1
|
John-White M, Gardiner J, Johanesen P, Lyras D, Dumsday G. β-Aminopeptidases: Insight into Enzymes without a Known Natural Substrate. Appl Environ Microbiol 2019; 85:e00318-19. [PMID: 31126950 PMCID: PMC6643246 DOI: 10.1128/aem.00318-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions.IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.
Collapse
Affiliation(s)
- Marietta John-White
- CSIRO Manufacturing, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - Priscilla Johanesen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
2
|
Chowdhury S, Vaishnav R, Panwar N, Haq W. Regioselective β-Csp 3-Arylation of β-Alanine: An Approach for the Exclusive Synthesis of Diverse β-Aryl-β-amino Acids. J Org Chem 2019; 84:2512-2522. [PMID: 30714366 DOI: 10.1021/acs.joc.8b02887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An approach for the synthesis of a variety of new β-aryl-β-amino acids has been developed via a palladium-catalyzed auxiliary-directed regioselective Csp3-H arylation of the unactivated β-methylene bond of β-alanine. The use of 8-aminoquinoline amide as an auxiliary efficiently directs the desired regioselective β-Csp3-H functionalization. The developed protocol enables the easy and straightforward access to several high-value β-aryl-β-amino acids useful for peptide engineering, starting from inexpensive and readily available β-alanine precursors in moderate to excellent yields.
Collapse
Affiliation(s)
- Sushobhan Chowdhury
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Roopal Vaishnav
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Namita Panwar
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India
| | - Wahajul Haq
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow - 226031 , India.,Academy of Scientific and Innovative Research , New Delhi 11000 , India
| |
Collapse
|
3
|
Kolesinska B, Wasko J, Kaminski Z, Geueke B, Kohler HPE, Seebach D. Labeling and Protecting N
-Terminal Protein Positions by β
-Peptidyl Aminopeptidase-Catalyzed Attachment of β
-Amino-Acid Residues - Insulin as a First Example. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beata Kolesinska
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Joanna Wasko
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Zbigniew Kaminski
- Institute of Organic Chemistry; Technical University of Łodz; Zeromskiego 116 PL-90-924 Łodz Poland
| | - Birgit Geueke
- Department of Environmental Microbiology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Hans-Peter E. Kohler
- Department of Environmental Microbiology; Eawag, Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie; Departement Chemie und Angewandte Biowissenschaften; ETH-Zürich; Hönggerberg HCI, Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
4
|
Font Nájera A, Serwecińska LE, Gągała-Borowska I, Jurczak TE, Mankiewicz-Boczek JD. The characterization of a novel bacterial strain capable of microcystin degradation from the Jeziorsko reservoir, Poland: a preliminary study. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
John-White M, Dumsday GJ, Johanesen P, Lyras D, Drinkwater N, McGowan S. Crystal structure of a β-aminopeptidase from an Australian Burkholderia sp. Acta Crystallogr F Struct Biol Commun 2017; 73:386-392. [PMID: 28695846 PMCID: PMC5505242 DOI: 10.1107/s2053230x17007737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/24/2017] [Indexed: 11/11/2022] Open
Abstract
β-Aminopeptidases are a unique group of enzymes that have the unusual capability to hydrolyze N-terminal β-amino acids from synthetic β-peptides. β-Peptides can form secondary structures mimicking α-peptide-like structures that are resistant to degradation by most known proteases and peptidases. These characteristics of β-peptides give them great potential as peptidomimetics. Here, the X-ray crystal structure of BcA5-BapA, a β-aminopeptidase from a Gram-negative Burkholderia sp. that was isolated from activated sludge from a wastewater-treatment plant in Australia, is reported. The crystal structure of BcA5-BapA was determined to a resolution of 2.0 Å and showed a tetrameric assembly typical of the β-aminopeptidases. Each monomer consists of an α-subunit (residues 1-238) and a β-subunit (residues 239-367). Comparison of the structure of BcA5-BapA with those of other known β-aminopeptidases shows a highly conserved structure and suggests a similar proteolytic mechanism of action.
