1
|
Start CC, Anderson CMH, Gatehouse AMR, Edwards MG. Dynamic response of essential amino acid biosynthesis in Buchnera aphidicola to supplement sub-optimal host nutrition. JOURNAL OF INSECT PHYSIOLOGY 2024; 158:104683. [PMID: 39074716 DOI: 10.1016/j.jinsphys.2024.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The endosymbiotic bacterium Buchnera aphidicola allows its host Acyrthosiphon pisum to utilise a nutritionally limited phloem sap diet without significant mortality by providing essential amino acids (EAAs), which it biosynthesises de novo via complex pathways consisting of multiple enzymes. Previous studies have reported how non-essential amino acids (NEAAs) provided by the host are utilised by B. aphidicola, along with how genes within the biosynthetic pathways respond to amino acid deficiency. Although the effect on B. aphidicola gene expression upon the removal of a single EAA and multiple NEAAs from the A. pisum diet has been reported, little is known about the effects of the complete simultaneous removal of multiple EAAs, especially branched-chain amino acids (BCAAs). To investigate this, A. pisum was provided with amino acid deficient diets ilv- (lacking isoleucine, leucine, valine) or thra- (lacking threonine, methionine, lysine). Due to their involvement in the production of several amino acids, the expression of genes ilvC, ilvD (both involved in isoleucine, leucine and valine biosynthesis) and thrA (involved in threonine, methionine and lysine biosynthesis) was analysed and the expression of trpC (involved in tryptophan biosynthesis) was used as a control. Survival was reduced significantly when A. pisum was reared on ilv- or thra- (P < 0.001 and P = 0.000 respectively) compared to optimal artificial diet and was significantly lower on ilv- (P < 0.001) than thra-. This is likely attributed to the EAAs absent from ilv- being required at higher concentrations for aphid growth, than those EAAs absent from thra-. Expression of ilvC and ilvD were upregulated 2.49- and 2.08-fold (respectively) and thrA expression increased 2.35- and 2.12-fold when A. pisum was reared on ilv- and thra- (respectively). The surprisingly large upregulation of thrA when reared on ilv- is likely due to threonine being an intermediate in isoleucine biosynthesis. Expression of trpC was not affected by rearing on either of the two amino acid deficient diets. To our knowledge this study has shown, for the first time, how genes within the biosynthetic pathways of an endosymbiont respond to the simultaneous complete omission of multiple EAAs as well as all three BCAAs (leucine, isoleucine, valine), from the host diet.
Collapse
Affiliation(s)
- Chloe C Start
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Catriona M H Anderson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Martin G Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
2
|
Burger NFV, Nicolis VF, Botha AM. Host-specific co-evolution likely driven by diet in Buchnera aphidicola. BMC Genomics 2024; 25:153. [PMID: 38326788 PMCID: PMC10851558 DOI: 10.1186/s12864-024-10045-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Russian wheat aphid (Diuraphis noxia Kurd.) is a severe pest to wheat, and even though resistance varieties are available to curb this pest, they are becoming obsolete with the development of new virulent aphid populations. Unlike many other aphids, D noxia only harbours a single endosymbiont, Buchnera aphidicola. Considering the importance of Buchnera, this study aimed to elucidate commonalities and dissimilarities between various hosts, to better understand its distinctiveness within its symbiotic relationship with D. noxia. To do so, the genome of the D. noxia's Buchnera was assembled and compared to those of other aphid species that feed on diverse host species. RESULTS The overall importance of several features such as gene length and percentage GC content was found to be critical for the maintenance of Buchnera genes when compared to their closest free-living relative, Escherichia coli. Buchnera protein coding genes were found to have percentage GC contents that tended towards a mean of ~ 26% which had strong correlation to their identity to their E. coli homologs. Several SNPs were identified between different aphid populations and multiple isolates of Buchnera were confirmed in single aphids. CONCLUSIONS Establishing the strong correlation of percentage GC content of protein coding genes and gene identity will allow for identifying which genes will be lost in the continually shrinking Buchnera genome. This is also the first report of a parthenogenically reproducing aphid that hosts multiple Buchnera strains in a single aphid, raising questions regarding the benefits of maintaining multiple strains. We also found preliminary evidence for post-transcriptional regulation of Buchnera genes in the form of polyadenylation.
Collapse
Affiliation(s)
- N Francois V Burger
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa
| | - Vittorio F Nicolis
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa
| | - Anna-Maria Botha
- Department of Genetics, University of Stellenbosch, Stellenbosch, 7601, South Africa.
| |
Collapse
|
3
|
Ferrarini MG, Vallier A, Vincent-Monégat C, Dell'Aglio E, Gillet B, Hughes S, Hurtado O, Condemine G, Zaidman-Rémy A, Rebollo R, Parisot N, Heddi A. Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp. MICROBIOME 2023; 11:274. [PMID: 38087390 PMCID: PMC10717185 DOI: 10.1186/s40168-023-01714-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development. RESULTS We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response. CONCLUSIONS The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622, Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | | | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Ophélie Hurtado
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Guy Condemine
- Univ Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
- Institut universitaire de France (IUF), Paris, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621, Villeurbanne, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| |
Collapse
|
4
|
Tian PP, Zhang YL, Huang JL, Li WY, Liu XD. Arsenophonus Interacts with Buchnera to Improve Growth Performance of Aphids under Amino Acid Stress. Microbiol Spectr 2023; 11:e0179223. [PMID: 37222634 PMCID: PMC10269474 DOI: 10.1128/spectrum.01792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Amino acids play a crucial role in the growth and development of insects. Aphids cannot ingest enough amino acids in plant phloem to meet their requirements, and therefore, they are mainly dependent on the obligate symbiont Buchnera aphidicola to synthesize essential amino acids. Besides Buchnera, aphids may harbor another facultative symbiont, Arsenophonus, which alters the requirement of the cotton-melon aphid Aphis gossypii for amino acid. However, it is unclear how Arsenophonus regulates the requirement. Here, we found that Arsenophonus ameliorated growth performance of A. gossypii on an amino acid-deficient diet. A deficiency in lysine (Lys) or methionine (Met) led to changes in the abundance of Arsenophonus. Arsenophonus suppressed the abundance of Buchnera when aphids were fed a normal amino acid diet, but this suppression was eliminated or reversed when aphids were on a Lys- or Met-deficient diet. The relative abundance of Arsenophonus was positively correlated with that of Buchnera, but neither of them was correlated with the body weight of aphids. The relative expression levels of Lys and Met synthase genes of Buchnera were affected by the interaction between Arsenophonus infections and Buchnera abundance, especially in aphids reared on a Lys- or Met-deficient diet. Arsenophonus coexisted with Buchnera in bacteriocytes, which strengthens the interaction. IMPORTANCE The obligate symbiont Buchnera can synthesize amino acids for aphids. In this study, we found that a facultative symbiont, Arsenophonus, can help improve aphids' growth performance under amino acid deficiency stress by changing the relative abundance of Buchnera and the expression levels of amino acid synthase genes. This study highlights the interaction between Arsenophonus and Buchnera to ameliorate aphid growth under amino acid stress.
Collapse
Affiliation(s)
- Pan-Pan Tian
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Lin Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Ling Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Wang-Yan Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Spencer N, Łukasik P, Meyer M, Veloso C, McCutcheon JP. No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas. Genome Biol Evol 2023; 15:evad100. [PMID: 37267326 PMCID: PMC10287537 DOI: 10.1093/gbe/evad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.
Collapse
Affiliation(s)
- Noah Spencer
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
6
|
Moriyama M, Fukatsu T. Host’s demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model. Front Physiol 2022; 13:1028409. [PMID: 36246139 PMCID: PMC9561257 DOI: 10.3389/fphys.2022.1028409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera. Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima. We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont’s synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug-Ishikawaella gut symbiotic association as in the aphid-Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.
Collapse
Affiliation(s)
- Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- *Correspondence: Minoru Moriyama, ; Takema Fukatsu,
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Minoru Moriyama, ; Takema Fukatsu,
| |
Collapse
|
7
|
Koga R, Moriyama M, Onodera-Tanifuji N, Ishii Y, Takai H, Mizutani M, Oguchi K, Okura R, Suzuki S, Gotoh Y, Hayashi T, Seki M, Suzuki Y, Nishide Y, Hosokawa T, Wakamoto Y, Furusawa C, Fukatsu T. Single mutation makes Escherichia coli an insect mutualist. Nat Microbiol 2022; 7:1141-1150. [PMID: 35927448 PMCID: PMC9352592 DOI: 10.1038/s41564-022-01179-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms often live in symbiosis with their hosts, and some are considered mutualists, where all species involved benefit from the interaction. How free-living microorganisms have evolved to become mutualists is unclear. Here we report an experimental system in which non-symbiotic Escherichia coli evolves into an insect mutualist. The stinkbug Plautia stali is typically associated with its essential gut symbiont, Pantoea sp., which colonizes a specialized symbiotic organ. When sterilized newborn nymphs were infected with E. coli rather than Pantoea sp., only a few insects survived, in which E. coli exhibited specific localization to the symbiotic organ and vertical transmission to the offspring. Through transgenerational maintenance with P. stali, several hypermutating E. coli lines independently evolved to support the host's high adult emergence and improved body colour; these were called 'mutualistic' E. coli. These mutants exhibited slower bacterial growth, smaller size, loss of flagellar motility and lack of an extracellular matrix. Transcriptomic and genomic analyses of 'mutualistic' E. coli lines revealed independent mutations that disrupted the carbon catabolite repression global transcriptional regulator system. Each mutation reproduced the mutualistic phenotypes when introduced into wild-type E. coli, confirming that single carbon catabolite repression mutations can make E. coli an insect mutualist. These findings provide an experimental system for future work on host-microbe symbioses and may explain why microbial mutualisms are omnipresent in nature.
