1
|
Illava G, Gillilan R, Ando N. Development of in-line anoxic small-angle X-ray scattering and structural characterization of an oxygen-sensing transcriptional regulator. J Biol Chem 2023; 299:105039. [PMID: 37442238 PMCID: PMC10425943 DOI: 10.1016/j.jbc.2023.105039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Oxygen-sensitive metalloenzymes are responsible for many of the most fundamental biochemical processes in nature, from the reduction of dinitrogen in nitrogenase to the biosynthesis of photosynthetic pigments. However, biophysical characterization of such proteins under anoxic conditions can be challenging, especially at noncryogenic temperatures. In this study, we introduce the first in-line anoxic small-angle X-ray scattering (anSAXS) system at a major national synchrotron source, featuring both batch-mode and chromatography-mode capabilities. To demonstrate chromatography-coupled anSAXS, we investigated the oligomeric interconversions of the fumarate and nitrate reduction (FNR) transcription factor, which is responsible for the transcriptional response to changing oxygen conditions in the facultative anaerobe Escherichia coli. Previous work has shown that FNR contains a labile [4Fe-4S] cluster that is degraded when oxygen is present and that this change in cluster composition leads to the dissociation of the DNA-binding dimeric form. Using anSAXS, we provide the first direct structural evidence for the oxygen-induced dissociation of the E. coli FNR dimer and its correlation with cluster composition. We further demonstrate how complex FNR-DNA interactions can be studied by investigating the promoter region of the anaerobic ribonucleotide reductase genes, nrdDG, which contains tandem FNR-binding sites. By coupling size-exclusion chromatography-anSAXS with full-spectrum UV-Vis analysis, we show that the [4Fe-4S] cluster-containing dimeric form of FNR can bind to both sites in the nrdDG promoter region. The development of in-line anSAXS greatly expands the toolbox available for the study of complex metalloproteins and provides a foundation for future expansions.
Collapse
Affiliation(s)
- Gabrielle Illava
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York, USA
| | - Richard Gillilan
- Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York, USA.
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
2
|
Illava G, Gillilan R, Ando N. Development of in-line anoxic small-angle X-ray scattering and structural characterization of an oxygen-sensing transcriptional regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541370. [PMID: 37292723 PMCID: PMC10245656 DOI: 10.1101/2023.05.18.541370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxygen-sensitive metalloenzymes are responsible for many of the most fundamental biochemical processes in nature, from the reduction of di-nitrogen in nitrogenase to the biosynthesis of photosynthetic pigments. However, biophysical characterization of such proteins under anoxic conditions can be challenging, especially at non-cryogenic temperatures. In this study, we introduce the first in-line anoxic small-angle X-ray scattering (anSAXS) system at a major national synchrotron source, featuring both batch-mode and chromatography-mode capabilities. To demonstrate chromatography-coupled anSAXS, we investigated the oligomeric interconversions of the Fumarate and Nitrate Reduction (FNR) transcription factor, which is responsible for the transcriptional response to changing oxygen conditions in the facultative anaerobe Escherichia coli . Previous work has shown that FNR contains a labile [4Fe-4S] cluster that is degraded when oxygen is present, and that this change in cluster composition leads to the dissociation of the DNA-binding dimeric form. Using anSAXS, we provide the first direct structural evidence for the oxygen-induced dissociation of the E. coli FNR dimer and its correlation with cluster composition. We further demonstrate how complex FNR-DNA interactions can be studied by investigating the promoter region of the anaerobic ribonucleotide reductase genes, nrdDG , which contains tandem FNR binding sites. By coupling SEC-anSAXS with full spectrum UV-Vis analysis, we show that the [4Fe-4S] clustercontaining dimeric form of FNR can bind to both sites in the nrdDG promoter region. The development of in-line anSAXS greatly expands the toolbox available for the study of complex metalloproteins and provides a foundation for future expansions.
