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Thiamin and its phosphate derivatives are ubiquitous molecules involved as essential cofactors in many cellular processes. The de novo biosynthesis of thiamin employs the parallel synthesis of 4-methyl-5-(2-hydroxyethyl)thiazole (THZ-P) and 4-amino-2-methyl-5(diphosphooxymethyl) pyrimidine (HMP) pyrophosphate (HMP-PP), which are coupled to generate thiamin phosphate. Most organisms that can biosynthesize thiamin employ a kinase (HMPK or ThiD) to generate HMP-PP. In nearly all cases, this enzyme is bifunctional and can also salvage free HMP, producing HMP-P, the monophosphate precursor of HMP-PP. Here we present high-resolution crystal structures of an HMPK from Acinetobacter baumannii (AbHMPK), both unliganded and with pyridoxal 5-phosphate (PLP) noncovalently bound. Despite the similarity between HMPK and pyridoxal kinase enzymes, our kinetics analysis indicates that AbHMPK accepts HMP exclusively as a substrate and cannot turn over pyridoxal, pyridoxamine, or pyridoxine nor does it display phosphatase activity. PLP does, however, act as a weak inhibitor of AbHMPK with an IC50 of 768 μM. Surprisingly, unlike other HMPKs, AbHMPK catalyzes only the phosphorylation of HMP and does not generate the diphosphate HMP-PP. This suggests that an additional kinase is present in A. baumannii, or an alternative mechanism is in operation to complete the biosynthesis of thiamin.
Collapse
Affiliation(s)
- Humberto De Vitto
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kafi K J Belfon
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Nandini Sharma
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Sarah Toay
- Department of Biological Chemistry, Grinnell College, Grinnell, Iowa 50112, United States
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - David M Dranow
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Christine M Lukacs
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Hannah S Udell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Sydney Willis
- Department of Chemistry, Rollins College, Winter Park, Florida 32789, United States
| | - George Barrera
- Department of Chemistry and Biochemistry, Weber State University, Ogden, Utah 84408, United States
| | - Olive Beyer
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Teng Da Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Katherine A Hicks
- Chemistry Department, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Andrew T Torelli
- Department of Chemistry, Ithaca College, Ithaca, New York 14850, United States
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| |
Collapse
|
3
|
Tramonti A, Donkor AK, Parroni A, Musayev FN, Barile A, Ghatge MS, Graziani C, Alkhairi M, AlAwadh M, di Salvo ML, Safo MK, Contestabile R. Functional and structural properties of pyridoxal reductase (PdxI) from Escherichia coli: a pivotal enzyme in the vitamin B6 salvage pathway. FEBS J 2023; 290:5628-5651. [PMID: 37734924 PMCID: PMC10872706 DOI: 10.1111/febs.16962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Pyridoxine 4-dehydrogenase (PdxI), a NADPH-dependent pyridoxal reductase, is one of the key players in the Escherichia coli pyridoxal 5'-phosphate (PLP) salvage pathway. This enzyme, which catalyses the reduction of pyridoxal into pyridoxine, causes pyridoxal to be converted into PLP via the formation of pyridoxine and pyridoxine phosphate. The structural and functional properties of PdxI were hitherto unknown, preventing a rational explanation of how and why this longer, detoured pathway occurs, given that, in E. coli, two pyridoxal kinases (PdxK and PdxY) exist that could convert pyridoxal directly into PLP. Here, we report a detailed characterisation of E. coli PdxI that explains this behaviour. The enzyme efficiently catalyses the reversible transformation of pyridoxal into pyridoxine, although the reduction direction is thermodynamically strongly favoured, following a compulsory-order ternary-complex mechanism. In vitro, the enzyme is also able to catalyse PLP reduction and use NADH as an electron donor, although with lower efficiency. As with all members of the aldo-keto reductase (AKR) superfamily, the enzyme has a TIM barrel fold; however, it shows some specific features, the most important of which is the presence of an Arg residue that replaces the catalytic tetrad His residue that is present in all AKRs and appears to be involved in substrate specificity. The above results, in conjunction with kinetic and static measurements of vitamins B6 in cell extracts of E. coli wild-type and knockout strains, shed light on the role of PdxI and both kinases in determining the pathway followed by pyridoxal in its conversion to PLP, which has a precise regulatory function.
Collapse
Affiliation(s)
- Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Akua K Donkor
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Alessia Parroni
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Anna Barile
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Claudio Graziani
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Mona Alkhairi
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammed AlAwadh
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Italy
| |
Collapse
|
4
|
Qureshi IA, Saini M, Are S. Pyridoxal Kinase of Disease-causing Human Parasites: Structural and
Functional Insights to Understand its Role in Drug Discovery. Curr Protein Pept Sci 2022; 23:271-289. [DOI: 10.2174/1389203723666220519155025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Human parasites cause several diseased conditions with high morbidity and mortality in a
large section of the population residing in various geographical areas. Nearly three billion people suffer
from either one or many parasitic infections globally, with almost one million deaths annually. In spite
of extensive research and advancement in the medical field, no effective vaccine is available against
prominent human parasitic diseases that necessitate identification of novel targets for designing specific
inhibitors. Vitamin B6 is an important ubiquitous co-enzyme that participates in several biological processes
and plays an important role in scavenging ROS (reactive oxygen species) along with providing
resistance to oxidative stress. Moreover, the absence of the de novo vitamin B6 biosynthetic pathway in
human parasites makes this pathway indispensable for the survival of these pathogens. Pyridoxal kinase
(PdxK) is a crucial enzyme for vitamin B6 salvage pathway and participates in the process of vitamers
B6 phosphorylation. Since the parasites are dependent on pyridoxal kinase for their survival and infectivity
to the respective hosts, it is considered a promising candidate for drug discovery. The detailed
structural analysis of PdxK from disease-causing parasites has provided insights into the catalytic
mechanism of this enzyme as well as significant differences from their human counterpart. Simultaneously,
structure-based studies have identified small lead molecules that can be exploited for drug discovery
against protozoan parasites. The present review provides structural and functional highlights of
pyridoxal kinase for its implication in developing novel and potent therapeutics to combat fatal parasitic
diseases.