Collapse
Affiliation(s)
- Marietta John-White
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Melbourne, VIC 3800, Australia
- Manufacturing, CSIRO, Clayton, Melbourne, VIC 3800, Australia
| | | | - Priscilla Johanesen
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Dena Lyras
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Nyssa Drinkwater
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Sheena McGowan
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Melbourne, VIC 3800, Australia
| |
Collapse
|
6
|
Hiraishi T. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications. Appl Microbiol Biotechnol 2015; 100:1623-1630. [PMID: 26695157 DOI: 10.1007/s00253-015-7216-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/29/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.
Collapse
Affiliation(s)
- Tomohiro Hiraishi
- Bioengineering Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan. .,Bioplastic Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
7
|
Matsushita-Morita M, Nakagawa H, Tada S, Marui J, Hattori R, Suzuki S, Yamagata Y, Amano H, Ishida H, Takeuchi M, Kusumoto KI. Characterization of a (D)-stereoselective aminopeptidase (DamA) exhibiting aminolytic activity and halophilicity from Aspergillus oryzae. Appl Biochem Biotechnol 2013; 171:145-64. [PMID: 23821291 DOI: 10.1007/s12010-013-0330-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/14/2013] [Indexed: 11/28/2022]
Abstract
β-Aminopeptidases exhibit both hydrolytic and aminolytic (peptide bond formation) activities and have only been reported in bacteria. We identified a gene encoding the β-aminopeptidase homolog from a genome database of the filamentous fungus Aspergillus oryzae. The gene was overexpressed in A. oryzae, and the resulting recombinant enzyme was purified. Apart from bacterial homologs [β-Ala-para-nitroanilide (pNA)], the enzyme preferred D-Leu-pNA and D-Phe-pNA as substrates. Therefore, we designated this gene as d-stereoselective aminopeptidase A (damA). The purified recombinant DamA was estimated to be a hexamer and was composed of two subunits with molecular masses of 29.5 and 11.5 kDa, respectively. Optimal hydrolytic activity of DamA toward D-Leu-pNA was observed at 50 °C and pH 8.0. The enzyme was stable up to 60 °C and from pH 4.0-11.0. DamA also exhibited aminolytic activity, producing D-Leu-D-Leu-NH2 from D-Leu-NH2 as a substrate. In the presence of 3.0 M NaCl, the amount of pNA liberated from D-Leu-pNA by DamA was 3.1-fold higher than that in the absence of NaCl. Thus, DamA is a halophilic enzyme. The enzyme was utilized to synthesize several hetero-dipeptides containing a D-amino acid at the N-terminus as well as physiologically active peptides.
Collapse
Affiliation(s)
- Mayumi Matsushita-Morita
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Niharika N, Jindal S, Kaur J, Lal R. Sphingomonas indica sp. nov., isolated from hexachlorocyclohexane (HCH)-contaminated soil. Int J Syst Evol Microbiol 2012; 62:2997-3002. [DOI: 10.1099/ijs.0.033845-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain, designated Dd16T, was isolated from a hexachlorocyclohexane (HCH) dumpsite at Lucknow, India. Cells of strain Dd16T were Gram-stain-negative, non-motile, rod-shaped and yellow-pigmented. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus
Sphingomonas
in the family
Sphingomonadaceae
, as it showed highest sequence similarity to
Sphingomonas asaccharolytica
IFO 15499T (95.36 %),
Sphingosinicella vermicomposti
YC7378T (95.30), ‘Sphingomonas humi’ PB323 (95.20 %),
Sphingomonas sanxanigenens
NX02T (95.14 %) and
Sphingomonas desiccabilis
CP1DT (95.00 %). The major fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) C14 : 0 2-OH, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The polar lipid profile of strain Dd16T also corresponded to those reported for species of the genus
Sphingomonas
(phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, and a sphingoglycolipid), again supporting its identification as a member of the genus
Sphingomonas
. The predominant respiratory quinone was ubiquinone Q10, and sym-homospermidine was the major polyamine observed. The total DNA G+C content of strain Dd16T was 65.8 mol%. The results obtained on the basis of phenotypic characteristics and phylogenetic analysis and after biochemical and physiological tests, clearly distinguished strain Dd16T from closely related members of the genus
Sphingomonas
. Thus, strain Dd16T represents a novel species of the genus
Sphingomonas
for which the name Sphingomonas indica sp. nov. is proposed. The type strain is Dd16T ( = DSM 25434T = CCM 7882T).
