1
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Yuan X, Tian F, He C, Severin GB, Waters CM, Zeng Q, Liu F, Yang C. The diguanylate cyclase GcpA inhibits the production of pectate lyases via the H-NS protein and RsmB regulatory RNA in Dickeya dadantii. MOLECULAR PLANT PATHOLOGY 2018; 19:1873-1886. [PMID: 29390166 PMCID: PMC6070445 DOI: 10.1111/mpp.12665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/01/2018] [Accepted: 01/29/2018] [Indexed: 05/08/2023]
Abstract
Dickeya dadantii 3937 secretes pectate lyases (Pels) to degrade plant cell walls. Previously, we have demonstrated that EGcpB and EcpC function as bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP)-specific phosphodiesterases (PDEs) to positively regulate Pel production. However, the diguanylate cyclase (DGC) responsible for the synthesis of c-di-GMP and the dichotomous regulation of Pel has remained a mystery. Here, we identified GcpA as the dominant DGC to negatively regulate Pel production by the specific repression of pelD gene expression. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays revealed that the expression levels of histone-like, nucleoid-structuring protein encoding gene hns and post-transcriptional regulator encoding genes rsmA and rsmB were significantly affected by GcpA. Deletion of hns or rsmB in the gcpAD418A site-directed mutant restored its Pel production and pelD expression, demonstrating that H-NS and RsmB contribute to the GcpA-dependent regulation of Pel in D. dadantii. In addition, RsmB expression was subject to positive regulation by H-NS. Thus, we propose a novel pathway consisting of GcpA-H-NS-RsmB-RsmA-pelD that controls Pel production in D. dadantii. Furthermore, we showed that H-NS and RsmB are responsible for the GcpA-dependent regulation of motility and type III secretion system (T3SS) gene expression, respectively. Of the two PDEs involved in the regulation of Pels, only EGcpB regulates pelD expression through the same pathway as GcpA.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing 210014China
- Department of Biological SciencesUniversity of WisconsinMilwaukeeWI 53211USA
| | - Fang Tian
- Department of Biological SciencesUniversity of WisconsinMilwaukeeWI 53211USA
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing 100193China
| | - Geoffrey B. Severin
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI 48824USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI 48824USA
| | - Quan Zeng
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew HavenCT 06511USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesJiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and TechnologyNanjing 210014China
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of WisconsinMilwaukeeWI 53211USA
| |
Collapse
|
3
|
Clayton AL, Enomoto S, Su Y, Dale C. The regulation of antimicrobial peptide resistance in the transition to insect symbiosis. Mol Microbiol 2017; 103:958-972. [PMID: 27987256 DOI: 10.1111/mmi.13598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
Abstract
Many bacteria utilize two-component systems consisting of a sensor kinase and a transcriptional response regulator to detect environmental signals and modulate gene expression for adaptation. The response regulator PhoP and its cognate sensor kinase PhoQ compose a two-component system known for its role in responding to low levels of Mg2+ , Ca2+ , pH and to the presence of antimicrobial peptides and activating the expression of genes involved in adaptation to host association. Compared with their free-living relatives, mutualistic insect symbiotic bacteria inhabit a static environment where the requirement for sensory functions is expected to be relaxed. The insect symbiont, Sodalis glossinidius, requires PhoP to resist killing by host derived antimicrobial peptides. However, the S. glossinidius PhoQ was found to be insensitive to Mg2+ , Ca2+ and pH. Here they show that Sodalis praecaptivus, a close non host-associated relative of S. glossinidius, utilizes a magnesium sensing PhoP-PhoQ and an uncharacterized MarR-like transcriptional regulator (Sant_4061) to control antimicrobial peptide resistance in vitro. While the inactivation of phoP, phoQ or Sant_4061 completely retards the growth of S. praecaptivus in the presence of an antimicrobial peptide in vitro, inactivation of both phoP and Sant_4061 is necessary to abrogate growth of this bacterium in an insect host.