Collapse
Affiliation(s)
- Ryuichi Koga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Naoko Onodera-Tanifuji
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshiko Ishii
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hiroki Takai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kohei Oguchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Reiko Okura
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Suzuki
- Center for Biosystem Dynamics Research, RIKEN, Osaka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yudai Nishide
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,National Agriculture and Food Research Organization, Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Takahiro Hosokawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Chikara Furusawa
- Center for Biosystem Dynamics Research, RIKEN, Osaka, Japan.,Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan. .,Department of Biological Sciences, The University of Tokyo, Tokyo, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
8
|
Wu W, Shan HW, Li JM, Zhang CX, Chen JP, Mao Q. Roles of Bacterial Symbionts in Transmission of Plant Virus by Hemipteran Vectors. Front Microbiol 2022; 13:805352. [PMID: 35154053 PMCID: PMC8829006 DOI: 10.3389/fmicb.2022.805352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
The majority of plant viruses are transmitted by hemipteran insects. Bacterial symbionts in hemipteran hosts have a significant impact on the host life, physiology and ecology. Recently, the involvement of bacterial symbionts in hemipteran vector-virus and vector-plant interactions has been documented. Thus, the exploitation and manipulation of bacterial symbionts have great potential for plant viral disease control. Herein, we review the studies performed on the impact of symbiotic bacteria on plant virus transmission, including insect-bacterial symbiont associations, the role of these bacterial symbionts in viral acquisition, stability and release during viral circulation in insect bodies, and in viral vertical transmission. Besides, we prospect further studies aimed to understand tripartite interactions of the virus-symbiotic microorganisms-insect vector.
Collapse
|
9
|
Szabó G, Schulz F, Manzano-Marín A, Toenshoff ER, Horn M. Evolutionarily recent dual obligatory symbiosis among adelgids indicates a transition between fungus- and insect-associated lifestyles. THE ISME JOURNAL 2022; 16:247-256. [PMID: 34294881 PMCID: PMC8692619 DOI: 10.1038/s41396-021-01056-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Adelgids (Insecta: Hemiptera: Adelgidae) form a small group of insects but harbor a surprisingly diverse set of bacteriocyte-associated endosymbionts, which suggest multiple replacement and acquisition of symbionts over evolutionary time. Specific pairs of symbionts have been associated with adelgid lineages specialized on different secondary host conifers. Using a metagenomic approach, we investigated the symbiosis of the Adelges laricis/Adelges tardus species complex containing betaproteobacterial ("Candidatus Vallotia tarda") and gammaproteobacterial ("Candidatus Profftia tarda") symbionts. Genomic characteristics and metabolic pathway reconstructions revealed that Vallotia and Profftia are evolutionary young endosymbionts, which complement each other's role in essential amino acid production. Phylogenomic analyses and a high level of genomic synteny indicate an origin of the betaproteobacterial symbiont from endosymbionts of Rhizopus fungi. This evolutionary transition was accompanied with substantial loss of functions related to transcription regulation, secondary metabolite production, bacterial defense mechanisms, host infection, and manipulation. The transition from fungus to insect endosymbionts extends our current framework about evolutionary trajectories of host-associated microbes.
Collapse
Affiliation(s)
- Gitta Szabó
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| | - Frederik Schulz
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- US Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, USA
| | - Alejandro Manzano-Marín
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Elena Rebecca Toenshoff
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Whittle M, Barreaux AMG, Bonsall MB, Ponton F, English S. Insect-host control of obligate, intracellular symbiont density. Proc Biol Sci 2021; 288:20211993. [PMID: 34814751 PMCID: PMC8611330 DOI: 10.1098/rspb.2021.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Many insects rely on intracellular bacterial symbionts to supplement their specialized diets with micronutrients. Using data from diverse and well-studied insect systems, we propose three lines of evidence suggesting that hosts have tight control over the density of their obligate, intracellular bacterial partners. First, empirical studies have demonstrated that the within-host symbiont density varies depending on the nutritional and developmental requirements of the host. Second, symbiont genomes are highly reduced and have limited capacity for self-replication or transcriptional regulation. Third, several mechanisms exist for hosts to tolerate, regulate and remove symbionts including physical compartmentalization and autophagy. We then consider whether such regulation is adaptive, by discussing the relationship between symbiont density and host fitness. We discuss current limitations of empirical studies for exploring fitness effects in host-symbiont relationships, and emphasize the potential for using mathematical models to formalize evolutionary hypotheses and to generate testable predictions for future work.
Collapse
Affiliation(s)
- Mathilda Whittle
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Michael B. Bonsall
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- St Peter's College, Oxford, OX1 2DL
| | - Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
11
|
Rangel-Chávez CP, Galán-Vásquez E, Pescador-Tapia A, Delaye L, Martínez-Antonio A. RNA polymerases in strict endosymbiont bacteria with extreme genome reduction show distinct erosions that might result in limited and differential promoter recognition. PLoS One 2021; 16:e0239350. [PMID: 34324516 PMCID: PMC8321222 DOI: 10.1371/journal.pone.0239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/22/2021] [Indexed: 11/26/2022] Open
Abstract
Strict endosymbiont bacteria present high degree genome reduction, retain smaller proteins, and in some instances, lack complete functional domains compared to free-living counterparts. Until now, the mechanisms underlying these genetic reductions are not well understood. In this study, the conservation of RNA polymerases, the essential machinery for gene expression, is analyzed in endosymbiont bacteria with extreme genome reductions. We analyzed the RNA polymerase subunits to identify and define domains, subdomains, and specific amino acids involved in precise biological functions known in Escherichia coli. We also perform phylogenetic analysis and three-dimensional models over four lineages of endosymbiotic proteobacteria with the smallest genomes known to date: Candidatus Hodgkinia cicadicola, Candidatus Tremblaya phenacola, Candidatus Tremblaya Princeps, Candidatus Nasuia deltocephalinicola, and Candidatus Carsonella ruddii. We found that some Hodgkinia strains do not encode for the RNA polymerase α subunit. The rest encode genes for α, β, β', and σ subunits to form the RNA polymerase. However, 16% shorter, on average, respect their orthologous in E. coli. In the α subunit, the amino-terminal domain is the most conserved. Regarding the β and β' subunits, both the catalytic core and the assembly domains are the most conserved. However, they showed compensatory amino acid substitutions to adapt to changes in the σ subunit. Precisely, the most erosive diversity occurs within the σ subunit. We identified broad amino acid substitution even in those recognizing and binding to the -10-box promoter element. In an overall conceptual image, the RNA polymerase from Candidatus Nasuia conserved the highest similarity with Escherichia coli RNA polymerase and their σ70. It might be recognizing the two main promoter elements (-10 and -35) and the two promoter accessory elements (-10 extended and UP-element). In Candidatus Carsonella, the RNA polymerase could recognize all the promoter elements except the -10-box extended. In Candidatus Tremblaya and Hodgkinia, due to the α carboxyl-terminal domain absence, they might not recognize the UP-promoter element. We also identified the lack of the β flap-tip helix domain in most Hodgkinia's that suggests the inability to bind the -35-box promoter element.
Collapse
Affiliation(s)
- Cynthia Paola Rangel-Chávez
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, CDMX, México
| | - Azucena Pescador-Tapia
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Luis Delaye
- Evolutionary Genomics Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato Gto, México
| |
Collapse
|
12
|
Ip JCH, Xu T, Sun J, Li R, Chen C, Lan Y, Han Z, Zhang H, Wei J, Wang H, Tao J, Cai Z, Qian PY, Qiu JW. Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. Mol Biol Evol 2021; 38:502-518. [PMID: 32956455 PMCID: PMC7826175 DOI: 10.1093/molbev/msaa241] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endosymbiosis with chemosynthetic bacteria has enabled many deep-sea invertebrates to thrive at hydrothermal vents and cold seeps, but most previous studies on this mutualism have focused on the bacteria only. Vesicomyid clams dominate global deep-sea chemosynthesis-based ecosystems. They differ from most deep-sea symbiotic animals in passing their symbionts from parent to offspring, enabling intricate coevolution between the host and the symbiont. Here, we sequenced the genomes of the clam Archivesica marissinica (Bivalvia: Vesicomyidae) and its bacterial symbiont to understand the genomic/metabolic integration behind this symbiosis. At 1.52 Gb, the clam genome encodes 28 genes horizontally transferred from bacteria, a large number of pseudogenes and transposable elements whose massive expansion corresponded to the timing of the rise and subsequent divergence of symbiont-bearing vesicomyids. The genome exhibits gene family expansion in cellular processes that likely facilitate chemoautotrophy, including gas delivery to support energy and carbon production, metabolite exchange with the symbiont, and regulation of the bacteriocyte population. Contraction in cellulase genes is likely adaptive to the shift from phytoplankton-derived to bacteria-based food. It also shows contraction in bacterial recognition gene families, indicative of suppressed immune response to the endosymbiont. The gammaproteobacterium endosymbiont has a reduced genome of 1.03 Mb but retains complete pathways for sulfur oxidation, carbon fixation, and biosynthesis of 20 common amino acids, indicating the host’s high dependence on the symbiont for nutrition. Overall, the host–symbiont genomes show not only tight metabolic complementarity but also distinct signatures of coevolution allowing the vesicomyids to thrive in chemosynthesis-based ecosystems.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yi Lan
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhuang Han
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Haibin Zhang
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Jiangong Wei
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Hongbin Wang
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Jun Tao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
13
|
Kaech H, Dennis AB, Vorburger C. Triple RNA-Seq characterizes aphid gene expression in response to infection with unequally virulent strains of the endosymbiont Hamiltonella defensa. BMC Genomics 2021; 22:449. [PMID: 34134631 PMCID: PMC8207614 DOI: 10.1186/s12864-021-07742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Secondary endosymbionts of aphids provide benefits to their hosts, but also impose costs such as reduced lifespan and reproductive output. The aphid Aphis fabae is host to different strains of the secondary endosymbiont Hamiltonella defensa, which encode different putative toxins. These strains have very different phenotypes: They reach different densities in the host, and the costs and benefits (protection against parasitoid wasps) they confer to the host vary strongly. Results We used RNA-Seq to generate hypotheses on why four of these strains inflict such different costs to A. fabae. We found different H. defensa strains to cause strain-specific changes in aphid gene expression, but little effect of H. defensa on gene expression of the primary endosymbiont, Buchnera aphidicola. The highly costly and over-replicating H. defensa strain H85 was associated with strongly reduced aphid expression of hemocytin, a marker of hemocytes in Drosophila. The closely related strain H15 was associated with downregulation of ubiquitin-related modifier 1, which is related to nutrient-sensing and oxidative stress in other organisms. Strain H402 was associated with strong differential regulation of a set of hypothetical proteins, the majority of which were only differentially regulated in presence of H402. Conclusions Overall, our results suggest that costs of different strains of H. defensa are likely caused by different mechanisms, and that these costs are imposed by interacting with the host rather than the host’s obligatory endosymbiont B. aphidicola. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07742-8.
