1
|
Bidnenko V, Chastanet A, Péchoux C, Redko-Hamel Y, Pellegrini O, Durand S, Condon C, Boudvillain M, Jules M, Bidnenko E. Complex sporulation-specific expression of transcription termination factor Rho highlights its involvement in Bacillus subtilis cell differentiation. J Biol Chem 2024; 300:107905. [PMID: 39427753 PMCID: PMC11599450 DOI: 10.1016/j.jbc.2024.107905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Termination factor Rho, responsible for the main factor-dependent pathway of transcription termination and the major inhibitor of antisense transcription, is an emerging regulator of various physiological processes in microorganisms. In Gram-positive bacterium Bacillus subtilis, Rho is involved in the control of cell adaptation to starvation and, in particular, in the control of sporulation, a complex differentiation program leading to the formation of a highly resistant dormant spore. While the initiation of sporulation requires a decrease in Rho protein levels during the transition to stationary phase, the mechanisms regulating the expression of rho gene throughout the cell cycle remain largely unknown. Here we show that a drop in the activity of the vegetative SigA-dependent rho promoter causes the inhibition of rho expression in stationary phase. However, after the initiation of sporulation, rho gene is specifically reactivated in two compartments of the sporulating cell using distinct mechanisms. In the mother cell, rho expression occurs by read-through transcription initiated at the SigH-dependent promoter of the distal spo0F gene. In the forespore, rho gene is transcribed from the intrinsic promoter recognized by the alternative sigma factor SigF. These regulatory elements ensure the activity of Rho during sporulation, which appears important for the proper formation of spores. We provide experimental evidence that disruption of the spatiotemporal expression of rho during sporulation affects the resistance properties of spores, their morphology, and the ability to return to vegetative growth under favorable growth conditions.
Collapse
Affiliation(s)
- Vladimir Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France
| | - Yulia Redko-Hamel
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Olivier Pellegrini
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Sylvain Durand
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Marc Boudvillain
- Centre de Biophysique moléculaire, CNRS UPR4301, Orléans, France; Affiliated with Université d'Orléans, Orléans, France
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Paredes-Sabja D, Cid-Rojas F, Pizarro-Guajardo M. Assembly of the exosporium layer in Clostridioides difficile spores. Curr Opin Microbiol 2022; 67:102137. [PMID: 35182899 DOI: 10.1016/j.mib.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming obligate anaerobe and a major threat to the healthcare system world-wide. Because of its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. During infection, C. difficile produces spores that can persist in the host and are responsible for disease recurrence and transmission, especially between hospitalized patients. Although the C. difficile spore surface mediates critical interactions with host surfaces, this outermost layer, known as the exosporium, is poorly conserved when compared to members of the Bacillus genus. Notably, the exosporium has been shown to be important for the persistence of C. difficile in the host. In this review, the ultrastructural properties, composition, and morphogenesis of the exosporium will be discussed.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
| | - Francisca Cid-Rojas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
3
|
Tu Z, Dekker HL, Roseboom W, Swarge BN, Setlow P, Brul S, Kramer G. High Resolution Analysis of Proteome Dynamics during Bacillus subtilis Sporulation. Int J Mol Sci 2021; 22:ijms22179345. [PMID: 34502250 PMCID: PMC8431406 DOI: 10.3390/ijms22179345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Bacillus subtilis vegetative cells switch to sporulation upon nutrient limitation. To investigate the proteome dynamics during sporulation, high-resolution time-lapse proteomics was performed in a cell population that was induced to sporulate synchronously. Here, we are the first to comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins, and other proteins involved in sporulation and spore biogenesis. Protein co-expression analysis revealed four co-expressed modules (termed blue, brown, green, and yellow). Modules brown and green are upregulated during sporulation and contain proteins associated with sporulation. Module blue is negatively correlated with modules brown and green, containing ribosomal and metabolic proteins. Finally, module yellow shows co-expression with the three other modules. Notably, several proteins not belonging to any of the known transcription regulons were identified as co-expressed with modules brown and green, and might also play roles during sporulation. Finally, levels of some coat proteins, for example morphogenetic coat proteins, decreased late in sporulation.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Henk L. Dekker
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
| | - Winfried Roseboom
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
| | - Bhagyashree N. Swarge
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030-3305, USA;
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: (S.B.); (G.K.); Tel.: +31-20-525-7079/6970 (S.B.); +31-20-525-5457 (G.K.)
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; (Z.T.); (H.L.D.); (W.R.); (B.N.S.)
- Correspondence: (S.B.); (G.K.); Tel.: +31-20-525-7079/6970 (S.B.); +31-20-525-5457 (G.K.)