Collapse
Affiliation(s)
- Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao
Road, Hyderabad 500046, India
| | - Mayank Saini
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao
Road, Hyderabad 500046, India
| | - Sayanna Are
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao
Road, Hyderabad 500046, India
| |
Collapse
|
5
|
Abstract
Vitamin B6 is an ensemble of six interconvertible vitamers: pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL), and their 5'-phosphate derivatives, PNP, PMP, and PLP. Pyridoxal 5'-phosphate is a coenzyme in a variety of enzyme reactions concerning transformations of amino and amino acid compounds. This review summarizes all known and putative PLP-binding proteins found in the Escherichia coli MG1655 proteome. PLP can have toxic effects since it contains a very reactive aldehyde group at its 4' position that easily forms aldimines with primary and secondary amines and reacts with thiols. Most PLP is bound either to the enzymes that use it as a cofactor or to PLP carrier proteins, protected from the cellular environment but at the same time readily transferable to PLP-dependent apoenzymes. E. coli and its relatives synthesize PLP through the seven-step deoxyxylulose-5-phosphate (DXP)-dependent pathway. Other bacteria synthesize PLP in a single step, through a so-called DXP-independent pathway. Although the DXP-dependent pathway was the first to be revealed, the discovery of the widespread DXP-independent pathway determined a decline of interest in E. coli vitamin B6 metabolism. In E. coli, as in most organisms, PLP can also be obtained from PL, PN, and PM, imported from the environment or recycled from protein turnover, via a salvage pathway. Our review deals with all aspects of vitamin B6 metabolism in E. coli, from transcriptional to posttranslational regulation. A critical interpretation of results is presented, in particular, concerning the most obscure aspects of PLP homeostasis and delivery to PLP-dependent enzymes.
Collapse
|
6
|
Gonzalez-Ordenes F, Bravo-Moraga F, Gonzalez E, Hernandez-Cabello L, Alzate-Morales J, Guixé V, Castro-Fernandez V. Crystal structure and molecular dynamics simulations of a promiscuous ancestor reveal residues and an epistatic interaction involved in substrate binding and catalysis in the ATP-dependent vitamin kinase family members. Protein Sci 2021; 30:842-854. [PMID: 33555078 DOI: 10.1002/pro.4040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/08/2022]
Abstract
Enzymes with hydroxymethylpyrimidine/phosphomethylpyrimidine kinase activity (HMPPK) are essential in the vitamin B1 (thiamine pyrophosphate) biosynthesis and recycling pathways. In contrast, enzymes with pyridoxal kinase activity (PLK) produce pyridoxal phosphate (vitamin B6), an essential cofactor for various biochemical reactions. In the ATP-dependent vitamin kinases family, the members of PLK/HMPPK-like subfamily have both enzymatic activities. It has been proposed that the promiscuous PLK activity of ancestral HMPPK enzymes could have been the starting point for this activity. In earlier work, we reconstructed the ancestral sequences of this family and characterized the substrate specificity of the common ancestor between PLK/HMPPK-like and HMPPK enzymes (AncC). From these studies, the Gln45Met mutation was proposed as a critical event for the PLK activity emergence. Here, we crystallize and determine the AncC structure by X-ray crystallography and assess the role of the Gln45Met mutation by site-directed mutagenesis. Kinetic characterization of this mutant shows a significant increase in the PL affinity. Through molecular dynamics simulation and MM/PBSA calculations some residues, important for substrate interactions and catalysis, were identified in the wild type and in the mutated ancestor. Interestingly, a strong epistatic interaction responsible for the evolutionary pathway of the PLK activity in PLK/HMPPK-like enzymes was revealed. Also, other putative mutations relevant to PLK activity in modern PLK/HMPPK-like enzymes were identified.
Collapse
Affiliation(s)
| | - Felipe Bravo-Moraga
- Centro de Bioinformatica, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay S/N, Talca, Chile
| | - Evelin Gonzalez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Jans Alzate-Morales
- Centro de Bioinformatica, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay S/N, Talca, Chile
| | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
7
|
Hübner I, Dienemann JN, Friederich J, Schneider S, Sieber SA. Tailored Cofactor Traps for the in Situ Detection of Hemithioacetal-Forming Pyridoxal Kinases. ACS Chem Biol 2020; 15:3227-3234. [PMID: 33269909 DOI: 10.1021/acschembio.0c00787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyridoxal kinases (PLK) are crucial enzymes for the biosynthesis of pyridoxal phosphate, an important cofactor in a plethora of enzymatic reactions. The evolution of these enzymes resulted in different catalytic designs. In addition to the active site, the importance of a cysteine, embedded within a distant flexible lid region, was recently demonstrated. This cysteine forms a hemithioacetal with the pyridoxal aldehyde and is essential for catalysis. Despite the prevalence of these enzymes in various organisms, no tools were yet available to study the relevance of this lid residue. Here, we introduce pyridoxal probes, each equipped with an electrophilic trapping group in place of the aldehyde to target PLK reactive lid cysteines as a mimic of hemithioacetal formation. The addition of alkyne handles placed at two different positions within the pyridoxal structure facilitates enrichment of PLKs from living cells. Interestingly, depending on the position, the probes displayed a preference for either Gram-positive or Gram-negative PLK enrichment. By applying the cofactor traps, we were able to validate not only previously investigated Staphylococcus aureus and Enterococcus faecalis PLKs but also Escherichia coli and Pseudomonas aeruginosa PLKs, unravelling a crucial role of the lid cysteine for catalysis. Overall, our tailored probes facilitated a reliable readout of lid cysteine containing PLKs, qualifying them as chemical tools for mining further diverse proteomes for this important enzyme class.