Collapse
Affiliation(s)
- Neha Niharika
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Swati Jindal
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Jasvinder Kaur
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi-110007, India
| |
Collapse
|
9
|
Hernández-Vázquez LG, Leyva MA, Metta-Magaña AJ, Escalante J. Microwave-Assisted Synthesis ofβ-Lactams and Cyclo-β-dipeptides. Helv Chim Acta 2012. [DOI: 10.1002/hlca.201200449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Heck T, Geueke B, Kohler HPE. Bacterialβ-Aminopeptidases: Structural Insights and Applications for Biocatalysis. Chem Biodivers 2012; 9:2388-409. [DOI: 10.1002/cbdv.201200305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Indexed: 12/12/2022]
|
11
|
Autoproteolytic and Catalytic Mechanisms for the β-Aminopeptidase BapA—A Member of the Ntn Hydrolase Family. Structure 2012; 20:1850-60. [DOI: 10.1016/j.str.2012.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/14/2012] [Accepted: 07/15/2012] [Indexed: 11/23/2022]
|
12
|
Heck T, Merz T, Reimer A, Seebach D, Rentsch D, Briand C, Grütter MG, Kohler HPE, Geueke B. Crystal Structures of BapA Complexes with β-Lactam-Derived Inhibitors Illustrate Substrate Specificity and Enantioselectivity of β-Aminopeptidases. Chembiochem 2012; 13:2137-45. [DOI: 10.1002/cbic.201200393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Indexed: 11/07/2022]
|
13
|
Heyland J, Blank LM, Schmid A. Quantification of metabolic limitations during recombinant protein production in Escherichia coli. J Biotechnol 2011; 155:178-84. [PMID: 21723332 DOI: 10.1016/j.jbiotec.2011.06.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 01/02/2023]
Abstract
Escherichia coli is one of the major microorganisms for recombinant protein production because it has been best characterized in terms of molecular genetics and physiology, and because of the availability of various expression vectors and strains. The synthesis of proteins is one of the most energy consuming processes in the cell, with the result that cellular energy supply may become critical. Indeed, the so called metabolic burden of recombinant protein synthesis was reported to cause alterations in the operation of the host's central carbon metabolism. To quantify these alterations in E. coli metabolism in dependence of the rate of recombinant protein production, (13)C-tracer-based metabolic flux analysis in differently induced cultures was used. To avoid dilution of the (13)C-tracer signal by the culture history, the recombinant protein produced was used as a flux probe, i.e., as a read out of intracellular flux distributions. In detail, an increase in the generation rate rising from 36 mmol(ATP)g(CDW)(-1)h(-1) for the reference strain to 45 mmol(ATP)g(CDW)(-1)h(-1) for the highest yielding strain was observed during batch cultivation. Notably, the flux through the TCA cycle was rather constant at 2.5±0.1 mmol g(CDW)(-1)h(-1), hence was independent of the induced strength for gene expression. E. coli compensated for the additional energy demand of recombinant protein synthesis by reducing the biomass formation to almost 60%, resulting in excess NADPH. Speculative, this excess NADPH was converted to NADH via the soluble transhydrogenase and subsequently used for ATP generation in the electron transport chain. In this study, the metabolic burden was quantified by the biomass yield on ATP, which constantly decreased from 11.7g(CDW)mmol(ATP)(-1) for the reference strain to 4.9g(CDW)mmol(ATP)(-1) for the highest yielding strain. The insights into the operation of the metabolism of E. coli during recombinant protein production might guide the optimization of microbial hosts and fermentation conditions.