| |
Collapse
|
4
|
Secaira-Morocho H, Castillo JA, Driks A. Diversity and evolutionary dynamics of spore-coat proteins in spore-forming species of Bacillales. Microb Genom 2020; 6. [PMID: 33052805 PMCID: PMC7725329 DOI: 10.1099/mgen.0.000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among members of the Bacillales order, there are several species capable of forming a structure called an endospore. Endospores enable bacteria to survive under unfavourable growth conditions and germinate when environmental conditions are favourable again. Spore-coat proteins are found in a multilayered proteinaceous structure encasing the spore core and the cortex. They are involved in coat assembly, cortex synthesis and germination. Here, we aimed to determine the diversity and evolutionary processes that have influenced spore-coat genes in various spore-forming species of Bacillales using an in silico approach. For this, we used sequence similarity searching algorithms to determine the diversity of coat genes across 161 genomes of Bacillales. The results suggest that among Bacillales, there is a well-conserved core genome, composed mainly by morphogenetic coat proteins and spore-coat proteins involved in germination. However, some spore-coat proteins are taxa-specific. The best-conserved genes among different species may promote adaptation to changeable environmental conditions. Because most of the Bacillus species harbour complete or almost complete sets of spore-coat genes, we focused on this genus in greater depth. Phylogenetic reconstruction revealed eight monophyletic groups in the Bacillus genus, of which three are newly discovered. We estimated the selection pressures acting over spore-coat genes in these monophyletic groups using classical and modern approaches and detected horizontal gene transfer (HGT) events, which have been further confirmed by scanning the genomes to find traces of insertion sequences. Although most of the genes are under purifying selection, there are several cases with individual sites evolving under positive selection. Finally, the HGT results confirm that sporulation is an ancestral feature in Bacillus.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - José A Castillo
- School of Biological Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Imbabura, Ecuador
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Shuster B, Khemmani M, Abe K, Huang X, Nakaya Y, Maryn N, Buttar S, Gonzalez AN, Driks A, Sato T, Eichenberger P. Contributions of crust proteins to spore surface properties in Bacillus subtilis. Mol Microbiol 2019; 111:825-843. [PMID: 30582883 DOI: 10.1111/mmi.14194] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
Surface properties, such as adhesion and hydrophobicity, constrain dispersal of bacterial spores in the environment. In Bacillus subtilis, these properties are influenced by the outermost layer of the spore, the crust. Previous work has shown that two clusters, cotVWXYZ and cgeAB, encode the protein components of the crust. Here, we characterize the respective roles of these genes in surface properties using Bacterial Adherence to Hydrocarbons assays, negative staining of polysaccharides by India ink and Transmission Electron Microscopy. We showed that inactivation of crust genes caused increases in spore relative hydrophobicity, disrupted the spore polysaccharide layer, and impaired crust structure and attachment to the rest of the coat. We also found that cotO, previously identified for its role in outer coat formation, is necessary for proper encasement of the spore by the crust. In parallel, we conducted fluorescence microscopy experiments to determine the full network of genetic dependencies for subcellular localization of crust proteins. We determined that CotZ is required for the localization of most crust proteins, while CgeA is at the bottom of the genetic interaction hierarchy.
Collapse
Affiliation(s)
- Bentley Shuster
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Kimihiro Abe
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Xiaoyu Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Yusei Nakaya
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Nina Maryn
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Sally Buttar
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adriana N Gonzalez
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Tsutomu Sato
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| |
Collapse
|
6
|
Coordinated Assembly of the Bacillus anthracis Coat and Exosporium during Bacterial Spore Outer Layer Formation. mBio 2018; 9:mBio.01166-18. [PMID: 30401771 PMCID: PMC6222130 DOI: 10.1128/mbio.01166-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This work dramatically improves our understanding of the assembly of the outermost layer of the B. anthracis spore, the exosporium, a layer that encases spores from many bacterial species and likely plays important roles in the spore’s interactions with the environment, including host tissues. Nonetheless, the mechanisms directing exosporium assembly into a shell surrounding the spore are still very poorly understood. In this study, we clarify these mechanisms by the identification of a novel protein interaction network that directs assembly to initiate at a specific subcellular location in the developing cell. Our results further suggest that the presence or absence of an exosporium has a major impact on the assembly of other more interior spore layers, thereby potentially explaining long-noted differences in spore assembly between B. anthracis and the model organism B. subtilis. Bacterial spores produced by the Bacillales are composed of concentric shells, each of which contributes to spore function. Spores from all species possess a cortex and coat, but spores from many species possess additional outer layers. The outermost layer of Bacillus anthracis spores, the exosporium, is separated from the coat by a gap known as the interspace. Exosporium and interspace assembly remains largely mysterious. As a result, we have a poor understanding of the overarching mechanisms driving the assembly of one of the most ubiquitous cell types in nature. To elucidate the mechanisms directing exosporium assembly, we generated strains bearing mutations in candidate exosporium-controlling genes and analyzed the effect on exosporium formation. Biochemical and cell biological analyses argue that CotE directs the assembly of CotO into the spore and that CotO might be located at or close to the interior side of the cap. Taken together with data showing that CotE and CotO interact directly in vitro, we propose a model in which CotE and CotO are important components of a protein interaction network that connects the exosporium to the forespore during cap formation and exosporium elongation. Our data also suggest that the cap interferes with coat assembly at one pole of the spore, altering the pattern of coat deposition compared to the model organism Bacillus subtilis. We propose that the difference in coat assembly patterns between these two species is due to an inherent flexibility in coat assembly, which may facilitate the evolution of spore outer layer complexity.
Collapse
|
7
|
Oteng-Pabi SK, Clouthier CM, Keillor JW. Design of a glutamine substrate tag enabling protein labelling mediated by Bacillus subtilis transglutaminase. PLoS One 2018; 13:e0197956. [PMID: 29847605 PMCID: PMC5976192 DOI: 10.1371/journal.pone.0197956] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/13/2018] [Indexed: 02/07/2023] Open
Abstract
Transglutaminases (TGases) are enzymes that catalyse protein cross-linking through a transamidation reaction between the side chain of a glutamine residue on one protein and the side chain of a lysine residue on another. Generally, TGases show low substrate specificity with respect to their amine substrate, such that a wide variety of primary amines can participate in the modification of specific glutamine residue. Although a number of different TGases have been used to mediate these bioconjugation reactions, the TGase from Bacillus subtilis (bTG) may be particularly suited to this application. It is smaller than most TGases, can be expressed in a soluble active form, and lacks the calcium dependence of its mammalian counterparts. However, little is known regarding this enzyme and its glutamine substrate specificity, limiting the scope of its application. In this work, we designed a FRET-based ligation assay to monitor the bTG-mediated conjugation of the fluorescent proteins Clover and mRuby2. This assay allowed us to screen a library of random heptapeptide glutamine sequences for their reactivity with recombinant bTG in bacterial cells, using fluorescence assisted cell sorting. From this library, several reactive sequences were identified and kinetically characterized, with the most reactive sequence (YAHQAHY) having a kcat/KM value of 19 ± 3 μM-1 min-1. This sequence was then genetically appended onto a test protein as a reactive 'Q-tag' and fluorescently labelled with dansyl-cadaverine, in the first demonstration of protein labelling mediated by bTG.