Collapse
Affiliation(s)
- Heidi Kaech
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland. .,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alice B Dennis
- Institute of Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Christoph Vorburger
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Enhanced Symbiotic Characteristics in Bacterial Genomes with the Disruption of rRNA Operon. BIOLOGY 2020; 9:biology9120440. [PMID: 33287185 PMCID: PMC7761764 DOI: 10.3390/biology9120440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022]
Abstract
Simple Summary Exploring the genomic changes that organisms have undergone to adapt to their specific environment is one of the most important processes in ecology and evolutionary biology. Here, we found that almost all rRNA operon-unlinked bacteria are symbiotic bacteria, which could be evidence of specific selective pressures in symbionts like genome reduction. This is meaningful and suggests that not only does the copy number variation of the rRNA operon sensitively respond to the bacterial lifestyle, but structural modification can also strongly reflect adaptation to the surrounding environmental conditions. Abstract Ribosomal RNA is an indispensable molecule in living organisms that plays an essential role in protein synthesis. Especially in bacteria, 16S, 23S, and 5S rRNAs are usually co-transcribed as operons. Despite the positive effects of rRNA co-transcription on growth and reproduction rate, a recent study revealed that bacteria with unlinked rRNA operons are more widespread than expected. However, it is still unclear why the rRNA operon is broken. Here, we explored rRNA operon linkage status in 15,898 bacterial genomes and investigated whether they have common features or lifestyles; 574 genomes were found to have unlinked rRNA operons and tended to be phylogenetically conserved. Most of them were symbionts and showed enhanced symbiotic genomic features such as reduced genome size and high adenine–thymine (AT) content. In an eggNOG-mapper analysis, they were also found to have significantly fewer genes than rRNA operon-linked bacteria in the “transcription” and “energy production and conversion in metabolism” categories. These genomes also tend to decrease RNases related to the synthesis of ribosomes and tRNA processing. Based on these results, the disruption of the rRNA operon seems to be one of the tendencies associated with the characteristics of bacteria requiring a low dynamic range.
Collapse
|
15
|
|
16
|
Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil. Proc Natl Acad Sci U S A 2020; 117:19347-19358. [PMID: 32723830 DOI: 10.1073/pnas.2007151117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacterial intracellular symbiosis (endosymbiosis) is widespread in nature and impacts many biological processes. In holometabolous symbiotic insects, metamorphosis entails a complete and abrupt internal reorganization that creates a constraint for endosymbiont transmission from larvae to adults. To assess how endosymbiosis copes-and potentially evolves-throughout this major host-tissue reorganization, we used the association between the cereal weevil Sitophilus oryzae and the bacterium Sodalis pierantonius as a model system. S. pierantonius are contained inside specialized host cells, the bacteriocytes, that group into an organ, the bacteriome. Cereal weevils require metabolic inputs from their endosymbiont, particularly during adult cuticle synthesis, when endosymbiont load increases dramatically. By combining dual RNA-sequencing analyses and cell imaging, we show that the larval bacteriome dissociates at the onset of metamorphosis and releases bacteriocytes that undergo endosymbiosis-dependent transcriptomic changes affecting cell motility, cell adhesion, and cytoskeleton organization. Remarkably, bacteriocytes turn into spindle cells and migrate along the midgut epithelium, thereby conveying endosymbionts to midgut sites where future mesenteric caeca will develop. Concomitantly, endosymbiont genes encoding a type III secretion system and a flagellum apparatus are transiently up-regulated while endosymbionts infect putative stem cells and enter their nuclei. Infected cells then turn into new differentiated bacteriocytes and form multiple new bacteriomes in adults. These findings show that endosymbiosis reorganization in a holometabolous insect relies on a synchronized host-symbiont molecular and cellular "choreography" and illustrates an adaptive feature that promotes bacteriome multiplication to match increased metabolic requirements in emerging adults.
Collapse
|
17
|
Wu J, Lan H, Zhang ZF, Cao HH, Liu TX. Performance and Transcriptional Response of the Green Peach Aphid Myzus persicae to the Restriction of Dietary Amino Acids. Front Physiol 2020; 11:487. [PMID: 32523545 PMCID: PMC7261896 DOI: 10.3389/fphys.2020.00487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Free amino acids in the phloem sap are the dominant nitrogen source for aphids, but their availability is usually poor. Although some studies have explored the effect of dietary amino acid restriction on aphid performance, little is known about the molecular basis of these effects. Here, we examined the performance and transcriptome of the green peach aphid, Myzus persicae, fed a standard diet (Control diet) or a diet containing 50% of the total amino acids of the Control diet (Half diet). Aphid weight and fecundity were significantly reduced in the Half diet group. Transcriptomic analysis showed that a total of 1460 genes were differentially expressed between the groups were fed on the two diets, which many of them were associated with nutrient and energy metabolism. When feeding on the Half diet, aphids upregulated genes associated with the amino acid biosynthetic pathway (predominantly amino acid biosynthesis genes and some amino acid transporter genes) as well as the cysteine and serine protease genes. Furthermore, these aphids displayed increased expression of genes associated with glycolysis, which could generate intermediates for de novo amino acid biosynthesis. Consistent with this, elevated glucose levels were observed in aphids in the Half diet group. Additionally, the expression levels of several genes associated with hormonal signaling pathway were altered. Several genes related to juvenile hormone and insulin-like peptide (ILP) signaling were downregulated, including Krüppel homolog 1 (Kr-h1) and insulin-like peptide 5 (Ilp5), respectively. In contrast, several genes related to ecdysone signaling were upregulated including broad-complex core protein (Br-c) and shade (Shd). Despite their poor performances, M. persicae adapted to dietary restriction of amino acids, through upregulation of genes involved in amino acid biosynthesis, glycolysis, and protein degradation, as well as by altering the expression level of genes involved in hormone signaling pathways.
Collapse
Affiliation(s)
| | | | | | - He-He Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc Natl Acad Sci U S A 2020; 117:2113-2121. [PMID: 31964845 DOI: 10.1073/pnas.1916748117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Symbioses between animals and microbes are often described as mutualistic, but are subject to tradeoffs that may manifest as shifts in host and symbiont metabolism, cellular processes, or symbiont density. In pea aphids, the bacterial symbiont Buchnera is confined to specialized aphid cells called bacteriocytes, where it produces essential amino acids needed by hosts. This relationship is dynamic; Buchnera titer varies within individual aphids and among different clonal aphid lineages, and is affected by environmental and host genetic factors. We examined how host genotypic variation relates to host and symbiont function among seven aphid clones differing in Buchnera titer. We found that bacteriocyte gene expression varies among individual aphids and among aphid clones, and that Buchnera gene expression changes in response. By comparing hosts with low and high Buchnera titer, we found that aphids and Buchnera oppositely regulate genes underlying amino acid biosynthesis and cell growth. In high-titer hosts, both bacteriocytes and symbionts show elevated expression of genes underlying energy metabolism. Several eukaryotic cell signaling pathways are differentially expressed in bacteriocytes of low- versus high-titer hosts: Cell-growth pathways are up-regulated in low-titer genotypes, while membrane trafficking, lysosomal processes, and mechanistic target of rapamycin (mTOR) and cytokine pathways are up-regulated in high-titer genotypes. Specific Buchnera functions are up-regulated within different bacteriocyte environments, with genes underlying flagellar body secretion and flagellar assembly overexpressed in low- and high-titer hosts, respectively. Overall, our results reveal allowances and demands made by both host and symbiont engaged in a metabolic "tug-of-war."
Collapse
|
19
|
Knobloch S, Jóhannsson R, Marteinsson VÞ. Genome analysis of sponge symbiont 'Candidatus Halichondribacter symbioticus' shows genomic adaptation to a host-dependent lifestyle. Environ Microbiol 2019; 22:483-498. [PMID: 31747724 DOI: 10.1111/1462-2920.14869] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/03/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022]
Abstract
The marine sponge Halichondria panicea inhabits coastal areas around the globe and is a widely studied sponge species in terms of its biology, yet the ecological functions of its dominant bacterial symbiont 'Candidatus Halichondribacter symbioticus' remain unknown. Here, we present the draft genome of 'Ca. H. symbioticus' HS1 (2.8 Mbp, ca. 87.6% genome coverage) recovered from the sponge metagenome of H. panicea in order to study functions and symbiotic interactions at the genome level. Functional genome comparison of HS1 against closely related free-living seawater bacteria revealed a reduction of genes associated with carbohydrate transport and transcription regulation, pointing towards a limited carbohydrate metabolism, and static transcriptional dynamics reminiscent of other bacterial symbionts. In addition, HS1 was enriched in sponge symbiont specific gene families related to host-symbiont interactions and defence. Similarity in the functional gene repertoire between HS1 and a phylogenetically more distant symbiont in the marine sponge Aplysina aerophoba, based on COG category distribution, suggest a convergent evolution of symbiont specific traits and general metabolic features. This warrants further investigation into convergent genomic evolution of symbionts across different sponge species and habitats.
