1
|
Hamilton WC, Newton ILG. crANKing up the infection: ankyrin domains in Rickettsiales and their role in host manipulation. Infect Immun 2024; 92:e0005924. [PMID: 39212405 PMCID: PMC11475675 DOI: 10.1128/iai.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intracellular bacteria use secreted effector proteins to modify host biology and facilitate infection. For many of these microbes, a particular eukaryotic domain-the ankyrin repeat (ANK)-plays a central role in specifying the host proteins and pathways targeted by the microbe. While we understand much of how some ANKs function in model organisms like Legionella and Coxiella, the understudied Rickettsiales species harbor many proteins with ANKs, some of which play critical roles during infection. This minireview is meant to organize and summarize the research progress made in understanding some of these Rickettsiales ANKs as well as document some of the techniques that have driven much of this progress.
Collapse
Affiliation(s)
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Novelo M, Dutra HLC, Metz HC, Jones MJ, Sigle LT, Frentiu FD, Allen SL, Chenoweth SF, McGraw EA. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures. PLoS Pathog 2023; 19:e1011307. [PMID: 37043515 PMCID: PMC10124881 DOI: 10.1371/journal.ppat.1011307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 03/19/2023] [Indexed: 04/13/2023] Open
Abstract
Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.
Collapse
Affiliation(s)
- Mario Novelo
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Heverton LC Dutra
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hillery C. Metz
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Leah T. Sigle
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Francesca D. Frentiu
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, Queensland, Australia
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth A. McGraw
- Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
3
|
Bordenstein SR, Bordenstein SR. Widespread phages of endosymbionts: Phage WO genomics and the proposed taxonomic classification of Symbioviridae. PLoS Genet 2022; 18:e1010227. [PMID: 35666732 PMCID: PMC9203015 DOI: 10.1371/journal.pgen.1010227] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/16/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Wolbachia are the most common obligate, intracellular bacteria in animals. They exist worldwide in arthropod and nematode hosts in which they commonly act as reproductive parasites or mutualists, respectively. Bacteriophage WO, the largest of Wolbachia’s mobile elements, includes reproductive parasitism genes, serves as a hotspot for genetic divergence and genomic rearrangement of the bacterial chromosome, and uniquely encodes a Eukaryotic Association Module with eukaryotic-like genes and an ensemble of putative host interaction genes. Despite WO’s relevance to genome evolution, selfish genetics, and symbiotic applications, relatively little is known about its origin, host range, diversification, and taxonomic classification. Here we analyze the most comprehensive set of 150 Wolbachia and phage WO assemblies to provide a framework for discretely organizing and naming integrated phage WO genomes. We demonstrate that WO is principally in arthropod Wolbachia with relatives in diverse endosymbionts and metagenomes, organized into four variants related by gene synteny, often oriented opposite the putative origin of replication in the Wolbachia chromosome, and the large serine recombinase is an ideal typing tool to distinguish the four variants. We identify a novel, putative lytic cassette and WO’s association with a conserved eleven gene island, termed Undecim Cluster, that is enriched with virulence-like genes. Finally, we evaluate WO-like Islands in the Wolbachia genome and discuss a new model in which Octomom, a notable WO-like Island, arose from a split with WO. Together, these findings establish the first comprehensive Linnaean taxonomic classification of endosymbiont phages, including non-Wolbachia phages from aquatic environments, that includes a new family and two new genera to capture the collective relatedness of these viruses.
Collapse
Affiliation(s)
- Sarah R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185-198. [PMID: 34253453 PMCID: PMC8742837 DOI: 10.1016/j.tim.2021.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.
Collapse
Affiliation(s)
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA,Corresponding author,
| |
Collapse
|
5
|
Hill T, Unckless RL, Perlmutter JI. Positive Selection and Horizontal Gene Transfer in the Genome of a Male-Killing Wolbachia. Mol Biol Evol 2022; 39:msab303. [PMID: 34662426 PMCID: PMC8763111 DOI: 10.1093/molbev/msab303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia's success as a male-killer of divergent host species.
Collapse
Affiliation(s)
- Tom Hill
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|
6
|
Dutra HLC, Ford SA, Allen SL, Bordenstein SR, Chenoweth SF, Bordenstein SR, McGraw EA. The impact of artificial selection for Wolbachia-mediated dengue virus blocking on phage WO. PLoS Negl Trop Dis 2021; 15:e0009637. [PMID: 34314434 PMCID: PMC8345842 DOI: 10.1371/journal.pntd.0009637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/06/2021] [Accepted: 07/08/2021] [Indexed: 11/18/2022] Open
Abstract
Wolbachia is currently at the forefront of global efforts to control arbovirus transmission from the vector Aedes aegypti. The use of Wolbachia relies on two phenotypes—cytoplasmic incompatibility (CI), conferred by cifA and cifB genes in prophage WO, and Wolbachia-mediated pathogen blocking (WMPB). These traits allow for local, self-sustaining reductions in transmission of dengue (DENV) following release of Wolbachia-infected A. aegypti. Here, aided by previous artificial selection experiment that generated Low and High pathogen blocking lines, we examined the potential link between WMPB and phage WO. We found no evidence that Wolbachia or phage WO relative densities predict DENV blocking strength across selected lines. However, selection resulted in reduced phage WO relative density for the Low WMPB line. The Low blocking line was previously shown to have reduced fitness as a result of selection. Through subsequent genomic analyses, we demonstrate that SNP variation underpinning selection for low blocking led to elevated frequency of potential deleterious SNPs on chromosome 1. The key region on chromosome 1 contains genes relating to cell cycle regulation, oxidative stress, transcriptional pausing, among others, that may have cascading effects on Wolbachia intracellular environment. We hypothesize that reduction in phage WO may be driven by changes in the loci directly under selection for blocking, or by the accumulation of predicted deleterious alleles in linkage disequilibrium with blocking loci resulting from hitchhiking. For the Low line with fewer phage WO, we also detected reduced expression of cifA and cifB CI genes, with patterns of expression varying between somatic and reproductive tissues. In conclusion, we propose that artificial selection for WMPB trait had corresponding impacts on phage WO densities, and also the transcription of CI-causing genes. Future studies may include a more detailed analysis of the regions the A. aegypti chromosome 1’s ability to affect WMPB and other Wolbachia-associated intrinsic factors such as phage WO. Wolbachia are widespread endosymbiotic bacteria of insects that cause Wolbachia-mediated pathogen blocking (WMPB) and cytoplasmic incompatibility (CI). The latter mediated by cif genes localized in the prophage WO region. Because of that, Wolbachia-infected mosquitoes are currently being used in field to fight the transmission of vector-borne viruses such as Dengue (DENV) to human populations. Aided by a previous artificial selection experiment that generated lines with variable (High and Low) DENV blocking strength, we tested for a potential link between WMPB and phage WO. There was no evidence that Wolbachia nor phage WO densities predict DENV blocking strength. However, we found that the Low blocking line had reduced phage WO density, and lower expression of the cif genes in a tissue-specific manner. We demonstrate that in addition to previous report of reduced fitness, the Low blocking line also exhibited increased frequency of potential deleterious SNPs on chromosome 1. Our hypotheses are that reduction in phage WO may have resulted from changes in the loci directly under selection for blocking, or by linkage disequilibrium events linked to the accumulation of mosquito predicted deleterious alleles. Our results highlight the importance of chromosome 1 for WMPB and its potential impact for other Wolbachia-associated factors like phage WO.
Collapse
Affiliation(s)
- Heverton L. C. Dutra
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Suzanne A. Ford
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
| | - Scott L. Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Stephen F. Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Elizabeth A. McGraw
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
Leitner M, Bishop C, Asgari S. Transcriptional Response of Wolbachia to Dengue Virus Infection in Cells of the Mosquito Aedes aegypti. mSphere 2021; 6:e0043321. [PMID: 34190587 PMCID: PMC8265661 DOI: 10.1128/msphere.00433-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
Aedes aegypti transmits one of the most significant mosquito-borne viruses, dengue virus (DENV). The absence of effective vaccines and clinical treatments and the emergence of insecticide resistance in A. aegypti necessitate novel vector control strategies. A new approach uses the endosymbiotic bacterium Wolbachia pipientis to reduce the spread of arboviruses. However, the Wolbachia-mediated antiviral mechanism is not well understood. To shed light on this mechanism, we investigated an unexplored aspect of Wolbachia-virus-mosquito interaction. We used RNA sequencing to examine the transcriptional response of Wolbachia to DENV infection in A. aegypti Aag2 cells transinfected with the wAlbB strain of Wolbachia. Our results suggest that genes encoding an endoribonuclease (RNase HI), a regulator of sigma 70-dependent gene transcription (6S RNA), essential cellular, transmembrane, and stress response functions and primary type I and IV secretion systems were upregulated, while a number of transport and binding proteins of Wolbachia, ribosome structure, and elongation factor-associated genes were downregulated due to DENV infection. Furthermore, bacterial retrotransposon, transposable, and phage-related elements were found among the up- and downregulated genes. We show that Wolbachia elicits a transcriptional response to virus infection and identify differentially expressed Wolbachia genes mostly at the early stages of virus infection. These findings highlight Wolbachia's ability to alter its gene expression in response to DENV infection of the host cell. IMPORTANCE Aedes aegypti is a vector of several pathogenic viruses, including dengue, Zika, chikungunya, and yellow fever viruses, which are of importance to human health. Wolbachia is an endosymbiotic bacterium currently used in transinfected mosquitoes to suppress replication and transmission of dengue viruses. However, the mechanism of Wolbachia-mediated virus inhibition is not fully understood. While several studies have shown mosquitoes' transcriptional responses to dengue virus infection, none have investigated these responses in Wolbachia, which may provide clues to the inhibition mechanism. Our results suggest changes in the expression of a number of functionally important Wolbachia genes upon dengue virus infection, including those involved in stress responses, providing insights into the endosymbiont's reaction to virus infection.