Collapse
Affiliation(s)
- Samuel K. Oteng-Pabi
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
| | - Christopher M. Clouthier
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, 30 Marie-Curie, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Exploring the interaction network of the Bacillus subtilis outer coat and crust proteins. Microbiol Res 2017; 204:72-80. [PMID: 28870294 DOI: 10.1016/j.micres.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022]
Abstract
Bacillus subtilis spores, representatives of an exceptionally resistant dormant cell type, are encircled by a thick proteinaceous layer called the spore coat. More than 80 proteins assemble into four distinct coat layers: a basement layer, an inner coat, an outer coat and a crust. As the spore develops inside the mother cell, spore coat proteins synthesized in the cytoplasm are gradually deposited onto the prespore surface. A small set of morphogenetic proteins necessary for spore coat morphogenesis are thought to form a scaffold to which the rest of the coat proteins are attached. Extensive localization and proteomic studies using wild type and mutant spores have revealed the arrangement of individual proteins within the spore coat layers. In this study we examined the interactions between the proteins localized to the outer coat and crust using a bacterial two hybrid system. These two layers are composed of at least 25 components. Self-interactions were observed for most proteins and numerous novel interactions were identified. The most interesting contacts are those made with the morphogenetic proteins CotE, CotY and CotZ; these could serve as a basis for understanding the specific roles of particular proteins in spore coat morphogenesis.
Collapse
|
9
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
10
|
CotG-Like Modular Proteins Are Common among Spore-Forming Bacilli. J Bacteriol 2016; 198:1513-20. [PMID: 26953338 DOI: 10.1128/jb.00023-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CotG is an abundant protein initially identified as an outer component of the Bacillus subtilis spore coat. It has an unusual structure characterized by several repeats of positively charged amino acids that are probably the outcome of multiple rounds of gene elongation events in an ancestral minigene. CotG is not highly conserved, and its orthologues are present in only two Bacillus and two Geobacillus species. In B. subtilis, CotG is the target of extensive phosphorylation by a still unidentified enzyme and has a role in the assembly of some outer coat proteins. We report now that most spore-forming bacilli contain a protein not homologous to CotG of B. subtilis but sharing a central "modular" region defined by a pronounced positive charge and randomly coiled tandem repeats. Conservation of the structural features in most spore-forming bacilli suggests a relevant role for the CotG-like protein family in the structure and function of the bacterial endospore. To expand our knowledge on the role of CotG, we dissected the B. subtilis protein by constructing deletion mutants that express specific regions of the protein and observed that they have different roles in the assembly of other coat proteins and in spore germination. IMPORTANCE CotG of B. subtilis is not highly conserved in the Bacillus genus; however, a CotG-like protein with a modular structure and chemical features similar to those of CotG is common in spore-forming bacilli, at least when CotH is also present. The conservation of CotG-like features when CotH is present suggests that the two proteins act together and may have a relevant role in the structure and function of the bacterial endospore. Dissection of the modular composition of CotG of B. subtilis by constructing mutants that express only some of the modules has allowed a first characterization of CotG modules and will be the basis for a more detailed functional analysis.
Collapse
|
11
|
Isticato R, Sirec T, Vecchione S, Crispino A, Saggese A, Baccigalupi L, Notomista E, Driks A, Ricca E. The Direct Interaction between Two Morphogenetic Proteins Is Essential for Spore Coat Formation in Bacillus subtilis. PLoS One 2015; 10:e0141040. [PMID: 26484546 PMCID: PMC4618286 DOI: 10.1371/journal.pone.0141040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/02/2015] [Indexed: 11/18/2022] Open
Abstract
In Bacillus subtilis the protective layers that surround the mature spore are formed by over seventy different proteins. Some of those proteins have a regulatory role on the assembly of other coat proteins and are referred to as morphogenetic factors. CotE is a major morphogenetic factor, known to form a ring around the forming spore and organize the deposition of the outer surface layers. CotH is a CotE-dependent protein known to control the assembly of at least nine other coat proteins. We report that CotH also controls the assembly of CotE and that this mutual dependency is due to a direct interaction between the two proteins. The C-terminal end of CotE is essential for this direct interaction and CotH cannot bind to mutant CotE deleted of six or nine C-terminal amino acids. However, addition of a negatively charged amino acid to those deleted versions of CotE rescues the interaction.
Collapse
Affiliation(s)
| | - Teja Sirec
- Department of Biology, Federico II University, Naples, Italy
| | | | - Anna Crispino
- Department of Biology, Federico II University, Naples, Italy
| | - Anella Saggese
- Department of Biology, Federico II University, Naples, Italy
| | | | | | - Adam Driks
- Department of Microbiology and Immunology, Infectious Disease and Immunology Research Institute, Loyola University Chicago, Maywood, IL, United States of America
| | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
- * E-mail:
| |
Collapse
|
12
|
Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments. Appl Environ Microbiol 2015; 81:6725-35. [PMID: 26187959 DOI: 10.1128/aem.01817-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/14/2015] [Indexed: 11/20/2022] Open
Abstract
The germination of spore-forming bacteria in high-salinity environments is of applied interest for food microbiology and soil ecology. It has previously been shown that high salt concentrations detrimentally affect Bacillus subtilis spore germination, rendering this process slower and less efficient. The mechanistic details of these salt effects, however, remained obscure. Since initiation of nutrient germination first requires germinant passage through the spores' protective integuments, the aim of this study was to elucidate the role of the proteinaceous spore coat in germination in high-salinity environments. Spores lacking major layers of the coat due to chemical decoating or mutation germinated much worse in the presence of NaCl than untreated wild-type spores at comparable salinities. However, the absence of the crust, the absence of some individual nonmorphogenetic proteins, and the absence of either CwlJ or SleB had no or little effect on germination in high-salinity environments. Although the germination of spores lacking GerP (which is assumed to facilitate germinant flow through the coat) was generally less efficient than the germination of wild-type spores, the presence of up to 2.4 M NaCl enhanced the germination of these mutant spores. Interestingly, nutrient-independent germination by high pressure was also inhibited by NaCl. Taken together, these results suggest that (i) the coat has a protective function during germination in high-salinity environments; (ii) germination inhibition by NaCl is probably not exerted at the level of cortex hydrolysis, germinant accessibility, or germinant-receptor binding; and (iii) the most likely germination processes to be inhibited by NaCl are ion, Ca(2+)-dipicolinic acid, and water fluxes.
