1
|
Choi GH, Holzapfel WH, Todorov SD. Diversity of the bacteriocins, their classification and potential applications in combat of antibiotic resistant and clinically relevant pathogens. Crit Rev Microbiol 2023; 49:578-597. [PMID: 35731254 DOI: 10.1080/1040841x.2022.2090227] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022]
Abstract
There is almost a century since discovery of penicillin by Alexander Fleming, a century of enthusiasm, abuse, facing development of antibiotic-resistance and clear conclusion that the modern medicine needs a new type of antimicrobials. Bacteriocins produced by Gram-positive and Gram-negative bacteria, Archaea and Eukaryotes were widely explored as potential antimicrobials with several applications in food industry. In last two decades bacteriocins showed their potential as promising alternative therapeutic for the treatment of antibiotic-resistant pathogens. Bacteriocins can be characterised as highly selective antimicrobials and therapeutics with low cytotoxicity. Most probably in order to solve the problems associated with the increasing number of antibiotic-resistant bacteria, the application of natural or bioengineered bacteriocins in addition to synergistically acting preparations of bacteriocins and conventional antibiotics, can be the next step in combat versus drug-resistant pathogens. In this overview we focussed on diversity of specific lactic acid bacteria and their bacteriocins. Moreover, some additional examples of bacteriocins from non-lactic acid, Gram-positive and Gram-negative bacteria, Archaea and eukaryotic organisms are presented and discussed. Therapeutic properties of bacteriocins, their bioengineering and combined applications, together with conventional antibiotics, were evaluated with the scope of application in human and veterinary medicine for combating (multi-)drug-resistant pathogens.
Collapse
Affiliation(s)
- Gee-Hyeun Choi
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang, Republic of Korea
| | | |
Collapse
|
2
|
Ramos-Vivas J, Tapia O, Elexpuru-Zabaleta M, Pifarre KT, Armas Diaz Y, Battino M, Giampieri F. The Molecular Weaponry Produced by the Bacterium Hafnia alvei in Foods. Molecules 2022; 27:molecules27175585. [PMID: 36080356 PMCID: PMC9457839 DOI: 10.3390/molecules27175585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence and action on consumer foods. The production of Acyl Homoserine Lactones (AHLs), a type of quorum-sensing (QS) signaling molecule, is the most often-studied chemical signaling molecule in Gram-negative bacteria. H. alvei can use this communication mechanism to promote the expression of certain enzymatic activities in fermented foods, where this bacterium is frequently present. H. alvei also produces a series of molecules involved in the modification of the organoleptic properties of different products, especially cheeses, where it shares space with other microorganisms. Although some strains of this species are implicated in infections in humans, many produce antibacterial compounds, such as bacteriocins, that inhibit the growth of true pathogens, so the characterization of these molecules could be very interesting from the point of view of clinical medicine and the food industry. Lastly, in some cases, H. alvei is responsible for the production of biogenic amines or other compounds of special interest in food health. In this article, we will review the most interesting molecules that produce the H. alvei strains and will discuss some of their properties, both from the point of view of their biological activity on other microorganisms and the properties of different food matrices in which this bacterium usually thrives.
Collapse
Affiliation(s)
- José Ramos-Vivas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
- CIBER of Infectious Diseases—CIBERINFEC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.R.-V.); (M.B.)
| | - Olga Tapia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - María Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Kilian Tutusaus Pifarre
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (J.R.-V.); (M.B.)