Collapse
Affiliation(s)
- Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Duarte EH, Carvalho A, López-Madrigal S, Costa J, Teixeira L. Forward genetics in Wolbachia: Regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island. PLoS Genet 2021; 17:e1009612. [PMID: 34143770 PMCID: PMC8244876 DOI: 10.1371/journal.pgen.1009612] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Wolbachia is one of the most prevalent bacterial endosymbionts, infecting approximately 40% of terrestrial arthropod species. Wolbachia is often a reproductive parasite but can also provide fitness benefits to its host, as, for example, protection against viral pathogens. This protective effect is currently being applied to fight arboviruses transmission by releasing Wolbachia-transinfected mosquitoes. Titre regulation is a crucial aspect of Wolbachia biology. Higher titres can lead to stronger phenotypes and fidelity of transmission but can have a higher cost to the host. Since Wolbachia is maternally transmitted, its fitness depends on host fitness, and, therefore, its cost to the host may be under selection. Understanding how Wolbachia titres are regulated and other aspects of Wolbachia biology has been hampered by the lack of genetic tools. Here we developed a forward genetic screen to identify new Wolbachia over-proliferative mutant variants. We characterized in detail two new mutants, wMelPop2 and wMelOctoless, and show that the amplification or loss of the Octomom genomic region lead to over-proliferation. These results confirm previous data and expand on the complex role of this genomic region in the control of Wolbachia proliferation. Both new mutants shorten the host lifespan and increase antiviral protection. Moreover, we show that Wolbachia proliferation rate in Drosophila melanogaster depends on the interaction between Octomom copy number, the host developmental stage, and temperature. Our analysis also suggests that the life shortening and antiviral protection phenotypes of Wolbachia are dependent on different, but related, properties of the endosymbiont; the rate of proliferation and the titres near the time of infection, respectively. We also demonstrate the feasibility of a novel and unbiased experimental approach to study Wolbachia biology, which could be further adapted to characterize other genetically intractable bacterial endosymbionts.
Collapse
Affiliation(s)
- Elves H. Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, Universidade de Cabo Verde, Palmarejo, Cabo Verde
| | - Ana Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - João Costa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luís Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Baião GC, Janice J, Galinou M, Klasson L. Comparative Genomics Reveals Factors Associated with Phenotypic Expression of Wolbachia. Genome Biol Evol 2021; 13:6277727. [PMID: 34003269 DOI: 10.1093/gbe/evab111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is a widespread, vertically transmitted bacterial endosymbiont known for manipulating arthropod reproduction. Its most common form of reproductive manipulation is cytoplasmic incompatibility (CI), observed when a modification in the male sperm leads to embryonic lethality unless a compatible rescue factor is present in the female egg. CI attracts scientific attention due to its implications for host speciation and in the use of Wolbachia for controlling vector-borne diseases. However, our understanding of CI is complicated by the complexity of the phenotype, whose expression depends on both symbiont and host factors. In the present study, we perform a comparative analysis of nine complete Wolbachia genomes with known CI properties in the same genetic host background, Drosophila simulans STC. We describe genetic differences between closely related strains and uncover evidence that phages and other mobile elements contribute to the rapid evolution of both genomes and phenotypes of Wolbachia. Additionally, we identify both known and novel genes associated with the modification and rescue functions of CI. We combine our observations with published phenotypic information and discuss how variability in cif genes, novel CI-associated genes, and Wolbachia titer might contribute to poorly understood aspects of CI such as strength and bidirectional incompatibility. We speculate that high titer CI strains could be better at invading new hosts already infected with a CI Wolbachia, due to a higher rescue potential, and suggest that titer might thus be a relevant parameter to consider for future strategies using CI Wolbachia in biological control.
Collapse
Affiliation(s)
- Guilherme Costa Baião
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessin Janice
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Galinou
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Transmission of the wMel Wolbachia strain is modulated by its titre and by immune genes in Drosophila melanogaster (Wolbachia density and transmission). J Invertebr Pathol 2021; 181:107591. [PMID: 33882275 DOI: 10.1016/j.jip.2021.107591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022]
Abstract
Wolbachia are common intracellular endosymbionts of arthropods, but the interactions between Wolbachia and arthropods are only partially understood. The fruit fly Drosophila melanogaster is a model insect for understanding Wolbachia-host interactions. Here the native wMel strain of D. melanogaster was isolated and then different initial titres of wMel were artificially transferred back into antibiotics-treated fruit flies. Our purpose was to examine the interactions between the injected wMel in a density gradient and the recipient host during trans-generational transmission. The results showed that the trans-generational transmission rates of wMel and titres of wMel exhibited a fluctuating trend over nine generations, and the titres of wMel displayed a similar fluctuating trans-generational trend. There was a significant positive correlation between the transmission rate and the titre of wMel. Reciprocal crossings between wMel-transinfected and uninfected fruit flies revealed that wMel could induce cytoplasmic incompatibility (CI) at different initial titres, but the intensity of CI was not significantly correlated with the initial titre of wMel. Quantitative PCR analysis showed that the immune genes Drsl5 and Spn38F displayed a significant transcriptional response to wMel transfection, with an obvious negative correlation with the titre of wMel at the 3rd and 4th generations. Furthermore, RNA interference-mediated knockdown of Drsl5 and Spn38F elicited a drastic increase in the titre of wMel. In combination, our study suggests that the trans-generational transmission of wMel is modulated by its density, and the immune genes are involved in the regulation of Wolbachia density.
Collapse
|
11
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
12
|
Carneiro Dutra HL, Deehan MA, Frydman H. Wolbachia and Sirtuin-4 interaction is associated with alterations in host glucose metabolism and bacterial titer. PLoS Pathog 2020; 16:e1008996. [PMID: 33048997 PMCID: PMC7584242 DOI: 10.1371/journal.ppat.1008996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/23/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
Wolbachia is an intracellular bacterial symbiont of arthropods notorious for inducing many reproductive manipulations that foster its dissemination. Wolbachia affects many aspects of host biology, including metabolism, longevity and physiology, being described as a nutrient provisioning or metabolic parasite, depending on the host-microbe association. Sirtuins (SIRTs) are a family of NAD+-dependent post-translational regulatory enzymes known to affect many of the same processes altered by Wolbachia, including aging and metabolism, among others. Despite a clear overlap in control of host-derived pathways and physiology, no work has demonstrated a link between these two regulators. We used genetically tractable Drosophila melanogaster to explore the role of sirtuins in shaping signaling pathways in the context of a host-symbiont model. By using transcriptional profiling and metabolic assays in the context of genetic knockouts/over-expressions, we examined the effect of several Wolbachia strains on host sirtuin expression across distinct tissues and timepoints. We also quantified the downstream effects of the sirtuin x Wolbachia interaction on host glucose metabolism, and in turn, how it impacted Wolbachia titer. Our results indicate that the presence of Wolbachia is associated with (1) reduced sirt-4 expression in a strain-specific manner, and (2) alterations in host glutamate dehydrogenase expression and ATP levels, key components of glucose metabolism. We detected high glucose levels in Wolbachia-infected flies, which further increased when sirt-4 was over-expressed. However, under sirt-4 knockout, flies displayed a hypoglycemic state not rescued to normal levels in the presence of Wolbachia. Finally, whole body sirt-4 over-expression resulted in reduced Wolbachia ovarian titer. Our results expand knowledge of Wolbachia-host associations in the context of a yet unexplored class of host post-translational regulatory enzymes with implications for conserved host signaling pathways and bacterial titer, factors known to impact host biology and the symbiont's ability to spread through populations.
Collapse
Affiliation(s)
| | - Mark Anthony Deehan
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Horacio Frydman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- National Emerging Infectious Disease Laboratory, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Wolbachia Endosymbiont of the Horn Fly (Haematobia irritans irritans): a Supergroup A Strain with Multiple Horizontally Acquired Cytoplasmic Incompatibility Genes. Appl Environ Microbiol 2020; 86:AEM.02589-19. [PMID: 31900308 DOI: 10.1128/aem.02589-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/20/2019] [Indexed: 11/20/2022] Open
Abstract
The horn fly, Haematobia irritans irritans, is a hematophagous parasite of livestock distributed throughout Europe, Africa, Asia, and the Americas. Welfare losses on livestock due to horn fly infestation are estimated to cost between $1 billion and $2.5 billion (U.S. dollars) annually in North America and Brazil. The endosymbiotic bacterium Wolbachia pipientis is a maternally inherited manipulator of reproductive biology in arthropods and naturally infects laboratory colonies of horn flies from Kerrville, TX, and Alberta, Canada, but it has also been identified in wild-caught samples from Canada, the United States, Mexico, and Hungary. Reassembly of PacBio long-read and Illumina genomic DNA libraries from the Kerrville H. i. irritans genome project allowed for a complete and circularized 1.3-Mb Wolbachia genome (wIrr). Annotation of wIrr yielded 1,249 coding genes, 34 tRNAs, 3 rRNAs, and 5 prophage regions. Comparative genomics and whole-genome Bayesian evolutionary analysis of wIrr compared to published Wolbachia genomes suggested that wIrr is most closely related to and diverged from Wolbachia supergroup A strains known to infect Drosophila spp. Whole-genome synteny analyses between wIrr and closely related genomes indicated that wIrr has undergone significant genome rearrangements while maintaining high nucleotide identity. Comparative analysis of the cytoplasmic incompatibility (CI) genes of wIrr suggested two phylogenetically distinct CI loci and acquisition of another cifB homolog from phylogenetically distant supergroup A Wolbachia strains, suggesting horizontal acquisition of these loci. The wIrr genome provides a resource for future examination of the impact Wolbachia may have in both biocontrol and potential insecticide resistance of horn flies.IMPORTANCE Horn flies, Haematobia irritans irritans, are obligate hematophagous parasites of cattle having significant effects on production and animal welfare. Control of horn flies mainly relies on the use of insecticides, but issues with resistance have increased interest in development of alternative means of control. Wolbachia pipientis is an endosymbiont bacterium known to have a range of effects on host reproduction, such as induction of cytoplasmic incompatibility, feminization, male killing, and also impacts vector transmission. These characteristics of Wolbachia have been exploited in biological control approaches for a range of insect pests. Here we report the assembly and annotation of the circular genome of the Wolbachia strain of the Kerrville, TX, horn fly (wIrr). Annotation of wIrr suggests its unique features, including the horizontal acquisition of additional transcriptionally active cytoplasmic incompatibility loci. This study provides the foundation for future studies of Wolbachia-induced biological effects for control of horn flies.
