1
|
Udaondo Z, Ramos JL, Abram K. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol Rev 2024; 48:fuae025. [PMID: 39390673 PMCID: PMC11585281 DOI: 10.1093/femsre/fuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
The genus Pseudomonas is characterized by its rich genetic diversity, with over 300 species been validly recognized. This reflects significant progress made through sequencing and computational methods. Pseudomonas putida group comprises highly adaptable species that thrive in diverse environments and play various ecological roles, from promoting plant growth to being pathogenic in immunocompromised individuals. By leveraging the GRUMPS computational pipeline, we scrutinized 26 363 genomes labeled as Pseudomonas in the NCBI GenBank, categorizing all Pseudomonas spp. genomes into 435 distinct species-level clusters or cliques. We identified 224 strains deposited under the taxonomic identifier "Pseudomonas putida" distributed within 31 of these species-level clusters, challenging prior classifications. Nine of these 31 cliques contained at least six genomes labeled as "Pseudomonas putida" and were analysed in depth, particularly clique_1 (P. alloputida) and clique_2 (P. putida). Pangenomic analysis of a set of 413 P. putida group strains revealed over 2.2 million proteins and more than 77 000 distinct protein families. The core genome of these 413 strains includes 2226 protein families involved in essential biological processes. Intraspecific genetic homogeneity was observed within each clique, each possessing a distinct genomic identity. These cliques exhibit distinct core genes and diverse subgroups, reflecting adaptation to specific environments. Contrary to traditional views, nosocomial infections by P. alloputida, P. putida, and P. monteilii have been reported, with strains showing varied antibiotic resistance profiles due to diverse mechanisms. This review enhances the taxonomic understanding of key P. putida group species using advanced population genomics approaches and provides a comprehensive understanding of their genetic diversity, ecological roles, interactions, and potential applications.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
2
|
Espinosa-Urgel M, Ramos-González MI. Becoming settlers: Elements and mechanisms for surface colonization by Pseudomonas putida. Environ Microbiol 2023; 25:1575-1593. [PMID: 37045787 DOI: 10.1111/1462-2920.16385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Pseudomonads are considered to be among the most widespread culturable bacteria in mesophilic environments. The evolutive success of Pseudomonas species can be attributed to their metabolic versatility, in combination with a set of additional functions that enhance their ability to colonize different niches. These include the production of secondary metabolites involved in iron acquisition or having a detrimental effect on potential competitors, different types of motility, and the capacity to establish and persist within biofilms. Although biofilm formation has been extensively studied using the opportunistic pathogen Pseudomonas aeruginosa as a model organism, a significant body of knowledge is also becoming available for non-pathogenic Pseudomonas. In this review, we focus on the mechanisms that allow Pseudomonas putida to colonize biotic and abiotic surfaces and adapt to sessile life, as a relevant persistence strategy in the environment. This species is of particular interest because it includes plant-beneficial strains, in which colonization of plant surfaces may be relevant, and strains used for environmental and biotechnological applications, where the design and functionality of biofilm-based bioreactors, for example, also have to take into account the efficiency of bacterial colonization of solid surfaces. This work reviews the current knowledge of mechanistic and regulatory aspects of biofilm formation by P. putida and pinpoints the prospects in this field.
Collapse
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Granada, Spain
| | | |
Collapse
|
3
|
Jiao L, Cao X, Wang C, Chen F, Zou H, Yue L, Wang Z. Crosstalk between in situ root exudates and rhizobacteria to promote rice growth by selenium nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163175. [PMID: 37003329 DOI: 10.1016/j.scitotenv.2023.163175] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Maximizing the potential of plant-microbe systems offers great opportunities to confront sustainability issues in agroecosystems. However, the dialog between root exudates and rhizobacteria remains largely unknown. As a novel nanofertilizer, nanomaterials (NMs) have significant potential to improve agricultural productivity due to their unique properties. Here, soil amendment with 0.1 mg·kg-1 selenium (Se) NMs (30-50 nm) significantly promoted rice seedling growth. Differences in root exudates and rhizobacteria were evident. At an earlier time point (3rd week), Se NMs increased the relative content of malic and citric acid by 15.4- and 8.1-fold, respectively. Meanwhile, the relative abundances of Streptomyces and Sphingomonas were increased by 164.6 % and 38.3 %, respectively. As the exposure time increased, succinic acid (40.5-fold) at the 4th week and salicylic acid (4.7-fold) and indole-3-acetic (7.0-fold) at the 5th week were enhanced, while Pseudomonas and Bacillus increased at the 4th (112.3 % and 50.2 %) and 5th weeks (190.8 % and 53.1 %), respectively. Further analysis indicated that (1) Se NMs directly enhanced the synthesis and secretion of malic and citric acids by upregulating their biosynthesis and transporter genes and then recruited Bacillus and Pseudomonas; (2) Se NMs upregulated the chemotaxis and flagellar genes of Sphingomonas for more interaction with rice plants, thereby promoting rice growth and stimulating root exudate secretion. This crosstalk of root exudates and rhizobacteria enhanced nutrient uptake, resulting in promoted rice growth. Our study offers insights into the crosstalk between root exudates and rhizobacteria by NMs and provides new insights into rhizosphere regulation in nano-enabled agriculture.
Collapse
Affiliation(s)
- Liya Jiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
4
|
Xiao Y, Liang Q, He M, Wu N, Nie L, Chen W, Huang Q. Second Messenger c-di-GMP Modulates Exopolysaccharide Pea-Dependent Phenotypes via Regulation of eppA Expression in Pseudomonas putida. Appl Environ Microbiol 2022; 88:e0227021. [PMID: 34985979 PMCID: PMC8863075 DOI: 10.1128/aem.02270-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 01/03/2023] Open
Abstract
The exopolysaccharide (EPS) Pea is essential for wrinkly colony morphology, pellicle formation, and robust biofilm production in Pseudomonas putida. The second messenger cyclic diguanylate monophosphate (c-di-GMP) induces wrinkly colony morphology in P. putida through an unknown mechanism(s). Herein, we found that c-di-GMP modulates wrinkly colony morphology via the regulation of expression of eppA (PP_5586), a small individually transcribed gene of 177 bp, and this gene was adjacent to the upstream region of the pea cluster. Phenotype observation revealed that eppA was essential for Pea-dependent phenotypes. The deletion of eppA led to a smooth colony morphology and impaired biofilm, which was analogous to the phenotypes with loss of the entire pea operon. eppA expression was positively regulated by c-di-GMP via the transcriptional effector FleQ, and eppA was essential for the c-di-GMP-induced wrinkly colony morphology. Structure prediction results implied that EppA had two transmembrane regions, and Western blotting revealed that EppA was located on the cell membrane. Transcriptomic analysis indicated that EppA had no significant effect on the transcriptomic profile of P. putida. A bacterial two-hybrid (BTH) assay suggested that there was no direct interaction between EppA and the proteins in the pea cluster and adjacent operons. Overall, these findings reveal that EppA is essential for Pea-dependent phenotypes and that c-di-GMP modulates Pea-dependent phenotypes via regulation of eppA expression in P. putida. IMPORTANCE Microbe-secreted EPSs are high-molecular-weight polysaccharides that have the potential to be used as industrially important biomaterials. The EPS Pea in P. putida is essential for wrinkly colony morphology and pellicle formation. Here, we identified a function-unknown protein, EppA, which was also essential for Pea-dependent wrinkly colony morphology and pellicle formation, and EppA was probably involved in Pea secretion. Meanwhile, our results indicated that the second messenger c-di-GMP positively regulated the expression of EppA, resulting in Pea-dependent wrinkly colony morphology. Our results reveal the relationship of c-di-GMP, EppA, and Pea-dependent phenotypes and provide a possible pathway to construct genetically engineered strains for high Pea production.