Collapse
|
13
|
Qiu S, Lin Z, Zhou Y, Wang D, Yuan L, Wei Y, Dai T, Luo L, Chen G. Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles. Analyst 2015; 140:1149-54. [DOI: 10.1039/c4an02106a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rapid and cost effective colorimetric sensor has been developed for the detection of bacteria, and Bacillus subtilis was selected as an example to demonstrate the feasibility of the sensing system.
Collapse
Affiliation(s)
- Suyan Qiu
- Institute for Quality & Safety and Standards of Agricultural Products Research
- Jiangxi Academy of Agricultural Sciences
- Nanchang
- China
- MOE Key Laboratory of Analysis and Detection for Food Safety
| | - Zhenyu Lin
- MOE Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Yaomin Zhou
- Institute for Quality & Safety and Standards of Agricultural Products Research
- Jiangxi Academy of Agricultural Sciences
- Nanchang
- China
| | - Donggen Wang
- Institute for Quality & Safety and Standards of Agricultural Products Research
- Jiangxi Academy of Agricultural Sciences
- Nanchang
- China
| | - Lijuan Yuan
- Institute for Quality & Safety and Standards of Agricultural Products Research
- Jiangxi Academy of Agricultural Sciences
- Nanchang
- China
| | - Yihua Wei
- Institute for Quality & Safety and Standards of Agricultural Products Research
- Jiangxi Academy of Agricultural Sciences
- Nanchang
- China
| | - Tingcan Dai
- Institute for Quality & Safety and Standards of Agricultural Products Research
- Jiangxi Academy of Agricultural Sciences
- Nanchang
- China
| | - Linguang Luo
- Institute for Quality & Safety and Standards of Agricultural Products Research
- Jiangxi Academy of Agricultural Sciences
- Nanchang
- China
| | - Guonan Chen
- MOE Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
14
|
Plomp M, Carroll AM, Setlow P, Malkin AJ. Architecture and assembly of the Bacillus subtilis spore coat. PLoS One 2014; 9:e108560. [PMID: 25259857 PMCID: PMC4178626 DOI: 10.1371/journal.pone.0108560] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022] Open
Abstract
Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization pattern in a biological organism.
Collapse
Affiliation(s)
- Marco Plomp
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Alicia Monroe Carroll
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail: (PS); (AJM)
| | - Alexander J. Malkin
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail: (PS); (AJM)
| |
Collapse
|
15
|
Adhesion of B. subtilis spores and vegetative cells onto stainless steel – DLVO theories and AFM spectroscopy. J Colloid Interface Sci 2013; 405:233-41. [DOI: 10.1016/j.jcis.2013.05.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/19/2022]
|
16
|
McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 2013; 11:33-44. [PMID: 23202530 PMCID: PMC9910062 DOI: 10.1038/nrmicro2921] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sporulation in Bacillus subtilis involves an asymmetric cell division followed by differentiation into two cell types, the endospore and the mother cell. The endospore coat is a multilayered shell that protects the bacterial genome during stress conditions and is composed of dozens of proteins. Recently, fluorescence microscopy coupled with high-resolution image analysis has been applied to the dynamic process of coat assembly and has shown that the coat is organized into at least four distinct layers. In this Review, we provide a brief summary of B. subtilis sporulation, describe the function of the spore surface layers and discuss the recent progress that has improved our understanding of the structure of the endospore coat and the mechanisms of coat assembly.
Collapse
Affiliation(s)
- Peter T. McKenney
- Center for Genomics and Systems Biology, Department of
Biology, New York University, New York, New York 10003, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Stritch School
of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Patrick Eichenberger
- Center for Genomics and Systems Biology, Department of
Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
17
|
Sahin O, Yong EH, Driks A, Mahadevan L. Physical basis for the adaptive flexibility of Bacillus spore coats. J R Soc Interface 2012; 9:3156-60. [PMID: 22859568 DOI: 10.1098/rsif.2012.0470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacillus spores are highly resistant dormant cells formed in response to starvation. The spore is surrounded by a structurally complex protein shell, the coat, which protects the genetic material. In spite of its dormancy, once nutrient is available (or an appropriate physical stimulus is provided) the spore is able to resume metabolic activity and return to vegetative growth, a process requiring the coat to be shed. Spores dynamically expand and contract in response to humidity, demanding that the coat be flexible. Despite the coat's critical biological functions, essentially nothing is known about the design principles that allow the coat to be tough but also flexible and, when metabolic activity resumes, to be efficiently shed. Here, we investigated the hypothesis that these apparently incompatible characteristics derive from an adaptive mechanical response of the coat. We generated a mechanical model predicting the emergence and dynamics of the folding patterns uniformly seen in Bacillus spore coats. According to this model, spores carefully harness mechanical instabilities to fold into a wrinkled pattern during sporulation. Owing to the inherent nonlinearity in their formation, these wrinkles persist during dormancy and allow the spore to accommodate changes in volume without compromising structural and biochemical integrity. This characteristic of the spore and its coat may inspire design of adaptive materials.