Collapse
|
14
|
Transgenic Testing Does Not Support a Role for Additional Candidate Genes in Wolbachia Male Killing or Cytoplasmic Incompatibility. mSystems 2020; 5:5/1/e00658-19. [PMID: 31937677 PMCID: PMC6967388 DOI: 10.1128/msystems.00658-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Wolbachia are widespread bacterial endosymbionts that manipulate the reproduction of diverse arthropods to spread through a population and can substantially shape host evolution. Recently, reports identified three prophage WO genes (wmk, cifA, and cifB) that transgenically recapitulate many aspects of reproductive manipulation in Drosophila melanogaster. Here, we transgenically tested 10 additional gene candidates for CI and/or male killing in flies. The results yield no evidence for the involvement of these gene candidates in reproductive parasitism, bolstering the evidence for identification of the cif and wmk genes as the major factors involved in their phenotypes. In addition, evidence supports new hypotheses for prediction of male-killing phenotypes or lack thereof based on wmk transcript length and copy number. These experiments inform efforts to understand the full basis of reproductive parasitism for basic and applied purposes and lay the foundation for future work on the function of an interesting group of Wolbachia and phage WO genes. Endosymbiotic bacteria in the genus Wolbachia remarkably infect nearly half of all arthropod species. They spread in part because of manipulations of host sexual reproduction that enhance the maternal transmission of the bacteria, including male killing (death of infected males) and unidirectional cytoplasmic incompatibility (CI; death of offspring from infected fathers and uninfected mothers). Recent discoveries identified several genes in prophage WO of Wolbachia (wmk, cifA, and cifB) that fully or partially recapitulate male killing or CI when transgenically expressed in Drosophila melanogaster. However, it is not yet fully resolved if other gene candidates contribute to these phenotypes. Here, we transgenically tested 10 additional gene candidates for their involvement in male killing and/or CI. The results show that despite sequence and protein architecture similarities or comparative associations with reproductive parasitism, transgenic expression of the candidates does not recapitulate male killing or CI. Sequence analysis across Wmk and its closest relatives reveals amino acids that may be important to its function. In addition, evidence is presented to propose new hypotheses regarding the relationship between wmk transcript length and its ability to kill a given host, as well as copy number of wmk homologs within a bacterial strain, which may be predictive of host resistance. Together, these analyses continue to build the evidence for identification of wmk, cifA, and cifB as the major genes that have thus far been shown to cause reproductive parasitism in Wolbachia, and the transgenic resources provide a basis for further functional study of phage WO genes. IMPORTANCEWolbachia are widespread bacterial endosymbionts that manipulate the reproduction of diverse arthropods to spread through a population and can substantially shape host evolution. Recently, reports identified three prophage WO genes (wmk, cifA, and cifB) that transgenically recapitulate many aspects of reproductive manipulation in Drosophila melanogaster. Here, we transgenically tested 10 additional gene candidates for CI and/or male killing in flies. The results yield no evidence for the involvement of these gene candidates in reproductive parasitism, bolstering the evidence for identification of the cif and wmk genes as the major factors involved in their phenotypes. In addition, evidence supports new hypotheses for prediction of male-killing phenotypes or lack thereof based on wmk transcript length and copy number. These experiments inform efforts to understand the full basis of reproductive parasitism for basic and applied purposes and lay the foundation for future work on the function of an interesting group of Wolbachia and phage WO genes.
Collapse
|
15
|
Burgsdorf I, Handley KM, Bar-Shalom R, Erwin PM, Steindler L. Life at Home and on the Roam: Genomic Adaptions Reflect the Dual Lifestyle of an Intracellular, Facultative Symbiont. mSystems 2019; 4:e00057-19. [PMID: 31086829 PMCID: PMC6506613 DOI: 10.1128/msystems.00057-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
"Candidatus Synechococcus feldmannii" is a facultative intracellular symbiont of the Atlanto-Mediterranean sponge Petrosia ficiformis. Genomic information of sponge-associated cyanobacteria derives thus far from the obligate and extracellular symbiont "Candidatus Synechococcus spongiarum." Here we utilized a differential methylation-based approach for bacterial DNA enrichment combined with metagenomics to obtain the first draft genomes of "Ca. Synechococcus feldmannii." By comparative genomics, we revealed that some genomic features (e.g., iron transport mediated by siderophores, eukaryotic-like proteins, and defense mechanisms, like CRISPR-Cas [clustered regularly interspaced short palindromic repeats-associated proteins]) are unique to both symbiont types and absent or rare in the genomes of taxonomically related free-living cyanobacteria. These genomic features likely enable life under the conditions found inside the sponge host. Interestingly, there are many genomic features that are shared by "Ca. Synechococcus feldmannii" and free-living cyanobacteria, while they are absent in the obligate symbiont "Ca. Synechococcus spongiarum." These include genes related to cell surface structures, genetic regulation, and responses to environmental stress, as well as the composition of photosynthetic genes and DNA metabolism. We speculate that the presence of these genes confers on "Ca. Synechococcus feldmannii" its facultative nature (i.e., the ability to respond to a less stable environment when free-living). Our comparative analysis revealed that distinct genomic features depend on the nature of the symbiotic interaction: facultative and intracellular versus obligate and extracellular. IMPORTANCE Given the evolutionary position of sponges as one of the earliest phyla to depart from the metazoan stem lineage, studies on their distinct and exceptionally diverse microbial communities should yield a better understanding of the origin of animal-bacterium interactions. While genomes of several extracellular sponge symbionts have been published, the intracellular symbionts have, so far, been elusive. Here we compare the genomes of two unicellular cyanobacterial sponge symbionts that share an ancestor but followed different evolutionary paths-one became intracellular and the other extracellular. Counterintuitively, the intracellular cyanobacteria are facultative, while the extracellular ones are obligate. By sequencing the genomes of the intracellular cyanobacteria and comparing them to the genomes of the extracellular symbionts and related free-living cyanobacteria, we show how three different cyanobacterial lifestyles are reflected by adaptive genomic features.
Collapse
Affiliation(s)
- Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Patrick M. Erwin
- Department of Biology and Marine Biology, Centre for Marine Science, University of North Carolina—Wilmington, Wilmington, North Carolina, USA
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
Genome organisation and comparative genomics of four novel Wolbachia genome assemblies from Indian Drosophila host. Funct Integr Genomics 2019; 19:617-632. [PMID: 30798391 DOI: 10.1007/s10142-019-00664-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Wolbachia has long been known to share an endosymbiotic relationship with its host as an obligate intracellular organism. Wolbachia diversity as different supergroups is found to be host-specific in most cases except a few, where the host species is seen to accommodate multiple strains. Besides, the Wolbachia genome must have undergone several changes in response to the evolving host genome in order to adapt and establish a strong association with its host, thus making a distinctive Wolbachia-host alliance. The present study focusses on four novel genome assembly and genome-wide sequence variations of Indian Wolbachia strains, i.e. wMel and wRi isolated from two different Drosophila hosts. The genome assembly has an average size of ~ 1.1 Mb and contains ~ 1100 genes, which is comparable with the previously sequenced Wolbachia genomes. The comparative genomics analysis of these genomes and sequence-wide comparison of some functionally significant genes, i.e. ankyrin repeats, Wsp and T4SS, highlight their sequence similarities and dissimilarities, further supporting the strain-specific association of Wolbachia to its host. Interestingly, some of the sequence variations are also found to be restricted to only Indian Wolbachia strains. Further analysis of prophage and their flanking regions in the Wolbachia genome reveals the presence of several functional genes which may assist the phage to reside inside the bacterial host, thus providing a trade-off for the endosymbiont-host association. Understanding this endosymbiont genome in different eco-geographical conditions has become imperative for the recent use of Wolbachia in medical entomology as a vector-control agent.