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| |
Collapse
|
3
|
Mitchell M, Thornton L, Riley MA. Identifying more targeted antimicrobials active against select bacterial phytopathogens. J Appl Microbiol 2022; 132:4388-4399. [PMID: 35301784 DOI: 10.1111/jam.15531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
AIMS Phytopathogens are a global threat to the world's food supply. Use of broad-spectrum bactericides and antibiotics to limit or eliminate bacterial infections is becoming less effective as levels of resistance increase, while concurrently becoming less desirable from an ecological perspective due to their collateral damage to beneficial members of plant and soil microbiomes. Bacteria produce numerous antimicrobials in addition to antibiotics, such as bacteriocins with their relatively narrow activity spectra, and inhibitory metabolic by-products, such as organic acids. There is interest in developing these naturally occurring antimicrobials for use as alternatives or supplements to antibiotics. METHODS AND RESULTS In this study, we investigate the inhibitory potential of 217 plant associated bacterial isolates from 44 species including plant pathogens, plant growth promoting rhizobacteria, and plant commensals. Over half of the isolates were found to produce antimicrobial substances, of which 68% were active against phytopathogens. Even more intriguing, 98% of phytopathogenic strains were sensitive to the compounds produced specifically by plant growth promoting rhizobacteria. CONCLUSION These data argue that plant-associated bacteria produce a broad range of antimicrobial substances, and that the substances produced preferentially target phytopathogenic bacteria. SIGNIFICANCE AND IMPACT OF STUDY There is a need for novel antimicrobials for use in agriculture. The methods presented here reveal the potential for simple phenotypic screening methods to provide a broad range of potential drug candidates.
Collapse
Affiliation(s)
| | - Logan Thornton
- Department of Biology, University of Massachusetts Amherst
| | | |
Collapse
|
4
|
Abstract
Pyocins are phage tail-like protein complexes that can be used by Pseudomonas aeruginosa to enact intraspecies competition by killing competing strains. The pyocin gene cluster also encodes holin and lysin enzymes that lyse producer cells to release the pyocins. The best-known inducers of pyocin production under laboratory conditions are DNA-damaging agents, including fluoroquinolone antibiotics, that activate the SOS response. Here, we report the discovery of an alternate, RecA-independent pathway of strong pyocin induction that is active in cells deficient for the tyrosine recombinase XerC. When ΔxerC cells were examined at the single-cell level, only a fraction of the cell population strongly expressed pyocins before explosively lysing, suggesting a that a built-in heterogenous response system protects the cell population from widespread lysis. Disabling the holin and lysin enzymes or deleting the entire pyocin gene cluster blocked explosive lysis and delayed but did not prevent the death of pyocin-producing cells, suggesting that ΔxerC cells activate other lysis pathways. Mutating XerC to abolish its recombinase activity induced pyocin expression to a lesser extent than the full deletion, suggesting that XerC has multiple functions with respect to pyocin activation. Our studies uncover a new pathway for pyocin production and highlight its response across a genetically identical population. Moreover, our finding that ΔxerC populations are hypersensitive to fluoroquinolones raises the intriguing possibility that XerC inhibition may potentiate the activity of these antibiotics against P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is a versatile and ubiquitous bacterium that frequently infects humans as an opportunistic pathogen. P. aeruginosa competes with other strains within the species by producing killing complexes termed pyocins, which are only known to be induced by cells experiencing DNA damage and the subsequent SOS response. Here, we discovered that strains lacking a recombinase enzyme called XerC strongly produce pyocins independently of the SOS response. We also show that these strains are hypersensitive to commonly used fluoroquinolone antibiotic treatment and that fluoroquinolones further stimulate pyocin production. Thus, XerC is an attractive target for future therapies that simultaneously sensitize P. aeruginosa to antibiotics and stimulate the production of bactericidal pyocins.
Collapse
|
5
|
Draft Genome Sequence of Hafnia paralvei Strain VBC_1714, Isolated from Frozen Cod Fillet Imported from Russia to Norway. Microbiol Resour Announc 2021; 10:e0062421. [PMID: 34410149 PMCID: PMC8375484 DOI: 10.1128/mra.00624-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hafnia spp. have the potential to cause opportunistic infections in humans and animals. This announcement describes the draft genome sequence of an H2S-positive Hafnia paralvei strain that was isolated as a presumptive Salmonella sp. from a frozen cod fillet.