Collapse
Affiliation(s)
- Stephen Knobloch
- Microbiology Group, Department of Research and Innovation, Matís ohf, 113, Reykjavik, Iceland.,Faculty of Life and Environmental Sciences, University of Iceland, 101, Reykjavík, Iceland
| | - Ragnar Jóhannsson
- Marine and Freshwater Research Institute, Hafrannsóknastofnun, 101, Reykjavik, Iceland
| | - Viggó Þór Marteinsson
- Microbiology Group, Department of Research and Innovation, Matís ohf, 113, Reykjavik, Iceland.,Faculty of Food Science and Nutrition, University of Iceland, 101, Reykjavik, Iceland
| |
Collapse
|
20
|
Thairu MW, Hansen AK. Changes in Aphid Host Plant Diet Influence the Small-RNA Expression Profiles of Its Obligate Nutritional Symbiont, Buchnera. mBio 2019; 10:e01733-19. [PMID: 31744912 PMCID: PMC6867890 DOI: 10.1128/mbio.01733-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Plants are a difficult food resource to use, and herbivorous insects have evolved a variety of mechanisms that allow them to fully exploit this poor nutritional resource. One such mechanism is the maintenance of bacterial symbionts that aid in host plant feeding and development. The majority of these intracellular symbionts have highly eroded genomes that lack many key regulatory genes; consequently, it is unclear if these symbionts can respond to changes in the insect's diet to facilitate host plant use. There is emerging evidence that symbionts with highly eroded genomes express small RNAs (sRNAs), some of which potentially regulate gene expression. In this study, we sought to determine if the reduced genome of the nutritional symbiont (Buchnera) in the pea aphid responds to changes in the aphid's host plant diet. Using transcriptome sequencing (RNA-seq), Buchnera sRNA expression profiles were characterized within two Buchnera life stages when pea aphids fed on either alfalfa or fava bean. Overall, this study demonstrates that Buchnera sRNA expression changes not only with life stage but also with changes in aphid host plant diet. Of the 321 sRNAs characterized in this study, 47% were previously identified and 22% showed evidence of conservation in two or more Buchnera taxa. Functionally, 13 differentially expressed sRNAs were predicted to target genes related to pathways involved in essential amino acid biosynthesis. Overall, results from this study reveal that host plant diet influences the expression of conserved and lineage-specific sRNAs in Buchnera and that these sRNAs display distinct host plant-specific expression profiles among biological replicates.IMPORTANCE In general, the genomes of intracellular bacterial symbionts are reduced compared to those of free-living relatives and lack many key regulatory genes. Many of these reduced genomes belong to obligate mutualists of insects that feed on a diet that is deficient in essential nutrients, such as essential amino acids. It is unclear if these symbionts respond with their host to changes in insect diet, because of their reduced regulatory capacity. Emerging evidence suggests that these symbionts express small RNAs (sRNAs) that regulate gene expression at the posttranscriptional level. Therefore, in this study, we sought to determine if the reduced genome of the nutritional symbiont Buchnera in the pea aphid responds to changes in the aphid's host plant diet. This study demonstrates for the first time that Buchnera sRNAs, some conserved in two or more Buchnera lineages, are differentially expressed when aphids feed on different plant species and potentially target genes within essential amino acid biosynthesis pathways.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, California, USA
- Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
21
|
Feng H, Park JS, Zhai RG, Wilson ACC. microRNA-92a regulates the expression of aphid bacteriocyte-specific secreted protein 1. BMC Res Notes 2019; 12:638. [PMID: 31564246 PMCID: PMC6767646 DOI: 10.1186/s13104-019-4665-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Aphids harbor a nutritional obligate endosymbiont in specialized cells called bacteriocytes, which aggregate to form an organ known as the bacteriome. Aphid bacteriomes display distinct gene expression profiles that facilitate the symbiotic relationship. Currently, the mechanisms that regulate these patterns of gene expression are unknown. Recently using computational pipelines, we identified miRNAs that are conserved in expression in the bacteriomes of two aphid species and proposed that they function as important regulators of bacteriocyte gene expression. Here using a dual luciferase assay in mouse NIH/3T3 cell culture, we aimed to experimentally validate the computationally predicted interaction between Myzus persicae miR-92a and the predicted target region of M. persicae bacteriocyte-specific secreted protein 1 (SP1) mRNA. RESULTS In the dual luciferase assay, miR-92a interacted with the SP1 target region resulting in a significant downregulation of the luciferase signal. Our results demonstrate that miR-92a interacts with SP1 to alter expression in a heterologous expression system, thereby supporting our earlier assertion that miRNAs are regulators of the aphid/Buchnera symbiotic interaction.
Collapse
Affiliation(s)
- Honglin Feng
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA. .,Boyce Thompson Institute, Ithaca, NY, 14853, USA.
| | - Joun S Park
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | | |
Collapse
|
22
|
Zhu DT, Zou C, Ban FX, Wang HL, Wang XW, Liu YQ. Conservation of transcriptional elements in the obligate symbiont of the whitefly Bemisia tabaci. PeerJ 2019; 7:e7477. [PMID: 31440434 PMCID: PMC6699477 DOI: 10.7717/peerj.7477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
Abstract
Background Bacterial symbiosis is widespread in arthropods, especially in insects. Some of the symbionts undergo a long-term co-evolution with the host, resulting in massive genome decay. One particular consequence of genome decay is thought to be the elimination of transcriptional elements within both the coding region and intergenic sequences. In the whitefly Bemisia tabaci species complex, the obligate symbiont Candidatus Portiera aleyrodidarum is of vital importance in nutrient provision, and yet little is known about the regulatory capacities of it. Methods Portiera genomes of two whitefly species in China were sequenced and assembled. Gene content of these two Portiera genomes was predicted, and then subjected to Kyoto Encyclopedia of Genes and Genomes pathway analysis. Together with two other Portiera genomes from whitefly species available previously, four Portiera genomes were utilized to investigate regulatory capacities of Portiera, focusing on transcriptional elements, including genes related with transcription and functional elements within the intergenic spacers. Results Comparative analyses of the four Portiera genomes of whitefly B. tabaci indicate that the obligate symbionts Portiera is similar in different species of whiteflies, in terms of general genome features and possible functions in the biosynthesis of essential amino acids. The screening of transcriptional factors suggests compromised ability of Portiera to regulate the essential amino acid biosynthesis pathways. Meanwhile, thermal tolerance ability of Portiera is indicated with the detection of a σ32 factor, as well as two predicted σ32 binding sites. Within intergenic spacers, functional elements are predicted, including 37 Shine-Dalgarno sequences and 34 putative small RNAs.
Collapse
Affiliation(s)
- Dan-Tong Zhu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chi Zou
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei-Xue Ban
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Ling Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yin-Quan Liu
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Kutsukake M, Moriyama M, Shigenobu S, Meng XY, Nikoh N, Noda C, Kobayashi S, Fukatsu T. Exaggeration and cooption of innate immunity for social defense. Proc Natl Acad Sci U S A 2019; 116:8950-8959. [PMID: 30988178 PMCID: PMC6500135 DOI: 10.1073/pnas.1900917116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social insects often exhibit striking altruistic behaviors, of which the most spectacular ones may be self-destructive defensive behaviors called autothysis, "self-explosion," or "suicidal bombing." In the social aphid Nipponaphis monzeni, when enemies damage their plant-made nest called the gall, soldier nymphs erupt to discharge a large amount of body fluid, mix the secretion with their legs, and skillfully plaster it over the plant injury. Dozens of soldiers come out, erupt, mix, and plaster, and the gall breach is promptly sealed with the coagulated body fluid. What molecular and cellular mechanisms underlie the self-sacrificing nest repair with body fluid for the insect society? Here we demonstrate that the body cavity of soldier nymphs is full of highly differentiated large hemocytes that contain huge amounts of lipid droplets and phenoloxidase (PO), whereas their hemolymph accumulates huge amounts of tyrosine and a unique repeat-containing protein (RCP). Upon breakage of the gall, soldiers gather around the breach and massively discharge the body fluid. The large hemocytes rupture and release lipid droplets, which promptly form a lipidic clot, and, concurrently, activated PO converts tyrosine to reactive quinones, which cross-link RCP and other macromolecules to physically reinforce the clot to seal the gall breach. Here, soldiers' humoral and cellular immune mechanisms for wound sealing are extremely up-regulated and utilized for colony defense, which provides a striking case of direct evolutionary connection between individual immunity and social immunity and highlights the importance of exaggeration and cooption of preexisting traits to create evolutionary novelties.
Collapse
Affiliation(s)
- Mayako Kutsukake
- Bioproduction Research Institute, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan;
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan
| | - Shuji Shigenobu
- Core Research Facilities, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, 261-8586 Chiba, Japan
| | - Chiyo Noda
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, 444-8787 Okazaki, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 305-8577 Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan;
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033 Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| |
Collapse
|
24
|
Bacterial communities of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) from pepper crops (Capsicum sp.). Sci Rep 2019; 9:5766. [PMID: 30962510 PMCID: PMC6453963 DOI: 10.1038/s41598-019-42232-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/21/2019] [Indexed: 11/09/2022] Open
Abstract
Insects harbor a wide variety of microorganisms that form complex and changing communities and play an important role in the biology and evolution of their hosts. Aphids have been used as model organisms to study microorganism-insect interactions. Almost all aphids are infected with the obligate endosymbiont Buchnera aphidicola and can host different bacteria that allow them to acquire traits of agronomic importance, such as resistance to high temperatures and/or defense against natural enemies. However, the bacterial communities of most aphid species remain poorly characterized. In this study, we used high-throughput DNA sequencing to characterize the bacterial communities of Aphis gossypii and Myzus persicae from two cultivable pepper species, Capsicum frutescens (Tabasco variety) and C. annuum (Cayenne variety), in four localities of southwestern Colombia. In addition, we evaluated the dynamics of A. gossypii-associated microorganisms on a seasonal basis. Our results show that the bacterial communities of A. gossypii and M. persicae are dominated by the primary endosymbiont B. aphidicola, while the presence of the facultative symbiont Arsenophonus sp. was only detected in one A. gossypii population from cayenne pepper. In addition to these two known symbionts, eight bacterial OTUs were identified that presented a frequency of 1% or more in at least one of the analyzed populations. The results show that the bacterial communities of aphids associated with pepper crops appears to be structured according to the host aphid species and the geographical location, while no differences were observed in the diversity of bacteria between host plants. Finally, the diversity and abundance of the A. gossypii bacterial community was variable among the four sampling points evaluated over the year and showed a relation with the aphid’s population dynamics. This study represents the first approach to the knowledge of the bacterial community present in chili pepper aphids from Colombia. Nevertheless, more in-depth studies, including replicates, are required to confirm the patterns observed in the microbial communities of aphids from pepper crops.
Collapse
|
25
|
Paight C, Slamovits CH, Saffo MB, Lane CE. Nephromyces Encodes a Urate Metabolism Pathway and Predicted Peroxisomes, Demonstrating That These Are Not Ancient Losses of Apicomplexans. Genome Biol Evol 2019; 11:41-53. [PMID: 30500900 PMCID: PMC6320678 DOI: 10.1093/gbe/evy251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred multiple times. The degradation of purines is thought to play a key role in the unusual relationship between Nephromyces and its host. Transcriptome data confirm previous biochemical results of a functional pathway for the utilization of uric acid as a primary nitrogen source for this unusual apicomplexan.