Collapse
Affiliation(s)
- Ozgur Sahin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
18
|
Botelho M, Marques MT, Gomes C, da Silva AF, Bairos V, Santos Rosa M, Abrunhosa AP, de Lima JP. Nanorradiolipossomas modulados molecularmente para estudar a drenagem linfática profunda pulmonar. REVISTA PORTUGUESA DE PNEUMOLOGIA 2010; 16 Suppl 1:S27-52. [DOI: 10.1016/s0873-2159(15)30083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Chen G, Driks A, Tawfiq K, Mallozzi M, Patil S. Bacillus anthracis and Bacillus subtilis spore surface properties and transport. Colloids Surf B Biointerfaces 2009; 76:512-8. [PMID: 20074921 DOI: 10.1016/j.colsurfb.2009.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 11/13/2009] [Accepted: 12/15/2009] [Indexed: 11/16/2022]
Abstract
Effective decontamination of environments contaminated by Bacillus spores remains a significant challenge since Bacillus spores are highly resistant to killing and could plausibly adhere to many non-biological as well as biological surfaces. Decontamination of Bacillus spores can be significantly improved if the chemical basis of spore adherence is understood. In this research, we investigated the surface adhesive properties of Bacillus subtilis and Bacillus anthracis spores. The spore thermodynamic properties obtained from contact angle measurements indicated that both species were monopolar with a preponderance of electron-donating potential. This was also the case for spores of both species missing their outer layers, due to mutation. Transport of wild type and mutant spores of these two species was further analyzed in silica sand under unsaturated water conditions. A two-region solute transport model was used to simulate the spore transport with the assumption that the spore retention occurred within the immobile region only. Bacillus spore adhesion to the porous media was related to the interactions between the spores and the porous media. Our data indicated that spore surface structures played important roles in spore surface properties, since mutant spores missing outer layers had different surface thermodynamic and transport properties as compared to wild type spores. The changes in surface thermodynamic properties were further evidenced by infrared spectroscopy analysis.
Collapse
Affiliation(s)
- Gang Chen
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, United States.
| | | | | | | | | |
Collapse
|
20
|
Müllerová D, KrajÄÃková D, Barák I. Interactions betweenBacillus subtilisearly spore coat morphogenetic proteins. FEMS Microbiol Lett 2009; 299:74-85. [DOI: 10.1111/j.1574-6968.2009.01737.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
21
|
Wang KH, Isidro AL, Domingues L, Eskandarian HA, McKenney PT, Drew K, Grabowski P, Chua MH, Barry SN, Guan M, Bonneau R, Henriques AO, Eichenberger P. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis. Mol Microbiol 2009; 74:634-49. [PMID: 19775244 DOI: 10.1111/j.1365-2958.2009.06886.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endospores formed by Bacillus subtilis are encased in a tough protein shell known as the coat, which consists of at least 70 different proteins. We investigated the process of spore coat morphogenesis using a library of 40 coat proteins fused to green fluorescent protein and demonstrate that two successive steps can be distinguished in coat assembly. The first step, initial localization of proteins to the spore surface, is dependent on the coat morphogenetic proteins SpoIVA and SpoVM. The second step, spore encasement, requires a third protein, SpoVID. We show that in spoVID mutant cells, most coat proteins assembled into a cap at one side of the developing spore but failed to migrate around and encase it. We also found that SpoIVA directly interacts with SpoVID. A domain analysis revealed that the N-terminus of SpoVID is required for encasement and is a structural homologue of a virion protein, whereas the C-terminus is necessary for the interaction with SpoIVA. Thus, SpoVM, SpoIVA and SpoVID are recruited to the spore surface in a concerted manner and form a tripartite machine that drives coat formation and spore encasement.
Collapse
Affiliation(s)
- Katherine H Wang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Giorno R, Mallozzi M, Bozue J, Moody KS, Slack A, Qiu D, Wang R, Friedlander A, Welkos S, Driks A. Localization and assembly of proteins comprising the outer structures of the Bacillus anthracis spore. MICROBIOLOGY-SGM 2009; 155:1133-1145. [PMID: 19332815 DOI: 10.1099/mic.0.023333-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial spores possess a series of concentrically arranged protective structures that contribute to dormancy, survival and, ultimately, germination. One of these structures, the coat, is present in all spores. In Bacillus anthracis, however, the spore is surrounded by an additional, poorly understood, morphologically complex structure called the exosporium. Here, we characterize three previously discovered exosporium proteins called ExsFA (also known as BxpB), ExsFB (a highly related paralogue of exsFA/bxpB) and IunH (similar to an inosine-uridine-preferring nucleoside hydrolase). We show that in the absence of ExsFA/BxpB, the exosporium protein BclA accumulates asymmetrically to the forespore pole closest to the midpoint of the sporangium (i.e. the mother-cell-proximal pole of the forespore), instead of uniformly encircling the exosporium. ExsFA/BxpB may also have a role in coat assembly, as mutant spore surfaces lack ridges seen in wild-type spores and have a bumpy appearance. ExsFA/BxpB also has a modest but readily detected effect on germination. Nonetheless, an exsFA/bxpB mutant strain is fully virulent in both intramuscular and aerosol challenge models in Guinea pigs. We show that the pattern of localization of ExsFA/BxpB-GFP is a ring, consistent with a location for this protein in the basal layer of the exosporium. In contrast, ExsFB-GFP fluorescence is a solid oval, suggesting a distinct subcellular location for ExsFB-GFP. We also used these fusion proteins to monitor changes in the subcellular locations of these proteins during sporulation. Early in sporulation, both fusions were present throughout the mother cell cytoplasm. As sporulation progressed, GFP fluorescence moved from the mother cell cytoplasm to the forespore surface and formed either a ring of fluorescence, in the case of ExsFA/BxpB, or a solid oval of fluorescence, in the case of ExsFB. IunH-GFP also resulted in a solid oval of fluorescence. We suggest the interpretation that at least some ExsFB-GFP and IunH-GFP resides in the region between the coat and the exosporium, called the interspace.
Collapse
Affiliation(s)
- Rebecca Giorno
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Michael Mallozzi
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Joel Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Krishna-Sulayman Moody
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Alex Slack
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Dengli Qiu
- Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Rong Wang
- Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Arthur Friedlander
- Headquarters, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Susan Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
23
|
Searching for protein-protein interactions within the Bacillus subtilis spore coat. J Bacteriol 2009; 191:3212-9. [PMID: 19304857 DOI: 10.1128/jb.01807-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capability of endospores of Bacillus subtilis to withstand extreme environmental conditions is secured by several attributes. One of them, the protein shell that encases the spore and is known as the coat, provides the spore with its characteristic resistance to toxic chemicals, lytic enzymes, and predation by unicellular and multicellular eukaryotes. Despite most of the components of the spore coat having been identified, we have only a vague understanding of how such a complex structure is assembled. Using the yeast two-hybrid system, we attempted to identify direct contacts among the proteins allocated to the insoluble fraction of the spore coat: CotV, CotW, CotX, CotY, and CotZ. We also examined whether they could interact with CotE, one of the most crucial morphogenetic proteins governing outer coat formation and also present in the insoluble fraction. Out of all 21 possible interactions we tested, 4 were found to be positive. Among these interactions, we confirmed the previous observation that CotE forms homo-oligomers. In addition, we observed homotypic interactions of CotY, strong interactions between CotZ and CotY, and relatively weak, yet significant, interactions between CotV and CotW. The results of this yeast two-hybrid analysis were confirmed by size exclusion chromatography of recombinant coat proteins and a pull-down assay.