Collapse
Affiliation(s)
- Jan Heyland
- Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, Germany
| | | | | |
Collapse
|
14
|
Seebach D, Lukaszuk A, Patora-Komisarska K, Podwysocka D, Gardiner J, Ebert MO, Reubi JC, Cescato R, Waser B, Gmeiner P, Hübner H, Rougeot C. On the Terminal Homologation of Physiologically Active Peptides as a Means of Increasing Stability in Human Serum - Neurotensin, Opiorphin, B27-KK10 Epitope, NPY. Chem Biodivers 2011; 8:711-39. [DOI: 10.1002/cbdv.201100093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Heyland J, Fu J, Blank LM, Schmid A. Carbon metabolism limits recombinant protein production in Pichia pastoris. Biotechnol Bioeng 2011; 108:1942-53. [PMID: 21351072 DOI: 10.1002/bit.23114] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/20/2011] [Accepted: 02/14/2011] [Indexed: 12/29/2022]
Abstract
The yeast Pichia pastoris enables efficient (high titer) recombinant protein production. As the molecular tools required are well established and gene specific optimizations of transcription and translation are becoming available, metabolism moves into focus as possible limiting factor of recombinant protein production in P. pastoris. To investigate the impact of recombinant protein production on metabolism systematically, we constructed strains that produced the model protein β-aminopeptidase BapA of Sphingosinicella xenopeptidilytica at different production yields. The impact of low to high BapA production on cell physiology was quantified. The data suggest that P. pastoris compensates for the additional resources required for recombinant protein synthesis by reducing by-product formation and by increasing energy generation via the TCA cycle. Notably, the activity of the TCA cycle was constant with a rate of 2.1 ± 0.1 mmol g CDW-1 h(-1) irrespective of significantly reduced growth rates in high BapA producing strains, suggesting an upper limit of TCA cycle activity. The reduced growth rate could partially be restored by providing all 20 proteinogenic amino acids in the fermentation medium. Under these conditions, the rate of BapA synthesis increased twofold. The successful supplementation of the growth medium by amino acids to unburden cellular metabolism during recombinant protein production suggests that the metabolic network is a valid target for future optimization of protein production by P. pastoris.
Collapse
Affiliation(s)
- Jan Heyland
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Str 66, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
16
|
Vasudev PG, Chatterjee S, Shamala N, Balaram P. Structural Chemistry of Peptides Containing Backbone Expanded Amino Acid Residues: Conformational Features of β, γ, and Hybrid Peptides. Chem Rev 2010; 111:657-87. [DOI: 10.1021/cr100100x] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Prema. G. Vasudev
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sunanda Chatterjee
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Narayanaswamy Shamala
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Padmanabhan Balaram
- Department of Physics and Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Heyland J, Fu J, Blank LM, Schmid A. Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotechnol Bioeng 2010; 107:357-68. [DOI: 10.1002/bit.22836] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Brucher B, Rudat J, Syldatk C, Vielhauer O. Enantioseparation of Aromatic β³-Amino acid by Precolumn Derivatization with o-Phthaldialdehyde and N-Isobutyryl-l-cysteine. Chromatographia 2010. [DOI: 10.1365/s10337-010-1578-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Heck T, Reimer A, Seebach D, Gardiner J, Deniau G, Lukaszuk A, Kohler HPE, Geueke B. β-Aminopeptidase-Catalyzed Biotransformations of β2-Dipeptides: Kinetic Resolution and Enzymatic Coupling. Chembiochem 2010; 11:1129-36. [DOI: 10.1002/cbic.200900757] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Yasir M, Aslam Z, Song GC, Jeon CO, Chung YR. Sphingosinicella vermicomposti sp. nov., isolated from vermicompost, and emended description of the genus Sphingosinicella. Int J Syst Evol Microbiol 2010; 60:580-584. [DOI: 10.1099/ijs.0.010777-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped bacterium, designated strain YC7378T was isolated from vermicompost (VC) collected at Masan, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC7378T grew optimally at 30 °C and at pH 6.5–8.5. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC7378T belongs to the genus Sphingosinicella in the family Sphingomonadaceae. The most closely related strains are Sphingosinicella soli KSL-125T (95.7 %), Sphingosinicella xenopeptidilytica 3-2W4T (95.6 %) and Sphingosinicella microcystinivorans Y2T (95.5 %). Strain YC7378T contained ubiquinone Q-10 as the major respiratory quinone system and sym-homospermidine as the major polyamine. The major fatty acids of strain YC7378T were C18 : 1
ω7c, C16 : 1
ω7c and/or iso-C15 : 0 2-OH, C14 : 0 2-OH and C16 : 0. The major polar lipids were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The total DNA G+C content was 59.4 mol%. The phenotypic, phylogenetic and chemotaxonomic data showed that strain YC7378T represents a novel species of the genus Sphingosinicella, for which the name Sphingosinicella vermicomposti sp. nov. is proposed. The type strain is YC7378T (=KCTC 22446T =DSM 21593T).