Collapse
Affiliation(s)
- Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qingyuan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Meina He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Nianqi Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Liang Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Koedrith P, Rahman MM, Jang YJ, Shin DY, Seo YR. Nanoparticles: Weighing the Pros and Cons from an Eco-genotoxicological Perspective. J Cancer Prev 2021; 26:83-97. [PMID: 34258247 PMCID: PMC8249203 DOI: 10.15430/jcp.2021.26.2.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/06/2022] Open
Abstract
The exponential growth of nanotechnology and the industrial production have raised concerns over its impact on human and environmental health and safety (EHS). Although there has been substantial progress in the assessment of pristine nanoparticle toxicities, their EHS impacts require greater clarification. In this review, we discuss studies that have assessed nanoparticle eco-genotoxicity in different test systems and their fate in the environment as well as the considerable confounding factors that may complicate the results. We highlight key mechanisms of nanoparticle-mediated genotoxicity. Then we discuss the reliability of endpoint assays, such as the comet assay, the most favored assessment technique because of its versatility to measure low levels of DNA strand breakage, and the micronucleus assay, which is complementary to the former because of its greater ability to detect chromosomal DNA fragmentation. We also address the current recommendations on experimental design, including environmentally relevant concentrations and suitable exposure duration to avoid false-positive or -negative results. The genotoxicity of nanoparticles depends on their physicochemical features and the presence of co-pollutants. Thus, the effect of environmental processes (e.g., aggregation and agglomeration, adsorption, and transformation of nanoparticles) would account for when determining the actual genotoxicity relevant to environmental systems, and assay procedures must be standardized. Indeed, the engineered nanoparticles offer potential applications in different fields including biomedicine, environment, agriculture, and industry. Toxicological pathways and the potential risk factors related to genotoxic responses in biological organisms and environments need to be clarified before appropriate and sustainable applications of nanoparticles can be established.
Collapse
Affiliation(s)
- Preeyaporn Koedrith
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Md. Mujibur Rahman
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yu Jin Jang
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Young Rok Seo
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
6
|
Bhattacharyya A, Pablo CHD, Mavrodi OV, Weller DM, Thomashow LS, Mavrodi DV. Rhizosphere plant-microbe interactions under water stress. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:65-113. [PMID: 34140134 DOI: 10.1016/bs.aambs.2021.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Climate change, with its extreme temperature, weather and precipitation patterns, is a major global concern of dryland farmers, who currently meet the challenges of climate change agronomically and with growth of drought-tolerant crops. Plants themselves compensate for water stress by modifying aerial surfaces to control transpiration and altering root hydraulic conductance to increase water uptake. These responses are complemented by metabolic changes involving phytohormone network-mediated activation of stress response pathways, resulting in decreased photosynthetic activity and the accumulation of metabolites to maintain osmotic and redox homeostasis. Phylogenetically diverse microbial communities sustained by plants contribute to host drought tolerance by modulating phytohormone levels in the rhizosphere and producing water-sequestering biofilms. Drylands of the Inland Pacific Northwest, USA, illustrate the interdependence of dryland crops and their associated microbiota. Indigenous Pseudomonas spp. selected there by long-term wheat monoculture suppress root diseases via the production of antibiotics, with soil moisture a critical determinant of the bacterial distribution, dynamics and activity. Those pseudomonads producing phenazine antibiotics on wheat had more abundant rhizosphere biofilms and provided improved tolerance to drought, suggesting a role of the antibiotic in alleviation of drought stress. The transcriptome and metabolome studies suggest the importance of wheat root exudate-derived osmoprotectants for the adaptation of these pseudomonads to the rhizosphere lifestyle and support the idea that the exchange of metabolites between plant roots and microorganisms profoundly affects and shapes the belowground plant microbiome under water stress.
Collapse
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Clint H D Pablo
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David M Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda S Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States.
| |
Collapse
|
7
|
Mavrodi OV, McWilliams JR, Peter JO, Berim A, Hassan KA, Elbourne LDH, LeTourneau MK, Gang DR, Paulsen IT, Weller DM, Thomashow LS, Flynt AS, Mavrodi DV. Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas. Front Microbiol 2021; 12:651282. [PMID: 33936009 PMCID: PMC8079746 DOI: 10.3389/fmicb.2021.651282] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages. These exudates provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by focusing on the molecular dialog between eight well-characterized beneficial strains of the Pseudomonas fluorescens group and Brachypodium distachyon, a model for economically important food, feed, forage, and biomass crops of the grass family. We collected and analyzed root exudates of B. distachyon and demonstrated the presence of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many of these metabolites provide carbon and energy for the Pseudomonas strains. RNA-seq profiling of bacterial cultures amended with root exudates revealed changes in the expression of genes encoding numerous catabolic and anabolic enzymes, transporters, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost half of the differentially expressed genes mapped to the variable part of the strains’ pangenome, reflecting the importance of the variable gene content in the adaptation of P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity of cellular pathways and physiological responses underlying the establishment of mutualistic interactions between these beneficial rhizobacteria and their plant hosts.
Collapse
Affiliation(s)
- Olga V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Janiece R McWilliams
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jacob O Peter
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Karl A Hassan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Liam D H Elbourne
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Melissa K LeTourneau
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - David M Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda S Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Alex S Flynt
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Dmitri V Mavrodi
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
8
|
Beyond the Wall: Exopolysaccharides in the Biofilm Lifestyle of Pathogenic and Beneficial Plant-Associated Pseudomonas. Microorganisms 2021; 9:microorganisms9020445. [PMID: 33670010 PMCID: PMC7926942 DOI: 10.3390/microorganisms9020445] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
The formation of biofilms results from a multicellular mode of growth, in which bacteria remain enwrapped by an extracellular matrix of their own production. Many different bacteria form biofilms, but among the most studied species are those that belong to the Pseudomonas genus due to the metabolic versatility, ubiquity, and ecological significance of members of this group of microorganisms. Within the Pseudomonas genus, biofilm studies have mainly focused on the opportunistic human pathogen Pseudomonas aeruginosa due to its clinical importance. The extracellular matrix of P. aeruginosa is mainly composed of exopolysaccharides, which have been shown to be important for the biofilm architecture and pathogenic features of this bacterium. Notably, some of the exopolysaccharides recurrently used by P. aeruginosa during biofilm formation, such as the alginate and polysaccharide synthesis loci (Psl) polysaccharides, are also used by pathogenic and beneficial plant-associated Pseudomonas during their interaction with plants. Interestingly, their functions are multifaceted and seem to be highly dependent on the bacterial lifestyle and genetic context of production. This paper reviews the functions and significance of the exopolysaccharides produced by plant-associated Pseudomonas, particularly the alginate, Psl, and cellulose polysaccharides, focusing on their equivalents produced in P. aeruginosa within the context of pathogenic and beneficial interactions.
Collapse
|
9
|
Gawin A, Peebo K, Hans S, Ertesvåg H, Irla M, Neubauer P, Brautaset T. Construction and characterization of broad-host-range reporter plasmid suitable for on-line analysis of bacterial host responses related to recombinant protein production. Microb Cell Fact 2019; 18:80. [PMID: 31064376 PMCID: PMC6505264 DOI: 10.1186/s12934-019-1128-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bacteria are widely used as hosts for recombinant protein production due to their rapid growth, simple media requirement and ability to produce high yields of correctly folded proteins. Overproduction of recombinant proteins may impose metabolic burden to host cells, triggering various stress responses, and the ability of the cells to cope with such stresses is an important factor affecting both cell growth and product yield. RESULTS Here, we present a versatile plasmid-based reporter system for efficient analysis of metabolic responses associated with availability of cellular resources utilized for recombinant protein production and host capacity to synthesize correctly folded proteins. The reporter plasmid is based on the broad-host range RK2 minimal replicon and harbors the strong and inducible XylS/Pm regulator/promoter system, the ppGpp-regulated ribosomal protein promoter PrpsJ, and the σ32-dependent synthetic tandem promoter Pibpfxs, each controlling expression of one distinguishable fluorescent protein. We characterized the responsiveness of all three reporters in Escherichia coli by quantitative fluorescence measurements in cell cultures cultivated under different growth and stress conditions. We also validated the broad-host range application potential of the reporter plasmid by using Pseudomonas putida and Azotobacter vinelandii as hosts. CONCLUSIONS The plasmid-based reporter system can be used for analysis of the total inducible recombinant protein production, the translational capacity measured as transcription level of ribosomal protein genes and the heat shock-like response revealing aberrant protein folding in all studied Gram-negative bacterial strains.