Collapse
Affiliation(s)
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mary Beth Saffo
- Department of Biological Sciences, University of Rhode Island
- Smithsonian National Museum of Natural History, Washington, District of Columbia
| | | |
Collapse
|
26
|
Colella S, Parisot N, Simonet P, Gaget K, Duport G, Baa-Puyoulet P, Rahbé Y, Charles H, Febvay G, Callaerts P, Calevro F. Bacteriocyte Reprogramming to Cope With Nutritional Stress in a Phloem Sap Feeding Hemipteran, the Pea Aphid Acyrthosiphon pisum. Front Physiol 2018; 9:1498. [PMID: 30410449 PMCID: PMC6209921 DOI: 10.3389/fphys.2018.01498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Nutritional symbioses play a central role in the ability of insects to thrive on unbalanced diets and in ensuring their evolutionary success. A genomic model for nutritional symbiosis comprises the hemipteran Acyrthosiphon pisum, and the gamma-3-proteobacterium, Buchnera aphidicola, with genomes encoding highly integrated metabolic pathways. A. pisum feeds exclusively on plant phloem sap, a nutritionally unbalanced diet highly variable in composition, thus raising the question of how this symbiotic system responds to nutritional stress. We addressed this by combining transcriptomic, phenotypic and life history trait analyses to determine the organismal impact of deprivation of tyrosine and phenylalanine. These two aromatic amino acids are essential for aphid development, are synthesized in a metabolic pathway for which the aphid host and the endosymbiont are interdependent, and their concentration can be highly variable in plant phloem sap. We found that this nutritional challenge does not have major phenotypic effects on the pea aphid, except for a limited weight reduction and a 2-day delay in onset of nymph laying. Transcriptomic analyses through aphid development showed a prominent response in bacteriocytes (the core symbiotic tissue which houses the symbionts), but not in gut, thus highlighting the role of bacteriocytes as major modulators of this homeostasis. This response does not involve a direct regulation of tyrosine and phenylalanine biosynthetic pathway and transporter genes. Instead, we observed an extensive transcriptional reprogramming of the bacteriocyte with a rapid down-regulation of genes encoding sugar transporters and genes required for sugar metabolism. Consistently, we observed continued overexpression of the A. pisum homolog of RRAD, a small GTPase implicated in repressing aerobic glycolysis. In addition, we found increased transcription of genes involved in proliferation, cell size control and signaling. We experimentally confirmed the significance of these gene expression changes detecting an increase in bacteriocyte number and cell size in vivo under tyrosine and phenylalanine depletion. Our results support a central role of bacteriocytes in the aphid response to amino acid deprivation: their transcriptional and cellular responses fine-tune host physiology providing the host insect with an effective way to cope with the challenges posed by the variability in composition of phloem sap.
Collapse
Affiliation(s)
- Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Pierre Simonet
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Karen Gaget
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Gabrielle Duport
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | | | - Yvan Rahbé
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Patrick Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Federica Calevro
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| |
Collapse
|
27
|
Manzano-Marín A, Coeur d'acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, Jousselin E. A Freeloader? The Highly Eroded Yet Large Genome of the Serratia symbiotica Symbiont of Cinara strobi. Genome Biol Evol 2018; 10:2178-2189. [PMID: 30102395 PMCID: PMC6125246 DOI: 10.1093/gbe/evy173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 12/17/2022] Open
Abstract
Genome reduction is pervasive among maternally inherited bacterial endosymbionts. This genome reduction can eventually lead to serious deterioration of essential metabolic pathways, thus rendering an obligate endosymbiont unable to provide essential nutrients to its host. This loss of essential pathways can lead to either symbiont complementation (sharing of the nutrient production with a novel co-obligate symbiont) or symbiont replacement (complete takeover of nutrient production by the novel symbiont). However, the process by which these two evolutionary events happen remains somewhat enigmatic by the lack of examples of intermediate stages of this process. Cinara aphids (Hemiptera: Aphididae) typically harbor two obligate bacterial symbionts: Buchnera and Serratia symbiotica. However, the latter has been replaced by different bacterial taxa in specific lineages, and thus species within this aphid lineage could provide important clues into the process of symbiont replacement. In the present study, using 16S rRNA high-throughput amplicon sequencing, we determined that the aphid Cinara strobi harbors not two, but three fixed bacterial symbionts: Buchnera aphidicola, a Sodalis sp., and S. symbiotica. Through genome assembly and genome-based metabolic inference, we have found that only the first two symbionts (Buchnera and Sodalis) actually contribute to the hosts' supply of essential nutrients while S. symbiotica has become unable to contribute towards this task. We found that S. symbiotica has a rather large and highly eroded genome which codes only for a few proteins and displays extensive pseudogenization. Thus, we propose an ongoing symbiont replacement within C. strobi, in which a once "competent" S. symbiotica does no longer contribute towards the beneficial association. These results suggest that in dual symbiotic systems, when a substitute cosymbiont is available, genome deterioration can precede genome reduction and a symbiont can be maintained despite the apparent lack of benefit to its host.
Collapse
Affiliation(s)
- Alejandro Manzano-Marín
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Armelle Coeur d'acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Anne-Laure Clamens
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| | - Céline Orvain
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Corinne Cruaud
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Valérie Barbe
- Institut de Biologie François-Jacob, CEA, Genoscope, Évry Cedex, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, France
| |
Collapse
|
28
|
Dittmer J, Bouchon D. Feminizing Wolbachia influence microbiota composition in the terrestrial isopod Armadillidium vulgare. Sci Rep 2018; 8:6998. [PMID: 29725059 PMCID: PMC5934373 DOI: 10.1038/s41598-018-25450-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/19/2018] [Indexed: 12/31/2022] Open
Abstract
Wolbachia are widespread heritable endosymbionts of arthropods notorious for their profound effects on host fitness as well as for providing protection against viruses and eukaryotic parasites, indicating that they can interact with other microorganisms sharing the same host environment. Using the terrestrial isopod crustacean Armadillidium vulgare, its highly diverse microbiota (>200 bacterial genera) and its three feminizing Wolbachia strains (wVulC, wVulM, wVulP) as a model system, the present study demonstrates that Wolbachia can even influence the composition of a diverse bacterial community under both laboratory and natural conditions. While host origin is the major determinant of the taxonomic composition of the microbiota in A. vulgare, Wolbachia infection affected both the presence and, more importantly, the abundance of many bacterial taxa within each host population, possibly due to competitive interactions. Moreover, different Wolbachia strains had different impacts on microbiota composition. As such, infection with wVulC affected a higher number of taxa than infection with wVulM, possibly due to intrinsic differences in virulence and titer between these two strains. In conclusion, this study shows that heritable endosymbionts such as Wolbachia can act as biotic factors shaping the microbiota of arthropods, with as yet unknown consequences on host fitness.
Collapse
Affiliation(s)
- Jessica Dittmer
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, 5 rue Albert Turpin, 86073, Poitiers, France
- Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Didier Bouchon
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, 5 rue Albert Turpin, 86073, Poitiers, France.
| |
Collapse
|
29
|
Thairu MW, Cheng S, Hansen AK. A sRNA in a reduced mutualistic symbiont genome regulates its own gene expression. Mol Ecol 2017; 27:1766-1776. [PMID: 29134727 DOI: 10.1111/mec.14424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023]
Abstract
Similar to other nutritional endosymbionts that are obligate for host survival, the mutualistic aphid endosymbiont, Buchnera, has a highly reduced genome with few regulatory elements. Until recently, it was thought that aphid hosts were primarily responsible for regulating their symbiotic relationship. However, we recently revealed that Buchnera displays differential protein regulation, but not mRNA expression. We also identified a number of conserved small RNAs (sRNAs) that are expressed among Buchnera taxa. In this study, we investigate whether differential protein regulation in Buchnera is the result of post-transcriptional gene regulation via sRNAs. We characterize the sRNA profile of two Buchnera life stages: (i) when Buchnera is transitioning from an extracellular proliferating state in aphid embryos and (ii) when Buchnera is in an intracellular nonproliferating state in aphid bacteriocytes (specialized symbiont cells). Overall, we identified 90 differentially expressed sRNAs, 97% of which were upregulated in aphid embryos. Of these sRNAs, the majority were predicted to be involved in the regulation of various metabolic processes, including arginine biosynthesis. Using a heterologous dual expression vector, we reveal for the first time that a Buchnera antisense sRNA can post-transcriptionally interact with its cognate Buchnera coding sequence, carB, a gene involved in arginine biosynthesis. These results corroborate our in vivo RNAseq and proteomic data, where the candidate antisense sRNA carB and the protein CarB are significantly upregulated in aphid embryos. Overall, we demonstrate that Buchnera may regulate gene expression independently from its host by utilizing sRNAs.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Siyuan Cheng
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Program in Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
| | - Allison K Hansen
- Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
30
|
Skidmore IH, Hansen AK. The evolutionary development of plant-feeding insects and their nutritional endosymbionts. INSECT SCIENCE 2017; 24:910-928. [PMID: 28371395 DOI: 10.1111/1744-7917.12463] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Herbivorous insects have evolved diverse mechanisms enabling them to feed on plants with suboptimal nutrient availability. Low nutrient availability negatively impacts insect herbivore development and fitness. To overcome this obstacle numerous insect lineages have evolved intimate associations with nutritional endosymbionts. This is especially true for insects that specialize on nitrogen-poor substrates, as these insects are highly dependent on intracellular symbionts to provide nitrogen lacking in their insect host's diet. Emerging evidence in these systems suggest that the symbiont's and/or the insect's biosynthetic pathways are dynamically regulated throughout the insect's development to potentially cope with the insect's changing nutritional demands. In this review, we evaluate the evolutionary development of symbiotic insect cells (bacteriocytes) by comparing and contrasting genes and mechanisms involved in maintaining and regulating the nutritional symbiosis throughout insect development in a diversity of insect herbivore-endosymbiont associations. With new advances in genome sequencing and functional genomics, we evaluate to what extent nutritional symbioses are shaped by (i) the regulation of symbiont titer, (ii) the regulation of insect symbiosis genes, and (iii) the regulation of symbiont genes. We discuss how important these mechanisms are for the biosynthesis of essential amino acids and vitamins across insect life stages in divergent insect-symbiont systems. We conclude by suggesting future directions of research to further elucidate the evolutionary development of bacteriocytes and the impact of these nutritional symbioses on insect-plant interactions.