Collapse
Affiliation(s)
- Muhammad Yasir
- Division of Applied Life Science (BK 21), Plant Molecular Biology & Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Zubair Aslam
- Division of Applied Life Science (BK 21), Plant Molecular Biology & Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Geun Cheol Song
- Division of Applied Life Science (BK 21), Plant Molecular Biology & Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Che Ok Jeon
- Department of Life Sciences, Chung-Ang University, Seoul 156-756, Korea
| | - Young Ryun Chung
- Division of Applied Life Science (BK 21), Plant Molecular Biology & Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea
| |
Collapse
|
21
|
Heck T, Makam V, Lutz J, Blank L, Schmid A, Seebach D, Kohler HP, Geueke B. Kinetic Analysis of L-Carnosine Formation by β-Aminopeptidases. Adv Synth Catal 2010. [DOI: 10.1002/adsc.200900697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Wilczyńska D, Kosson P, Kwasiborska M, Ejchart A, Olma A. Synthesis and receptor binding of opioid peptide analogues containing beta3-homo-amino acids. J Pept Sci 2009; 15:777-82. [PMID: 19787815 DOI: 10.1002/psc.1175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
beta-Amino acids containing hybrid peptides and beta-peptides show great potential as peptidomimetics. In this paper we describe the synthesis and affinity toward the micro- and delta-opioid receptors of beta-peptides, analogues of Leu-enkephalin, deltorphin I, dermorphin and alpha,beta-hybrides, analogues of deltorphin I. Substitution of alpha-amino acid residues with beta(3)-homo-amino acid residues, in general resulted in decrease of affinity to opioid receptors. However, the incorporation beta(3)h-D-Ala in position 2 or beta(3)hPhe in position 3 of deltorphin I resulted in potent and selective ligand for delta-opioid receptor. The NMR studies of beta-deltorphin I analogue suggest that conformational motions in the central part of the peptide backbone are partially restricted and some conformational preferences can be expected.
Collapse
Affiliation(s)
- Dominika Wilczyńska
- Institute of Organic Chemistry, Technical University of Łódź, Zeromskiego 116, 90-924 Łódź, Poland
| | | | | | | | | |
Collapse
|
23
|
Heyland J, Antweiler N, Lutz J, Heck T, Geueke B, Kohler HPE, Blank LM, Schmid A. Simple enzymatic procedure for L-carnosine synthesis: whole-cell biocatalysis and efficient biocatalyst recycling. Microb Biotechnol 2009; 3:74-83. [PMID: 21255308 PMCID: PMC3815949 DOI: 10.1111/j.1751-7915.2009.00143.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
β-Peptides and their derivates are usually stable to proteolysis and have an increased half-life compared with α-peptides. Recently, β-aminopeptidases were described as a new enzyme class that enabled the enzymatic degradation and formation of β-peptides. As an alternative to the existing chemical synthesis routes, the aim of the present work was to develop a whole-cell biocatalyst for the synthesis and production of β-peptides using this enzymatic activity. For the optimization of the reaction system we chose the commercially relevant β,α-dipeptide L-carnosine (β-alanine-L-histidine) as model product. We were able to show that different recombinant yeast and bacteria strains, which overexpress a β-peptidase, could be used directly as whole-cell biocatalysts for the synthesis of L-carnosine. By optimizing relevant reaction conditions for the best-performing recombinant Escherichia coli strain, such as pH and substrate concentrations, we obtained high l-carnosine yields of up to 71%. Long-time as well as biocatalyst recycling experiments indicated a high stability of the developed biocatalyst for at least five repeated batches. Application of the recombinant E. coli in a fed-batch process enabled the accumulation of l-carnosine to a concentration of 3.7 g l(-1).