Collapse
Affiliation(s)
- Agnieszka Gawin
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælandsvei 6-8, 7491 Trondheim, Norway
| | - Karl Peebo
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Sebastian Hans
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstrasse 76, 13355 Berlin, Germany
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælandsvei 6-8, 7491 Trondheim, Norway
| | - Marta Irla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælandsvei 6-8, 7491 Trondheim, Norway
| | - Peter Neubauer
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstrasse 76, 13355 Berlin, Germany
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælandsvei 6-8, 7491 Trondheim, Norway
| |
Collapse
|
10
|
Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Appl Environ Microbiol 2019; 85:AEM.01741-18. [PMID: 30478234 PMCID: PMC6344628 DOI: 10.1128/aem.01741-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023] Open
Abstract
Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens. The rhizobacterium Pseudomonas pseudoalcaligenes AVO110, isolated by the enrichment of competitive avocado root tip colonizers, controls avocado white root rot disease caused by Rosellinia necatrix. Here, we applied signature-tagged mutagenesis (STM) during the growth and survival of AVO110 in fungal exudate-containing medium with the goal of identifying the molecular mechanisms linked to the interaction of this bacterium with R. necatrix. A total of 26 STM mutants outcompeted by the parental strain in fungal exudate, but not in rich medium, were selected and named growth-attenuated mutants (GAMs). Twenty-one genes were identified as being required for this bacterial-fungal interaction, including membrane transporters, transcriptional regulators, and genes related to the metabolism of hydrocarbons, amino acids, fatty acids, and aromatic compounds. The bacterial traits identified here that are involved in the colonization of fungal hyphae include proteins involved in membrane maintenance (a dynamin-like protein and ColS) or cyclic-di-GMP signaling and chemotaxis. In addition, genes encoding a DNA helicase (recB) and a regulator of alginate production (algQ) were identified as being required for efficient colonization of the avocado rhizosphere. IMPORTANCE Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens.
Collapse
|
11
|
Zúñiga A, Fuente FDL, Federici F, Lionne C, Bônnet J, de Lorenzo V, González B. An Engineered Device for Indoleacetic Acid Production under Quorum Sensing Signals Enables Cupriavidus pinatubonensis JMP134 To Stimulate Plant Growth. ACS Synth Biol 2018; 7:1519-1527. [PMID: 29746094 DOI: 10.1021/acssynbio.8b00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The environmental effects of chemical fertilizers and pesticides have encouraged the quest for new strategies to increase crop productivity with minimal impacts on the natural medium. Plant growth promoting rhizobacteria (PGPR) can contribute to this endeavor by improving fitness through better nutrition acquisition and stress tolerance. Using the neutral (non PGPR) rhizobacterium Cupriavidus pinatubonensis JMP134 as the host, we engineered a regulatory forward loop that triggered the synthesis of the phytohormone indole-3-acetic acid (IAA) in a manner dependent on quorum sensing (QS) signals. Implementation of the device in JMP134 yielded synthesis of IAA in an autoregulated manner, improving the growth of the roots of inoculated Arabidopsis thaliana. These results not only demonstrated the value of the designed genetic module, but also validated C. pinatubonensis JMP134 as a suitable vehicle for agricultural applications, as it is amenable to genetic manipulations.
Collapse
Affiliation(s)
- Ana Zúñiga
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Francisco de la Fuente
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
- R2B Catalyst, Research Center, Andrés Bello 2299, Santiago, Chile
| | - Fernán Federici
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Fondo de Desarrollo de Áreas Prioritarias, Center for Genome Regulation, Millennium Institute for Integrative Systems and Synthetic Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Corinne Lionne
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Jérome Bônnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | | | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez—Center of Applied Ecology and Sustainability, Santiago de Chile, 2640, Chile
| |
Collapse
|
12
|
Ainelo H, Lahesaare A, Teppo A, Kivisaar M, Teras R. The promoter region of lapA and its transcriptional regulation by Fis in Pseudomonas putida. PLoS One 2017; 12:e0185482. [PMID: 28945818 PMCID: PMC5612765 DOI: 10.1371/journal.pone.0185482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/13/2017] [Indexed: 12/28/2022] Open
Abstract
LapA is the biggest protein in Pseudomonas putida and a key factor for biofilm formation. Its importance and posttranslational regulation is rather thoroughly studied but less is known about the transcriptional regulation. Here we give evidence that transcription of lapA in LB-grown bacteria is initiated from six promoters, three of which display moderate RpoS-dependence. The global transcription regulator Fis binds to the lapA promoter area at six positions in vitro, and Fis activates the transcription of lapA while overexpressed in cells. Two of the six Fis binding sites, Fis-A7 and Fis-A5, are necessary for the positive effect of Fis on the transcription of lapA in vivo. Our results indicate that Fis binding to the Fis-A7 site increases the level of transcription from the most distal promoter of lapA, whereas Fis binding to the Fis-A5 site could be important for modifying the promoter area topology.
Collapse
Affiliation(s)
- Hanna Ainelo
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Andrio Lahesaare
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Annika Teppo
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Riho Teras
- Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
13
|
Zhu L, Li Y, Wang J, Wang X. Identification of two secondary acyltransferases of lipid A in Pseudomonas putida
KT2442. J Appl Microbiol 2017; 123:478-490. [DOI: 10.1111/jam.13499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Affiliation(s)
- L. Zhu
- School of Biotechnology; Jiangnan University; Wuxi China
| | - Y. Li
- State Key Laboratory of Food Science and Technology; Wuxi China
| | - J. Wang
- School of Biotechnology; Jiangnan University; Wuxi China
| | - X. Wang
- School of Biotechnology; Jiangnan University; Wuxi China
- State Key Laboratory of Food Science and Technology; Wuxi China
| |
Collapse
|
14
|
Molina-Santiago C, Udaondo Z, Gómez-Lozano M, Molin S, Ramos JL. Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ Microbiol 2016; 19:645-658. [PMID: 27768818 DOI: 10.1111/1462-2920.13585] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022]
Abstract
Pseudomonas putida strains are generally recognized as solvent tolerant, exhibiting varied sensitivity to organic solvents. Pan-genome analysis has revealed that 30% of genes belong to the core-genome of Pseudomonas. Accessory and unique genes confer high degree of adaptability and capabilities for the degradation and synthesis of a wide range of chemicals. For the use of these microbes in bioremediation and biocatalysis, it is critical to understand the mechanisms underlying these phenotypic differences. In this study, RNA-seq analysis compared the short- and long-term responses of the toluene-sensitive KT2440 strain and the highly tolerant DOT-T1E strain. The sensitive strain activates a larger number of genes in a higher magnitude than DOT-T1E. This is expected because KT2440 bears one toluene tolerant pump, while DOT-T1E encodes three of these pumps. Both strains activate membrane modifications to reduce toluene membrane permeability. The KT2440 strain activates the TCA cycle to generate energy, while avoiding energy-intensive processes such as flagellar biosynthesis. This suggests that KT2440 responds to toluene by focusing on survival mechanisms. The DOT-T1E strain activates toluene degradation pathways, using toluene as source of energy. Among the unique genes encoded by DOT-T1E is a 70 kb island composed of genes of unknown function induced in response to toluene.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| | - María Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Soren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Juan-Luis Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
15
|
Quesada JM, Fernández M, Soriano MI, Barrientos-Moreno L, Llamas MA, Espinosa-Urgel M. Rhizosphere selection of Pseudomonas putida KT2440 variants with increased fitness associated to changes in gene expression. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:842-850. [PMID: 27487165 DOI: 10.1111/1758-2229.12447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As the interface between plant roots and soil, the rhizosphere is a complex environment where nutrients released by the plant promote microbial growth. Increasing evidences indicate that the plant also exerts a selective pressure on microbial populations in the rhizosphere, favouring colonization by certain groups. In this work, we have designed an experimental setup to begin analysing the evolution of a specific bacterial population in the rhizosphere, using Pseudomonas putida KT2440 as model organism. After several rounds of selection without passage through laboratory growth conditions, derivatives of this strain with increased fitness in the rhizosphere were isolated. Detailed analysis of one of these clones indicated that this effect is specific for rhizosphere conditions and derives from changes in its transcriptional profile in this environment, with 43 genes being differentially expressed with respect to the parental strain. Several of these genes belong to functional categories which could affect stress adaptation and availability of particular nutrients. By inactivating two genes identified as upregulated in the selected clone (coding for a stress-response protein and a rRNA modifying protein), these functions were shown to contribute to rhizosphere fitness. Our data also suggest the existence of different evolutionary pathways leading to increased rhizosphere fitness.