Collapse
|
17
|
Kampfraath AA, Klasson L, Anvar SY, Vossen RHAM, Roelofs D, Kraaijeveld K, Ellers J. Genome expansion of an obligate parthenogenesis-associated Wolbachia poses an exception to the symbiont reduction model. BMC Genomics 2019; 20:106. [PMID: 30727958 PMCID: PMC6364476 DOI: 10.1186/s12864-019-5492-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Theory predicts that dependency within host-endosymbiont interactions results in endosymbiont genome size reduction. Unexpectedly, the largest Wolbachia genome was found in the obligate, parthenogenesis-associated wFol. In this study, we investigate possible processes underlying this genome expansion by comparing a re-annotated wFol genome to other Wolbachia genomes. In addition, we also search for candidate genes related to parthenogenesis induction (PI). Results Within wFol, we found five phage WO regions representing 25.4% of the complete genome, few pseudogenized genes, and an expansion of DNA-repair genes in comparison to other Wolbachia. These signs of genome conservation were mirrored in the wFol host, the springtail F. candida, which also had an expanded DNA-repair gene family and many horizontally transferred genes. Across all Wolbachia genomes, there was a strong correlation between gene numbers of Wolbachia strains and their hosts. In order to identify genes with a potential link to PI, we assembled the genome of an additional PI strain, wLcla. Comparisons between four PI Wolbachia, including wFol and wLcla, and fourteen non-PI Wolbachia yielded a small set of potential candidate genes for further investigation. Conclusions The strong similarities in genome content of wFol and its host, as well as the correlation between host and Wolbachia gene numbers suggest that there may be some form of convergent evolution between endosymbiont and host genomes. If such convergent evolution would be strong enough to overcome the evolutionary forces causing genome reduction, it would enable expanded genomes within long-term obligate endosymbionts. Electronic supplementary material The online version of this article (10.1186/s12864-019-5492-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A A Kampfraath
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - L Klasson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - S Y Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - R H A M Vossen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - D Roelofs
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - K Kraaijeveld
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Scolari F, Attardo GM, Aksoy E, Weiss B, Savini G, Takac P, Abd-Alla A, Parker AG, Aksoy S, Malacrida AR. Symbiotic microbes affect the expression of male reproductive genes in Glossina m. morsitans. BMC Microbiol 2018; 18:169. [PMID: 30470198 PMCID: PMC6251095 DOI: 10.1186/s12866-018-1289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Tsetse flies (Diptera, Glossinidae) display unique reproductive biology traits. Females reproduce through adenotrophic viviparity, nourishing the growing larva into their modified uterus until parturition. Males transfer their sperm and seminal fluid, produced by both testes and male accessory glands, in a spermatophore capsule transiently formed within the female reproductive tract upon mating. Both sexes are obligate blood feeders and have evolved tight relationships with endosymbionts, already shown to provide essential nutrients lacking in their diet. However, the partnership between tsetse and its symbionts has so far been investigated, at the molecular, genomic and metabolomics level, only in females, whereas the roles of microbiota in male reproduction are still unexplored. Results Here we begin unravelling the impact of microbiota on Glossina m. morsitans (G. morsitans) male reproductive biology by generating transcriptomes from the reproductive tissues of males deprived of their endosymbionts (aposymbiotic) via maternal antibiotic treatment and dietary supplementation. We then compared the transcriptional profiles of genes expressed in the male reproductive tract of normal and these aposymbiotic flies. We showed that microbiota removal impacts several male reproductive genes by depressing the activity of genes in the male accessory glands (MAGs), including sequences encoding seminal fluid proteins, and increasing expression of genes in the testes. In the MAGs, in particular, the expression of genes related to mating, immunity and seminal fluid components’ synthesis is reduced. In the testes, the absence of symbionts activates genes involved in the metabolic apparatus at the basis of male reproduction, including sperm production, motility and function. Conclusions Our findings mirrored the complementary roles male accessory glands and testes play in supporting male reproduction and open new avenues for disentangling the interplay between male insects and endosymbionts. From an applied perspective, unravelling the metabolic and functional relationships between tsetse symbionts and male reproductive physiology will provide fundamental information useful to understanding the biology underlying improved male reproductive success in tsetse. This information is of particular importance in the context of tsetse population control via Sterile Insect Technique (SIT) and its impact on trypanosomiasis transmission. Electronic supplementary material The online version of this article (10.1186/s12866-018-1289-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Geoffrey Michael Attardo
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA.,Present Address: Department of Entomology and Nematology, University of California Davis, Davis, CA, 95616, USA
| | - Emre Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Brian Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Peter Takac
- Section of Molecular and Applied Zoology, Institute of Zoology, Slovak Academy of Sciences, 845 06, Bratislava, SR, Slovakia
| | - Adly Abd-Alla
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Andrew Gordon Parker
- International Atomic Energy Agency, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IPC Laboratory, A-1400, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, CT, 06520, USA
| | | |
Collapse
|
19
|
Rice DW, Sheehan KB, Newton ILG. Large-Scale Identification of Wolbachia pipientis Effectors. Genome Biol Evol 2017; 9:1925-1937. [PMID: 28854601 PMCID: PMC5544941 DOI: 10.1093/gbe/evx139] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2017] [Indexed: 12/13/2022] Open
Abstract
Wolbachia pipientis is an intracellular symbiont of arthropods well known for the reproductive manipulations induced in the host and, more recently, for the ability of Wolbachia to block virus replication in insect vectors. Since Wolbachia cannot yet be genetically manipulated, and due to the constraints imposed when working with an intracellular symbiont, little is known about mechanisms used by Wolbachia for host interaction. Here we employed a bioinformatics pipeline and identified 163 candidate effectors, potentially secreted by Wolbachia into the host cell. A total of 84 of these candidates were then subjected to a screen of growth defects induced in yeast upon heterologous expression which identified 14 top candidates likely secreted by Wolbachia. These predicted secreted effectors may function in concert as we find that their native expression is correlated and is highly upregulated at specific time points during Drosophila development. In addition, the evolutionary histories of some of these predicted effectors are also correlated, suggesting they may function together, or in the same pathway, during host infection. Similarly, most of these predicted effectors are limited to one or two Wolbachia strains—perhaps reflecting shared evolutionary history and strain specific functions in host manipulation. Identification of these Wolbachia candidate effectors is the first step in dissecting the mechanisms of symbiont–host interaction in this important system.
Collapse
Affiliation(s)
- Danny W Rice
- Department of Biology, Indiana University, Bloomington
| | | | | |
Collapse
|
20
|
Kaur R, Siozios S, Miller WJ, Rota-Stabelli O. Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella. Sci Rep 2017; 7:14815. [PMID: 29093474 PMCID: PMC5665950 DOI: 10.1038/s41598-017-13808-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022] Open
Abstract
Ability to distinguish between closely related Wolbachia strains is crucial for understanding the evolution of Wolbachia-host interactions and the diversity of Wolbachia-induced phenotypes. A useful model to tackle these issues is the Drosophila suzukii - Wolbachia association. D. suzukii, a destructive insect pest, harbor a non-CI inducing Wolbachia 'wSuz' closely related to the strong CI-inducing wRi strain. Multi locus sequence typing (MLST) suggests presence of genetic homogeneity across wSuz strains infecting European and American D. suzukii populations, although different Wolbachia infection frequencies and host fecundity levels have been observed in both populations. Currently, it is not clear if these differences are due to cryptic wSuz polymorphism, host background, geographical factors or a combination of all of them. Here, we have identified geographical diversity in wSuz in D. suzukii populations from different continents using a highly diagnostic set of markers based on insertion sequence (IS) site polymorphism and genomic rearrangements (GR). We further identified inter-strain diversity between Wolbachia infecting D. suzukii and its sister species D. subpulchrella (wSpc). Based on our results, we speculate that discernible wSuz variants may associate with different observed host phenotypes, a hypothesis that demands future investigation. More generally, our results demonstrate the utility of IS and GRs in discriminating closely related Wolbachia strains.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Centre of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Stefanos Siozios
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Wolfgang J Miller
- Centre of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| |
Collapse
|
21
|
Bhattacharya T, Newton ILG. Mi Casa es Su Casa: how an intracellular symbiont manipulates host biology. Environ Microbiol 2017; 21:10.1111/1462-2920.13964. [PMID: 29076641 PMCID: PMC5924462 DOI: 10.1111/1462-2920.13964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022]
Abstract
Wolbachia pipientis, the most common intracellular infection on the planet, infects 40% of insects as well as nematodes, isopods and arachnids. Wolbachia are obligately intracellular and challenging to study; there are no genetic tools for manipulating Wolbachia nor can they be cultured outside of host cells. Despite these roadblocks, the research community has defined a set of Wolbachia loci involved in host interaction: Wolbachia effectors. Through the use of Drosophila genetics, surrogate systems and biochemistry, the field has begun to define the toolkit Wolbachia use for host manipulation. Below we review recent findings identifying these Wolbachia effectors and point to potential, as yet uncharacterized, links between known phenotypes induced by Wolbachia infection and predicted effectors.
Collapse
Affiliation(s)
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
22
|
Rohrscheib CE, Frentiu FD, Horn E, Ritchie FK, van Swinderen B, Weible MW, O’Neill SL, Brownlie JC. Response to: Comment on Rohrscheib et al. 2016 "Intensity of mutualism breakdown is determined by temperature not amplification of Wolbachia genes". PLoS Pathog 2017; 13:e1006521. [PMID: 28892518 PMCID: PMC5593257 DOI: 10.1371/journal.ppat.1006521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Affiliation(s)
- Chelsie E. Rohrscheib
- School of Natural Sciences, Griffith University, Nathan, Australia
- Griffith Research Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Francesca D. Frentiu
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Australia
| | - Emilie Horn
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Fiona K. Ritchie
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| | - Michael W. Weible
- School of Natural Sciences, Griffith University, Nathan, Australia
- Griffith Research Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Scott L. O’Neill
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Jeremy C. Brownlie
- School of Natural Sciences, Griffith University, Nathan, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
- * E-mail:
| |
Collapse
|
23
|
Díez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T. Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol 2017; 26:1432-1451. [PMID: 28036141 DOI: 10.1111/mec.14003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/04/2023]
Abstract
Eukaryotic-like proteins (ELPs) are classes of proteins that are found in prokaryotes, but have a likely evolutionary origin in eukaryotes. ELPs have been postulated to mediate host-microbiome interactions. Recent work has discovered that prokaryotic symbionts of sponges contain abundant and diverse genes for ELPs, which could modulate interactions with their filter-feeding and phagocytic host. However, the extent to which these ELP genes are actually used and expressed by the symbionts is poorly understood. Here, we use metatranscriptomics to investigate ELP expression in the microbiomes of three different sponges (Cymbastella concentrica, Scopalina sp. and Tedania anhelens). We developed a workflow with optimized rRNA removal and in silico subtraction of host sequences to obtain a reliable symbiont metatranscriptome. This showed that between 1.3% and 2.3% of all symbiont transcripts contain genes for ELPs. Two classes of ELPs (cadherin and tetratricopeptide repeats) were abundantly expressed in the C. concentrica and Scopalina sp. microbiomes, while ankyrin repeat ELPs were predominant in the T. anhelens metatranscriptome. Comparison with transcripts that do not encode ELPs indicated a constitutive expression of ELPs across a range of bacterial and archaeal symbionts. Expressed ELPs also contained domains involved in protein secretion and/or were co-expressed with proteins involved in extracellular transport. This suggests these ELPs are likely exported, which could allow for direct interaction with the sponge. Our study shows that ELP genes in sponge symbionts represent actively expressed functions that could mediate molecular interaction between symbiosis partners.