Collapse
|
3
|
Rova M, Hellberg Lindqvist M, Goetelen T, Blomqvist S, Nilsson T. Heterologous expression of the gene for chlorite dismutase from Ideonella dechloratans is induced by an FNR-type transcription factor. Microbiologyopen 2020; 9:e1049. [PMID: 32319739 PMCID: PMC7349173 DOI: 10.1002/mbo3.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
Regulation of the expression of the gene for chlorite dismutase (cld), located on the chlorate reduction composite transposon of the chlorate reducer Ideonella dechloratans, was studied. A 200 bp upstream sequence of the cld gene, and mutated and truncated versions thereof, was used in a reporter system in Escherichia coli. It was found that a sequence within this upstream region, which is nearly identical to the canonical FNR-binding sequence of E. coli, is necessary for anaerobic induction of the reporter gene. Anaerobic induction was regained in an FNR-deficient strain of E. coli when supplemented either with the fnr gene from E. coli or with a candidate fnr gene cloned from I. dechloratans. In vivo transcription of the suggested fnr gene of I. dechloratans was demonstrated by qRT-PCR. Based on these results, the cld promoter of I. dechloratans is suggested to be a class II-activated promoter regulated by an FNR-type protein of I. dechloratans. No fnr-type genes have been found on the chlorate reduction composite transposon of I. dechloratans, making anaerobic upregulation of the cld gene after a gene transfer event dependent on the presence of an fnr-type gene in the recipient.
Collapse
Affiliation(s)
- Maria Rova
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | | | - Thijs Goetelen
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Shady Blomqvist
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Thomas Nilsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
4
|
Muropeptides Stimulate Growth Resumption from Stationary Phase in Escherichia coli. Sci Rep 2019; 9:18043. [PMID: 31792329 PMCID: PMC6888817 DOI: 10.1038/s41598-019-54646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
When nutrients run out, bacteria enter a dormant metabolic state. This low or undetectable metabolic activity helps bacteria to preserve their scant reserves for the future needs, yet it also diminishes their ability to scan the environment for new growth-promoting substrates. However, neighboring microbial growth is a reliable indicator of a favorable environment and can thus serve as a cue for exiting dormancy. Here we report that for Escherichia coli and Pseudomonas aeruginosa this cue is provided by the basic peptidoglycan unit (i.e. muropeptide). We show that several forms of muropeptides from a variety of bacterial species can stimulate growth resumption of dormant cells and the sugar – peptide bond is crucial for this activity. These results, together with previous research that identifies muropeptides as a germination signal for bacterial spores, and their detection by mammalian immune cells, show that muropeptides are a universal cue for bacterial growth.
Collapse
|
5
|
A variant of the Escherichia coli anaerobic transcription factor FNR exhibiting diminished promoter activation function enhances ionizing radiation resistance. PLoS One 2019; 14:e0199482. [PMID: 30673695 PMCID: PMC6343905 DOI: 10.1371/journal.pone.0199482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/04/2019] [Indexed: 12/03/2022] Open
Abstract
We have previously generated four replicate populations of ionizing radiation (IR)-resistant Escherichia coli though directed evolution. Sequencing of isolates from these populations revealed that mutations affecting DNA repair (through DNA double-strand break repair and replication restart), ROS amelioration, and cell wall metabolism were prominent. Three mutations involved in DNA repair explained the IR resistance phenotype in one population, and similar DNA repair mutations were prominent in two others. The remaining population, IR-3-20, had no mutations in the key DNA repair proteins, suggesting that it had taken a different evolutionary path to IR resistance. Here, we present evidence that a variant of the anaerobic metabolism transcription factor FNR, unique to and isolated from population IR-3-20, plays a role in IR resistance. The F186I allele of FNR exhibits a diminished ability to activate transcription from FNR-activatable promoters, and furthermore reduces levels of intracellular ROS. The FNR F186I variant is apparently capable of enhancing resistance to IR under chronic irradiation conditions, but does not increase cell survival when exposed to acute irradiation. Our results underline the importance of dose rate on cell survival of IR exposure.