Collapse
Affiliation(s)
- Ines Hübner
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jan-Niklas Dienemann
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Julia Friederich
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians University Munich, Butenandtstrasse 5–13, 81377 Munich, Germany
| | - Stephan A. Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Functional Protein Assemblies (CPA), Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
8
|
Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli. J Bacteriol 2020; 202:JB.00056-20. [PMID: 32253339 DOI: 10.1128/jb.00056-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is the biologically active form of vitamin B6 and an essential cofactor in all organisms. In Escherichia coli, PLP is synthesized via the deoxyxylulose 5-phosphate (DXP)-dependent pathway that includes seven enzymatic steps and generates pyridoxine 5'-phosphate as an intermediate. Additionally, E. coli is able to salvage pyridoxal, pyridoxine, and pyridoxamine B6 vitamers to produce PLP using kinases PdxK/PdxY and pyridox(am)ine phosphate oxidase (PdxH). We found that E. coli strains blocked in PLP synthesis prior to the formation of pyridoxine 5'-phosphate (PNP) required significantly less exogenous pyridoxal (PL) than strains lacking pdxH and identified the conversion of PL to pyridoxine (PN) during cultivation to be the cause. Our data showed that PdxI, shown to have PL reductase activity in vitro, was required for the efficient salvage of PL in E. coli The pdxI+ E. coli strains converted exogenous PL to PN during growth, while pdxI mutants did not. In total, the data herein demonstrated that PdxI is a critical enzyme in the salvage of PL by E. coli IMPORTANCE The biosynthetic pathway of pyridoxal 5'-phosphate (PLP) has extensively been studied in Escherichia coli, yet limited information is available about the vitamin B6 salvage pathway. We show that the protein PdxI (YdbC) is the primary pyridoxal (PL) reductase in E. coli and is involved in the salvage of PL. The orthologs of PdxI occur in a wide range of bacteria and plants, suggesting that PL reductase in the B6 salvage pathway is more widely distributed than previously expected.
Collapse
|
9
|
An Evolutionary Marker of the Ribokinase Superfamily Is Responsible for Zinc-Mediated Regulation of Human Pyridoxal Kinase. Catalysts 2020. [DOI: 10.3390/catal10050555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ribokinase superfamily catalyzes the phosphorylation of a vast diversity of substrates, and its members are characterized by the conservation of a common structural fold along with highly conserved sequence motifs responsible for phosphoryl transfer (GXGD) and stabilization of the metal-nucleotide complex (NXXE). Recently, a third motif (HXE) exclusive from ADP-dependent enzymes was identified, with its glutamic acid participating in water-mediated interactions with the metal-nucleotide complex and in stabilization of the ternary complex during catalysis. In this work, we bioinformatically determine that the aspartic acid of another motif (DPV), exclusively found in hydroxyethyl thiazole (THZK), hydroxymethyl pyrimidine (HMPK) and pyridoxal kinases (PLK), is structurally equivalent to the acidic residue in the HXE motif. Moreover, this residue is highly conserved among all ribokinase superfamily members. To determine whether the functional role of the DPV motif is similar to the HXE motif, we employed molecular dynamics simulations using crystal structures of phosphoryl donor substrate-complexed THZK and PLK, showing that its aspartic acid participated in water-mediated or direct interactions with the divalent metal of the metal-nucleotide complex. Lastly, enzyme kinetic assays on human PLK, an enzyme that utilizes zinc, showed that site-directed mutagenesis of the aspartic acid from the DPV motif abolishes the inhibition of this enzyme by increasing free zinc concentrations. Altogether, our results highlight that the DPV and HXE motifs are evolutionary markers of the functional and structural divergence of the ribokinase superfamily and evidence the role of the DPV motif in the interaction with both free and nucleotide-complexed divalent metals in the binding site of these enzymes.
Collapse
|
10
|
Are S, Gatreddi S, Jakkula P, Qureshi IA. Structural attributes and substrate specificity of pyridoxal kinase from Leishmania donovani. Int J Biol Macromol 2020; 152:812-827. [PMID: 32105687 DOI: 10.1016/j.ijbiomac.2020.02.257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 11/26/2022]
Abstract
The enzyme pyridoxal kinase (PdxK) catalyzes the conversion of pyridoxal to pyridoxal-5'-phosphate (PLP) using ATP as the co-factor. The product pyridoxal-5'-phosphate plays a key role in several biological processes such as transamination, decarboxylation and deamination. In the present study, full-length ORF of PdxK from Leishmania donovani (LdPdxK) was cloned and then purified using affinity chromatography. LdPdxK exists as a homo-dimer in solution and shows more activity at near to physiological pH. Biochemical analysis of LdPdxK with pyridoxal, pyridoxamine, pyridoxine and ginkgotoxin revealed its affinity preference towards different substrates. The secondary structure analysis using circular dichroism spectroscopy showed LdPdxK to be predominantly α-helical in organization which tends to decline at lower and higher pH. Simultaneously, LdPdxK was crystallized and its three-dimensional structure in complex with ADP and different substrates were determined. Crystal structure of LdPdxK delineated that it has a central core of β-sheets surrounded by α-helices with a conserved GTGD ribokinase motif. The structures of LdPdxK disclosed no major structural changes between ADP and ADP- substrate bound structures. In addition, comparative structural analysis highlighted the key differences between the active site pockets of leishmanial and human PdxK, rendering LdPdxK an attractive candidate for the designing of novel and specific inhibitors.