Collapse
Affiliation(s)
- C Díez-Vives
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - L Moitinho-Silva
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - S Nielsen
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - D Reynolds
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| | - T Thomas
- Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
24
|
Caragata EP, Pais FS, Baton LA, Silva JBL, Sorgine MHF, Moreira LA. The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection. BMC Genomics 2017; 18:6. [PMID: 28049478 PMCID: PMC5210266 DOI: 10.1186/s12864-016-3441-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background Wolbachia is a bacterial endosymbiont that naturally infects a wide range of insect species, and causes drastic changes to host biology. Stable infections of Wolbachia in mosquitoes can inhibit infection with medically important pathogens such as dengue virus and malaria-causing Plasmodium parasites. However, some native Wolbachia strains can enhance infection with certain pathogens, as is the case for the mosquito Aedes fluviatilis, where infection with Plasmodium gallinaceum is enhanced by the native wFlu Wolbachia strain. To better understand the biological interactions between mosquitoes and native Wolbachia infections, and to investigate the process of pathogen enhancement, we used RNA-Seq to generate the transcriptome of Ae. fluviatilis with and without Wolbachia infection. Results In total, we generated 22,280,160 Illumina paired-end reads from Wolbachia-infected and uninfected mosquitoes, and used these to make a de novo transcriptome assembly, resulting in 58,013 contigs with a median sequence length of 443 bp and an N50 of 2454 bp. Contigs were annotated through local alignments using BlastX, and associated with both gene ontology and KEGG orthology terms. Through baySeq, we identified 159 contigs that were significantly upregulated due to Wolbachia infection, and 98 that were downregulated. Critically, we saw no changes to Toll or IMD immune gene transcription, but did see evidence that wFlu infection altered the expression of several bacterial recognition genes, and immune-related genes that could influence Plasmodium infection. wFlu infection also had a widespread effect on a number of host physiological processes including protein, carbohydrate and lipid metabolism, and oxidative stress. We then compared our data set with transcriptomic data for other Wolbachia infections in Aedes aegypti, and identified a core set of 15 gene groups associated with Wolbachia infection in mosquitoes. Conclusions While the scale of transcriptional changes associated with wFlu infection might be small, the scope is rather large, which confirms that native Wolbachia infections maintain intricate molecular relationships with their mosquito hosts even after lengthy periods of co-evolution. We have also identified several potential means through which wFlu infection might influence Plasmodium infection in Ae. fluviatilis, and these genes should form the basis of future investigation into the enhancement of Plasmodium by Wolbachia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3441-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E P Caragata
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - F S Pais
- Grupo de Informática de Biossistemas e Genômica, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - L A Baton
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - J B L Silva
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - M H F Sorgine
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L A Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
25
|
Genomes of Candidatus Wolbachia bourtzisii wDacA and Candidatus Wolbachia pipientis wDacB from the Cochineal Insect Dactylopius coccus (Hemiptera: Dactylopiidae). G3-GENES GENOMES GENETICS 2016; 6:3343-3349. [PMID: 27543297 PMCID: PMC5068953 DOI: 10.1534/g3.116.031237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dactylopius species, known as cochineal insects, are the source of the carminic acid dye used worldwide. The presence of two Wolbachia strains in Dactylopius coccus from Mexico was revealed by PCR amplification of wsp and sequencing of 16S rRNA genes. A metagenome analysis recovered the genome sequences of Candidatus Wolbachia bourtzisii wDacA (supergroup A) and Candidatus Wolbachia pipientis wDacB (supergroup B). Genome read coverage, as well as 16S rRNA clone sequencing, revealed that wDacB was more abundant than wDacA. The strains shared similar predicted metabolic capabilities that are common to Wolbachia, including riboflavin, ubiquinone, and heme biosynthesis, but lacked other vitamin and cofactor biosynthesis as well as glycolysis, the oxidative pentose phosphate pathway, and sugar uptake systems. A complete tricarboxylic acid cycle and gluconeogenesis were predicted as well as limited amino acid biosynthesis. Uptake and catabolism of proline were evidenced in Dactylopius Wolbachia strains. Both strains possessed WO-like phage regions and type I and type IV secretion systems. Several efflux systems found suggested the existence of metal toxicity within their host. Besides already described putative virulence factors like ankyrin domain proteins, VlrC homologs, and patatin-like proteins, putative novel virulence factors related to those found in intracellular pathogens like Legionella and Mycobacterium are highlighted for the first time in Wolbachia. Candidate genes identified in other Wolbachia that are likely involved in cytoplasmic incompatibility were found in wDacB but not in wDacA.
Collapse
|
26
|
Rohrscheib CE, Frentiu FD, Horn E, Ritchie FK, van Swinderen B, Weible MW, O’Neill SL, Brownlie JC. Intensity of Mutualism Breakdown Is Determined by Temperature Not Amplification of Wolbachia Genes. PLoS Pathog 2016; 12:e1005888. [PMID: 27661080 PMCID: PMC5035075 DOI: 10.1371/journal.ppat.1005888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
Wolbachia are maternally transmitted intracellular bacterial symbionts that infect approximately 40% of all insect species. Though several strains of Wolbachia naturally infect Drosophila melanogaster and provide resistance against viral pathogens, or provision metabolites during periods of nutritional stress, one virulent strain, wMelPop, reduces fly lifespan by half, possibly as a consequence of over-replication. While the mechanisms that allow wMelPop to over-replicate are still of debate, a unique tandem repeat locus in the wMelPop genome that contains eight genes, referred to as the “Octomom” locus has been identified and is thought to play an important regulatory role. Estimates of Octomom locus copy number correlated increasing copy number to both Wolbachia bacterial density and increased pathology. Here we demonstrate that infected fly pathology is not dependent on an increased Octomom copy number, but does strongly correlate with increasing temperature. When measured across developmental time, we also show Octomom copy number to be highly variable across developmental time within a single generation. Using a second pathogenic strain of Wolbachia, we further demonstrate reduced insect lifespan can occur independently of a high Octomom locus copy number. Taken together, this data demonstrates that the mechanism/s of wMelPop virulence is more complex than has been previously described. Wolbachia are obligate intracellular, symbiotic bacteria that infect approximately 40% of insect species, as well as filarial nematodes, arachnids and terrestrial isopods. While the vast majority of Wolbachia strains impose few fitness costs to their host, one strain wMelPop is unique as it lacks the ability to regulate its growth, and as consequence can reduce host lifespan by half. The strength of pathology induced by wMelPop has been linked to either increased bacterial density or copy number of an eight gene tandem repeat region referred to as the “Octomom” locus. To date no study has determined the effect changes to temperature have on Octomom copy number or bacterial density. Here we demonstrate that while the Octomom locus is unstable within a single generation of its host, changes to Octomom copy number did not occur in response to temperature. Furthermore, Octomom copy number or bacterial density does not correlate to the strength of pathology. These results indicate that the underpinning genetics of pathology are unclear, and the mechanisms by pathology is induced are more complex than previously realised.
Collapse
Affiliation(s)
- Chelsie E. Rohrscheib
- School of Natural Sciences, Griffith University, Nathan, Australia
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Australia
| | - Francesca D. Frentiu
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Australia
| | - Emilie Horn
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Fiona K. Ritchie
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| | - Michael W. Weible
- School of Natural Sciences, Griffith University, Nathan, Australia
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Australia
| | - Scott L. O’Neill
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Jeremy C. Brownlie
- School of Natural Sciences, Griffith University, Nathan, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
- * E-mail:
| |
Collapse
|
27
|
Abstract
Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain.
Collapse
|
28
|
Sun JX, Guo Y, Zhang X, Zhu WC, Chen YT, Hong XY. Effects of host interaction withWolbachiaon cytoplasmic incompatibility in the two-spotted spider miteTetranychus urticae. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jian-Xin Sun
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Yan Guo
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Xu Zhang
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Wen-Chao Zhu
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Ya-Ting Chen
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| | - Xiao-Yue Hong
- Department of Entomology; Nanjing Agricultural University; No.1, Weigang Nanjing Jiangsu 210095 China
| |
Collapse
|
29
|
Correa CC, Ballard JWO. Wolbachia Associations with Insects: Winning or Losing Against a Master Manipulator. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2015.00153] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Tahir U, Khan UH, Zubair MS, Bahar-E-Mustafa. Wolbachia pipientis: A potential candidate for combating and eradicating dengue epidemics in Pakistan. ASIAN PAC J TROP MED 2015; 8:989-998. [PMID: 26706669 DOI: 10.1016/j.apjtm.2015.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/20/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022] Open
Abstract
Dengue virus syndrome is an emerging global health challenge which is endemic in tropical countries like Pakistan. In recent years dengue incidences have increased considerably in different areas of Pakistan with more sever impacts on urban and peri-urban populations. This review is an effort to highlight the changing epidemiology of dengue fever, role of Government of Pakistan in disease management and control using preventive and community based approaches in the region. Moreover, there is an emphasis on application of Wolbachia as novel, inexpensive and environmentally benign candidate for control and eradication of dengue transmitting vectors.
Collapse
Affiliation(s)
- Uruj Tahir
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| | - Umair Hassan Khan
- Department of Microbiology, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Pakistan
| | | | - Bahar-E-Mustafa
- Department of Microbiology, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Pakistan
| |
Collapse
|
31
|
Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle. G3-GENES GENOMES GENETICS 2015; 5:2843-56. [PMID: 26497146 PMCID: PMC4683655 DOI: 10.1534/g3.115.021931] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome.
Collapse
|
32
|
Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis. PLoS One 2015; 10:e0118595. [PMID: 25739023 PMCID: PMC4349823 DOI: 10.1371/journal.pone.0118595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/21/2015] [Indexed: 12/18/2022] Open
Abstract
Wolbachia pipientis is an endosymbiotic bacterium that induces a wide range of effects in its insect hosts, including manipulation of reproduction and protection against pathogens. Little is known of the molecular mechanisms underlying the insect-Wolbachia interaction, though it is likely to be mediated via the secretion of proteins or other factors. There is an increasing amount of evidence that bacteria regulate many cellular processes, including secretion of virulence factors, using small non-coding RNAs (sRNAs), but sRNAs have not previously been described from Wolbachia. We have used two independent approaches, one based on comparative genomics and the other using RNA-Seq data generated for gene expression studies, to identify candidate sRNAs in Wolbachia. We experimentally characterized the expression of one of these candidates in four Wolbachia strains, and showed that it is differentially regulated in different host tissues and sexes. Given the roles played by sRNAs in other host-associated bacteria, the conservation of the candidate sRNAs between different Wolbachia strains, and the sex- and tissue-specific differential regulation we have identified, we hypothesise that sRNAs may play a significant role in the biology of Wolbachia, and in particular in its interactions with its host.