Collapse
|
6
|
De Maayer P, Chan WY, Martin DAJ, Blom J, Venter SN, Duffy B, Cowan DA, Smits THM, Coutinho TA. Integrative conjugative elements of the ICEPan family play a potential role in Pantoea ananatis ecological diversification and antibiosis. Front Microbiol 2015; 6:576. [PMID: 26106378 PMCID: PMC4458695 DOI: 10.3389/fmicb.2015.00576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022] Open
Abstract
Pantoea ananatis is a highly versatile enterobacterium isolated from diverse environmental sources. The ecological diversity of this species may be attributed, in part, to the acquisition of mobile genetic elements. One such element is an Integrative and Conjugative Element (ICE). By means of in silico analyses the ICE elements belonging to a novel family, ICEPan, were identified in the genome sequences of five P. ananatis strains and characterized. PCR screening showed that ICEPan is prevalent among P. ananatis strains isolated from different environmental sources and geographic locations. Members of the ICEPan family share a common origin with ICEs of other enterobacteria, as well as conjugative plasmids of Erwinia spp. Aside from core modules for ICEPan integration, maintenance and dissemination, the ICEPan contain extensive non-conserved islands coding for proteins that may contribute toward various phenotypes such as stress response and antibiosis, and the highly diverse ICEPan thus plays a major role in the diversification of P. ananatis. An island is furthermore integrated within an ICEPan DNA repair-encoding locus umuDC and we postulate its role in stress-induced dissemination and/or expression of the genes on this island.
Collapse
Affiliation(s)
- Pieter De Maayer
- Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa ; Department of Microbiology, University of Pretoria Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Douglas A J Martin
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen Giessen, Germany
| | - Stephanus N Venter
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Brion Duffy
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zürich University of Applied Sciences Wädenswil, Switzerland
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa ; Department of Genetics, University of Pretoria Pretoria, South Africa
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zürich University of Applied Sciences Wädenswil, Switzerland
| | - Teresa A Coutinho
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| |
Collapse
|
7
|
Rethinking the composition of a rational antibiotic arsenal for the 21st century. Future Med Chem 2014; 5:1231-42. [PMID: 23859205 DOI: 10.4155/fmc.13.79] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The importance of the human microbiome in health may be the single most valuable development in our conception of the microbial world since Pasteur's germ theory of the 1860s. Its implications for our understanding of health and pathogenesis are profound. Coupled with the revolution in diagnostics that we are now witnessing - a revolution that changes medicine from a science of symptoms to a science of causes - we cannot continue to develop antibiotics as we have for the past 80 years. Instead, we need to usher in a new conception of the role of antibiotics in treatment: away from single molecules that target broad phylogenetic spectra and towards targeted molecules that cripple the pathogen while leaving the rest of the microbiome largely intact.
Collapse
|
8
|
De Maayer P, Chan WY, Blom J, Venter SN, Duffy B, Smits THM, Coutinho TA. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genomics 2012; 13:625. [PMID: 23151240 PMCID: PMC3505739 DOI: 10.1186/1471-2164-13-625] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/11/2012] [Indexed: 11/21/2022] Open
Abstract
Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1) of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS). A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS), conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse environments.
Collapse
Affiliation(s)
- Pieter De Maayer
- Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa.