Collapse
Affiliation(s)
- Sayanna Are
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Santhosh Gatreddi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Pranay Jakkula
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, Telangana, India.
| |
Collapse
|
11
|
Deka G, Kalyani JN, Jahangir FB, Sabharwal P, Savithri HS, Murthy MRN. Structural and functional studies on Salmonella typhimurium pyridoxal kinase: the first structural evidence for the formation of Schiff base with the substrate. FEBS J 2019; 286:3684-3700. [PMID: 31116912 DOI: 10.1111/febs.14933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/07/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
A large number of enzymes depend on the ubiquitous cofactor pyridoxal 5' phosphate (PLP) for their activity. Pyridoxal kinase (PLK) is the key enzyme involved in the synthesis of PLP from the three forms of vitamin B6 via the salvage pathway. In the present work, we determined the unliganded structure of StPLK in a monoclinic form and its ternary complex with bound pyridoxal (PL), ADP and Mg2+ in two different tetragonal crystal forms (Form I and Form II). We found that, in the ternary complex structure of StPLK, the active site Lys233 forms a Schiff base linkage with the substrate (PL). Although formation of a Schiff base with the active site Lys229 was demonstrated in the Escherichia coli enzyme based on biochemical studies, the ternary complex of StPLK represents the first crystal structure where the Schiff bond formation has been observed. We also identified an additional site for PLP binding away from the active site in one of the ternary complexes (crystal Form I), suggesting a probable route for the product release. This is the first ternary complex structure where the modeled γ-phosphate of ATP is close enough to PL for the phosphorylation of the substrate. StPLK prefers PL over pyridoxamine as its substrate and follows a sequential mechanism of catalysis. Surface plasmon resonance studies suggest that StPLK interacts with apo-PLP-dependent enzymes with μm affinity supporting the earlier proposed direct transfer mechanism of PLP from PLK to PLP-dependent enzymes.
Collapse
Affiliation(s)
- Geeta Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Josyula N Kalyani
- Biochemistry Department, Indian Institute of Science, Bangalore, India
| | | | - Pallavi Sabharwal
- Biochemistry Department, Indian Institute of Science, Bangalore, India
| | | | - Mathur R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Kumar V, Sharma M, Rakesh BR, Malik CK, Neelagiri S, Neerupudi KB, Garg P, Singh S. Pyridoxal kinase: A vitamin B6 salvage pathway enzyme from Leishmania donovani. Int J Biol Macromol 2018; 119:320-334. [DOI: 10.1016/j.ijbiomac.2018.07.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/21/2022]
|
13
|
Crystal structure and catalytic mechanism of pyridoxal kinase from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2016; 478:300-306. [PMID: 27425248 DOI: 10.1016/j.bbrc.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/02/2016] [Indexed: 11/20/2022]
Abstract
Pyridoxal kinase is a ubiquitous enzyme essential for pyridoxal 5'-phosphate (PLP) homeostasis since PLP is required for the catalytic activity of a variety of PLP-dependent enzymes involved in amino acid, lipid, and sugar metabolism as well as neurotransmitter biosynthesis. Previously, two catalytic mechanisms were proposed with regard to Pdx kinases, in which either the aspartate or the cysteine residue is involved as a catalytic residue. Because the Pdx kinase of Pseudomonas aeruginosa (PaPdxK) contains both residues, the catalytic mechanism of PaPdxK remains elusive. To elucidate the substrate-recognition and catalytic mechanisms of PaPdxK, the crystal structure of PaPdxK was determined at a 2.0 Å resolution. The PaPdxK structure possesses a channel that can accommodate substrates and a metallic cofactor. Our structure-based biochemical and mutational analyses in combination with modeling studies suggest that PaPdxK catalysis is mediated by an acid-base mechanism through the catalytic acid Asp225 and a helical dipole moment.
Collapse
|
14
|
Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci Rep 2015. [PMID: 26212886 PMCID: PMC4515825 DOI: 10.1038/srep12583] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and β-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins.
Collapse
|
15
|
di Salvo ML, Nogués I, Parroni A, Tramonti A, Milano T, Pascarella S, Contestabile R. On the mechanism of Escherichia coli pyridoxal kinase inhibition by pyridoxal and pyridoxal 5'-phosphate. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1160-6. [PMID: 25655354 DOI: 10.1016/j.bbapap.2015.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, plays a crucial role in several cellular processes. In most organisms, PLP is recycled from nutrients and degraded B6-enzymes in a salvage pathway that involves pyridoxal kinase (PLK), pyridoxine phosphate oxidase and phosphatase activities. Regulation of the salvage pathway is poorly understood. Escherichia coli possesses two distinct pyridoxal kinases, PLK1, which is the focus of the present work, and PLK2. From previous studies dating back to thirty years ago, pyridoxal (PL) was shown to inhibit E. coli PLK1 forming a covalent link with the enzyme. This inhibition was proposed to play a regulative role in vitamin B6 metabolism, although its details had never been clarified. Recently, we have shown that also PLP produced during PLK1 catalytic cycle acts as an inhibitor, forming a Schiff base with Lys229, without being released in the solvent. The question arises as to which is the actual inhibition mechanism by PL and PLP. In the present work, we demonstrated that also PL binds to Lys229 as a Schiff base. However, the isolated covalent PLK1-PL complex is not inactive but, in the presence of ATP, is able to catalyse the single turnover production of PLP, which binds tightly to the enzyme and is ultimately responsible for its inactivation. The inactivation mechanism mediated by Lys229 may play a physiological role in controlling cellular levels of PLP. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Martino Luigi di Salvo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Isabel Nogués
- Istituto di Biologia Ambientale e Forestale, Consiglio Nazionale delle Ricerche, Via Salaria Km 29.300, 00015 Monterotondo Scalo, Roma, Italy
| | - Alessia Parroni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Angela Tramonti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 5, 00185 Roma, Italy; Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Teresa Milano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Stefano Pascarella
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
16
|
Castro-Fernandez V, Bravo-Moraga F, Ramirez-Sarmiento CA, Guixe V. Emergence of pyridoxal phosphorylation through a promiscuous ancestor during the evolution of hydroxymethyl pyrimidine kinases. FEBS Lett 2014; 588:3068-73. [PMID: 24952356 DOI: 10.1016/j.febslet.2014.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/24/2022]
Abstract
In the family of ATP-dependent vitamin kinases, several bifunctional enzymes that phosphorylate hydroxymethyl pyrimidine (HMP) and pyridoxal (PL) have been described besides enzymes specific towards HMP. To determine how bifunctionality emerged, we reconstructed the sequence of three ancestors of HMP kinases, experimentally resurrected, and assayed the enzymatic activity of their last common ancestor. The latter has ∼ 8-fold higher specificity for HMP due to a glutamine residue (Gln44) that is a key determinant of the specificity towards HMP, although it is capable of phosphorylating both substrates. These results show how a specific enzyme with catalytic promiscuity gave rise to current bifunctional enzymes.