Collapse
|
33
|
Chrostek E, Teixeira L. Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol 2015; 13:e1002065. [PMID: 25668031 PMCID: PMC4323108 DOI: 10.1371/journal.pbio.1002065] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022] Open
Abstract
Most insect species are associated with vertically transmitted endosymbionts. Because of the mode of transmission, the fitness of these symbionts is dependent on the fitness of the hosts. Therefore, these endosymbionts need to control their proliferation in order to minimize their cost for the host. The genetic bases and mechanisms of this regulation remain largely undetermined. The maternally inherited bacteria of the genus Wolbachia are the most common endosymbionts of insects, providing some of them with fitness benefits. In Drosophila melanogaster, WolbachiawMelPop is a unique virulent variant that proliferates massively in the hosts and shortens their lifespan. The genetic bases of wMelPop virulence are unknown, and their identification would allow a better understanding of how Wolbachia levels are regulated. Here we show that amplification of a region containing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. Using Drosophila lines selected for carrying Wolbachia with different Octomom copy numbers, we demonstrate that the number of Octomom copies determines Wolbachia titers and the strength of the lethal phenotype. Octomom amplification is unstable, and reversion of copy number to one reverts all the phenotypes. Our results provide a link between genotype and phenotype in Wolbachia and identify a genomic region regulating Wolbachia proliferation. We also prove that these bacteria can evolve rapidly. Rapid evolution by changes in gene copy number may be common in endosymbionts with a high number of mobile elements and other repeated regions. Understanding wMelPop pathogenicity and variability also allows researchers to better control and predict the outcome of releasing mosquitoes transinfected with this variant to block human vector-borne diseases. Our results show that transition from a mutualist to a pathogen may occur because of a single genomic change in the endosymbiont. This implies that there must be constant selection on endosymbionts to control their densities. An elegant experimental evolution approach reveals that a strain of the symbiotic bacterium Wolbachia that over-replicates and shortens the life of its fruit fly host owes this property to the amplification of a small region of its genome. Read the accompanying Primer. Insects frequently carry intracellular bacteria that are passed from generation to generation through their eggs. These intracellular symbionts can be beneficial or parasitic, but because of their mode of transmission, they are always dependent on the reproduction of their carriers. They therefore have to control their own growth in order to minimize deleterious effects on the host. Bacteria of the genus Wolbachia are the most common maternally transmitted intracellular bacteria in insects. Most Wolbachia variants that are naturally associated with the fruit fly Drosophila melanogaster are benign to their hosts and provide them with protection against viruses. However, wMelPop is a virulent Wolbachia variant that over-replicates massively and shortens the lifespan of its fruit fly host. Here we show that amplification of a Wolbachia genomic region containing eight genes—called Octomom—is responsible for the pathogenic effects of wMelPop. Our results provide a link between genotype and phenotype in Wolbachia and show that virulence in symbionts can be simply caused by increases in gene copy number. These results also indicate that gene copy number variation may be a common mechanism underlying rapid evolution of intracellular symbionts.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (EC); (LT)
| | - Luis Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (EC); (LT)
| |
Collapse
|
34
|
Sutton ER, Harris SR, Parkhill J, Sinkins SP. Comparative genome analysis of Wolbachia strain wAu. BMC Genomics 2014; 15:928. [PMID: 25341639 PMCID: PMC4223829 DOI: 10.1186/1471-2164-15-928] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Wolbachia intracellular bacteria can manipulate the reproduction of their arthropod hosts, including inducing sterility between populations known as cytoplasmic incompatibility (CI). Certain strains have been identified that are unable to induce or rescue CI, including wAu from Drosophila. Genome sequencing and comparison with CI-inducing related strain wMel was undertaken in order to better understand the molecular basis of the phenotype. RESULTS Although the genomes were broadly similar, several rearrangements were identified, particularly in the prophage regions. Many orthologous genes contained single nucleotide polymorphisms (SNPs) between the two strains, but a subset containing major differences that would likely cause inactivation in wAu were identified, including the absence of the wMel ortholog of a gene recently identified as a CI candidate in a proteomic study. The comparative analyses also focused on a family of transcriptional regulator genes implicated in CI in previous work, and revealed numerous differences between the strains, including those that would have major effects on predicted function. CONCLUSIONS The study provides support for existing candidates and novel genes that may be involved in CI, and provides a basis for further functional studies to examine the molecular basis of the phenotype.
Collapse
Affiliation(s)
- Elizabeth R Sutton
- />Department of Zoology and Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Simon R Harris
- />Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge UK
| | - Julian Parkhill
- />Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge UK
| | - Steven P Sinkins
- />Department of Zoology and Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- />Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| |
Collapse
|
35
|
Wang GH, Niu LM, Ma GC, Xiao JH, Huang DW. Large proportion of genes in one cryptic WO prophage genome are actively and sex-specifically transcribed in a fig wasp species. BMC Genomics 2014; 15:893. [PMID: 25311369 PMCID: PMC4201733 DOI: 10.1186/1471-2164-15-893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/03/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cryptic prophages are genetically defective in their induction and propagation, and are simply regarded as genetic remnants. There are several putative cryptic WO prophages in the sequenced Wolbachia genomes. Whether they are lytic is unclear and their functions are poorly understood. Only three open reading frames (ORFs) in cryptic WO prophages have been reported to be actively transcribed. RESULTS In this study, we comprehensively examined the transcription of the only cryptic WO prophage (WOSol) in a Wolbachia strain that infects a fig wasp, Ceratosolen solmsi (Agaonidae, Chalcidoidea). By analyzing the transcriptions of all the ORFs of WOSol in both sexes of C. solmsi, using qualitative and quantitative methods, we demonstrated that i) a high percentage of ORFs are actively transcribed (59%, 17/29); ii) the expression of these ORFs is highly sex-specific, with a strong male bias (three in females and 15 in males); iii) an ank (ankyrin-domain-containing) gene actively transcribed in both wasp sexes is more highly expressed in males. CONCLUSIONS A large proportion of the genes in the cryptic WO prophage WOSol are expressed, which overturns the concept that cryptic prophages are simply genetically defective. The highly sex-specific expression patterns of these genes in the host suggest that they play important roles in Wolbachia biology and its reproductive manipulation of its insect host, particularly through the males.
Collapse
Affiliation(s)
| | | | | | - Jin-Hua Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | | |
Collapse
|
36
|
Woolfit M, Iturbe-Ormaetxe I, Brownlie JC, Walker T, Riegler M, Seleznev A, Popovici J, Rancès E, Wee BA, Pavlides J, Sullivan MJ, Beatson SA, Lane A, Sidhu M, McMeniman CJ, McGraw EA, O'Neill SL. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol Evol 2014; 5:2189-204. [PMID: 24190075 PMCID: PMC3845649 DOI: 10.1093/gbe/evt169] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Most strains of the widespread endosymbiotic bacterium Wolbachia pipientis are benign or behave as reproductive parasites. The pathogenic strain wMelPop is a striking exception, however: it overreplicates in its insect hosts and causes severe life shortening. The mechanism of this pathogenesis is currently unknown. We have sequenced the genomes of three variants of wMelPop and of the closely related nonpathogenic strain wMelCS. We show that the genomes of wMelCS and wMelPop appear to be identical in the nonrepeat regions of the genome and differ detectably only by the triplication of a 19-kb region that is unlikely to be associated with life shortening, demonstrating that dramatic differences in the host phenotype caused by this endosymbiont may be the result of only minor genetic changes. We also compare the genomes of the original wMelPop strain from Drosophila melanogaster and two sequential derivatives, wMelPop-CLA and wMelPop-PGYP. To develop wMelPop as a novel biocontrol agent, it was first transinfected into and passaged in mosquito cell lines for approximately 3.5 years, generating wMelPop-CLA. This cell line-passaged strain was then transinfected into Aedes aegypti mosquitoes, creating wMelPop-PGYP, which was sequenced after 4 years in the insect host. We observe a rapid burst of genomic changes during cell line passaging, but no further mutations were detected after transinfection into mosquitoes, indicating either that host preadaptation had occurred in cell lines, that cell lines are a more selectively permissive environment than animal hosts, or both. Our results provide valuable data on the rates of genomic and phenotypic change in Wolbachia associated with host shifts over short time scales.
Collapse
Affiliation(s)
- Megan Woolfit
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Asgharian H, Chang PL, Mazzoglio PJ, Negri I. Wolbachia is not all about sex: male-feminizing Wolbachia alters the leafhopper Zyginidia pullula transcriptome in a mainly sex-independent manner. Front Microbiol 2014; 5:430. [PMID: 25225494 PMCID: PMC4150536 DOI: 10.3389/fmicb.2014.00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022] Open
Abstract
Wolbachia causes the feminization of chromosomally male embryos in several species of crustaceans and insects, including the leafhopper Zyginidia pullula. In contrast to the relatively well-established ecological aspects of male feminization (e.g., sex ratio distortion and its consequences), the underlying molecular mechanisms remain understudied and unclear. We embarked on an exploratory study to investigate the extent and nature of Wolbachia's effect on gene expression pattern in Z. pullula. We sequenced whole transcriptomes from Wolbachia-infected and uninfected adults. 18147 loci were assembled de novo, including homologs of several Drosophila sex determination genes. A number of transcripts were flagged as candidate Wolbachia sequences. Despite the resemblance of Wolbachia-infected chromosomal males to uninfected and infected chromosomal females in terms of sexual morphology and behavior, principal component analysis revealed that gene expression patterns did not follow these sexual phenotype categories. The principal components generated by differentially expressed genes specified a strong sex-independent Wolbachia effect, followed by a weaker Wolbachia-sexual karyotype interaction effect. Approaches to further examine the molecular mechanism of Wolbachia-host interactions have been suggested based on the presented findings.