Collapse
Affiliation(s)
- José Miguel Quesada
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, E-18008, Spain
| | - Matilde Fernández
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, E-18008, Spain
| | - María Isabel Soriano
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, E-18008, Spain
| | - Laura Barrientos-Moreno
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, E-18008, Spain
| | - María Antonia Llamas
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, E-18008, Spain
| | - Manuel Espinosa-Urgel
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
16
|
Butcher BG, Chakravarthy S, D'Amico K, Stoos KB, Filiatrault MJ. Disruption of the carA gene in Pseudomonas syringae results in reduced fitness and alters motility. BMC Microbiol 2016; 16:194. [PMID: 27558694 PMCID: PMC4997734 DOI: 10.1186/s12866-016-0819-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/19/2016] [Indexed: 02/05/2023] Open
Abstract
Background Pseudomonas syringae infects diverse plant species and is widely used in the study of effector function and the molecular basis of disease. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing attention in bacterial pathology, there is limited knowledge regarding these studies in Pseudomonas syringae. The aim of this study was to investigate the function of the carA gene and the small RNA P32, and characterize the regulation of these transcripts. Results Disruption of the carA gene (ΔcarA) which encodes the predicted small chain of carbamoylphosphate synthetase, resulted in arginine and pyrimidine auxotrophy in Pseudomonas syringae pv. tomato DC3000. Complementation with the wild type carA gene was able to restore growth to wild-type levels in minimal medium. Deletion of the small RNA P32, which resides immediately upstream of carA, did not result in arginine or pyrimidine auxotrophy. The expression of carA was influenced by the concentrations of both arginine and uracil in the medium. When tested for pathogenicity, ΔcarA showed reduced fitness in tomato as well as Arabidopsis when compared to the wild-type strain. In contrast, mutation of the region encoding P32 had minimal effect in planta. ΔcarA also exhibited reduced motility and increased biofilm formation, whereas disruption of P32 had no impact on motility or biofilm formation. Conclusions Our data show that carA plays an important role in providing arginine and uracil for growth of the bacteria and also influences other factors that are potentially important for growth and survival during infection. Although we find that the small RNA P32 and carA are co-transcribed, P32 does not play a role in the phenotypes that carA is required for, such as motility, cell attachment, and virulence. Additionally, our data suggests that pyrimidines may be limited in the apoplastic space of the plant host tomato. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0819-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bronwyn G Butcher
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Present Address: Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, USA
| | - Suma Chakravarthy
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Katherine D'Amico
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
| | - Kari Brossard Stoos
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY, USA
| | - Melanie J Filiatrault
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA. .,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA.
| |
Collapse
|
17
|
Arnfinnsdottir NB, Bjørkøy AV, Lale R, Sletmoen M. Heterogeneity in GFP expression in isogenic populations of P. putida KT2440 investigated using flow cytometry and bacterial microarrays. RSC Adv 2016. [DOI: 10.1039/c5ra23757b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fluorescence intensities were determined using both flow cytometry and bacterial microarrays for Pseudomonas putida expressing GFP upon addition of an inducer. Fluorescence micrographs revealed static inter-cell differences in fluorescence emission.
Collapse
Affiliation(s)
- N. B. Arnfinnsdottir
- Biophysics and Medical Technology
- Department of Physics
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - A. V. Bjørkøy
- Biophysics and Medical Technology
- Department of Physics
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - R. Lale
- Department of Biotechnology
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - M. Sletmoen
- Department of Biotechnology
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| |
Collapse
|
18
|
Håti AG, Arnfinnsdottir NB, Østevold C, Sletmoen M, Etienne G, Amstad E, Stokke BT. Microarrays for the study of compartmentalized microorganisms in alginate microbeads and (W/O/W) double emulsions. RSC Adv 2016. [DOI: 10.1039/c6ra23945e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we present two array platforms for small (50–100 μm) cell-containing 3D compartments prepared by droplet-based microfluidics.
Collapse
Affiliation(s)
- Armend G. Håti
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Nina Bjørk Arnfinnsdottir
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Camilla Østevold
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| | - Marit Sletmoen
- Dept. of Biotechnology
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
- Norway
| | - Gianluca Etienne
- Soft Materials Laboratory (SMaL)
- Institute of Materials
- École Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | - Esther Amstad
- Soft Materials Laboratory (SMaL)
- Institute of Materials
- École Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| | - Bjørn T. Stokke
- Biophysics and Medical Technology
- Dept. of Physics
- NTNU
- Norwegian University of Science and Technology
- NO-7491 Trondheim
| |
Collapse
|
19
|
Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions. PLoS One 2015; 10:e0129591. [PMID: 26067663 PMCID: PMC4466249 DOI: 10.1371/journal.pone.0129591] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/11/2015] [Indexed: 12/03/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against pathogens, a plant’s reaction to stressful environments, soil fertility, and a plant’s relationship with other microorganisms. Such effects imply a broad reprogramming of the plant’s metabolic activity. However, little information is available regarding the role of AMF and their relation to other soil plant growth—promoting microorganisms in the plant metabolome, especially under realistic field conditions. In the present experiment, we evaluated the effects of inoculation with AMF, either alone or in combination with plant growth–promoting rhizobacteria (PGPR), on the metabolome and changes in metabolic pathways in the roots of durum wheat (Triticum durum Desf.) grown under N-limited agronomic conditions in a P-rich environment. These two treatments were compared to infection by the natural AMF population (NAT). Soil inoculation with AMF almost doubled wheat root colonization by AMF and decreased the root concentrations of most compounds in all metabolic pathways, especially amino acids (AA) and saturated fatty acids, whereas inoculation with AMF+PGPR increased the concentrations of such compounds compared to inoculation with AMF alone. Enrichment metabolomics analyses showed that AA metabolic pathways were mostly changed by the treatments, with reduced amination activity in roots most likely due to a shift from the biosynthesis of common AA to γ-amino butyric acid. The root metabolome differed between AMF and NAT but not AMF+PGPR and AMF or NAT. Because the PGPR used were potent mineralisers, and AMF can retain most nitrogen (N) taken as organic compounds for their own growth, it is likely that this result was due to an increased concentration of mineral N in soil inoculated with AMF+PGPR compared to AMF alone.
Collapse
|
20
|
Arnfinnsdottir NB, Ottesen V, Lale R, Sletmoen M. The Design of Simple Bacterial Microarrays: Development towards Immobilizing Single Living Bacteria on Predefined Micro-Sized Spots on Patterned Surfaces. PLoS One 2015; 10:e0128162. [PMID: 26039378 PMCID: PMC4454678 DOI: 10.1371/journal.pone.0128162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 11/29/2022] Open
Abstract
In this paper we demonstrate a procedure for preparing bacterial arrays that is fast, easy, and applicable in a standard molecular biology laboratory. Microcontact printing is used to deposit chemicals promoting bacterial adherence in predefined positions on glass surfaces coated with polymers known for their resistance to bacterial adhesion. Highly ordered arrays of immobilized bacteria were obtained using microcontact printed islands of polydopamine (PD) on glass surfaces coated with the antiadhesive polymer polyethylene glycol (PEG). On such PEG-coated glass surfaces, bacteria were attached to 97 to 100% of the PD islands, 21 to 62% of which were occupied by a single bacterium. A viability test revealed that 99% of the bacteria were alive following immobilization onto patterned surfaces. Time series imaging of bacteria on such arrays revealed that the attached bacteria both divided and expressed green fluorescent protein, both of which indicates that this method of patterning of bacteria is a suitable method for single-cell analysis.