Collapse
Affiliation(s)
| | - Felipe Bravo-Moraga
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Victoria Guixe
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Elsinghorst PW, di Salvo ML, Parroni A, Contestabile R. Inhibition of human pyridoxal kinase by 2-acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI). J Enzyme Inhib Med Chem 2014; 30:336-40. [PMID: 24899377 DOI: 10.3109/14756366.2014.915396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2-Acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI) is observed as a minor contaminant in caramel food colourings (E 150c). Feeding experiments with rodents have revealed a significant lymphopenic effect that has been linked to the presence of THI in these food colourings. Pyridoxal kinase inhibition by THI has been suggested, but not demonstrated, as a mode of action as it leads to lowered levels of pyridoxal-5'-phosphate, which are known to cause lymphopenia. Recently, THI was also shown to inhibit sphingosine-1-phosphate lyase causing comparable immunosuppressive effects and derivatives of THI are being developed for the treatment of rheumatoid arthritis in humans. Interestingly, sphingosine-1-phosphate lyase activity depends on pyridoxal-5'-phosphate, which in turn is provided by pyridoxal kinase. This report shows that THI does inhibit pyridoxal kinase with competitive and mixed-type non-competitive behaviour towards its two substrates, pyridoxal and ATP, respectively. The corresponding inhibition constants are in the low millimolar range.
Collapse
Affiliation(s)
- Paul W Elsinghorst
- Pharmaceutical Chemistry I, Pharmaceutical Institute , University of Bonn, Bonn , Germany and
| | | | | | | |
Collapse
|
18
|
Deka G, Kalyani JN, Benazir JF, Savithri HS, Murthy MRN. Successful data recovery from oscillation photographs containing strong polycrystalline diffraction rings from an unknown small-molecule contaminant: preliminary structure solution of Salmonella typhimurium pyridoxal kinase (PdxK). Acta Crystallogr F Struct Biol Commun 2014; 70:526-9. [PMID: 24699755 PMCID: PMC3976079 DOI: 10.1107/s2053230x14005342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/08/2014] [Indexed: 11/10/2022] Open
Abstract
Pyridoxal kinase (PdxK; EC 2.7.1.35) belongs to the phosphotransferase family of enzymes and catalyzes the conversion of the three active forms of vitamin B6, pyridoxine, pyridoxal and pyridoxamine, to their phosphorylated forms and thereby plays a key role in pyridoxal 5'-phosphate salvage. In the present study, pyridoxal kinase from Salmonella typhimurium was cloned and overexpressed in Escherichia coli, purified using Ni-NTA affinity chromatography and crystallized. X-ray diffraction data were collected to 2.6 Å resolution at 100 K. The crystal belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a = 65.11, b = 72.89, c = 107.52 Å. The data quality obtained by routine processing was poor owing to the presence of strong diffraction rings caused by a polycrystalline material of an unknown small molecule in all oscillation images. Excluding the reflections close to powder/polycrystalline rings provided data of sufficient quality for structure determination. A preliminary structure solution has been obtained by molecular replacement with the Phaser program in the CCP4 suite using E. coli pyridoxal kinase (PDB entry 2ddm) as the phasing model. Further refinement and analysis of the structure are likely to provide valuable insights into catalysis by pyridoxal kinases.
Collapse
Affiliation(s)
- G. Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - J. N. Kalyani
- Biochemistry Department, Indian Institute of Science, Bangalore 560 012, India
| | - J. F. Benazir
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - H. S. Savithri
- Biochemistry Department, Indian Institute of Science, Bangalore 560 012, India
| | - M. R. N. Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
19
|
Nodwell MB, Koch MF, Alte F, Schneider S, Sieber SA. A subfamily of bacterial ribokinases utilizes a hemithioacetal for pyridoxal phosphate salvage. J Am Chem Soc 2014; 136:4992-9. [PMID: 24601602 DOI: 10.1021/ja411785r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyridoxal 5'-phosphate (PLP) is the active vitamer of vitamin B6 and acts as an essential cofactor in many aspects of amino acid and sugar metabolism. The virulence and survival of pathogenic bacteria such as Mycobacterium tuberculosis depend on PLP, and deficiencies in humans have also been associated with neurological disorders and inflammation. While PLP can be synthesized by a de novo pathway in bacteria and plants, most higher organisms rely on a salvage pathway that phosphorylates either pyridoxal (PL) or its related vitamers, pyridoxine (PN) and pyridoxamine (PM). PL kinases (PLKs) are essential for this phosphorylation step and are thus of major importance for cellular viability. We recently identified a pyridoxal kinase (SaPLK) as a target of the natural product antibiotic rugulactone (Ru) in Staphylococcus aureus. Surprisingly, Ru selectively modified SaPLK not at the active site cysteine, but on a remote cysteine residue. Based on structural and biochemical studies, we now provide insight into an unprecedented dual Cys charge relay network that is mandatory for PL phosphorylation. The key component is the reactive Cys 110 residue in the lid region that forms a hemithioactetal intermediate with the 4'-aldehyde of PL. This hemithioacetal, in concert with the catalytic Cys 214, increases the nucleophilicity of the PL 5'-OH group for the inline displacement reaction with the γ-phosphate of ATP. A closer inspection of related enzymes reveals that Cys 110 is conserved and thus serves as a characteristic mechanistic feature for a dual-function ribokinase subfamily herein termed CC-PLKs.