Collapse
|
24
|
Botelho MFRR, Marques MAT, Gomes CMF, da Silva AMF, Bairos VAAF, Rosa MADMS, Abrunhosa AP, de Lima JJP. Nanorradiolipossomas modulados molecularmente para estudar a drenagem linfática pulmonar profunda. REVISTA PORTUGUESA DE PNEUMOLOGIA 2009. [DOI: 10.1016/s0873-2159(15)30131-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Mallozzi M, Bozue J, Giorno R, Moody KS, Slack A, Cote C, Qiu D, Wang R, McKenney P, Lai EM, Maddock JR, Friedlander A, Welkos S, Eichenberger P, Driks A. Characterization of a Bacillus anthracis spore coat-surface protein that influences coat-surface morphology. FEMS Microbiol Lett 2008; 289:110-7. [PMID: 19054101 PMCID: PMC9972873 DOI: 10.1111/j.1574-6968.2008.01380.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bacterial spores are encased in a multilayered proteinaceous shell, called the coat. In many Bacillus spp., the coat protects against environmental assault and facilitates germination. In Bacillus anthracis, the spore is the etiological agent of anthrax, and the functions of the coat likely contribute to virulence. Here, we characterize a B. anthracis spore protein, called Cotbeta, which is encoded only in the genomes of the Bacillus cereus group. We found that Cotbeta is synthesized specifically during sporulation and is assembled onto the spore coat surface. Our analysis of a cotbeta null mutant in the Sterne strain reveals that Cotbeta has a role in determining coat-surface morphology but does not detectably affect germination. In the fully virulent Ames strain, a cotbeta null mutation has no effect on virulence in a murine model of B. anthracis infection.
Collapse
Affiliation(s)
- Michael Mallozzi
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL, USA
| | - Joel Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Rebecca Giorno
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL, USA
| | - Krishna-Sulayman Moody
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Alex Slack
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL, USA
| | - Christopher Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Dengli Qiu
- Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Rong Wang
- Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Peter McKenney
- Department of Biology and Center for Genomics and Systems Biology, New York University, NY, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Janine R. Maddock
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Arthur Friedlander
- Headquarters, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Susan Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Patrick Eichenberger
- Department of Biology and Center for Genomics and Systems Biology, New York University, NY, USA
| | - Adam Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
26
|
Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J Bacteriol 2008; 190:6197-203. [PMID: 18586932 DOI: 10.1128/jb.00623-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial spores are resistant to a wide range of chemical and physical insults that are normally lethal for the vegetative form of the bacterium. While the integrity of the protein coat of the spore is crucial for spore survival in vitro, far less is known about how the coat provides protection in vivo against predation by ecologically relevant hosts. In particular, assays had characterized the in vitro resistance of spores to peptidoglycan-hydrolyzing enzymes like lysozyme that are also important effectors of innate immunity in a wide variety of hosts. Here, we use the bacteriovorous nematode Caenorhabditis elegans, a likely predator of Bacillus spores in the wild, to characterize the role of the spore coat in an ecologically relevant spore-host interaction. We found that ingested wild-type Bacillus subtilis spores were resistant to worm digestion, whereas vegetative forms of the bacterium were efficiently digested by the nematode. Using B. subtilis strains carrying mutations in spore coat genes, we observed a correlation between the degree of alteration of the spore coat assembly and the susceptibility to the worm degradation. Surprisingly, we found that the spores that were resistant to lysozyme in vitro can be sensitive to C. elegans digestion depending on the extent of the spore coat structure modifications.
Collapse
|
27
|
Gounina-Allouane R, Broussolle V, Carlin F. Influence of the sporulation temperature on the impact of the nutrients inosine and l-alanine on Bacillus cereus spore germination. Food Microbiol 2008; 25:202-6. [DOI: 10.1016/j.fm.2007.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
|
28
|
Abstract
Endospores formed by Bacillus, Clostridia, and related genera are encased in a protein shell called the coat. In many species, including B. subtilis, the coat is the outermost spore structure, and in other species, such as the pathogenic organisms B. anthracis and B. cereus, the spore is encased in an additional layer called the exosporium. Both the coat and the exosporium have roles in protection of the spore and in its environmental interactions. Assembly of both structures is a function of the mother cell, one of two cellular compartments of the developing sporangium. Studies in B. subtilis have revealed that the timing of coat protein production, the guiding role of a small group of morphogenetic proteins, and several types of posttranslational modifications are essential for the fidelity of the assembly process. Assembly of the exosporium requires a set of novel proteins as well as homologues of proteins found in the outermost layers of the coat and of some of the coat morphogenetic factors, suggesting that the exosporium is a more specialized structure of a multifunctional coat. These and other insights into the molecular details of spore surface morphogenesis provide avenues for exploitation of the spore surface layers in applications for biotechnology and medicine.
Collapse
Affiliation(s)
- Adriano O Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras Codex, Portugal.
| | | |
Collapse
|
29
|
Wang R, Krishnamurthy SN, Jeong JS, Driks A, Mehta M, Gingras BA. Fingerprinting species and strains of Bacilli spores by distinctive coat surface morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:10230-4. [PMID: 17722943 DOI: 10.1021/la701788d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, we applied high-resolution atomic force microscopy (AFM) to identify and characterize similarities and differences in the spore surface morphology of strains from four species of Bacilli: B. anthracis, B. cereus, B. pumilis, and B. subtilis. Common features of the examined spores in the dry state included ridges that spanned the long axis of each spore, and nanometer-scale fine rodlets that covered the entire spore surface. However, important differences in these features between species permitted them to be distinguished by AFM. Specifically, each species possessed significant variation in ridge architecture, and the rodlet width in B. anthracis was significantly less than that of the other species. To characterize similarities and differences within a species, we examined three B. subtilis strains. The ridge patterns among the three strains were largely the same; however, we detected significant differences in the ridge dimensions. Taken together, these experiments provide important information about natural variation in spore surface morphology, define structural features that can serve as species- and strain-specific signatures, and give insight into the dynamics of spore coat flexibility and its role during spore dormancy and germination.