Collapse
Affiliation(s)
- Nina Bjørk Arnfinnsdottir
- Biophysics and Medical Technology, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Vegar Ottesen
- Biophysics and Medical Technology, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Rahmi Lale
- Department of Biotechnology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Marit Sletmoen
- Biophysics and Medical Technology, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- * E-mail:
| |
Collapse
|
21
|
Pizarro-Tobías P, Fernández M, Niqui JL, Solano J, Duque E, Ramos JL, Roca A. Restoration of a Mediterranean forest after a fire: bioremediation and rhizoremediation field-scale trial. Microb Biotechnol 2015; 8:77-92. [PMID: 25079309 PMCID: PMC4321375 DOI: 10.1111/1751-7915.12138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 05/25/2014] [Indexed: 12/04/2022] Open
Abstract
Forest fires pose a serious threat to countries in the Mediterranean basin, often razing large areas of land each year. After fires, soils are more likely to erode and resilience is inhibited in part by the toxic aromatic hydrocarbons produced during the combustion of cellulose and lignins. In this study, we explored the use of bioremediation and rhizoremediation techniques for soil restoration in a field-scale trial in a protected Mediterranean ecosystem after a controlled fire. Our bioremediation strategy combined the use of Pseudomonas putida strains, indigenous culturable microbes and annual grasses. After 8 months of monitoring soil quality parameters, including the removal of monoaromatic and polycyclic aromatic hydrocarbons as well as vegetation cover, we found that the site had returned to pre-fire status. Microbial population analysis revealed that fires induced changes in the indigenous microbiota and that rhizoremediation favours the recovery of soil microbiota in time. The results obtained in this study indicate that the rhizoremediation strategy could be presented as a viable and cost-effective alternative for the treatment of ecosystems affected by fires.
Collapse
Affiliation(s)
| | | | - José Luis Niqui
- Bio-Ilíberis R&DPolígono Industrial Juncaril, Peligros, Granada, 18210, Spain
| | - Jennifer Solano
- Bio-Ilíberis R&DPolígono Industrial Juncaril, Peligros, Granada, 18210, Spain
| | - Estrella Duque
- Estación Experimental del Zaidín-CSICGranada, Granada, 18008, Spain
| | - Juan-Luis Ramos
- Estación Experimental del Zaidín-CSICGranada, Granada, 18008, Spain
| | - Amalia Roca
- Bio-Ilíberis R&DPolígono Industrial Juncaril, Peligros, Granada, 18210, Spain
| |
Collapse
|
22
|
Moor H, Teppo A, Lahesaare A, Kivisaar M, Teras R. Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF. MICROBIOLOGY-SGM 2014; 160:2681-2693. [PMID: 25253613 DOI: 10.1099/mic.0.082503-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteria form biofilm as a response to a number of environmental signals that are mediated by global transcription regulators and alarmones. Here we report the involvement of the global transcription regulator Fis in Pseudomonas putida biofilm formation through regulation of lapA and lapF genes. The major component of P. putida biofilm is proteinaceous and two large adhesive proteins, LapA and LapF, are known to play a key role in its formation. We have previously shown that Fis overexpression enhances P. putida biofilm formation. In this study, we used mini-Tn5 transposon mutagenesis to select potential Fis-regulated genes involved in biofilm formation. A total of 90 % of the studied transposon mutants carried insertions in the lap genes. Since our experiments showed that Fis-enhanced biofilm is mostly proteinaceous, the amounts of LapA and LapF from P. putida cells lysates were quantified using SDS-PAGE. Fis overexpression increases the quantity of LapA 1.6 times and decreases the amount of LapF at least 4 times compared to the wild-type cells. The increased LapA expression caused by Fis overexpression was confirmed by FACS analysis measuring the amount of LapA-GFP fusion protein. Our results suggest that the profusion of LapA in the Fis-overexpressed cells causes enhanced biofilm formation in mature stages of P. putida biofilm and LapF has a minor role in P. putida biofilm formation.
Collapse
Affiliation(s)
- Hanna Moor
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Annika Teppo
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Andrio Lahesaare
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Riho Teras
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
23
|
Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Chen P, Ouyang P, Zheng T. Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 2013; 58:255-61. [PMID: 24236847 DOI: 10.1111/lam.12185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED Phytochelatins (PCs) are cysteine-rich peptides with high binding affinity for toxic metals. Expressing the PC synthase gene (PCS) in plant growth-promoting bacteria may enhance its metal resistance and accumulation, consequently increasing phytoremediation efficiency in heavy metal pollution. In this study, PCS from Schizosaccharomyces pombe was cloned and expressed in Pseudomonas putida KT2440, which was confirmed by real-time RT-PCR through an increase in SpPCS mRNA expression level when induced by 20 μmol of CdCl2 in the transformed Ps. putida cells. The recombined strain KT2440-SpPCS exhibited enhanced Cd, Ag and Hg resistance. Compared with the original strain, KT2440-SpPCS also displayed a threefold to fivefold increase in Cd accumulation (14·32 μmol g(-1) to 17·38 μmol g(-1) ; dry weight) when grown in 30 and 50 μmol CdCl2 , along with an increase in nonprotein thiols. Further experiments showed significantly enhanced germination rates and growth of wheat seeds in 0·1 mmol to 1·0 mmol Cd when inoculated with KT2440-SpPCS. This study shows potential use of Ps. putida KT2440-SpPCS in plants to construct a symbiotic system for an enhanced phytoremediation of heavy metal-contaminated environments. SIGNIFICANCE AND IMPACT OF THE STUDY The symbiotic system of using plant growth-promoting bacteria Pseudomonas putida to express phytochelatin synthase gene of Schizosaccharomyces pombe together in plants resulted in high heavy metal resistance and high accumulation capacity, suggesting potential enhancement in phytoremediation of heavy metal-contaminated environments.
Collapse
Affiliation(s)
- X Yong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China; Bioenergy Research Institute, Nanjing University of Technology, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Often referred to as the "building blocks of proteins", the 20 canonical proteinogenic amino acids are ubiquitous in biological systems as the functional units in proteins. Sometimes overlooked are their varying additional roles that include serving as metabolic intermediaries, playing structural roles in bioactive natural products, acting as cosubstrates in enzymatic transformations, and as key regulators of cellular physiology. Amino acids can also serve as biological sources of both carbon and nitrogen and are found in the rhizosphere as a result of lysis or cellular efflux from plants and microbes and proteolysis of existing peptides. While both plants and microbes apparently prefer to take up nitrogen in its inorganic form, their ability to take up and use amino acids may confer a selective advantage in certain environments where organic nitrogen is abundant. Further, certain amino acids (e.g., glutamate and proline) and their betaines (e.g., glycine betaine) serve as compatible solutes necessary for osmoregulation in plants and microbes and can undergo rapid cellular flux. This ability is of particular importance in an ecological niche such as the rhizosphere, which is prone to significant variations in solute concentrations. Amino acids are also shown to alter key phenotypes related to plant root growth and microbial colonization, symbiotic interactions, and pathogenesis in the rhizosphere. This review will focus on the sources, transport mechanisms, and potential roles of the 20 canonical proteinogenic amino acids in the rhizosphere.