Collapse
Affiliation(s)
- Jan Heyland
- Laboratory of Chemical Biotechnology, TU Dortmund, 44221 Dortmund, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Heck T, Seebach D, Osswald S, ter Wiel MKJ, Kohler HPE, Geueke B. Kinetic Resolution of Aliphatic β-Amino Acid Amides by β-Aminopeptidases. Chembiochem 2009; 10:1558-61. [DOI: 10.1002/cbic.200900184] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Aminomethylation of chiral silyl enol ethers: access to β2-homotryptophane and β2-homolysine derivatives. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.05.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Byrne C, Church T, Kramer J, Coates G. Catalytic Synthesis of β3-Amino Acid Derivatives from α-Amino Acids. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Byrne C, Church T, Kramer J, Coates G. Catalytic Synthesis of β3-Amino Acid Derivatives from α-Amino Acids. Angew Chem Int Ed Engl 2008; 47:3979-83. [DOI: 10.1002/anie.200705310] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Heck T, Kohler HPE, Limbach M, Flögel O, Seebach D, Geueke B. Enzyme-Catalyzed Formation ofβ-Peptides:β-Peptidyl Aminopeptidases BapA and DmpA Acting asβ-Peptide-Synthesizing Enzymes. Chem Biodivers 2007; 4:2016-30. [PMID: 17886858 DOI: 10.1002/cbdv.200790168] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent studies, we discovered that the three beta-peptidyl aminopeptidases, BapA from Sphingosinicella xenopeptidilytica 3-2W4, BapA from S. microcystinivorans Y2, and DmpA from Ochrobactrum anthropi LMG7991, possess the unique feature of cleaving N-terminal beta-amino acid residues from beta- and alpha/beta-peptides. Herein, we investigated the use of the same three enzymes for the reverse reaction catalyzing the oligomerization of beta-amino acids and the synthesis of mixed peptides with N-terminal beta-amino acid residues. As substrates, we employed the beta-homoamino acid derivatives H-beta hGly-pNA, H-beta3 hAla-pNA, H-(R)-beta3 hAla-pNA, H-beta3 hPhe-pNA, H-(R)-beta3 hPhe-pNA, and H-beta3 hLeu-pNA. All three enzymes were capable of coupling the six beta-amino acids to oligomers with chain lengths of up to eight amino acid residues. With the enzyme DmpA as the catalyst, we observed very high conversion rates, which correspond to dimer yields of up to 76%. The beta-dipeptide H-beta3 hAla-beta3 hLeu-OH and the beta/alpha-dipeptide H-beta hGly-His-OH (carnosine) were formed with almost 50% conversion, when a five-fold excess of beta3-homoleucine or histidine was incubated with H-beta3 hAla-pNA and H-beta hGly-pNA, respectively, in the presence of the enzyme BapA from S. microcystinivorans Y2. BapA from S. xenopeptidilytica 3-2W4 turned out to be a versatile catalyst capable of coupling various beta-amino acid residues to the free N-termini of beta- and alpha-amino acids and even to an alpha-tripeptide. Thus, these aminopeptidases might be useful to introduce a beta-amino acid residue as an N-terminal protecting group into a 'natural' alpha-peptide, thereby stabilizing the peptide against degradation by other proteolytic enzymes.