Collapse
Affiliation(s)
- Rong Wang
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Wang L, Perpich J, Driks A, Kroos L. One perturbation of the mother cell gene regulatory network suppresses the effects of another during sporulation of Bacillus subtilis. J Bacteriol 2007; 189:8467-73. [PMID: 17890309 PMCID: PMC2168946 DOI: 10.1128/jb.01285-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the mother cell of sporulating Bacillus subtilis, a regulatory network functions to control gene expression. Four transcription factors act sequentially in the order sigma(E), SpoIIID, sigma(K), GerE. sigma(E) and sigma(K) direct RNA polymerase to transcribe different regulons. SpoIIID and GerE are DNA-binding proteins that activate or repress transcription of many genes. Several negative regulatory loops add complexity to the network. First, transcriptionally active sigma(K) RNA polymerase inhibits early sporulation gene expression, resulting in reduced accumulation of sigma(E) and SpoIIID late during sporulation. Second, GerE represses sigK transcription, reducing sigma(K) accumulation about twofold. Third, SpoIIID represses cotC, which encodes a spore coat protein, delaying its transcription by sigma(K) RNA polymerase. Partially circumventing the first feedback loop, by engineering cells to maintain the SpoIIID level late during sporulation, causes spore defects. Here, the effects of circumventing the second feedback loop, by mutating the GerE binding sites in the sigK promoter region, are reported. Accumulation of pro-sigma(K) and sigma(K) was increased, but no spore defects were detected. Expression of sigma(K)-dependent reporter fusions was altered, increasing the expression of gerE-lacZ and cotC-lacZ and decreasing the expression of cotD-lacZ. Because these effects on gene expression were opposite those observed when the SpoIIID level was maintained late during sporulation, cells were engineered to both maintain the SpoIIID level and have elevated sigK expression late during sporulation. This restored the expression of sigma(K)-dependent reporters to wild-type levels, and no spore defects were observed. Hence, circumventing the second feedback loop suppressed the effects of perturbing the first feedback loop. By feeding information back into the network, these two loops appear to optimize target gene expression and increase network robustness. Circumventing the third regulatory loop, by engineering cells to express cotC about 2 h earlier than normal, did not cause a detectable spore defect.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
31
|
Wang L, Perpich J, Driks A, Kroos L. Maintaining the transcription factor SpoIIID level late during sporulation causes spore defects in Bacillus subtilis. J Bacteriol 2007; 189:7302-9. [PMID: 17693499 PMCID: PMC2168458 DOI: 10.1128/jb.00839-07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During sporulation of Bacillus subtilis, four regulatory proteins act in the order sigma(E), SpoIIID, sigma(K), and GerE to temporally control gene expression in the mother cell. sigma(E) and sigma(K) work sequentially with core RNA polymerase to transcribe different sets of genes. SpoIIID and GerE are small, sequence-specific DNA-binding proteins that activate or repress transcription of many genes. Previous studies showed that transcriptionally active sigma(K) RNA polymerase inhibits early mother cell gene expression, reducing accumulation of SpoIIID late in sporulation. Here, the effects of perturbing the mother cell gene regulatory network by maintaining the SpoIIID level late during sporulation are reported. Persistent expression was obtained by fusing spoIIID to the sigma(K)-controlled gerE promoter on a multicopy plasmid. Fewer heat- and lysozyme-resistant spores were produced by the strain with persistent spoIIID expression, but the number of spores resistant to organic solvents was unchanged, as was their germination ability. Transmission electron microscopy showed structural defects in the spore coat. Reporter fusions to sigma(K)-dependent promoters showed lower expression of gerE and cotC and higher expression of cotD. Altered expression of cot genes, which encode spore coat proteins, may account for the spore structural defects. These results suggest that one role of negative feedback by sigma(K) RNA polymerase on early mother cell gene expression is to lower the level of SpoIIID late during sporulation in order to allow normal expression of genes in the sigma(K) regulon.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Artificial Gene Fusion
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Bacterial/genetics
- Gene Expression Regulation, Bacterial/physiology
- Genes, Reporter
- Hot Temperature
- Microscopy, Electron, Transmission
- Muramidase/metabolism
- Organic Chemicals/pharmacology
- Promoter Regions, Genetic
- Spores, Bacterial/drug effects
- Spores, Bacterial/genetics
- Spores, Bacterial/isolation & purification
- Spores, Bacterial/physiology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/physiology
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
32
|
Tang J, Krajcikova D, Zhu R, Ebner A, Cutting S, Gruber HJ, Barak I, Hinterdorfer P. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface ofBacillus subtilis spore. J Mol Recognit 2007; 20:483-9. [DOI: 10.1002/jmr.828] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Costa T, Serrano M, Steil L, Völker U, Moran CP, Henriques AO. The timing of cotE expression affects Bacillus subtilis spore coat morphology but not lysozyme resistance. J Bacteriol 2006; 189:2401-10. [PMID: 17172339 PMCID: PMC1899386 DOI: 10.1128/jb.01353-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synthesis of structural components and morphogenetic factors required for the assembly of the Bacillus subtilis spore coat is governed by a mother cell-specific transcriptional cascade. The first two temporal classes of gene expression, which involve RNA polymerase sigma sigma(E) factor and the ancillary regulators GerR and SpoIIID, are deployed prior to engulfment of the prespore by the mother cell. The two last classes rely on sigma(K), whose activation follows engulfment completion, and GerE. The cotE gene codes for a morphogenetic protein essential for the assembly of the outer coat layer and spore resistance to lysozyme. cotE is expressed first from a sigma(E)-dependent promoter and, in a second stage, from a promoter that additionally requires SpoIIID and that remains active under sigma(K) control. CotE localizes prior to engulfment completion close to the surface of the developing spore, but formation of the outer coat is a late, sigma(K)-controlled event. We have transplanted cotE to progressively later classes of mother cell gene expression. This created an early class of mutants in which cotE is expressed prior to engulfment completion and a late class in which expression of cotE follows the complete engulfment of the prespore. Mutants of the early class assemble a nearly normal outer coat structure, whereas mutants of the late class do not. Hence, the early expression of CotE is essential for outer coat assembly. Surprisingly, however, all mutants were fully resistant to lysozyme. The results suggest that CotE has genetically separable functions in spore resistance to lysozyme and spore outer coat assembly.