Collapse
Affiliation(s)
- Luke A Moe
- Department of Plant & Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| |
Collapse
|
25
|
Segura A, Ramos JL. Plant–bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 2013; 24:467-73. [PMID: 23098915 DOI: 10.1016/j.copbio.2012.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
|
26
|
Shen X, Hu H, Peng H, Wang W, Zhang X. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 2013; 14:271. [PMID: 23607266 PMCID: PMC3644233 DOI: 10.1186/1471-2164-14-271] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022] Open
Abstract
Background Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. Results The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome contained the cus operon (related to heavy metal resistance) and a gene cluster involved in type IV pilus biosynthesis, which confers adhesion ability. Conclusions Comparative genomic analysis of four representative PGPR revealed some conserved regions, indicating common characteristics (metabolism of plant-derived compounds, heavy metal resistance, and rhizosphere colonization) among these pseudomonad PGPR. Genomic regions specific to each strain provide clues to its lifestyle, ecological adaptation, and physiological role in the rhizosphere.
Collapse
Affiliation(s)
- Xuemei Shen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Martínez-Gil M, Quesada JM, Ramos-González MI, Soriano MI, de Cristóbal RE, Espinosa-Urgel M. Interplay between extracellular matrix components of Pseudomonas putida biofilms. Res Microbiol 2013; 164:382-9. [PMID: 23562948 DOI: 10.1016/j.resmic.2013.03.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
The extracellular matrix of bacterial biofilms has at least two key functions: to serve as a structural scaffold for the multicellular community, and to play a protective role against external stress. In this work, we report a compensatory effect whereby Pseudomonas putida reacts to the lack of either of the two main surface proteins involved in biofilm formation, LapA and LapF, by increasing expression and production of a species-specific EPS. Elevated levels of the second messenger molecule cyclic di-GMP alter the balance of extracellular matrix components, and the phenotypes of lapA and lapF mutants under these conditions are indicative of direct interactions taking place between large secreted proteins and exopolysaccharides. Our data suggest the existence of a mechanism by which bacteria would sense alterations in the composition of the extracellular matrix, leading to changes in expression of the different elements.
Collapse
Affiliation(s)
- Marta Martínez-Gil
- Department of Environmental Protection, Estación Experimental Del Zaidín, CSIC, Profesor Albareda, 1. Granada 18008, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother 2013; 57:2204-15. [PMID: 23459479 DOI: 10.1128/aac.02353-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa can develop resistance to polymyxin as a consequence of mutations in the PhoPQ regulatory system, mediated by covalent lipid A modification. Transposon mutagenesis of a polymyxin-resistant phoQ mutant defined 41 novel loci required for resistance, including two regulatory systems, ColRS and CprRS. Deletion of the colRS genes, individually or in tandem, abrogated the polymyxin resistance of a ΔphoQ mutant, as did individual or tandem deletion of cprRS. Individual deletion of colR or colS in a ΔphoQ mutant also suppressed 4-amino-L-arabinose addition to lipid A, consistent with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion of colRS or cprRS in the ΔphoQ mutant or individual deletion of cprR or cprS failed to suppress 4-amino-L-arabinose addition to lipid A, indicating that this modification alone is not sufficient for PhoPQ-mediated polymyxin resistance in P. aeruginosa. Episomal expression of colRS or cprRS in tandem or of cprR individually complemented the Pm resistance phenotype in the ΔphoQ mutant, while episomal expression of colR, colS, or cprS individually did not. Highly polymyxin-resistant phoQ mutants of P. aeruginosa isolated from polymyxin-treated cystic fibrosis patients harbored mutant alleles of colRS and cprS; when expressed in a ΔphoQ background, these mutant alleles enhanced polymyxin resistance. These results define ColRS and CprRS as two-component systems regulating polymyxin resistance in P. aeruginosa, indicate that addition of 4-amino-L-arabinose to lipid A is not the only PhoPQ-regulated biochemical mechanism required for resistance, and demonstrate that colRS and cprS mutations can contribute to high-level clinical resistance.
Collapse
|
29
|
Fernández M, Conde S, Duque E, Ramos JL. In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants. Microb Biotechnol 2013; 6:307-13. [PMID: 23433036 PMCID: PMC3815925 DOI: 10.1111/1751-7915.12037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas putida KT2440 has the ability to colonize the rhizosphere of a wide range of plants and can reach cell densities in the range of 105–106 cfu g soil−1. Using the IVET technology we investigated which KT2440 genes were expressed in the rhizosphere of four different plants: pine, cypress, evergreen oak and rosemary. We identified 39 different transcriptional fusions containing the promoters of annotated genes that were preferentially expressed in the rhizosphere. Six of them were expressed in the rhizosphere of all the plant types tested, 11 were expressed in more than one plant and the remaining 22 fusions were found to be expressed in only one type of plant. Another 40 fusions were found to correspond to likely promoters that encode antisense RNAs of unknown function, some of which were isolated as fusions from the bacteria recovered in the rhizosphere from all of the plants, while others were specific to one or several of the plants. The results obtained in this study suggest that plant-specific signals are sensed by KT2440 in the rhizosphere and that the signals and consequent gene expression are related to the bacteria's successful establishment in this niche.
Collapse
Affiliation(s)
- Matilde Fernández
- Bio-Iliberis Research and Development, I+D Department, 18210, Peligros, Granada, Spain
| | | | | | | |
Collapse
|
30
|
Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 2013; 8:e55731. [PMID: 23383346 PMCID: PMC3562227 DOI: 10.1371/journal.pone.0055731] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/29/2012] [Indexed: 01/10/2023] Open
Abstract
Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05) between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed.
Collapse
Affiliation(s)
- Jacqueline M. Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, United States of America
| | - Dayakar V. Badri
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, United States of America
| | - Matthew G. Bakker
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, United States of America
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Daniel K. Manter
- United States Department of Agriculture - Agricultural Research Service, Soil-Plant-Nutrient Research Unit, Fort Collins, Colorado, United States of America
| | - Jorge M. Vivanco
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
31
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, Rogel MA, Ormeño-Orrillo E, Martínez-Romero E. Gut and root microbiota commonalities. Appl Environ Microbiol 2013; 79:2-9. [PMID: 23104406 PMCID: PMC3536091 DOI: 10.1128/aem.02553-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
Collapse
|
32
|
Roca A, Pizarro-Tobías P, Udaondo Z, Fernández M, Matilla MA, Molina-Henares MA, Molina L, Segura A, Duque E, Ramos JL. Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ Microbiol 2012. [PMID: 23206161 DOI: 10.1111/1462-2920.12037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pseudomonas putida BIRD-1 is a plant growth-promoting rhizobacterium whose genome size is 5.7 Mbp. It adheres to plant roots and colonizes the rhizosphere to high cell densities even in soils with low moisture. This property is linked to its ability to synthesize trehalose, since a mutant deficient in the synthesis of trehalose exhibited less tolerance to desiccation than the parental strain. The genome of BIRD-1 encodes a wide range of proteins that help it to deal with reactive oxygen stress generated in the plant rhizosphere. BIRD-1 plant growth-promoting rhizobacteria properties derive from its ability to enhance phosphorous and iron solubilization and to produce phytohormones. BIRD-1 is capable of solubilizing insoluble inorganic phosphate forms through acid production. The genome of BIRD-1 encodes at least five phosphatases related to phosphorous solubilization, one of them being a phytase that facilitates the utilization of phytic acid, the main storage form of phosphorous in plants. Pyoverdine is the siderophore produced by this strain, a mutant that in the FvpD siderophore synthase failed to grow on medium without supplementary iron, but the mutant was as competitive as the parental strain in soils because it captures the siderophores produced by other microbes. BIRD-1 overproduces indole-3-acetic acid through convergent pathways.