Collapse
Affiliation(s)
- Isabel H Skidmore
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Allison K Hansen
- Department of Entomology, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
31
|
Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Homalodisca vitripennis) Reveal Differential Gene Expression in Bacteria Occupying Multiple Host Organs. G3-GENES GENOMES GENETICS 2017; 7:3073-3082. [PMID: 28705905 PMCID: PMC5592932 DOI: 10.1534/g3.117.044255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The agricultural pest known as the glassy-winged sharpshooter (GWSS) or Homalodisca vitripennis (Hemiptera: Cicadellidae) harbors two bacterial symbionts, “Candidatus Sulcia muelleri” and “Ca. Baumannia cicadellinicola,” which provide the 10 essential amino acids (EAAs) that are limited in the host plant-sap diet. Although they differ in origin and symbiotic age, both bacteria have experienced extensive genome degradation resulting from their ancient restriction to specialized host organs (bacteriomes) that provide cellular support and ensure vertical transmission. GWSS bacteriomes are of different origins and distinctly colored red and yellow. While Sulcia occupies the yellow bacteriome, Baumannia inhabits both. Aside from genomic predictions, little is currently known about the cellular functions of these bacterial symbionts, particularly whether Baumannia in different bacteriomes perform different roles in the symbiosis. To address these questions, we conducted a replicated, strand-specific RNA-seq experiment to assay global gene expression patterns in Sulcia and Baumannia. Despite differences in genomic capabilities, the symbionts exhibit similar profiles of their most highly expressed genes, including those involved in nutrition synthesis and protein stability (chaperonins dnaK and groESL) that likely aid impaired proteins. Baumannia populations in separate bacteriomes differentially express genes enriched in essential nutrient synthesis, including EAAs (histidine and methionine) and B vitamins (biotin and thiamine). Patterns of differential gene expression further reveal complexity in methionine synthesis. Baumannia’s capability to differentially express genes is unusual, as ancient symbionts lose the capability to independently regulate transcription. Combined with previous microscopy, our results suggest that the GWSS may rely on distinct Baumannia populations for essential nutrition and vertical transmission.
Collapse
|
32
|
Hussain M, Akutse KS, Ravindran K, Lin Y, Bamisile BS, Qasim M, Dash CK, Wang L. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities. Environ Microbiol 2017; 19:3439-3449. [PMID: 28618183 DOI: 10.1111/1462-2920.13821] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/26/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
Abstract
The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field-collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3-5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host-symbionts interactions between D. citri and its associated endosymbionts.
Collapse
Affiliation(s)
- Mubasher Hussain
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Komivi Senyo Akutse
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Plant Health Division, International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Keppanan Ravindran
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongwen Lin
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bamisope Steve Bamisile
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Muhammad Qasim
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chandra Kanta Dash
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3300, Bangladesh
| | - Liande Wang
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China.,Institute of Applied Ecology and Research Centre for Biodiversity and Eco-Safety, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Chance and necessity in the genome evolution of endosymbiotic bacteria of insects. ISME JOURNAL 2017; 11:1291-1304. [PMID: 28323281 PMCID: PMC5437351 DOI: 10.1038/ismej.2017.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
An open question in evolutionary biology is how does the selection–drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host–symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shift.
Collapse
|
34
|
Clayton AL, Enomoto S, Su Y, Dale C. The regulation of antimicrobial peptide resistance in the transition to insect symbiosis. Mol Microbiol 2017; 103:958-972. [PMID: 27987256 DOI: 10.1111/mmi.13598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
Abstract
Many bacteria utilize two-component systems consisting of a sensor kinase and a transcriptional response regulator to detect environmental signals and modulate gene expression for adaptation. The response regulator PhoP and its cognate sensor kinase PhoQ compose a two-component system known for its role in responding to low levels of Mg2+ , Ca2+ , pH and to the presence of antimicrobial peptides and activating the expression of genes involved in adaptation to host association. Compared with their free-living relatives, mutualistic insect symbiotic bacteria inhabit a static environment where the requirement for sensory functions is expected to be relaxed. The insect symbiont, Sodalis glossinidius, requires PhoP to resist killing by host derived antimicrobial peptides. However, the S. glossinidius PhoQ was found to be insensitive to Mg2+ , Ca2+ and pH. Here they show that Sodalis praecaptivus, a close non host-associated relative of S. glossinidius, utilizes a magnesium sensing PhoP-PhoQ and an uncharacterized MarR-like transcriptional regulator (Sant_4061) to control antimicrobial peptide resistance in vitro. While the inactivation of phoP, phoQ or Sant_4061 completely retards the growth of S. praecaptivus in the presence of an antimicrobial peptide in vitro, inactivation of both phoP and Sant_4061 is necessary to abrogate growth of this bacterium in an insect host.
Collapse
Affiliation(s)
- Adam L Clayton
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Yinghua Su
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Colin Dale
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
35
|
Single sample resolution of rare microbial dark matter in a marine invertebrate metagenome. Sci Rep 2016; 6:34362. [PMID: 27681823 PMCID: PMC5041132 DOI: 10.1038/srep34362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Direct, untargeted sequencing of environmental samples (metagenomics) and de novo genome assembly enable the study of uncultured and phylogenetically divergent organisms. However, separating individual genomes from a mixed community has often relied on the differential-coverage analysis of multiple, deeply sequenced samples. In the metagenomic investigation of the marine bryozoan Bugula neritina, we uncovered seven bacterial genomes associated with a single B. neritina individual that appeared to be transient associates, two of which were unique to one individual and undetectable using certain “universal” 16S rRNA primers and probes. We recovered high quality genome assemblies for several rare instances of “microbial dark matter,” or phylogenetically divergent bacteria lacking genomes in reference databases, from a single tissue sample that was not subjected to any physical or chemical pre-treatment. One of these rare, divergent organisms has a small (593 kbp), poorly annotated genome with low GC content (20.9%) and a 16S rRNA gene with just 65% sequence similarity to the closest reference sequence. Our findings illustrate the importance of sampling strategy and de novo assembly of metagenomic reads to understand the extent and function of bacterial biodiversity.
Collapse
|
36
|
Bouchon D, Zimmer M, Dittmer J. The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal-Microbe Interactions of Ecological Relevance. Front Microbiol 2016; 7:1472. [PMID: 27721806 PMCID: PMC5033963 DOI: 10.3389/fmicb.2016.01472] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
Bacterial symbionts represent essential drivers of arthropod ecology and evolution, influencing host traits such as nutrition, reproduction, immunity, and speciation. However, the majority of work on arthropod microbiota has been conducted in insects and more studies in non-model species across different ecological niches will be needed to complete our understanding of host–microbiota interactions. In this review, we present terrestrial isopod crustaceans as an emerging model organism to investigate symbiotic associations with potential relevance to ecosystem functioning. Terrestrial isopods comprise a group of crustaceans that have evolved a terrestrial lifestyle and represent keystone species in terrestrial ecosystems, contributing to the decomposition of organic matter and regulating the microbial food web. Since their nutrition is based on plant detritus, it has long been suspected that bacterial symbionts located in the digestive tissues might play an important role in host nutrition via the provisioning of digestive enzymes, thereby enabling the utilization of recalcitrant food compounds (e.g., cellulose or lignins). If this were the case, then (i) the acquisition of these bacteria might have been an important evolutionary prerequisite for the colonization of land by isopods, and (ii) these bacterial symbionts would directly mediate the role of their hosts in ecosystem functioning. Several bacterial symbionts have indeed been discovered in the midgut caeca of terrestrial isopods and some of them might be specific to this group of animals (i.e., Candidatus Hepatoplasma crinochetorum, Candidatus Hepatincola porcellionum, and Rhabdochlamydia porcellionis), while others are well-known intracellular pathogens (Rickettsiella spp.) or reproductive parasites (Wolbachia sp.). Moreover, a recent investigation of the microbiota in Armadillidium vulgare has revealed that this species harbors a highly diverse bacterial community which varies between host populations, suggesting an important share of environmental microbes in the host-associated microbiota. In this review, we synthesize our current knowledge on the terrestrial isopod microbiome and identify future directions to (i) fully understand the functional roles of particular bacteria (both intracellular or intestinal symbionts and environmental gut passengers), and (ii) whether and how the host-associated microbiota could influence the performance of terrestrial isopods as keystone species in soil ecosystems.
Collapse
Affiliation(s)
- Didier Bouchon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers Poitiers, France
| | - Martin Zimmer
- Leibniz Center for Tropical Marine Ecology Bremen, Germany
| | - Jessica Dittmer
- Rowland Institute at Harvard, Harvard University, Cambridge MA, USA
| |
Collapse
|
37
|
Manzano-Marín A, Simon JC, Latorre A. Reinventing the Wheel and Making It Round Again: Evolutionary Convergence in Buchnera-Serratia Symbiotic Consortia between the Distantly Related Lachninae Aphids Tuberolachnus salignus and Cinara cedri. Genome Biol Evol 2016; 8:1440-58. [PMID: 27190007 PMCID: PMC4898801 DOI: 10.1093/gbe/evw085] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/23/2022] Open
Abstract
Virtually all aphids (Aphididae) harbor Buchnera aphidicola as an obligate endosymbiont to compensate nutritional deficiencies arising from their phloem diet. Many species within the Lachninae subfamily seem to be consistently associated also with Serratia symbiotica We have previously shown that both Cinara (Cinara) cedri and Cinara (Cupressobium) tujafilina (Lachninae: Eulachnini tribe) have indeed established co-obligate associations with both Buchnera and S. symbiotica However, while Buchnera genomes of both Cinara species are similar, genome degradation differs greatly between the two S. symbiotica strains. To gain insight into the essentiality and degree of integration of S. symbiotica within the Lachninae, we sequenced the genome of both Buchnera and S. symbiotica endosymbionts from the distantly related aphid Tuberolachnus salignus (Lachninae: Tuberolachnini tribe). We found a striking level of similarity between the endosymbiotic system of this aphid and that of C. cedri In both aphid hosts, S. symbiotica possesses a highly reduced genome and is found exclusively intracellularly inside bacteriocytes. Interestingly, T. salignus' endosymbionts present the same tryptophan biosynthetic metabolic complementation as C. cedri's, which is not present in C. tujafilina's. Moreover, we corroborate the riboflavin-biosynthetic-role take-over/rescue by S. symbiotica in T. salignus, and therefore, provide further evidence for the previously proposed establishment of a secondary co-obligate endosymbiont in the common ancestor of the Lachninae aphids. Finally, we propose that the putative convergent split of the tryptophan biosynthetic role between Buchnera and S. symbiotica could be behind the establishment of S. symbiotica as an obligate intracellular symbiont and the triggering of further genome degradation.