| | | | | | | | | | | | | |
Collapse
|
9
|
Delbès-Paus C, Miszczycha S, Ganet S, Helinck S, Veisseire P, Pochet S, Thévenot D, Montel MC. Behavior of Escherichia coli O26:H11 in the presence of Hafnia alvei in a model cheese ecosystem. Int J Food Microbiol 2012; 160:212-8. [PMID: 23290227 DOI: 10.1016/j.ijfoodmicro.2012.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
This study was designed to evaluate the capacity of three Hafnia strains to inhibit the growth of an E. coli strain O26:H11 in an uncooked pressed model cheese, in the presence or absence of a microbial consortium added to mimic a cheese microbial community. Inoculated at 2 log CFU/ml into pasteurized milk without Hafnia, the E. coli O26:H11 strain reached 5 log CFU/g during cheese-making and survived at levels of 4 to 5 log CFU/g beyond 40 days. Inoculated into milk at 6 log CFU/ml, all three tested Hafnia strains (H. alvei B16 and HA, H. paralvei 920) reached values close to 8 log CFU/g and reduced E. coli O26:H11 counts in cheese on day 1 by 0.8 to 1.4 log CFU/g compared to cheeses inoculated with E. coli O26:H11 and the microbial consortium only. The Hafnia strains slightly reduced counts of Enterococcus faecalis (~-0.5 log from day 1) and promoted Lactobacillus plantarum growth (+0.2 to 0.5 log from day 8) in cheese. They produced small amounts of putrescine (~1.3 mmol/kg) and cadaverine (~0.9 mmol/kg) in cheese after 28 days, and did not affect levels of volatile aroma compounds. Further work on H. alvei strain B16 showed that E. coli O26:H11, inoculated at 2 log CFU/ml, was inhibited by H. alvei B16 inoculated at 6 log CFU/ml and not at 4.5 log CFU/ml. The inhibition was associated neither with lower pH values in cheese after 6 or 24h, nor with higher concentrations of lactic acid. Enhanced concentrations of acetic acid on day 1 in cheese inoculated with H. alvei B16 (4 to 11 mmol/kg) could not fully explain the reduction in E. coli O26:H11 growth. A synergistic interaction between H. alvei B16 and the microbial consortium, resulting in an additional 0.7-log reduction in E. coli O26:H11 counts, was observed from day 8 in model cheeses made from pasteurized milk. However, E. coli O26:H11 survived better during ripening in model cheeses made from raw milk than in those made from pasteurized milk, but this was not associated with an increase in pH values. In vitro approaches are required to investigate the mechanisms and causative agents of this interaction. H. alvei B16 appears to be a promising strain for reducing E. coli O26:H11 growth in cheese, as part of a multi-hurdle approach.
Collapse
Affiliation(s)
- C Delbès-Paus
- INRA, UR545 Recherches Fromagères, 20 Côte de Reyne, Aurillac, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta KN. Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr (Berl) 2012; 97:405-30. [PMID: 22512693 DOI: 10.1111/j.1439-0396.2012.01301.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To meet the ever-increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as 'bio-friendly agents', such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non-pathogenic and non-toxic micro-organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.
Collapse
Affiliation(s)
- S Mohapatra
- Laboratory of Freshwater Fish Reproduction and Development, School of Life Science, Southwest University, Chongqing, China.
| | | | | | | | | |
Collapse
|
11
|
Novel colicin Fy of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import, and cell membrane pore formation. J Bacteriol 2012; 194:1950-9. [PMID: 22343298 DOI: 10.1128/jb.05885-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A novel colicin type, designated colicin Fy, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin Fy was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin Fy activity gene (cfyA) and the colicin Fy immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin Fy was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin Fy-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin Fy receptor molecule. Introduction of the yiuR gene into the colicin Fy-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin Fy. In contrast, the colicin Fy-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin Fy only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins Fy and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin Fy and colicin Ib producers suggest a common evolutionary origin of the colicin Fy-YiuR and colicin Ib-Cir systems.
Collapse
|
12
|
Desriac F, Defer D, Bourgougnon N, Brillet B, Le Chevalier P, Fleury Y. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar Drugs 2010; 8:1153-77. [PMID: 20479972 PMCID: PMC2866480 DOI: 10.3390/md8041153] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 03/28/2010] [Accepted: 04/01/2010] [Indexed: 11/16/2022] Open
Abstract
As the association of marine animals with bacteria has become more commonly recognized, researchers have increasingly questioned whether these animals actually produce many of the bioactive compounds originally isolated from them. Bacteriocins, ribosomally synthesized antibiotic peptides, constitute one of the most potent weapons to fight against pathogen infections. Indeed, bacteriocinogenic bacteria may prevent pathogen dissemination by occupying the same ecological niche. Bacteriocinogenic strains associated with marine animals are a relevant source for isolation of probiotics. This review draws up an inventory of the marine bacteriocinogenic strains isolated from animal-associated microbial communities, known to date. Bacteriocin-like inhibitory substances (BLIS) and fully-characterized bacteriocins are described. Finally, their applications as probiotics in aquaculture are discussed.