Collapse
Affiliation(s)
- Amalia Roca
- Polígono Industrial Juncaril, Bio-Iliberis R&D, 18210, Peligros, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer JM, Dessaux Y, Lemanceau P. Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. MICROBIAL ECOLOGY 2012; 64:725-737. [PMID: 22576821 DOI: 10.1007/s00248-012-0065-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 04/21/2012] [Indexed: 05/31/2023]
Abstract
Rhizosphere competence of fluorescent pseudomonads is a prerequisite for the expression of their beneficial effects on plant growth and health. To date, knowledge on bacterial traits involved in rhizosphere competence is fragmented and derived mostly from studies with model strains. Here, a population approach was taken by investigating a representative collection of 23 Pseudomonas species and strains from different origins for their ability to colonize the rhizosphere of tomato plants grown in natural soil. Rhizosphere competence of these strains was related to phenotypic traits including: (1) their carbon and energetic metabolism represented by the ability to use a wide range of organic compounds, as electron donors, and iron and nitrogen oxides, as electron acceptors, and (2) their ability to produce antibiotic compounds and N-acylhomoserine lactones (N-AHSL). All these data including origin of the strains (soil/rhizosphere), taxonomic identification, phenotypic cluster based on catabolic profiles, nitrogen dissimilating ability, siderovars, susceptibility to iron starvation, antibiotic and N-AHSL production, and rhizosphere competence were submitted to multiple correspondence analyses. Colonization assays revealed a significant diversity in rhizosphere competence with survival rates ranging from approximately 0.1 % to 61 %. Multiple correspondence analyses indicated that rhizosphere competence was associated with siderophore-mediated iron acquisition, substrate utilization, and denitrification. However, the catabolic profile of one rhizosphere-competent strain differed from the others and its competence was associated with its ability to produce antibiotics phenazines and N-AHSL. Taken together, these data suggest that competitive strains have developed two types of strategies to survive in the rhizosphere.
Collapse
Affiliation(s)
- Sandrine Ghirardi
- INRA, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Subramoni S, Pandey A, Vishnu Priya MR, Patel HK, Sonti RV. The ColRS system of Xanthomonas oryzae pv. oryzae is required for virulence and growth in iron-limiting conditions. MOLECULAR PLANT PATHOLOGY 2012; 13:690-703. [PMID: 22257308 PMCID: PMC6638901 DOI: 10.1111/j.1364-3703.2011.00777.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, produces siderophores only under iron-limiting conditions. We screened 15 400 mTn5-induced mutants of X. oryzae pv. oryzae and isolated 27 mutants that produced siderophores even under iron-replete conditions. We found that the mTn5 insertions in 25 of these mutants were in or close to six genes. Mutants with insertions in five of these genes [colS, XOO1806 (a conserved hypothetical protein), acnB, prpR and prpB] exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. Insertions in a sixth gene, XOO0007 (a conserved hypothetical protein), were found to affect the ability to grow on iron-limiting medium, but did not affect the virulence. Targeted gene disruptants for colR (encoding the predicted cognate regulatory protein for ColS) also exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. colR and colS mutants were defective in the elicitation of hypersensitive response symptoms on the nonhost tomato. In addition, colR and colS mutants induced a rice basal defence response, suggesting that they are compromised in the suppression of host innate immunity. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that a functional ColRS system is required for the optimal expression of several genes encoding components of the type 3 secretion system (T3SS) of X. oryzae pv. oryzae. Our results demonstrate the role of several novel genes, including colR/colS, in the promotion of growth on iron-limiting medium and the virulence of X. oryzae pv. oryzae.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad-500 007, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
35
|
Influence of siderophore pyoverdine synthesis and iron-uptake on abiotic and biotic surface colonization of Pseudomonas putida S11. Biometals 2012; 25:1113-28. [DOI: 10.1007/s10534-012-9574-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
|
36
|
Environmental Nanoparticles Interactions with Plants: Morphological, Physiological, and Genotoxic Aspects. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/751686] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanoparticles (NPs) are characterized by their small size (less than 100 nm) and large surface area, which confer specific physicochemical properties as strength, electrical, and optical features. NPs can be derived from natural or anthropic sources, such as engineered or unwanted/incidental NPs. The composition, dimension, and morphology of engineered NPs enable their use in a variety of areas, such as electronic, biomedical, pharmaceutical, cosmetic, energy, environmental, catalysis, and materials science. As nanotechnology is an innovative and scientific growth area with an exponential production, more information is needed concerning the impacts of these nanomaterials (NMs) in the environment and, particularly, in animals/humans health and in plants performance. So, research on NPs as emerging contaminants is therefore a new field in environmental health. This minireview describes, briefly, the NPs characterization and their occurrence in the environment stating air, water, and soil. Finally, particular emphasis is given to the interaction of NPs with plants at different levels: morphology, physiology, and genotoxicity. By analyzing this compiled information, it is evident that research on NPs phytotoxicity is in the beginning, and more comprehensive studies are needed not only on NPs cytotoxicity and genotoxicity but also on the best and the most reliable methods of assessing NPs toxicity.
Collapse
|
37
|
Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 2012; 7:e35498. [PMID: 22545111 PMCID: PMC3335876 DOI: 10.1371/journal.pone.0035498] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/19/2012] [Indexed: 01/26/2023] Open
Abstract
Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs) have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP)-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize.
Collapse
|
38
|
Jakovleva J, Teppo A, Velts A, Saumaa S, Moor H, Kivisaar M, Teras R. Fis regulates the competitiveness of Pseudomonas putida on barley roots by inducing biofilm formation. MICROBIOLOGY-SGM 2012; 158:708-720. [PMID: 22222498 DOI: 10.1099/mic.0.053355-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An important link between the environment and the physiological state of bacteria is the regulation of the transcription of a large number of genes by global transcription factors. One of the global regulators, Fis (factor for inversion stimulation), is well studied in Escherichia coli, but the role of this protein in pseudomonads has only been examined briefly. According to studies in Enterobacteriaceae, Fis regulates positively the flagellar movement of bacteria. In pseudomonads, flagellar movement is an important trait for the colonization of plant roots. Therefore we were interested in the role of the Fis protein in Pseudomonas putida, especially the possible regulation of the colonization of plant roots. We observed that Fis reduced the migration of P. putida onto the apices of barley roots and thereby the competitiveness of bacteria on the roots. Moreover, we observed that overexpression of Fis drastically reduced swimming motility and facilitated P. putida biofilm formation, which could be the reason for the decreased migration of bacteria onto the root apices. It is possible that the elevated expression of Fis is important in the adaptation of P. putida during colonization of plant roots by promoting biofilm formation when the migration of bacteria is no longer favoured.
Collapse
Affiliation(s)
- Julia Jakovleva
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Annika Teppo
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Anna Velts
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Hanna Moor
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Riho Teras
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
39
|
Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie van Leeuwenhoek 2011; 101:713-23. [DOI: 10.1007/s10482-011-9685-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
40
|
Evidence of the adaptive response in Pseudomonas aeruginosa to 14 years of incubation in seawater. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0387-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
41
|
Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E. Interaction of endophytic microbes with legumes. J Basic Microbiol 2011; 52:248-60. [DOI: 10.1002/jobm.201100063] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/27/2011] [Indexed: 11/11/2022]
|
42
|
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonasgenomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652-80. [DOI: 10.1111/j.1574-6976.2011.00269.x] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
43
|
Matilla MA, Travieso ML, Ramos JL, Ramos-González MI. Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 2011; 13:1745-66. [PMID: 21554519 DOI: 10.1111/j.1462-2920.2011.02499.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GGDEF and EAL/HD-GYP protein domains are responsible for the synthesis and hydrolysis of the bacterial secondary messenger cyclic diguanylate (c-di-GMP) through their diguanylate cyclase and phosphodiesterase activities, respectively. Forty-three genes in Pseudomonas putida KT2440 are putatively involved in the turnover of c-di-GMP. Of them only rup4959 (locus PP4959) encodes a GGDEF/EAL response regulator, which was identified in a genome wide analysis as preferentially induced while this bacterium colonizes roots and adjacent soil areas (the rhizosphere). By using fusions to reporter genes it was confirmed that the rup4959 promoter is active in the rhizosphere and inducible by corn plant root exudates and microaerobiosis. Transcription of rup4959 was strictly dependent on the alternative transcriptional factor σ(S) . The inactivation of the rup4959-4957 operon altered the expression of 22 genes in the rhizosphere and had a negative effect upon oligopeptide utilization and biofilm formation. In multicopy or when overexpressed, rup4959 enhanced adhesin LapA-dependent biofilm formation, the development of wrinkly colony morphology, and increased Calcofluor stainable exopolysaccharides (EPS). Under these conditions the inhibition of swarming motility was total and plant root tip colonization considerably less efficient, whereas swimming was partially diminished. This pleiotropic phenotype, which correlated with an increase in the global level of c-di-GMP, was not acquired with increased levels of Rup4959 catalytic mutant at GGDEF as a proof of this response regulator exhibiting diguanylate cyclase activity. A screen for mutants in putative targets of c-di-GMP led to the identification of a surface polysaccharide specific to KT2440, which is encoded by the genes cluster PP3133-PP3141, as essential for phenotypes associated with increased c-di-GMP. Cellulose and alginate were discarded as the overproduced EPS, and lipopolysaccharide (LPS) core and O-antigen were found to be essential for the development of wrinkly colony morphology.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada 18008, Spain
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Pieter Van Dillewijn
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apdo. Correos 419, E-18008 Granada, Spain.