Collapse
Affiliation(s)
| | - Jean-Christophe Simon
- UMR1349 Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Institut National de la Recherche Agronomique (INRA), Rennes, France
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva, Universitat de Valencia Área de Genómica y Salud de la Fundación para el fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública, València, Spain
| |
Collapse
|
38
|
Host Plant Determines the Population Size of an Obligate Symbiont (Buchnera aphidicola) in Aphids. Appl Environ Microbiol 2016; 82:2336-2346. [PMID: 26850304 DOI: 10.1128/aem.04131-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
Buchnera aphidicolais an obligate endosymbiont that provides aphids with several essential nutrients. Though much is known about aphid-Buchnera interactions, the effect of the host plant on Buchnera population size remains unclear. Here we used quantitative PCR (qPCR) techniques to explore the effects of the host plant on Buchnera densities in the cotton-melon aphid, Aphis gossypii Buchneratiters were significantly higher in populations that had been reared on cucumber for over 10 years than in populations maintained on cotton for a similar length of time. Aphids collected in the wild from hibiscus and zucchini harbored more Buchnera symbionts than those collected from cucumber and cotton. The effect of aphid genotype on the population size of Buchnera depended on the host plant upon which they fed. When aphids from populations maintained on cucumber or cotton were transferred to novel host plants, host survival and Buchnera population size fluctuated markedly for the first two generations before becoming relatively stable in the third and later generations. Host plant extracts from cucumber, pumpkin, zucchini, and cowpea added to artificial diets led to a significant increase in Buchnera titers in the aphids from the population reared on cotton, while plant extracts from cotton and zucchini led to a decrease in Buchnera titers in the aphids reared on cucumber. Gossypol, a secondary metabolite from cotton, suppressed Buchnera populations in populations from both cotton and cucumber, while cucurbitacin from cucurbit plants led to higher densities. Together, the results suggest that host plants influence Buchnera population processes and that this may provide phenotypic plasticity in host plant use for clonal aphids.
Collapse
|
39
|
Dittmer J, Lesobre J, Moumen B, Bouchon D. Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod Armadillidium vulgare. FEMS Microbiol Ecol 2016; 92:fiw063. [PMID: 27004796 DOI: 10.1093/femsec/fiw063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 11/14/2022] Open
Abstract
We present the first in-depth investigation of the host-associated microbiota of the terrestrial isopod crustacean Armadillidium vulgare. This species is an important decomposer of organic matter in terrestrial ecosystems and a major model organism for arthropod-Wolbachia symbioses due to its well-characterized association with feminizing Wolbachia 16S rRNA gene pyrotags were used to characterize its bacterial microbiota at multiple levels: (i) in individuals from laboratory lineages and field populations and (ii) in various host tissues. This integrative approach allowed us to reveal an unexpectedly high bacterial diversity, placing this species in the same league as termites in terms of symbiotic diversity. Interestingly, both animal groups belong to the same ecological guild in terrestrial ecosystems. While Wolbachia represented the predominant taxon in infected individuals, it was not the only major player. Together, the most abundant taxa represented a large scope of symbiotic interactions, including bacterial pathogens, a reproductive parasite (Wolbachia) and potential nutritional symbionts. Furthermore, we demonstrate that individuals from different populations harboured distinct bacterial communities, indicating a strong link between the host-associated microbiota and environmental bacteria, possibly due to terrestrial isopod nutritional ecology. Overall, this work highlights the need for more studies of host-microbiota interactions and bacterial diversity in non-insect arthropods.
Collapse
Affiliation(s)
- Jessica Dittmer
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers, France
| | - Jérôme Lesobre
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers, France
| | - Bouziane Moumen
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers, France
| | - Didier Bouchon
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, 5 rue Albert Turpain, TSA 51106, 86073 Poitiers, France
| |
Collapse
|
40
|
Matelska D, Kurkowska M, Purta E, Bujnicki JM, Dunin-Horkawicz S. Loss of Conserved Noncoding RNAs in Genomes of Bacterial Endosymbionts. Genome Biol Evol 2016; 8:426-38. [PMID: 26782934 PMCID: PMC4779614 DOI: 10.1093/gbe/evw007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genomes of intracellular symbiotic or pathogenic bacteria, such as of Buchnera, Mycoplasma, and Rickettsia, are typically smaller compared with their free-living counterparts. Here we showed that noncoding RNA (ncRNA) families, which are conserved in free-living bacteria, frequently could not be detected by computational methods in the small genomes. Statistical tests demonstrated that their absence is not an artifact of low GC content or small deletions in these small genomes, and thus it was indicative of an independent loss of ncRNAs in different endosymbiotic lineages. By analyzing the synteny (conservation of gene order) between the reduced and nonreduced genomes, we revealed instances of protein-coding genes that were preserved in the reduced genomes but lost cis-regulatory elements. We found that the loss of cis-regulatory ncRNA sequences, which regulate the expression of cognate protein-coding genes, is characterized by the reduction of secondary structure formation propensity, GC content, and length of the corresponding genomic regions.
Collapse
Affiliation(s)
- Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Malgorzata Kurkowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Elzbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
41
|
Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle. G3-GENES GENOMES GENETICS 2015; 5:2843-56. [PMID: 26497146 PMCID: PMC4683655 DOI: 10.1534/g3.115.021931] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome.
Collapse
|
42
|
Russell CW, Poliakov A, Haribal M, Jander G, van Wijk KJ, Douglas AE. Matching the supply of bacterial nutrients to the nutritional demand of the animal host. Proc Biol Sci 2015; 281:20141163. [PMID: 25080346 DOI: 10.1098/rspb.2014.1163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various animals derive nutrients from symbiotic microorganisms with much-reduced genomes, but it is unknown whether, and how, the supply of these nutrients is regulated. Here, we demonstrate that the production of essential amino acids (EAAs) by the bacterium Buchnera aphidicola in the pea aphid Acyrthosiphon pisum is elevated when aphids are reared on diets from which that EAA are omitted, demonstrating that Buchnera scale EAA production to host demand. Quantitative proteomics of bacteriocytes (host cells bearing Buchnera) revealed that these metabolic changes are not accompanied by significant change in Buchnera or host proteins, suggesting that EAA production is regulated post-translationally. Bacteriocytes in aphids reared on diet lacking the EAA methionine had elevated concentrations of both methionine and the precursor cystathionine, indicating that methionine production is promoted by precursor supply and is not subject to feedback inhibition by methionine. Furthermore, methionine production by isolated Buchnera increased with increasing cystathionine concentration. We propose that Buchnera metabolism is poised for EAA production at certain maximal rates, and the realized release rate is determined by precursor supply from the host. The incidence of host regulation of symbiont nutritional function via supply of key nutritional inputs in other symbioses remains to be investigated.
Collapse
Affiliation(s)
- Calum W Russell
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Anton Poliakov
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Meena Haribal
- Boyce Thompson Institute, Tower Road, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, Tower Road, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
43
|
Cassone BJ, Wenger JA, Michel AP. Whole Genome Sequence of the Soybean Aphid Endosymbiont Buchnera aphidicola and Genetic Differentiation among Biotype-Specific Strains. J Genomics 2015; 3:85-94. [PMID: 26516375 PMCID: PMC4618293 DOI: 10.7150/jgen.12975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Endosymbiosis with microorganisms is common in insects, with more than 10% of species requiring the metabolic capabilities of intracellular bacteria for their nutrient acquisition. Aphids harbor an obligate mutualism with the vertically transferred endosymbiont, Buchnera aphidicola, which produces key nutrients lacking in the aphid's phloem-based diet that are necessary for normal development and reproduction. It is thought that, in some groups of insects, bacterial symbionts may play key roles in biotype evolution against host-plant resistance. The genome of Buchnera has been sequenced in several aphid strains but little genomic data is currently available for the soybean aphid (Aphis glycines), one of the most important pests of soybean in North America. In this study, DNA sequencing was used to assemble and annotate the genome sequence of the Buchnera A. glycines strain and to reconstruct phylogenetic relationships among different strains. In addition, we identified several fixed Buchnera SNPs between Aphis glycines biotypes that were avirulent or virulent to a soybean aphid resistance gene (Rag1). The results of this study describe the genetic and evolutionary relationships of the Buchnera A. glycines strain, and begin to define the roles of an aphid symbiont in host-plant resistance.
Collapse
Affiliation(s)
- Bryan J. Cassone
- 1. Department of Biology, Brandon University, Brandon, MB R7A 6A9, Canada
| | - Jacob A. Wenger
- 2. Department of Entomology, The Ohio State University, OARDC, Wooster, OH 44691, USA
| | - Andrew P. Michel
- 2. Department of Entomology, The Ohio State University, OARDC, Wooster, OH 44691, USA
| |
Collapse
|
44
|
Cassone BJ, Redinbaugh MG, Dorrance AE, Michel AP. Shifts in Buchnera aphidicola density in soybean aphids (Aphis glycines) feeding on virus-infected soybean. INSECT MOLECULAR BIOLOGY 2015; 24:422-31. [PMID: 25845267 DOI: 10.1111/imb.12170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
Vertically transmitted bacterial symbionts are common in arthropods. Aphids undergo an obligate symbiosis with Buchnera aphidicola, which provides essential amino acids to its host and contributes directly to nymph growth and reproduction. We previously found that newly adult Aphis glycines feeding on soybean infected with the beetle-transmitted Bean pod mottle virus (BPMV) had significantly reduced fecundity. We hypothesized that the reduced fecundity was attributable to detrimental impacts of the virus on the aphid microbiome, namely Buchnera. To test this, mRNA sequencing and quantitative real-time PCR were used to assay Buchnera transcript abundance and titre in A. glycines feeding on Soybean mosaic virus-infected, BPMV-infected, and healthy soybean for up to 14 days. Our results indicated that Buchnera density was lower and ultimately suppressed in aphids feeding on virus-infected soybean. While the decreased Buchnera titre may be associated with reduced aphid fecundity, additional mechanisms are probably involved. The present report begins to describe how interactions among insects, plants, and plant pathogens influence endosymbiont population dynamics.