Collapse
Affiliation(s)
- Florie Desriac
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Diane Defer
- Université Européenne de Bretagne, Université de Bretagne Sud, Centre de Recherche Saint Maudé, Laboratoire de Biotechnologie et Chimie Marines EA3884, 56321 Lorient Cedex, France; E-Mails:
(D.D.);
(N.B.)
| | - Nathalie Bourgougnon
- Université Européenne de Bretagne, Université de Bretagne Sud, Centre de Recherche Saint Maudé, Laboratoire de Biotechnologie et Chimie Marines EA3884, 56321 Lorient Cedex, France; E-Mails:
(D.D.);
(N.B.)
| | - Benjamin Brillet
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Patrick Le Chevalier
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| | - Yannick Fleury
- Université Européenne de Bretagne, Université de Brest, Institut Universitaire de Technologie, Laboratoire, Universitaire de Biodiversité et d’Ecologie Microbienne EA3882, 6 Rue de l’Université, 29334 Quimper Cedex, France; E-Mails:
(F.D.);
(B.B.);
(P.L.C.)
| |
Collapse
|
13
|
Palaniswamy C, Selvaraj DR, Selvaraj T. Gangrenous cholecystitis caused by Hafnia alvei: a case report and review of literature. J Am Med Dir Assoc 2009; 10:361-3. [PMID: 19497550 DOI: 10.1016/j.jamda.2009.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/03/2009] [Indexed: 11/20/2022]
|
14
|
Larios-Sanz M, Travisano M. Experimental evolution of an essential Bacillus gene in an E. coli host. Methods Mol Biol 2009; 532:269-287. [PMID: 19271191 DOI: 10.1007/978-1-60327-853-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The acquisition of foreign genes by HGT potentially greatly speeds up adaptation by allowing faster evolution of beneficial traits. The evolutionary integration of novel genes into host gene expression and physiology is critical for adaptation by HGT, but remains largely unknown. We are exploring the evolutionary consequences of gene acquisition in populations of Escherichia coli in real time. A plasmid bearing the genes necessary for sucrose catabolism was constructed and introduced into a single E. coli genotype. Wild-type E. coli is generally incapable of utilizing sucrose, but E. coli transformants were able to grow on sucrose as a sole carbon and energy source, albeit poorly. Twelve replicate populations were initiated and propagated in sucrose minimal media for 300 generations. Over this time, we observed large fitness improvements in the selected environment. These results demonstrate the potential for HGT to substantially increase microbial niche breadth.
Collapse
Affiliation(s)
- Maia Larios-Sanz
- Department of Biology, University of St. Thomas, Houston, TX, USA
| | | |
Collapse
|
15
|
Abstract
It is probable that nearly every natural product structure results from interactions between organisms. Symbiosis, a subset of inter-organism interactions involving closely associated partners, has recently provided new and interesting experimental systems for the study of these interactions. This review discusses new observations about natural product function and structural evolution that emerge from the study of symbiotic systems. In particular, these advances directly address long-standing 'how' and 'why' questions about natural products, providing fundamental insights about the evolution, origin and purpose of natural products that are inaccessible by other methods.