Collapse
Affiliation(s)
- Hosseinali Asgharian
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Peter J Mazzoglio
- DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino Grugliasco (TO), Italy
| | - Ilaria Negri
- DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino Grugliasco (TO), Italy
| |
Collapse
|
38
|
Min CK, Kwon YJ, Ha NY, Cho BA, Kim JM, Kwon EK, Kim YS, Choi MS, Kim IS, Cho NH. Multiple Orientia tsutsugamushi ankyrin repeat proteins interact with SCF1 ubiquitin ligase complex and eukaryotic elongation factor 1 α. PLoS One 2014; 9:e105652. [PMID: 25166298 PMCID: PMC4148323 DOI: 10.1371/journal.pone.0105652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/22/2014] [Indexed: 11/30/2022] Open
Abstract
Background Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium. Previously, a large number of genes that encode proteins containing eukaryotic protein-protein interaction motifs such as ankyrin-repeat (Ank) domains were identified in the O. tsutsugamushi genome. However, little is known about the Ank protein function in O. tsutsugamushi. Methodology/Principal Findings To characterize the function of Ank proteins, we investigated a group of Ank proteins containing an F-box–like domain in the C-terminus in addition to the Ank domains. All nine selected ank genes were expressed at the transcriptional level in host cells infected with O. tsutsugamushi, and specific antibody responses against three Ank proteins were detected in the serum from human patients, indicating an active expression of the bacterial Ank proteins post infection. When ectopically expressed in HeLa cells, the Ank proteins of O. tsutsugamushi were consistently found in the nucleus and/or cytoplasm. In GST pull-down assays, multiple Ank proteins specifically interacted with Cullin1 and Skp1, core components of the SCF1 ubiquitin ligase complex, as well as the eukaryotic elongation factor 1 α (EF1α). Moreover, one Ank protein co-localized with the identified host targets and induced downregulation of EF1α potentially via enhanced ubiquitination. The downregulation of EF1α was observed consistently in diverse host cell types infected with O. tsutsugamushi. Conclusion/Significance These results suggest that conserved targeting and subsequent degradation of EF1α by multiple O. tsutsugamushi Ank proteins could be a novel bacterial strategy for replication and/or pathogenesis during mammalian host infection.
Collapse
Affiliation(s)
- Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ye-Jin Kwon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bon-A Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jo-Min Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Kyung Kwon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon-Sook Kim
- Divisions of Infectious Diseases, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
39
|
Metcalf JA, Jo M, Bordenstein SR, Jaenike J, Bordenstein SR. Recent genome reduction of Wolbachia in Drosophila recens targets phage WO and narrows candidates for reproductive parasitism. PeerJ 2014; 2:e529. [PMID: 25165636 PMCID: PMC4137656 DOI: 10.7717/peerj.529] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022] Open
Abstract
Wolbachia are maternally transmitted endosymbionts that often alter their arthropod hosts’ biology to favor the success of infected females, and they may also serve as a speciation microbe driving reproductive isolation. Two of these host manipulations include killing males outright and reducing offspring survival when infected males mate with uninfected females, a phenomenon known as cytoplasmic incompatibility. Little is known about the mechanisms behind these phenotypes, but interestingly either effect can be caused by the same Wolbachia strain when infecting different hosts. For instance, wRec causes cytoplasmic incompatibility in its native host Drosophila recens and male killing in D. subquinaria. The discovery of prophage WO elements in most arthropod Wolbachia has generated the hypothesis that WO may encode genes involved in these reproductive manipulations. However, PCR screens for the WO minor capsid gene indicated that wRec lacks phage WO. Thus, wRec seemed to provide an example where phage WO is not needed for Wolbachia-induced reproductive manipulation. To enable investigation of the mechanism of phenotype switching in different host backgrounds, and to examine the unexpected absence of phage WO, we sequenced the genome of wRec. Analyses reveal that wRec diverged from wMel approximately 350,000 years ago, mainly by genome reduction in the phage regions. While it lost the minor capsid gene used in standard PCR screens for phage WO, it retained two regions encompassing 33 genes, several of which have previously been associated with reproductive parasitism. Thus, WO gene involvement in reproductive manipulation cannot be excluded and reliance on single gene PCR should not be used to rule out the presence of phage WO in Wolbachia. Additionally, the genome sequence for wRec will enable transcriptomic and proteomic studies that may help elucidate the Wolbachia mechanisms of altered reproductive manipulations associated with host switching, perhaps among the 33 remaining phage genes.
Collapse
Affiliation(s)
- Jason A Metcalf
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Minhee Jo
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - John Jaenike
- Department of Biology, University of Rochester , Rochester, NY , USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Pathology, Microbiology, and Immunology, Vanderbilt University , Nashville, TN , USA
| |
Collapse
|
40
|
Chrostek E, Marialva MSP, Yamada R, O'Neill SL, Teixeira L. High anti-viral protection without immune upregulation after interspecies Wolbachia transfer. PLoS One 2014; 9:e99025. [PMID: 24911519 PMCID: PMC4049622 DOI: 10.1371/journal.pone.0099025] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 11/18/2022] Open
Abstract
Wolbachia, endosymbionts that reside naturally in up to 40-70% of all insect species, are some of the most prevalent intracellular bacteria. Both Wolbachia wAu, naturally associated with Drosophila simulans, and wMel, native to Drosophila melanogaster, have been previously described to protect their hosts against viral infections. wMel transferred to D. simulans was also shown to have a strong antiviral effect. Here we directly compare one of the most protective wMel variants and wAu in D. melanogaster in the same host genetic background. We conclude that wAu protects better against viral infections, it grows exponentially and significantly shortens the lifespan of D. melanogaster. However, there is no difference between wMel and wAu in the expression of selected antimicrobial peptides. Therefore, neither the difference in anti-viral effect nor the life-shortening could be attributed to the immune stimulation by exogenous Wolbachia. Overall, we prove that stable transinfection with a highly protective Wolbachia is not necessarily associated with general immune activation.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Ryuichi Yamada
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Scott L. O'Neill
- School of Biological Sciences, University of Queensland, St. Lucia, Australia
- School of Biological Sciences, Monash University, Clayton, Australia
| | | |
Collapse
|
41
|
Brelsfoard C, Tsiamis G, Falchetto M, Gomulski LM, Telleria E, Alam U, Doudoumis V, Scolari F, Benoit JB, Swain M, Takac P, Malacrida AR, Bourtzis K, Aksoy S. Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans. PLoS Negl Trop Dis 2014; 8:e2728. [PMID: 24763283 PMCID: PMC3998919 DOI: 10.1371/journal.pntd.0002728] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/20/2014] [Indexed: 11/24/2022] Open
Abstract
Tsetse flies (Glossina spp.) are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including Glossina morsitans morsitans (Gmm), for which the Whole Genome Sequence (WGS) is now available, have established symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia). The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the presence of horizontal gene transfer (HGT) events in a laboratory colony of Gmm, has already been shown. We herein report on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol) associated with Gmm. By in silico and molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol) in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed multiple insertions located on the two sex chromosomes (X and Y), as well as on the supernumerary B-chromosomes. We compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts on the control of tsetse populations and trypanosomiasis. African trypanosomes are transmitted to man and animals by tsetse fly, a blood sucking insect. Tsetse flies include all Glossina species with the genome of Glossina morsitans morsitans (Gmm) being sequenced under the International Glossina Genome Initiative. The endosymbionts Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia) have been found to establish symbiotic associations with Gmm. Wolbachia is known to be present in natural and laboratory populations of Glossina species. In this study we report the genome sequence of the Wolbachia strain that is associated with Gmm. With the aid of in silico and molecular and cytogenetic analyses, multiple insertions of the Wolbachia genome were revealed and confirmed in Gmm chromosome. Comparison of the cytoplasmic Wolbachia draft genome and the chromosomal insertions enabled us to infer the evolutionary history of the Wolbachia horizontal transfer events. These findings are discussed in relation to their impact on the development of Wolbachia-based strategies for the control of tsetse flies and trypanosomiasis.
Collapse
Affiliation(s)
- Corey Brelsfoard
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Natural Sciences, St. Catharine College, St. Catharine, Kentucky, United States of America
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Marco Falchetto
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italia
| | - Ludvik M. Gomulski
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italia
| | - Erich Telleria
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Uzma Alam
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Vangelis Doudoumis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Francesca Scolari
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italia
| | - Joshua B. Benoit
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Martin Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, United Kingdom
| | - Peter Takac
- Institute of Zoology, Section of Molecular and Applied Zoology, Slovak Academy of Science, Bratislava, Slovakia
| | - Anna R. Malacrida
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italia
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Biomedical Sciences Research Center Al. Fleming, Vari, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- * E-mail: (KB); (SA)
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail: (KB); (SA)
| |
Collapse
|
42
|
De Clerck C, Tsuchida T, Massart S, Lepoivre P, Francis F, Jijakli MH. Combination of genomic and proteomic approaches to characterize the symbiotic population of the banana aphid (Hemiptera: Aphididae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:29-36. [PMID: 24472200 DOI: 10.1603/en13107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aphids are known to live in symbiosis with specific bacteria called endosymbionts that have positive or negative impacts on their hosts. In this study, six banana aphid (Pentalonia nigronervosa Coquerel) strains from various geographical origins (Gabon, Madagascar, and Burundi) were screened to determine their symbiotic content, using complementary genomic (16S rDNA sequencing and specific polymerase chain reaction) and proteomic (two-dimensional difference gel electrophoresis coupled with protein identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry) approaches. Despite the geographical heterogeneity, the combined methods allowed us to identify the same two symbionts in the six aphids strains tested: Buchnera aphidicola and Wolbachia. Although B. aphidicola is found in almost all aphid species, the systematic presence of Wolbachia in banana aphids is particularly interesting, as this bacterium usually has a low prevalence in aphid species. Phylogenetic analyses showed that the Wolbachia sp. strain found in P. nigronervosa was very similar to the strain present in aphids of the genus Cinara, known to have developed a strong and long-term symbiotic association with Wolbachia. The high level of asexual reproduction in P. nigronervosa could be linked to the presence of Wolbachia, but its prevalence also suggests that this symbiotic bacterium could play a more essential role in its aphid host.
Collapse
Affiliation(s)
- C De Clerck
- Plant Pathology Laboratory, Liege University, Gembloux Agro-Bio Tech, Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Schneider DI, Riegler M, Arthofer W, Merçot H, Stauffer C, Miller WJ. Uncovering Wolbachia diversity upon artificial host transfer. PLoS One 2013; 8:e82402. [PMID: 24376534 PMCID: PMC3869692 DOI: 10.1371/journal.pone.0082402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/23/2013] [Indexed: 11/27/2022] Open
Abstract
The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.