Collapse
Affiliation(s)
- Teresa Costa
- Instituto de Tecnologia Quimica e Biológica, Universidade Nova de Lisboa, Avenida da República, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
34
|
Giorno R, Bozue J, Cote C, Wenzel T, Moody KS, Mallozzi M, Ryan M, Wang R, Zielke R, Maddock JR, Friedlander A, Welkos S, Driks A. Morphogenesis of the Bacillus anthracis spore. J Bacteriol 2006; 189:691-705. [PMID: 17114257 PMCID: PMC1797280 DOI: 10.1128/jb.00921-06] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus spp. and Clostridium spp. form a specialized cell type, called a spore, during a multistep differentiation process that is initiated in response to starvation. Spores are protected by a morphologically complex protein coat. The Bacillus anthracis coat is of particular interest because the spore is the infective particle of anthrax. We determined the roles of several B. anthracis orthologues of Bacillus subtilis coat protein genes in spore assembly and virulence. One of these, cotE, has a striking function in B. anthracis: it guides the assembly of the exosporium, an outer structure encasing B. anthracis but not B. subtilis spores. However, CotE has only a modest role in coat protein assembly, in contrast to the B. subtilis orthologue. cotE mutant spores are fully virulent in animal models, indicating that the exosporium is dispensable for infection, at least in the context of a cotE mutation. This has implications for both the pathophysiology of the disease and next-generation therapeutics. CotH, which directs the assembly of an important subset of coat proteins in B. subtilis, also directs coat protein deposition in B. anthracis. Additionally, however, in B. anthracis, CotH effects germination; in its absence, more spores germinate than in the wild type. We also found that SpoIVA has a critical role in directing the assembly of the coat and exosporium to an area around the forespore. This function is very similar to that of the B. subtilis orthologue, which directs the assembly of the coat to the forespore. These results show that while B. anthracis and B. subtilis rely on a core of conserved morphogenetic proteins to guide coat formation, these proteins may also be important for species-specific differences in coat morphology. We further hypothesize that variations in conserved morphogenetic coat proteins may play roles in taxonomic variation among species.
Collapse
MESH Headings
- Bacillus anthracis/genetics
- Bacillus anthracis/metabolism
- Bacillus anthracis/physiology
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Microscopy, Electron
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Models, Biological
- Mutation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Spores, Bacterial/genetics
- Spores, Bacterial/growth & development
- Spores, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Rebecca Giorno
- Department of Microbiology and Immunology, Loyola University Medical Center, 2160 South First Avenue, Bldg. 105, Rm. 3820, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Costa T, Isidro AL, Moran CP, Henriques AO. Interaction between coat morphogenetic proteins SafA and SpoVID. J Bacteriol 2006; 188:7731-41. [PMID: 16950916 PMCID: PMC1636312 DOI: 10.1128/jb.00761-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Morphogenetic proteins such as SpoVID and SafA govern assembly of the Bacillus subtilis endospore coat by guiding the various protein structural components to the surface of the developing spore. Previously, a screen for peptides able to interact with SpoVID led to the identification of a PYYH motif present in the C-terminal half of the SafA protein and to the subsequent demonstration that SpoVID and SafA directly interact. spoVID and safA spores show deficiencies in coat assembly and are lysozyme susceptible. Both proteins, orthologs of which are found in all Bacillus species, have LysM domains for peptidoglycan binding and localize to the cortex-coat interface. Here, we show that the interaction between SafA and SpoVID involves the PYYH motif (region B) but also a 13-amino-acid region (region A) just downstream of the N-terminal LysM domain of SafA. We show that deletion of region B does not block the interaction of SafA with SpoVID, nor does it bring about spore susceptibility to lysozyme. Nevertheless, it appears to reduce the interaction and affects the complex. In contrast, lesions in region A impaired the interaction of SafA with SpoVID in vitro and, while not affecting the accumulation of SafA in vivo, interfered with the localization of SafA around the developing spore, causing aberrant assembly of the coat and lysozyme sensitivity. A peptide corresponding to region A interacts with SpoVID, suggesting that residues within this region directly contact SpoVID. Since region A is highly conserved among SafA orthologs, this motif may be an important determinant of coat assembly in the group of Bacillus spore formers.
Collapse
Affiliation(s)
- Teresa Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, EAN, 2781-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
36
|
Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM, Wang R, Ferguson CC, Eichenberger P, Driks A. TheBacillus subtilisspore coat protein interaction network. Mol Microbiol 2005; 59:487-502. [PMID: 16390444 DOI: 10.1111/j.1365-2958.2005.04968.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial spores are surrounded by a morphologically complex, mechanically flexible protein coat, which protects the spore from toxic molecules. The interactions among the over 50 proteins that make up the coat remain poorly understood. We have used cell biological and protein biochemical approaches to identify novel coat proteins in Bacillus subtilis and describe the network of their interactions, in order to understand coat assembly and the molecular basis of its protective functions and mechanical properties. Our analysis characterizes the interactions between 32 coat proteins. This detailed view reveals a complex interaction network. A key feature of the network is the importance of a small subset of proteins that direct the assembly of most of the coat. From an analysis of the network topology, we propose a model in which low-affinity interactions are abundant in the coat and account, to a significant degree, for the coat's mechanical properties as well as structural variation between spores.
Collapse
Affiliation(s)
- Hosan Kim
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|