Collapse
Affiliation(s)
- Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
16
|
Yang H, Wan L, Li X, Cai H, Chen L, Li S, Li Y, Cheng J, Lu X. High level expression of His-tagged colicin 5 in E. coli and characterization of its narrow-spectrum bactericidal activity and pore-forming action. Protein Expr Purif 2007; 54:309-17. [PMID: 17451967 DOI: 10.1016/j.pep.2007.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 02/05/2023]
Abstract
Since antibiotics with a broad spectrum of activity would select for resistance among the normal flora, colicins having a narrow spectrum of activity can potentially be developed as novel antibiotics. Colicin-based bactericidal proteins with modified spectra of activity might also be developed by further gene fusion or gene modification. To achieve these goals, it is necessary to first build an efficient system to produce large amounts of colicin. In the presence of an immunity gene, we successfully constructed an expression vector pQE30-cfa-cfi producing high levels of His-tagged colicin 5 (60-80 mg/L). We found that the purified His-tagged colicin 5 possesses narrow-spectrum bactericidal activity against nonimmune Escherichia coli cells. It is highly toxic to sensitive E. coli cells at a low concentration of 0.01 microg/ml, while it is nontoxic to other tested gram-negative bacteria, gram-positive bacteria and yeast at a high concentration of 1000 microg/ml. His-tagged colicin 5 kills sensitive cells by permeabilizing their cell membranes. It is not hemolytic to rabbit erythrocytes and has no obvious cytotoxicity to other nucleated mammalian cells at a high concentration of 500 microg/ml. The His-tagged colicin 5 is similar to wild-type colicin 5 in spectrum and bactericidal activity against E. coli. It is a potential novel antibiotic particularly for treating human and animal infections caused by pathogenic E. coli. Besides producing high level of colicin 5, the highly efficient expression vector constructed here might also be a useful tool to develop colicin-based artificial bactericidal proteins.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mrak P, Podlesek Z, van Putten JPM, Zgur-Bertok D. Heterogeneity in expression of the Escherichia coli colicin K activity gene cka is controlled by the SOS system and stochastic factors. Mol Genet Genomics 2007; 277:391-401. [PMID: 17216493 DOI: 10.1007/s00438-006-0185-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/17/2006] [Indexed: 10/23/2022]
Abstract
Phenotypic diversity provides populations of prokaryotic and eukaryotic organisms with the flexibility required to adapt to and/or survive environmental perturbations. Consequently, there is much interest in unraveling the molecular mechanisms of heterogeneity. A classical example of heterogeneity in Escherichia coli is the subset (3%) of the population that expresses the colicin K activity gene (cka) upon nutrient starvation. Here, we report on the mechanism underlying this variable response. As colicin synthesis is regulated by the LexA protein, the central regulator of the SOS response, we focused on the role of LexA and the SOS system in the variable cka expression. Real-time RT-PCR showed that the SOS system, without exogenous DNA damage, induces moderate levels of cka expression. The use of cka-gfp fusions demonstrated that modification of the conserved LexA boxes in the cka promoter region affected LexA binding affinity and the percentage of cka-gfp expressing cells in the population. A lexA-gfp fusion showed that the lexA gene is highly expressed in a subset of bacteria. Furthermore, cka-gfp fusions cloned into higher copy plasmid vectors increased the percentage of cka-gfp positive bacteria. Together, these results indicate that the bistability in cka expression in the bacterial population is determined by (1) basal SOS activity, (2) stochastic factors and possibly (3) the interplay of LexA dimers at cka operator. Other LexA regulated processes could exhibit similar regulation.
Collapse
Affiliation(s)
- Peter Mrak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
18
|
Buggiotti L, Primmer CR. Molecular evolution of the avian growth hormone gene and comparison with its mammalian counterpart. J Evol Biol 2006; 19:844-54. [PMID: 16674581 DOI: 10.1111/j.1420-9101.2005.01042.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular evolution of all available avian growth hormone (GH) gene sequences was investigated using both maximum-likelihood and parsimony methods, and the patterns compared to those found in mammals. In contrast to the rapid bursts of evolution observed for mammalian GH, the evolutionary rate of the avian GH mature peptide appears to have been more constant. However several positively selected sites were identified at functionally important positions in the avian signal peptide by the site-specific likelihood method. This implies that sequence variation in the avian GH signal peptide may be adaptive, although more conservative parsimony methods failed to confirm this. Nevertheless, the differing patterns of avian and mammalian GH signal peptide molecular evolution are consistent with the apparently differing roles of GH in controlling growth in these taxonomic groups and support the hypothesis that signal peptide sequence variation may in fact be the basis for increased functional complexity.