Collapse
Affiliation(s)
- Daniela I. Schneider
- Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Markus Riegler
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, Australia
| | - Wolfgang Arthofer
- Molecular Ecology Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Hervé Merçot
- UMR 7138, CNRS-Université Pierre & Marie Curie, Paris, France
| | - Christian Stauffer
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest & Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang J. Miller
- Laboratories of Genome Dynamics, Department of Cell- and Developmental Biology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
44
|
Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM, Teixeira L. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 2013; 9:e1003896. [PMID: 24348259 PMCID: PMC3861217 DOI: 10.1371/journal.pgen.1003896] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022] Open
Abstract
Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups--wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ~21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julien Martinez
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
45
|
The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria. PLoS One 2013; 8:e81440. [PMID: 24282596 PMCID: PMC3839904 DOI: 10.1371/journal.pone.0081440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two DsbA-like proteins sharing just 21% sequence identity to each other, α-DsbA1 and α-DsbA2, and an integral membrane protein, α-DsbB. α-DsbA1 and α-DsbA2 both have a Cys-X-X-Cys active site that, by analogy with Escherichia coli DsbA, would need to be oxidized to the disulfide form to serve as a disulfide bond donor toward substrate proteins. Here we show that the integral membrane protein α-DsbB oxidizes α-DsbA1, but not α-DsbA2. The interaction between α-DsbA1 and α-DsbB is very specific, involving four essential cysteines located in the two periplasmic loops of α-DsbB. In the electron flow cascade, oxidation of α-DsbA1 by α-DsbB is initiated by an oxidizing quinone cofactor that interacts with the cysteine pair in the first periplasmic loop. Oxidizing power is transferred to the second cysteine pair, which directly interacts with α-DsbA1. This reaction is inhibited by a non-catalytic disulfide present in α-DsbA1, conserved in other α-proteobacterial DsbAs but not in γ-proteobacterial DsbAs. This is the first characterization of the integral membrane protein α-DsbB from Wolbachia and reveals that the non-catalytic cysteines of α-DsbA1 regulate the redox relay system in cooperation with α-DsbB.
Collapse
|
46
|
Siozios S, Ioannidis P, Klasson L, Andersson SGE, Braig HR, Bourtzis K. The diversity and evolution of Wolbachia ankyrin repeat domain genes. PLoS One 2013; 8:e55390. [PMID: 23390535 PMCID: PMC3563639 DOI: 10.1371/journal.pone.0055390] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022] Open
Abstract
Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.
Collapse
Affiliation(s)
- Stefanos Siozios
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
| | - Panagiotis Ioannidis
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
| | - Lisa Klasson
- Department of Molecular Evolution, Uppsala University, Uppsala, Sweden
| | | | - Henk R. Braig
- School of Biological Sciences Bangor University, Bangor Gwynedd, United Kingdom
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
- Biomedical Sciences Research Center Al. Fleming, Vari, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
47
|
Duplouy A, Iturbe-Ormaetxe I, Beatson SA, Szubert JM, Brownlie JC, McMeniman CJ, McGraw EA, Hurst GDD, Charlat S, O'Neill SL, Woolfit M. Draft genome sequence of the male-killing Wolbachia strain wBol1 reveals recent horizontal gene transfers from diverse sources. BMC Genomics 2013; 14:20. [PMID: 23324387 PMCID: PMC3639933 DOI: 10.1186/1471-2164-14-20] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/02/2013] [Indexed: 02/06/2023] Open
Abstract
Background The endosymbiont Wolbachia pipientis causes diverse and sometimes dramatic phenotypes in its invertebrate hosts. Four Wolbachia strains sequenced to date indicate that the constitution of the genome is dynamic, but these strains are quite divergent and do not allow resolution of genome diversification over shorter time periods. We have sequenced the genome of the strain wBol1-b, found in the butterfly Hypolimnas bolina, which kills the male offspring of infected hosts during embyronic development and is closely related to the non-male-killing strain wPip from Culex pipiens. Results The genomes of wBol1-b and wPip are similar in genomic organisation, sequence and gene content, but show substantial differences at some rapidly evolving regions of the genome, primarily associated with prophage and repetitive elements. We identified 44 genes in wBol1-b that do not have homologs in any previously sequenced strains, indicating that Wolbachia’s non-core genome diversifies rapidly. These wBol1-b specific genes include a number that have been recently horizontally transferred from phylogenetically distant bacterial taxa. We further report a second possible case of horizontal gene transfer from a eukaryote into Wolbachia. Conclusions Our analyses support the developing view that many endosymbiotic genomes are highly dynamic, and are exposed and receptive to exogenous genetic material from a wide range of sources. These data also suggest either that this bacterial species is particularly permissive for eukaryote-to-prokaryote gene transfers, or that these transfers may be more common than previously believed. The wBol1-b-specific genes we have identified provide candidates for further investigations of the genomic bases of phenotypic differences between closely-related Wolbachia strains.
Collapse
Affiliation(s)
- Anne Duplouy
- School of Biological Sciences, University of Queensland, 4072, Brisbane, QLD, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genet 2012; 8:e1003012. [PMID: 23133394 PMCID: PMC3486910 DOI: 10.1371/journal.pgen.1003012] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/22/2012] [Indexed: 11/28/2022] Open
Abstract
Terrestrial arthropods are commonly infected with maternally inherited bacterial symbionts that cause cytoplasmic incompatibility (CI). In CI, the outcome of crosses between symbiont-infected males and uninfected females is reproductive failure, increasing the relative fitness of infected females and leading to spread of the symbiont in the host population. CI symbionts have profound impacts on host genetic structure and ecology and may lead to speciation and the rapid evolution of sex determination systems. Cardinium hertigii, a member of the Bacteroidetes and symbiont of the parasitic wasp Encarsia pergandiella, is the only known bacterium other than the Alphaproteobacteria Wolbachia to cause CI. Here we report the genome sequence of Cardinium hertigii cEper1. Comparison with the genomes of CI–inducing Wolbachia pipientis strains wMel, wRi, and wPip provides a unique opportunity to pinpoint shared proteins mediating host cell interaction, including some candidate proteins for CI that have not previously been investigated. The genome of Cardinium lacks all major biosynthetic pathways but harbors a complete biotin biosynthesis pathway, suggesting a potential role for Cardinium in host nutrition. Cardinium lacks known protein secretion systems but encodes a putative phage-derived secretion system distantly related to the antifeeding prophage of the entomopathogen Serratia entomophila. Lastly, while Cardinium and Wolbachia genomes show only a functional overlap of proteins, they show no evidence of laterally transferred elements that would suggest common ancestry of CI in both lineages. Instead, comparative genomics suggests an independent evolution of CI in Cardinium and Wolbachia and provides a novel context for understanding the mechanistic basis of CI. Many arthropods are infected with bacterial symbionts that are maternally transmitted and have a great impact on their hosts' biology, ecology, and evolution. One of the most common phenotypes of facultative symbionts appears to be cytoplasmic incompatibility (CI), a type of reproductive failure in which bacteria in males modify sperm in a way that reduces the reproductive success of uninfected female mates. In spite of considerable interest, the genetic basis for CI is largely unknown. Cardinium hertigii, a symbiont of tiny parasitic wasps, is the only bacterial group other than the well-studied Wolbachia that is known to cause CI. Analysis of the Cardinium genome indicates that CI evolved independently in Wolbachia and Cardinium. However, a suite of shared proteins was likely involved in mediating host cell interactions, and CI shows functional overlap in both lineages. Our analysis suggests the presence of an unusual phage-derived, putative secretion system and reveals that Cardinium encodes biosynthetic pathways that suggest a potential role in host nutrition. Our findings provide a novel comparative context for understanding the mechanistic basis of CI and substantially increase our knowledge on reproductive manipulator symbionts that do not only severely affect population genetic structure of arthropods but may also serve as powerful tools in pest management.
Collapse
|
49
|
Metcalf JA, Bordenstein SR. The complexity of virus systems: the case of endosymbionts. Curr Opin Microbiol 2012; 15:546-52. [PMID: 22609369 DOI: 10.1016/j.mib.2012.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/20/2012] [Accepted: 04/27/2012] [Indexed: 12/16/2022]
Abstract
Host-microbe symbioses involving bacterial endosymbionts comprise some of the most intimate and long-lasting interactions on the planet. While restricted gene flow might be expected due to their intracellular lifestyle, many endosymbionts, especially those that switch hosts, are rampant with mobile DNA and bacteriophages. One endosymbiont, Wolbachia pipientis, infects a vast number of arthropod and nematode species and often has a significant portion of its genome dedicated to prophage sequences of a virus called WO. This phage has challenged fundamental theories of bacteriophage and endosymbiont evolution, namely the phage Modular Theory and bacterial genome stability in obligate intracellular species. WO has also opened up exciting windows into the tripartite interactions between viruses, bacteria, and eukaryotes.
Collapse
Affiliation(s)
- Jason A Metcalf
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
50
|
Pichon S, Bouchon D, Liu C, Chen L, Garrett RA, Grève P. The expression of one ankyrin pk2 allele of the WO prophage is correlated with the Wolbachia feminizing effect in isopods. BMC Microbiol 2012; 12:55. [PMID: 22497736 PMCID: PMC3431249 DOI: 10.1186/1471-2180-12-55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 04/12/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The maternally inherited α-Proteobacteria Wolbachia pipientis is an obligate endosymbiont of nematodes and arthropods, in which they induce a variety of reproductive alterations, including Cytoplasmic Incompatibility (CI) and feminization. The genome of the feminizing wVulC Wolbachia strain harboured by the isopod Armadillidium vulgare has been sequenced and is now at the final assembly step. It contains an unusually high number of ankyrin motif-containing genes, two of which are homologous to the phage-related pk1 and pk2 genes thought to contribute to the CI phenotype in Culex pipiens. These genes encode putative bacterial effectors mediating Wolbachia-host protein-protein interactions via their ankyrin motifs. RESULTS To test whether these Wolbachia homologs are potentially involved in altering terrestrial isopod reproduction, we determined the distribution and expression of both pk1 and pk2 genes in the 3 Wolbachia strains that induce CI and in 5 inducing feminization of their isopod hosts. Aside from the genes being highly conserved, we found a substantial copy number variation among strains, and that is linked to prophage diversity. Transcriptional analyses revealed expression of one pk2 allele (pk2b2) only in the feminizing Wolbachia strains of isopods. CONCLUSIONS These results reveal the need to investigate the functions of Wolbachia ankyrin gene products, in particular those of Pk2, and their host targets with respect to host sex manipulation.
Collapse
Affiliation(s)
- Samuel Pichon
- Ecologie, Evolution, Symbiose, UMR CNRS 6556, Université de Poitiers, Poitiers, France
| | | | | | | | | | | |
Collapse
|