Collapse
|
6
|
Mettert EL, Kiley PJ. Reassessing the Structure and Function Relationship of the O 2 Sensing Transcription Factor FNR. Antioxid Redox Signal 2018; 29:1830-1840. [PMID: 28990402 PMCID: PMC6217745 DOI: 10.1089/ars.2017.7365] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE The Escherichia coli regulatory protein fumarate nitrate reduction (FNR) mediates a global transcriptional response upon O2 deprivation. Spanning nearly 40 years of research investigations, our understanding of how FNR senses and responds to O2 has considerably progressed despite a lack of structural information for most of that period. This knowledge has established the paradigm for how facultative anaerobic bacteria sense changes in O2 tension. Recent Advances: Recently, the X-ray crystal structure of Aliivibrio fischeri FNR with its [4Fe-4S] cluster cofactor was solved and has provided valuable new insight into FNR structure and function. These findings have alluded to the conformational changes that may occur to alter FNR activity in response to O2. CRITICAL ISSUES Here, we review the major features of this structure in context of previously acquired data. In doing so, we discuss additional mechanistic aspects of FNR function that warrant further investigation. FUTURE DIRECTIONS To complement the [4Fe-4S]-FNR structure, the structures of apo-FNR and FNR bound to DNA or RNA polymerase are needed. Together, these structures would elevate our understanding of how ligation of its [4Fe-4S] cluster allows FNR to regulate transcription according to the level of environmental O2.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison , Madison, Wisconsin
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
7
|
Bates SR, Quake SR. Mapping of protein-protein interactions of E. coli RNA polymerase with microfluidic mechanical trapping. PLoS One 2014; 9:e91542. [PMID: 24643045 PMCID: PMC3958368 DOI: 10.1371/journal.pone.0091542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
The biophysical details of how transcription factors and other proteins interact with RNA polymerase are of great interest as they represent the nexus of how structure and function interact to regulate gene expression in the cell. We used an in vitro microfluidic approach to map interactions between a set of ninety proteins, over a third of which are transcription factors, and each of the four subunits of E. coli RNA polymerase, and we compared our results to those of previous large-scale studies. We detected interactions between RNA polymerase and transcription factors that earlier high-throughput screens missed; our results suggest that such interactions can occur without DNA mediation more commonly than previously appreciated.
Collapse
Affiliation(s)
- Steven R. Bates
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Bioengineering and HHMI, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pan Q, Shan Y, Yan A. A region at the C-terminus of the Escherichia coli global transcription factor FNR negatively mediates its degradation by the ClpXP protease. Biochemistry 2012; 51:5061-71. [PMID: 22656860 DOI: 10.1021/bi2018688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The anaerobic global regulator FNR from Escherichia coli is a [4Fe-4S](2+) cluster-containing dimer that is inactivated by O(2) through disruption of the Fe-S cluster and conversion to the monomeric apoprotein. It was shown that apo-FNR is subject to ClpXP proteolysis, and two recognition sites, amino acids 5-11 and amino acids 249 and 250, are responsible for targeting FNR to the protease. However, how the exposure of these sites is mediated such that only apo-FNR is recognized by the ClpXP protease and is degraded in a regulated manner so that a sufficient and similar FNR level is maintained in both anaerobic and aerobic conditions is unknown. To investigate this, we performed three-alanine scanning on amino acids 2-19 and 236-250 that are in the proximity of the two ClpXP recognition sites, and their functions remain unknown. We found that three-alanine substitution of residues 239-241 (LAQ239-241A(3)) and 242-244 (LAG242-244A(3)) caused reduced FNR protein levels, transcription activities, and growth rates under anaerobic conditions. In vivo degradation assays demonstrated that these mutants were degraded significantly faster than the wild type (WT), and either deletion of clpXP or blocking the ClpXP recognition site of amino acids 249 and 250 stabilizes these proteins. Circular dichroism analysis revealed that introduction of LAQ239-241A(3) caused conformational changes with a significant loss of secondary structures in both WT and an O(2) stable FNR dimer, FNR D154A. We propose that the region of amino acids 239-244 plays a negative role in the proteolysis of FNR by promoting a structural fold that limits the exposure of the proximal ClpXP site to the protease.
Collapse
Affiliation(s)
- Qing Pan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | | | | |
Collapse
|
9
|
Álvarez-Ordóñez A, Begley M, Prieto M, Messens W, López M, Bernardo A, Hill C. Salmonella spp. survival strategies within the host gastrointestinal tract. MICROBIOLOGY-SGM 2011; 157:3268-3281. [PMID: 22016569 DOI: 10.1099/mic.0.050351-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human salmonellosis infections are usually acquired via the food chain as a result of the ability of Salmonella serovars to colonize and persist within the gastrointestinal tract of their hosts. In addition, after food ingestion and in order to cause foodborne disease in humans, Salmonella must be able to resist several deleterious stress conditions which are part of the host defence against infections. This review gives an overview of the main defensive mechanisms involved in the Salmonella response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and the low oxygen tension conditions of the mammalian and avian gastrointestinal tracts.
Collapse
Affiliation(s)
- Avelino Álvarez-Ordóñez
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Winy Messens
- Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Mercedes López
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Ana Bernardo
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009; 73:71-133. [PMID: 19258534 PMCID: PMC2650882 DOI: 10.1128/mmbr.00021-08] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.