Collapse
Affiliation(s)
- Matthew B Nodwell
- Organic Chemistry II, Centre for Integrated Protein Science CIPSM, Institute of Advanced Studies, and ‡Biochemistry, Department of Chemistry, Technische Universität München , Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | |
Collapse
|
20
|
Ghatge MS, Contestabile R, di Salvo ML, Desai JV, Gandhi AK, Camara CM, Florio R, González IN, Parroni A, Schirch V, Safo MK. Pyridoxal 5'-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase. PLoS One 2012; 7:e41680. [PMID: 22848564 PMCID: PMC3404986 DOI: 10.1371/journal.pone.0041680] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/24/2012] [Indexed: 11/18/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP) is a cofactor for dozens of B6 requiring enzymes. PLP reacts with apo-B6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4′-aldehyde moiety forms covalent adducts with other compounds and non-B6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.
Collapse
Affiliation(s)
- Mohini S. Ghatge
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Roberto Contestabile
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Martino L. di Salvo
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Jigar V. Desai
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Amit K. Gandhi
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Christina M. Camara
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rita Florio
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Isabel N. González
- Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, Monterotondo Scalo, Roma, Italy
- Institute of Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - Alessia Parroni
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, Roma, Italy
| | - Verne Schirch
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Martin K. Safo
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Gandhi AK, Desai JV, Ghatge MS, di Salvo ML, Di Biase S, Danso-Danquah R, Musayev FN, Contestabile R, Schirch V, Safo MK. Crystal structures of human pyridoxal kinase in complex with the neurotoxins, ginkgotoxin and theophylline: insights into pyridoxal kinase inhibition. PLoS One 2012; 7:e40954. [PMID: 22879864 PMCID: PMC3412620 DOI: 10.1371/journal.pone.0040954] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/15/2012] [Indexed: 11/18/2022] Open
Abstract
Several drugs and natural compounds are known to be highly neurotoxic, triggering epileptic convulsions or seizures, and causing headaches, agitations, as well as other neuronal symptoms. The neurotoxic effects of some of these compounds, including theophylline and ginkgotoxin, have been traced to their inhibitory activity against human pyridoxal kinase (hPL kinase), resulting in deficiency of the active cofactor form of vitamin B₆, pyridoxal 5'-phosphate (PLP). Pyridoxal (PL), an inactive form of vitamin B₆ is converted to PLP by PL kinase. PLP is the B₆ vitamer required as a cofactor for over 160 enzymatic activities essential in primary and secondary metabolism. We have performed structural and kinetic studies on hPL kinase with several potential inhibitors, including ginkgotoxin and theophylline. The structural studies show ginkgotoxin and theophylline bound at the substrate site, and are involved in similar protein interactions as the natural substrate, PL. Interestingly, the phosphorylated product of ginkgotoxin is also observed bound at the active site. This work provides insights into the molecular basis of hPL kinase inhibition and may provide a working hypothesis to quickly screen or identify neurotoxic drugs as potential hPL kinase inhibitors. Such adverse effects may be prevented by administration of an appropriate form of vitamin B₆, or provide clues of how to modify these drugs to help reduce their hPL kinase inhibitory effects.
Collapse
Affiliation(s)
- Amit K. Gandhi
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jigar V. Desai
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mohini S. Ghatge
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Martino L. di Salvo
- Dipartimento di Scienze Biochimiche and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Stefano Di Biase
- Dipartimento di Scienze Biochimiche and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Richmond Danso-Danquah
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Faik N. Musayev
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Roberto Contestabile
- Dipartimento di Scienze Biochimiche and Istituto Pasteur – Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Verne Schirch
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Martin K. Safo
- Department of Medicinal Chemistry, Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
22
|
Huang S, Shu T, Zhang J, Ma W, Wei S, Huang L. Functional significance of some particular amino acid residues in Bombyx mori pyridoxal kinase. Comp Biochem Physiol B Biochem Mol Biol 2011; 161:155-60. [PMID: 22079857 DOI: 10.1016/j.cbpb.2011.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Pyridoxal kinase (PLK; EC 2.7.1.35) is a key enzyme for vitamin B(6) metabolism in animals. It catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal 5'-phosphate, an important cofactor for many enzymatic reactions. Bombyx mori PLK (BmPLK) is 10 or more residues shorter than mammalian PLKs, and some amino acid residues conserved in the PLKs from mammals are not maintained in the protein. Multiple sequence alignment suggested that amino acid residues Thr(47), Ile(54), Arg(88), Asn(121) and Glu(230) might play important roles in BmPLK. In this study, we used a site-directed specific mutagenesis approach to determine the functional significance of these particular amino acid residues in BmPLK. Our results demonstrated that the mutation of Asn(121) to Glu did not affect the catalytic function of BmPLK. The corresponding site-directed mutants of Thr(47) to Asn, Ile(54) to Phe, and Arg(88) to Ile displayed a decreased catalytic efficiency and an elevated Km value for substrate relative to the wild-type value, and no enzyme activity could be detected in mutant of Trp(230) to Glu. Circular dichroism analysis revealed that the mutation of Trp(230) to Glu resulted in mis-folding of the protein. Our results provided direct evidence that residue Trp(230) is crucial to maintain the structural and functional integrity of BmPLK. This study will add to the existing understanding of the characteristic of structure and function of BmPLK.