Collapse
Affiliation(s)
- Tobias Heck
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf
| | | | | | | | | | | |
Collapse
|
29
|
Geueke B, Kohler HPE. Bacterial β-peptidyl aminopeptidases: on the hydrolytic degradation of β-peptides. Appl Microbiol Biotechnol 2007; 74:1197-204. [PMID: 17318535 DOI: 10.1007/s00253-007-0872-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 01/26/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
The special chemical and biological features of beta-peptides have been investigated intensively during recent years. Many studies emphasize the restricted biodegradability and the high metabolic stability of this class of compounds. beta-Peptidyl aminopeptidases form the first family of enzymes that hydrolyze a variety of short beta-peptides and beta-amino-acid-containing peptides. All representatives of this family were isolated from Gram-negative bacteria. The substrate specificities of the peptidases vary greatly, but the enzymes have common structural properties, and a similar reaction mechanism can be expected. This review gives an overview on the beta-peptidyl aminopeptidases with emphasis on their biochemical and structural properties. Their possible physiological function is discussed. Functionally and structurally related enzymes are compared to the beta-peptidyl aminopeptidases.
Collapse
Affiliation(s)
- B Geueke
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Ueberlandstrasse 133, 8600 Dübendorf, Switzerland.
| | | |
Collapse
|
30
|
Heck T, Limbach M, Geueke B, Zacharias M, Gardiner J, Kohler HPE, Seebach D. Enzymatic degradation of beta- and mixed alpha,beta-oligopeptides. Chem Biodivers 2007; 3:1325-48. [PMID: 17193247 DOI: 10.1002/cbdv.200690136] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
One of the main and most astonishing characteristics of peptides comprised of beta-amino acids with proteinogenic side chains is their extraordinarily high stability towards enzymatic degradation. So far, only certain microbial enzymes have been shown to cleave N-terminal beta(3)-homoamino acid residues from peptides. In this work, the L-aminopeptidase-D-amidase/esterase (DmpA) from Ochrobactrum anthropi LMG7991 is compared to two closely related beta-peptidyl aminopeptidases (BapA), which originate from Sphingosinicella strains, and to microsomal leucine aminopeptidase (LAP) as a reference. All four enzymes are aminopeptidases cleaving N-terminal amino acids from small peptides. Degradation experiments reveal that DmpA and both BapA enzymes exhibit unique, but clearly distinct substrate specificities and preferences. DmpA also cleaves beta- and mixed alpha,beta-peptides and amides, but a short side chain of the N-terminal beta-amino acid residue seems to be a prerequisite, since only peptides carrying N-terminal betahGly and beta(3)hAla are hydrolyzed with good efficiencies. Both beta-peptidyl aminopeptidases cleave beta-amino acids from a variety of beta-peptides and mixed alpha,beta-peptides, but they do not accept alpha-amino acids in the N-terminal position. Astonishingly, DmpA exhibited much higher catalytical rates for the mixed dipeptide carnosine (H-betahGly-His-OH) than for any other substrate described until now.
Collapse
Affiliation(s)
- Tobias Heck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf
| | | | | | | | | | | | | |
Collapse
|
31
|
Aguilar MI, Purcell AW, Devi R, Lew R, Rossjohn J, Smith AI, Perlmutter P. β-Amino acid-containing hybrid peptides—new opportunities in peptidomimetics. Org Biomol Chem 2007; 5:2884-90. [PMID: 17728852 DOI: 10.1039/b708507a] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid peptides consisting of alpha-amino acids with judiciously placed beta-amino acids show great promise as peptidomimetics in an increasing range of therapeutic applications. This reflects a combination of increased stability, high specificity and relative ease of synthesis.