Collapse
Affiliation(s)
- Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mutations influencing expression of the Salmonella enterica serovar Enteritidis pathogenicity island I key regulator hilA. Antonie van Leeuwenhoek 2008; 94:455-61. [PMID: 18563621 DOI: 10.1007/s10482-008-9262-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
Invasion in gut epithelial cells, mediated by genes of the Salmonella pathogenicity island I, is a crucial step in the pathogenesis of Salmonella enterica serovar Enteritidis infections. The most important regulator of the invasive process is the hilA gene. In this study, a transposon bank approach was used to identify DNA sequences affecting expression of hilA. Mutants with decreased hilA expression carried mutations in known virulence gene regulators (fliZ, hilD, sirA), genes encoding ion transport proteins (feoA, feoB, pstB, pstC), genes involved in transcription/translation machinery (nusA, selA) and the hypothetical inner membrane protein STM2303. Mutants yielding increased hilA expression carried a transposon insertion in the known virulence regulator hha, the transcriptional regulator and oxygen sensor fnr and the virulence gene virK. Mutants having decreased and increased hilA expression were more and less invasive in the human colon carcinoma cell line T84 compared to wild type strain bacteria, respectively.
Collapse
|
12
|
Durante-Rodríguez G, Zamarro MT, García JL, Díaz E, Carmona M. Oxygen-dependent regulation of the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus sp. strain CIB. J Bacteriol 2006; 188:2343-54. [PMID: 16547020 PMCID: PMC1428410 DOI: 10.1128/jb.188.7.2343-2354.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 01/11/2006] [Indexed: 11/20/2022] Open
Abstract
The role of oxygen in the transcriptional regulation of the PN promoter that controls the bzd operon involved in the anaerobic catabolism of benzoate in the denitrifying Azoarcus sp. strain CIB has been investigated. In vivo experiments using PN::lacZ translational fusions, in both Azoarcus sp. strain CIB and Escherichia coli cells, have shown an oxygen-dependent repression effect on the transcription of the bzd catabolic genes. E. coli Fnr was required for the anaerobic induction of the PN promoter, and the oxygen-dependent repression of the bzd genes could be bypassed by the expression of a constitutively active Fnr* protein. In vitro experiments revealed that Fnr binds to the PN promoter at a consensus sequence centered at position -41.5 from the transcription start site overlapping the -35 box, suggesting that PN belongs to the class II Fnr-dependent promoters. Fnr interacts with RNA polymerase (RNAP) and is strictly required for transcription initiation after formation of the RNAP-PN complex. An fnr ortholog, the acpR gene, was identified in the genome of Azoarcus sp. strain CIB. The Azoarcus sp. strain CIB acpR mutant was unable to grow anaerobically on aromatic compounds and it did not drive the expression of the PN::lacZ fusion, suggesting that AcpR is the cognate transcriptional activator of the PN promoter. Since the lack of AcpR in Azoarcus sp. strain CIB did not affect growth on nonaromatic carbon sources, AcpR can be considered a transcriptional regulator of the Fnr/Crp superfamily that has evolved to specifically control the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus.
Collapse
Affiliation(s)
- Gonzalo Durante-Rodríguez
- Dept. de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Mettert EL, Kiley PJ. ClpXP-dependent Proteolysis of FNR upon Loss of its O2-sensing [4Fe–4S] Cluster. J Mol Biol 2005; 354:220-32. [PMID: 16243354 DOI: 10.1016/j.jmb.2005.09.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 09/21/2005] [Accepted: 09/26/2005] [Indexed: 11/21/2022]
Abstract
The global regulator FNR from Escherichia coli controls the transcription of genes required for an anaerobic lifestyle. While previous studies have demonstrated that FNR activity is regulated by O2 through loss of dimerization upon destruction of its [4Fe-4S]2+ cluster, the present study reveals that monomeric FNR protein is also a target of proteolysis. We have found that turnover of FNR protein is increased selectively under aerobic growth conditions, when FNR is not active as a transcription factor and is primarily a metal-free, monomeric form (apo-FNR). This degradation of monomeric FNR was dependent on the ClpXP protease and required the presence of two amino acid sequences within FNR that resemble known ClpX recognition motifs. By measuring the turnover rates of various FNR mutants that have unique properties with respect to dimerization and Fe-S cluster stability, we have shown that loss of dimerization upon [4Fe-4S]2+ cluster destruction by O2 targets FNR for degradation by the ClpXP protease. In addition, by measuring the differential rate of FNR degradation upon switching aerobic cultures to anaerobic growth conditions, we provide evidence that pre-existing FNR apo-protein can be converted to [4Fe-4S]2+ -FNR. Finally, we address the physiological significance of FNR proteolysis by demonstrating that varying FNR protein levels over a small range under aerobic growth conditions has a direct effect on the function of FNR in O2 sensing.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|