Collapse
Affiliation(s)
- ShuoHao Huang
- Key Laboratory of Tea Biochemistry & Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
di Salvo ML, Contestabile R, Safo MK. Vitamin B6 salvage enzymes: Mechanism, structure and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1597-608. [DOI: 10.1016/j.bbapap.2010.12.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
|
24
|
Guixé V, Merino F. The ADP-dependent sugar kinase family: kinetic and evolutionary aspects. IUBMB Life 2009; 61:753-61. [PMID: 19548321 DOI: 10.1002/iub.217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Some archaea of the Euryarchaeota present a unique version of the Embden-Meyerhof pathway where glucose and fructose-6-phosphate are phoshporylated using ADP instead of ATP as the phosphoryl donor. These are the only ADP-dependent kinases known to date. Although initially they were believed to represent a new protein family, they can be classified as members of the ribokinase superfamily, which also include several ATP-dependent kinases. As they were first identified in members of the thermococcales it was proposed that the presence of these ADP-dependent kinases is an adaptation to high temperatures. Later, homologs of these enzymes were identified in the genomes of mesophilic and thermophilic methanogenic archaea and even in the genomes of higher eukaryotes, suggesting that the presence of these proteins is not related to the hyperthermophilic life. The ADP-dependent kinases are very restrictive to their ligands being unable to use triphosphorylated nucleotides such as ATP. However, it has been shown that they can bind ATP by competition kinetic experiments. The hyperthermophilic methanogenic archaeon Methanocaldococcus jannaschii has a homolog of these genes, which can phosphorylate glucose and fructose-6-phosphate. For this reason, it was proposed as an ancestral form for the family. However, recent studies have shown that the ancestral activity in the group is glucokinase, and a combination of gene duplication and lateral gene transfer could have originated the two paralogs in this member of the Euryarchaeota. Interestingly, based on structural comparisons made within the superfamily it has been suggested that the ADP-dependent kinases are the newest in the group. In several members of the superfamily, the presence of divalent metal cations has been shown to be crucial for catalysis, so its role in the ADP-dependent family was investigated through molecular dynamics. The simulation shows that, in fact, the metal coordinates the catalytic ensemble and interacts with crucial residues for catalysis.
Collapse
Affiliation(s)
- Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | | |
Collapse
|
25
|
Trinh CH, Asipu A, Bonthron DT, Phillips SEV. Structures of alternatively spliced isoforms of human ketohexokinase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:201-11. [PMID: 19237742 PMCID: PMC2651755 DOI: 10.1107/s0907444908041115] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 12/05/2008] [Indexed: 11/10/2022]
Abstract
A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structures of the two alternatively spliced isoforms of human ketohexokinase, hepatic KHK-C and the peripheral isoform KHK-A, and of the ternary complex of KHK-A with the substrate fructose and AMP-PNP are reported. The structure of the KHK-A ternary complex revealed an active site with both the substrate fructose and the ATP analogue in positions ready for phosphorylation following a reaction mechanism similar to that of the pfkB family of carbohydrate kinases. Hepatic KHK deficiency causes the benign disorder essential fructosuria. The effects of the disease-causing mutations (Gly40Arg and Ala43Thr) have been modelled in the context of the KHK structure.
Collapse
Affiliation(s)
- Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds, England
| | | | | | | |
Collapse
|
26
|
Mooney S, Leuendorf JE, Hendrickson C, Hellmann H. Vitamin B6: a long known compound of surprising complexity. Molecules 2009; 14:329-51. [PMID: 19145213 PMCID: PMC6253932 DOI: 10.3390/molecules14010329] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/07/2009] [Accepted: 01/09/2009] [Indexed: 12/31/2022] Open
Abstract
In recent years vitamin B6 has become a focus of research describing the compound’s critical function in cellular metabolism and stress response. For many years the sole function of vitamin B6 was considered to be that of an enzymatic cofactor. However, recently it became clear that it is also a potent antioxidant that effectively quenches reactive oxygen species and is thus of high importance for cellular well-being. In view of the recent findings, the current review takes a look back and summarizes the discovery of vitamin B6 and the elucidation of its structure and biosynthetic pathways. It provides a detailed overview on vitamin B6 both as a cofactor and a protective compound. Besides these general characteristics of the vitamin, the review also outlines the current literature on vitamin B6 derivatives and elaborates on recent findings that provide new insights into transport and catabolism of the compound and on its impact on human health.
Collapse
Affiliation(s)
- Sutton Mooney
- School of Biological Sciences, Washington State University, Pullman, WA, USA; E-mail: (S. M.), (C. H.)
| | - Jan-Erik Leuendorf
- Angewandte Genetik, Freie Universität Berlin, 14195 Berlin, Germany E-mail: (J-E. L.)
| | - Christopher Hendrickson
- School of Biological Sciences, Washington State University, Pullman, WA, USA; E-mail: (S. M.), (C. H.)
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, USA; E-mail: (S. M.), (C. H.)
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
27
|
Merino F, Guixé V. Specificity evolution of the ADP-dependent sugar kinase family -in silico studies of the glucokinase/phosphofructokinase bifunctional enzyme from Methanocaldococcus jannaschii. FEBS J 2008; 275:4033-44. [DOI: 10.1111/j.1742-4658.2008.06544.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Musayev FN, di Salvo ML, Ko TP, Gandhi AK, Goswami A, Schirch V, Safo MK. Crystal Structure of human pyridoxal kinase: structural basis of M(+) and M(2+) activation. Protein Sci 2007; 16:2184-94. [PMID: 17766369 PMCID: PMC2204131 DOI: 10.1110/ps.073022107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pyridoxal kinase catalyzes the transfer of a phosphate group from ATP to the 5' alcohol of pyridoxine, pyridoxamine, and pyridoxal. In this work, kinetic studies were conducted to examine monovalent cation dependence of human pyridoxal kinase kinetic parameters. The results show that hPLK affinity for ATP and PL is increased manyfold in the presence of K(+) when compared to Na(+); however, the maximal activity of the Na(+) form of the enzyme is more than double the activity in the presence of K(+). Other monovalent cations, Li(+), Cs(+), and Rb(+) do not show significant activity. We have determined the crystal structure of hPLK in the unliganded form, and in complex with MgATP to 2.0 and 2.2 A resolution, respectively. Overall, the two structures show similar open conformation, and likely represent the catalytically idle state. The crystal structure of the MgATP complex also reveals Mg(2+) and Na(+) acting in tandem to anchor the ATP at the active site. Interestingly, the active site of hPLK acts as a sink to bind several molecules of MPD. The features of monovalent and divalent metal cation binding, active site structure, and vitamin B6 specificity are discussed in terms of the kinetic and structural studies, and are compared with those of the sheep and Escherichia coli enzymes.