Collapse
Affiliation(s)
- L Buggiotti
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| | | |
Collapse
|
19
|
Abstract
The genus Hafnia, a member of the family Enterobacteriaceae, consists of gram-negative bacteria that are occasionally implicated in both intestinal and extraintestinal infections in humans. Despite the fact that the genus currently contains only a single species (H. alvei), more extensive phylogenetic depth (two or more species) is apparent based upon DNA relatedness and 16S rRNA gene sequencing studies. Hafnia causes a variety of systemic infections, including septicemia and pneumonia; however, its role as a gastrointestinal pathogen is controversial. Many of the data supporting a role for hafniae as enteric pathogens were incorrectly attributed to this genus rather than to the actual pathogen, Escherichia albertii. There are numerous gaps in our understanding of this genus, including ecologic habitats and population genetics, disease-producing role in animals, phenetic and genetic methods useful in distinguishing genomospecies within the H. alvei complex, and bona fide pathogenicity factors.
Collapse
Affiliation(s)
- J Michael Janda
- Microbial Diseases Laboratory, 850 Marina Bay Parkway, Room E164, Richmond, CA 94804, USA.
| | | |
Collapse
|
20
|
Chavan M, Rafi H, Wertz J, Goldstone C, Riley MA. Phage associated bacteriocins reveal a novel mechanism for bacteriocin diversification in Klebsiella. J Mol Evol 2005; 60:546-56. [PMID: 15883889 DOI: 10.1007/s00239-004-0263-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 10/11/2004] [Indexed: 10/25/2022]
Abstract
Ninety-six isolates of Klebsiella pneumoniae and K. oxytoca were recovered from wild mammals in Australia. 14.6% of these bacteria produce killing phenotypes that suggest the production of bacteriocin toxins. Cloning and sequencing of the gene clusters encoding two of these killing phenotypes revealed two instances of a bacteriocin associated with a bacteriophage gene, the first such genetic organization described. The newly identified klebicin C gene cluster was discovered in both K. pneumoniae and K. oxytoca. The newly identified klebicin D gene cluster was detected in K. oxytoca. Protein sequence comparisons and phylogenetic inference suggest that klebicin C is most closely related to the rRNase group of colicins (such as colicin E4), while klebicin D is most closely related to the tRNase group of colicins (such as colicin D). The klebicin C and D gene clusters have similar genetic and regulatory organizations. In both cases, an operon structure is inferred consisting of a phage-associated open reading frame and klebicin activity and associated immunity genes. This novel bacteriophage/bacteriocin organization may provide a novel mechanism for the generation of bacteriocin diversity in Klebsiella.
Collapse
Affiliation(s)
- Milind Chavan
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | | | | | | | | |
Collapse
|
21
|
Snyder LAS, Davies JK, Ryan CS, Saunders NJ. Comparative overview of the genomic and genetic differences between the pathogenic Neisseria strains and species. Plasmid 2005; 54:191-218. [PMID: 16024078 DOI: 10.1016/j.plasmid.2005.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/18/2005] [Accepted: 04/21/2005] [Indexed: 01/19/2023]
Abstract
The availability of complete genome sequences from multiple pathogenic Neisseria strains and species has enabled a comprehensive survey of the genomic and genetic differences occurring within these species. In this review, we describe the chromosomal rearrangements that have occurred, and the genomic islands and prophages that have been identified in the various genomes. We also describe instances where specific genes are present or absent, other instances where specific genes have been inactivated, and situations where there is variation in the version of a gene that is present. We also provide an overview of mosaic genes present in these genomes, and describe the variation systems that allow the expression of particular genes to be switched ON or OFF. We have also described the presence and location of mobile non-coding elements in the various genomes. Finally, we have reviewed the incidence and properties of various extra-chromosomal elements found within these species. The overall impression is one of genomic variability and instability, resulting in increased functional flexibility within these species.
Collapse
Affiliation(s)
- Lori A S Snyder
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|