| |
Collapse
|
45
|
Böltner D, Godoy P, Muñoz-Rojas J, Duque E, Moreno-Morillas S, Sánchez L, Ramos JL. Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 2011; 1:87-93. [PMID: 21261825 PMCID: PMC3864435 DOI: 10.1111/j.1751-7915.2007.00004.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We used a two‐step enrichment approach to isolate root‐colonizing hexachlorocyclohexane (HCH)‐degrading microorganisms. The first step consists of the use of classical liquid enrichment to isolate γ‐HCH degraders. The γ‐HCH‐degrading microbes were attached in mass to corn seeds sown in soil with γ‐HCH, and after plant development we rescued bacteria growing on root tips. Bacteria were then subjected to a second enrichment round in which growth on liquid medium with γ‐HCH and inoculation of corn seeds were repeated. We then isolated bacteria on M9 minimal medium with γ‐HCH from root tips. We were able to isolate four Sphingomonas strains, all of which degraded α‐, β‐, γ‐ and δ‐HCH. Two of the strains were particularly good colonizers of corn roots, reaching high cell density in vegetated soil and partly removing γ‐HCH. In contrast, these bacteria performed poorly in unplanted soils. This study supports the hypothesis that the removal of persistent toxic chemicals can be accelerated by combinations of plants and bacteria, a process generally known as rhizoremediation.
Collapse
Affiliation(s)
- Dietmar Böltner
- Consejo Superior de Investigaciones Cientificas, Eslación Experimental del Zaidin, Department of Environmental Protection, C/ Prof. Albareda, 1, E-18008 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Lee Y, Seo H, Yeom J, Park W. Molecular characterization of the extracellular matrix in a Pseudomonas putida dsbA mutant: implications for acidic stress defense and plant growth promotion. Res Microbiol 2011; 162:302-10. [DOI: 10.1016/j.resmic.2010.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/12/2010] [Indexed: 11/27/2022]
|
47
|
Nielsen L, Li X, Halverson LJ. Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol 2011; 13:1342-56. [PMID: 21507177 DOI: 10.1111/j.1462-2920.2011.02432.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The composition of the exopolysaccharide matrix of Pseudomonas putida mt2 biofilms is relatively undefined as well as the contributions of each polymer to ecological fitness. Here, we describe the role of two putative exopolysaccharide gene clusters, putida exopolysaccharide A (pea) and bacterial cellulose (bcs) in biofilm formation and stability, rhizosphere colonization and matrix hydration under water-limiting conditions. Our findings suggest that pea is involved in the production of a novel glucose, galactose, and mannose-rich polymer that contributes to cell-cell interactions necessary for pellicle and biofilm formation and stability. In contrast, Bcs plays a minor role in biofilm formation and stability, although it does contribute to rhizosphere colonization based on a competition assay. We show that pea expression is highly induced transiently under water-limiting conditions but only slightly by high osmolarity, as determined by qRT-PCR. In contrast, both forms of water stress highly induced bcs expression. Cells deficient in making one or more exopolysaccharide experienced greater dehydration-mediated cell-envelope stress, leading to increased alginate promoter activity. However, this did not lead to increased exopolysaccharide production, except in bcs or pea mutants unable to produce alginate, indicating that P. putida compensates by producing, presumably more Pea or Bcs exopolysaccharides, to facilitate biofilm hydration. Collectively, the data suggest that Pea and Bcs contribute to biofilm formation and in turn their presence contributes to fitness under water-limiting conditions, but not to the extent of alginate.
Collapse
Affiliation(s)
- Lindsey Nielsen
- Interdepartmental Graduate Program in Microbiology Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
48
|
Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2915-2919. [PMID: 20598789 DOI: 10.1016/j.envpol.2010.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 05/29/2010] [Accepted: 06/06/2010] [Indexed: 05/29/2023]
Abstract
The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected.
Collapse
Affiliation(s)
- Nele Weyens
- Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee Y, Yeom J, Kim J, Jung J, Jeon CO, Park W. Phenotypic and physiological alterations by heterologous acylhomoserine lactone synthase expression in Pseudomonas putida. MICROBIOLOGY-SGM 2010; 156:3762-3772. [PMID: 20705668 DOI: 10.1099/mic.0.041095-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacteria harbour an incomplete quorum-sensing (QS) system, whereby they possess LuxR homologues without the QS acylhomoserine lactone (AHL) synthase, which is encoded by a luxI homologue. An artificial AHL-producing plasmid was constructed using a cviI gene encoding the C6-AHL [N-hexanoyl homoserine lactone (HHL)] synthase from Chromobacterium violaceum, and was introduced successfully into both the wild-type and a ppoR (luxR homologue) mutant of Pseudomonas putida. Our data provide evidence to suggest that the PpoR-HHL complex, but neither PpoR nor HHL alone, could attenuate growth, antibiotic resistance and biofilm formation ability. In contrast, swimming motility, siderophore production and indole degradation were enhanced by PpoR-HHL. The addition of exogenous indole increased biofilm formation and reduced swimming motility. Interestingly, indole proved ineffective in the presence of PpoR-HHL, thereby suggesting that the PpoR-HHL complex masks the effects of indole. Our data were supported by transcriptome analyses, which showed that the presence of the plasmid-encoded AHL synthase altered the expression of many genes on the chromosome in strain KT2440. Our results showed that heterologous luxI expression that occurs via horizontal gene transfer can regulate a broad range of specific target genes, resulting in alterations of the phenotype and physiology of host cells.
Collapse
Affiliation(s)
- Yunho Lee
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jinki Yeom
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jisun Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jaejoon Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Woojun Park
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Catabolite repression of the TodS/TodT two-component system and effector-dependent transphosphorylation of TodT as the basis for toluene dioxygenase catabolic pathway control. J Bacteriol 2010; 192:4246-50. [PMID: 20543072 DOI: 10.1128/jb.00379-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TodS/TodT two-component system of Pseudomonas putida regulates the expression of the toluene dioxygenase (tod) operon for the metabolism of toluene, benzene, and ethylbenzene. The sensor kinase TodS has a complex domain arrangement containing two functional modules, each harboring a sensor and an autokinase domain separated by a receiver domain. The TodT protein is the cognate response regulator that activates transcription of the toluene dioxygenase (TOD) pathway genes at the P(todX) promoter. We report in this study that the todST operon is transcribed from a main promoter and that the +1 initiation point is located 31 nucleotides upstream from the A of the first ATG codon and is preceded by a -10/-35 canonical promoter. Expression from P(todS) is under catabolite control, and in cells growing with glucose, the level of expression from this promoter is reduced, which in turn translates to low levels of the TodS/TodT regulators and results in a decrease of transcription from the P(todX) promoter. Thus, the main underlying regulatory mechanisms of the tod structural genes are at the levels of catabolite repression control from P(todS) and transcription activation, mediated by the TodT response regulator through a regulatory cascade in which the effector enhances autophosphorylation of TodS by ATP, with subsequent transphosphorylation of TodT.
Collapse
|