Collapse
Affiliation(s)
- Bryan J Cassone
- Center for Applied Plant Sciences, The Ohio State University, OARDC, Wooster, OH, 44691, USA
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
| | - Margaret G Redinbaugh
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
- USDA, ARS Corn, Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH, 44691, USA
| | - Andrew P Michel
- Department of Entomology, the Ohio State University, OARDC, Wooster, OH, 44691, USA
| |
Collapse
|
45
|
Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc Natl Acad Sci U S A 2015; 112:10255-61. [PMID: 26039986 DOI: 10.1073/pnas.1423305112] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of symbiosis in bacterial symbiont genome evolution is well understood, yet the ways that symbiosis shapes host genomes or more particularly, host/symbiont genome coevolution in the holobiont is only now being revealed. Here, we identify three coevolutionary signatures that characterize holobiont genomes. The first signature, host/symbiont collaboration, arises when completion of essential pathways requires host/endosymbiont genome complementarity. Metabolic collaboration has evolved numerous times in the pathways of amino acid and vitamin biosynthesis. Here, we highlight collaboration in branched-chain amino acid and pantothenate (vitamin B5) biosynthesis. The second coevolutionary signature is acquisition, referring to the observation that holobiont genomes acquire novel genetic material through various means, including gene duplication, lateral gene transfer from bacteria that are not their current obligate symbionts, and full or partial endosymbiont replacement. The third signature, constraint, introduces the idea that holobiont genome evolution is constrained by the processes governing symbiont genome evolution. In addition, we propose that collaboration is constrained by the expression profile of the cell lineage from which endosymbiont-containing host cells, called bacteriocytes, are derived. In particular, we propose that such differences in bacteriocyte cell lineage may explain differences in patterns of host/endosymbiont metabolic collaboration between the sap-feeding suborders Sternorrhyncha and Auchenorrhynca. Finally, we review recent studies at the frontier of symbiosis research that are applying functional genomic approaches to characterization of the developmental and cellular mechanisms of host/endosymbiont integration, work that heralds a new era in symbiosis research.
Collapse
|
46
|
Hansen AK, Degnan PH. Widespread expression of conserved small RNAs in small symbiont genomes. THE ISME JOURNAL 2014; 8:2490-502. [PMID: 25012903 PMCID: PMC4260695 DOI: 10.1038/ismej.2014.121] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 12/17/2022]
Abstract
Genome architecture of a microbe markedly changes when it transitions from a free-living lifestyle to an obligate symbiotic association within eukaryotic cells. These symbiont genomes experience numerous rearrangements and massive gene loss, which is expected to radically alter gene regulatory networks compared with those of free-living relatives. As such, it remains unclear whether and how these small symbiont genomes regulate gene expression. Here, using a label-free mass-spec quantification approach we found that differential protein regulation occurs in Buchnera, a model symbiont with a reduced genome, when it transitions between two distinct life stages. However, differential mRNA expression could not be detected between Buchnera life stages, despite the presence of a small number of putative transcriptional regulators. Instead a comparative analysis of small RNA expression profiles among five divergent Buchnera lineages, spanning a variety of Buchnera life stages, reveals 140 novel intergenic and antisense small RNAs and 517 untranslated regions that were significantly expressed, some of which have been conserved for ∼65 million years. In addition, the majority of these small RNAs exhibit both sequence covariation and thermodynamic stability, indicators of a potential structural RNA role. Together, these data suggest that gene regulation at the post-transcriptional level may be important in Buchnera. This is the first study to empirically identify Buchnera small RNAs, and we propose that these novel small RNAs may facilitate post-transcriptional regulation through translational inhibition/activation, and/or transcript stability. Ultimately, post-transcriptional regulation may shape metabolic complementation between Buchnera and its aphid host, thus impacting the animal's ecology and evolution.
Collapse
Affiliation(s)
- Allison K Hansen
- Department of Entomology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Ecology and Evolutionary Biology, Microbial Diversity Institute, Yale University, New Haven, CT, USA
| | - Patrick H Degnan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbial Pathogenesis, Microbial Diversity Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
47
|
Sicard M, Dittmer J, Grève P, Bouchon D, Braquart-Varnier C. A host as an ecosystem:Wolbachiacoping with environmental constraints. Environ Microbiol 2014; 16:3583-607. [DOI: 10.1111/1462-2920.12573] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Mathieu Sicard
- Institut des Sciences de l'Évolution; UMR CNRS 5554; Équipe Génomique de l'adaptation; Université Montpellier 2; Place Eugène Bataillon Montpellier Cedex 05 F-34095 France
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Jessica Dittmer
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Pierre Grève
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Didier Bouchon
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| | - Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions; UMR CNRS 7267; Équipe Écologie Évolution Symbiose; Université de Poitiers; 5, Rue Albert Turpin Poitiers Cedex 9 F-86073 France
| |
Collapse
|
48
|
Manzano-Marín A, Latorre A. Settling down: the genome of Serratia symbiotica from the aphid Cinara tujafilina zooms in on the process of accommodation to a cooperative intracellular life. Genome Biol Evol 2014; 6:1683-98. [PMID: 24951564 PMCID: PMC4122931 DOI: 10.1093/gbe/evu133] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Particularly interesting cases of mutualistic endosymbioses come from the establishment of co-obligate associations of more than one species of endosymbiotic bacteria. Throughout symbiotic accommodation from a free-living bacterium, passing through a facultative stage and ending as an obligate intracellular one, the symbiont experiences massive genomic losses and phenotypic adjustments. Here, we scrutinized the changes in the coevolution of Serratia symbiotica and Buchnera aphidicola endosymbionts in aphids, paying particular attention to the transformations undergone by S. symbiotica to become an obligate endosymbiont. Although it is already known that S. symbiotica is facultative in Acyrthosiphon pisum, in Cinara cedri it has established a co-obligate endosymbiotic consortium along with B. aphidicola to fulfill the aphid’s nutritional requirements. The state of this association in C. tujafilina, an aphid belonging to the same subfamily (Lachninae) that C. cedri, remained unknown. Here, we report the genome of S. symbiotica strain SCt-VLC from the aphid C. tujafilina. While being phylogenetically and genomically very closely related to the facultative endosymbiont S. symbiotica from the aphid A. pisum, it shows a variety of metabolic, genetic, and architectural features, which point toward this endosymbiont being one step closer to an obligate intracellular one. We also describe in depth the process of genome rearrangements suffered by S. symbiotica and the role mobile elements play in gene inactivations. Finally, we postulate the supply to the host of the essential riboflavin (vitamin B2) as key to the establishment of S. symbiotica as a co-obligate endosymbiont in the aphids belonging to the subfamily Lachninane.
Collapse
Affiliation(s)
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, SpainUnidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain
| |
Collapse
|
49
|
Jiang Z, Jones DH, Khuri S, Tsinoremas NF, Wyss T, Jander G, Wilson ACC. Comparative analysis of genome sequences from four strains of the Buchnera aphidicola Mp endosymbion of the green peach aphid, Myzus persicae. BMC Genomics 2013; 14:917. [PMID: 24365332 PMCID: PMC3890641 DOI: 10.1186/1471-2164-14-917] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/19/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Myzus persicae, the green peach aphid, is a polyphagous herbivore that feeds from hundreds of species of mostly dicot crop plants. Like other phloem-feeding aphids, M. persicae rely on the endosymbiotic bacterium, Buchnera aphidicola (Buchnera Mp), for biosynthesis of essential amino acids and other nutrients that are not sufficiently abundant in their phloem sap diet. Tobacco-specialized M. persicae are typically red and somewhat distinct from other lineages of this species. To determine whether the endosymbiotic bacteria of M. persicae could play a role in tobacco adaptation, we sequenced the Buchnera Mp genomes from two tobacco-adapted and two non-tobacco M. persicae lineages. RESULTS With a genome size of 643.5 kb and 579 predicted genes, Buchnera Mp is the largest Buchnera genome sequenced to date. No differences in gene content were found between the four sequenced Buchnera Mp strains. Compared to Buchnera APS from the well-studied pea aphid, Acyrthosiphon pisum, Buchnera Mp has 21 additional genes. These include genes encoding five enzymes required for biosynthesis of the modified nucleoside queosine, the heme pathway enzyme uroporphyrinogen III synthase, and asparaginase. Asparaginase, which is also encoded by the genome of the aphid host, may allow Buchnera Mp to synthesize essential amino acids from asparagine, a relatively abundant phloem amino acid. CONCLUSIONS Together our results indicate that the obligate intracellular symbiont Buchnera aphidicola does not contribute to the adaptation of Myzus persicae to feeding on tobacco.
Collapse
Affiliation(s)
- Zhijie Jiang
- Center for Computational Science, Miller School of Medicine, University of Miami, Coral Gables 33146, FL, USA
| | - Derek H Jones
- Department of Biology, University of Miami, Coral Gables 33146, FL, USA
| | - Sawsan Khuri
- Center for Computational Science, Miller School of Medicine, University of Miami, Coral Gables 33146, FL, USA
- Department of Computer Science, University of Miami, Coral Gables 33146, FL, USA
| | - Nicholas F Tsinoremas
- Center for Computational Science, Miller School of Medicine, University of Miami, Coral Gables 33146, FL, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami 33136, FL, USA
| | - Tania Wyss
- Department of Biology, University of Miami, Coral Gables 33146, FL, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca 14853, NY, USA
| | - Alex C C Wilson
- Department of Biology, University of Miami, Coral Gables 33146, FL, USA
| |
Collapse
|
50
|
Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proc Natl Acad Sci U S A 2013; 111:320-5. [PMID: 24367072 DOI: 10.1073/pnas.1306068111] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endosymbiotic associations have played a major role in evolution. However, the molecular basis for the biochemical interdependence of these associations remains poorly understood. The aphid-Buchnera endosymbiosis provides a powerful system to elucidate how these symbioses are regulated. In aphids, the supply of essential amino acids depends on an ancient nutritional symbiotic association with the gamma-proteobacterium Buchnera aphidicola. Buchnera cells are densely packed in specialized aphid bacteriocyte cells. Here we confirm that five putative amino acid transporters are highly expressed and/or highly enriched in Acyrthosiphon pisum bacteriocyte tissues. When expressed in Xenopus laevis oocytes, two bacteriocyte amino acid transporters displayed significant levels of glutamine uptake, with transporter ACYPI001018, LOC100159667 (named here as Acyrthosiphon pisum glutamine transporter 1, ApGLNT1) functioning as the most active glutamine transporter. Transporter ApGLNT1 has narrow substrate selectivity, with high glutamine and low arginine transport capacity. Notably, ApGLNT1 has high binding affinity for arginine, and arginine acts as a competitive inhibitor for glutamine transport. Using immunocytochemistry, we show that ApGLNT1 is localized predominantly to the bacteriocyte plasma membrane, a location consistent with the transport of glutamine from A. pisum hemolymph to the bacteriocyte cytoplasm. On the basis of functional transport data and localization, we propose a substrate feedback inhibition model in which the accumulation of the essential amino acid arginine in A. pisum hemolymph reduces the transport of the precursor glutamine into bacteriocytes, thereby regulating amino acid biosynthesis in the bacteriocyte. Structural similarities in the arrangement of hosts and symbionts across endosymbiotic systems suggest that substrate feedback inhibition may be mechanistically important in other endosymbioses.
Collapse
|