Collapse
Affiliation(s)
- Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University, PO Box 13d, Victoria, 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Geueke B, Busse HJ, Fleischmann T, Kämpfer P, Kohler HPE. Description of Sphingosinicella xenopeptidilytica sp. nov., a β-peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans. Int J Syst Evol Microbiol 2007; 57:107-113. [PMID: 17220451 DOI: 10.1099/ijs.0.64509-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, rod-shaped bacterium, strain 3-2W4T, was isolated from the aeration tank of a wastewater treatment plant in Zurich and was found to have the exceptional capacity to degrade synthetic β-peptides. 16S rRNA gene sequence analysis showed that strain 3-2W4T is closely related to Sphingosinicella microcystinivorans Y2T, but DNA–DNA hybridization experiments between these two strains revealed that they belong to two different species. The two strains displayed different fingerprints after PCR analysis using the repetitive primers BOX, ERIC and REP. Strain 3-2W4T did not degrade microcystin, which is a characteristic trait of Sphingosinicella microcystinivorans Y2T. Like Sphingosinicella microcystinivorans Y2T, strain 3-2W4T had the following characteristics: fatty acids comprising mainly C18 : 1
ω7c, summed feature 3 (C16 : 1
ω7c and/or iso-C15 : 0 2-OH) and C16 : 0, the presence of ubiquinone Q-10 and sym-homospermidine as the predominant polyamine compound. The polar lipid profiles of the two strains were almost identical, consisting of phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and sphingoglycolipid. Strain 3-2W4T and Sphingosinicella microcystinivorans Y2T utilized the β-peptides H-βhVal-βhAla-βhLeu-OH and H-βhAla-βhLeu-OH as sole carbon and energy sources and shared β-peptidyl aminopeptidase activity in common, which distinguishes them from Sphingomonas and Sphingopyxis type strains. On the basis of these results, strain 3-2W4T represents a novel species of the genus Sphingosinicella, for which the name Sphingosinicella xenopeptidilytica sp. nov. is proposed. The type strain is 3-2W4T (=DSM 17130T=CCUG 52537T). The descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans are emended.
Collapse
Affiliation(s)
- Birgit Geueke
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, CH-8600 Dübendorf, Switzerland
| | - Hans-Jürgen Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Thomas Fleischmann
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, CH-8600 Dübendorf, Switzerland
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Hans-Peter E Kohler
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
33
|
Geueke B, Heck T, Limbach M, Nesatyy V, Seebach D, Kohler HPE. Bacterial ?-peptidyl aminopeptidases with unique substrate specificities for ?-oligopeptides and mixed ?,?-oligopeptides. FEBS J 2006; 273:5261-72. [PMID: 17064315 DOI: 10.1111/j.1742-4658.2006.05519.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously discovered that BapA, a bacterial beta-peptidyl aminopeptidase, is able to hydrolyze two otherwise metabolically inert beta-peptides [Geueke B, Namoto K, Seebach D and Kohler H-PE (2005) J Bacteriol 187, 5910-5917]. Here, we describe the purification and characterization of two distinct bacterial beta-peptidyl aminopeptidases that originated from different environmental isolates. Both bapA genes encode a preprotein with a signal sequence and were flanked by ORFs that code for enzymes with similar predicted functions. To form the active enzymes, which had an (alphabeta)(4) quaternary structure, the preproteins needed to be cleaved into two subunits. The two beta-peptidyl aminopeptidases had 86% amino acid sequence identity, hydrolyzed a variety of beta-peptides and mixed beta/alpha-peptides, and exhibited unique substrate specificities. The prerequisite for peptides being accepted as substrates was the presence of a beta-amino acid at the N-terminus; peptide substrates with an N-terminal alpha-amino acid were not hydrolyzed at all. Both enzymes cleaved the peptide bond between the N-terminal beta-amino acid and the amino acid at the second position of tripeptidic substrates of the general structure H-betahXaa-Ile-betahTyr-OH according to the following preferences with regard to the side chain of the N-terminal beta-amino acid: aliphatic and aromatic > OH-containing > hydrogen, basic and polar. Experiments with the tripeptides H-d-betahVal-Ile-betahTyr-OH and H-betahVal-Ile-betahTyr-OH demonstrated that the two BapA enzymes preferred the peptide with the l-configuration of the N-terminal beta-homovaline residue as a substrate.
Collapse
Affiliation(s)
- Birgit Geueke
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | | | | | | | | | | |
Collapse
|