Collapse
Affiliation(s)
- Faik N Musayev
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Newman JA, Das SK, Sedelnikova SE, Rice DW. Cloning, purification and preliminary crystallographic analysis of a putative pyridoxal kinase from Bacillus subtilis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:1006-9. [PMID: 17012797 PMCID: PMC2225197 DOI: 10.1107/s1744309106035779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 09/04/2006] [Indexed: 12/01/2022]
Abstract
Pyridoxal kinases (PdxK) are able to catalyse the phosphorylation of three vitamin B(6) precursors, pyridoxal, pyridoxine and pyridoxamine, to their 5'-phosphates and play an important role in the vitamin B(6) salvage pathway. Recently, the thiD gene of Bacillus subtilis was found to encode an enzyme which has the activity expected of a pyridoxal kinase despite its previous assignment as an HMPP kinase owing to higher sequence similarity. As such, this enzyme would appear to represent a new class of ;HMPP kinase-like' pyridoxal kinases. B. subtilis thiD has been cloned and the protein has been overexpressed in Escherichia coli, purified and subsequently crystallized in a binary complex with ADP and Mg(2+). X-ray diffraction data have been collected from crystals to 2.8 A resolution at 100 K. The crystals belong to a primitive tetragonal system, point group 422, and analysis of the systematic absences suggest that they belong to one of the enantiomorphic pair of space groups P4(1)2(1)2 or P4(3)2(1)2. Consideration of the space-group symmetry and unit-cell parameters (a = b = 102.9, c = 252.6 A, alpha = beta = gamma = 90 degrees ) suggest that the crystals contain between three and six molecules in the asymmetric unit. A full structure determination is under way to provide insights into aspects of the enzyme mechanism and substrate specificity.
Collapse
Affiliation(s)
- Joseph A. Newman
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Sanjan K. Das
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Svetlana E. Sedelnikova
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - David W. Rice
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| |
Collapse
|
30
|
Newman JA, Das SK, Sedelnikova SE, Rice DW. The crystal structure of an ADP complex of Bacillus subtilis pyridoxal kinase provides evidence for the parallel emergence of enzyme activity during evolution. J Mol Biol 2006; 363:520-30. [PMID: 16978644 DOI: 10.1016/j.jmb.2006.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/04/2006] [Accepted: 08/07/2006] [Indexed: 11/28/2022]
Abstract
Pyridoxal kinase catalyses the phosphorylation of pyridoxal, pyridoxine and pyridoxamine to their 5' phosphates and plays an important role in the pyridoxal 5' phosphate salvage pathway. The crystal structure of a dimeric pyridoxal kinase from Bacillus subtilis has been solved in complex with ADP to 2.8 A resolution. Analysis of the structure suggests that binding of the nucleotide induces the ordering of two loops, which operate independently to close a flap on the active site. Comparisons with other ribokinase superfamily members reveal that B. subtilis pyridoxal kinase is more closely related in both sequence and structure to the family of HMPP kinases than to other pyridoxal kinases, suggesting that this structure represents the first for a novel family of "HMPP kinase-like" pyridoxal kinases. Moreover this further suggests that this enzyme activity has evolved independently on multiple occasions from within the ribokinase superfamily.
Collapse
Affiliation(s)
- Joseph A Newman
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
31
|
Safo MK, Musayev FN, di Salvo ML, Hunt S, Claude JB, Schirch V. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: implications for the classification of pyridoxal kinases. J Bacteriol 2006; 188:4542-52. [PMID: 16740960 PMCID: PMC1482971 DOI: 10.1128/jb.00122-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, 800 E. Leigh St., Virginia Commonwealth University, Richmond, VA 23219, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Tang L, Li MH, Cao P, Wang F, Chang WR, Bach S, Reinhardt J, Ferandin Y, Galons H, Wan Y, Gray N, Meijer L, Jiang T, Liang DC. Crystal structure of pyridoxal kinase in complex with roscovitine and derivatives. J Biol Chem 2005; 280:31220-9. [PMID: 15985434 DOI: 10.1074/jbc.m500805200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyridoxal kinase (PDXK) catalyzes the phosphorylation of pyridoxal, pyridoxamine, and pyridoxine in the presence of ATP and Zn2+. This constitutes an essential step in the synthesis of pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, a cofactor for over 140 enzymes. (R)-Roscovitine (CYC202, Seliciclib) is a relatively selective inhibitor of cyclin-dependent kinases (CDKs), currently evaluated for the treatment of cancers, neurodegenerative disorders, renal diseases, and several viral infections. Affinity chromatography investigations have shown that (R)-roscovitine also interacts with PDXK. To understand this interaction, we determined the crystal structure of PDXK in complex with (R)-roscovitine, N6-methyl-(R)-roscovitine, and O6-(R)-roscovitine, the two latter derivatives being designed to bind to PDXK but not to CDKs. Structural analysis revealed that these three roscovitines bind similarly in the pyridoxal-binding site of PDXK rather than in the anticipated ATP-binding site. The pyridoxal pocket has thus an unexpected ability to accommodate molecules different from and larger than pyridoxal. This work provides detailed structural information on the interactions between PDXK and roscovitine and analogs. It could also aid in the design of roscovitine derivatives displaying strict selectivity for either PDXK or CDKs.
Collapse
Affiliation(s)
- Lin Tang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|