Collapse
Affiliation(s)
- Adam L Clayton
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Yinghua Su
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Colin Dale
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Reverchon S, Muskhelisvili G, Nasser W. Virulence Program of a Bacterial Plant Pathogen: The Dickeya Model. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:51-92. [PMID: 27571692 DOI: 10.1016/bs.pmbts.2016.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pectinolytic Dickeya spp. are Gram-negative bacteria causing severe disease in a wide range of plant species. Although the Dickeya genus was initially restricted to tropical and subtropical areas, two Dickeya species (D. dianthicola and D. solani) emerged recently in potato cultures in Europe. Soft-rot, the visible symptoms, is caused by plant cell wall degrading enzymes, mainly pectate lyases (Pels) that cleave the pectin polymer. However, an efficient colonization of the host requires many additional elements including early factors (eg, flagella, lipopolysaccharide, and exopolysaccharide) that allow adhesion of the bacteria and intermediate factors involved in adaptation to new growth conditions encountered in the host (eg, oxidative stress, iron starvation, and toxic compounds). To facilitate this adaptation, Dickeya have developed complex regulatory networks ensuring appropriate expression of virulence genes. This review presents recent advances in our understanding of the signals and genetic circuits impacting the expression of virulence determinants. Special attention is paid to integrated control of virulence functions by variations in the superhelical density of chromosomal DNA, and the global and specific regulators, making the regulation of Dickeya virulence an especially attractive model for those interested in relationships between the chromosomal dynamics and gene regulatory networks.
Collapse
Affiliation(s)
- S Reverchon
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France.
| | - G Muskhelisvili
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| | - W Nasser
- Department of Biology, University of Lyon, INSA-Lyon, Villeurbanne, Lyon, France
| |
Collapse
|
5
|
Río-Álvarez I, Muñoz-Gómez C, Navas-Vásquez M, Martínez-García PM, Antúnez-Lamas M, Rodríguez-Palenzuela P, López-Solanilla E. Role of Dickeya dadantii 3937 chemoreceptors in the entry to Arabidopsis leaves through wounds. MOLECULAR PLANT PATHOLOGY 2015; 16:685-98. [PMID: 25487519 PMCID: PMC6638404 DOI: 10.1111/mpp.12227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemotaxis enables bacteria to move towards an optimal environment in response to chemical signals. In the case of plant-pathogenic bacteria, chemotaxis allows pathogens to explore the plant surface for potential entry sites with the ultimate aim to prosper inside plant tissues and to cause disease. Chemoreceptors, which constitute the sensory core of the chemotaxis system, are usually transmembrane proteins which change their conformation when sensing chemicals in the periplasm and transduce the signal through a kinase pathway to the flagellar motor. In the particular case of the soft-rot pathogen Dickeya dadantii 3937, jasmonic acid released in a plant wound has been found to be a strong chemoattractant which drives pathogen entry into the plant apoplast. In order to identify candidate chemoreceptors sensing wound-derived plant compounds, we carried out a bioinformatics search of candidate chemoreceptors in the genome of Dickeya dadantii 3937. The study of the chemotactic response to several compounds and the analysis of the entry process to Arabidopsis leaves of 10 selected mutants in chemoreceptors allowed us to determine the implications of at least two of them (ABF-0020167 and ABF-0046680) in the chemotaxis-driven entry process through plant wounds. Our data suggest that ABF-0020167 and ABF-0046680 may be candidate receptors of jasmonic acid and xylose, respectively.
Collapse
Affiliation(s)
- Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Cristina Muñoz-Gómez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Mariela Navas-Vásquez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Pedro M Martínez-García
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Universidad de Málaga, E-29071, Málaga, Spain
| | - María Antúnez-Lamas
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM, Avda, Complutense S/N, 28040, Madrid, Spain
| |
Collapse
|
6
|
Bontemps-Gallo S, Madec E, Lacroix JM. The two-component system CpxAR is essential for virulence in the phytopathogen bacteria Dickeya dadantii EC3937. Environ Microbiol 2015; 17:4415-28. [PMID: 25856505 DOI: 10.1111/1462-2920.12874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/01/2015] [Accepted: 04/05/2015] [Indexed: 12/22/2022]
Abstract
The CpxAR two-component system is present in many Proteobacteria. It controls expression of genes required to maintain envelope integrity in response to environmental injury. Consequently, this two-component system was shown to be required for virulence of several zoo-pathogens, but it has never been investigated in phyto-pathogens. In this paper, we investigate the role of the CpxAR two-component system in vitro and in vivo in Dickeya dadantii, an enterobacterial phytopathogen that causes soft-rot disease in a large variety of plant species. cpxA null mutant displays a constitutively phosphorylated CpxR phenotype as shown by direct analysis of phosphorylation of CpxR by a Phos-Tag retardation gel approach. Virulence in plants is completely abolished in cpxA or cpxR mutants of D. dadantii. In planta, CpxAR is only activated at an early stage of the infection process as shown by Phos-Tag and gene fusion analyses. To our knowledge, this is the first time that the timing of CpxAR phosphorelay activation has been investigated during the infection process by direct monitoring of response regulator phosphorylation.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Villeneuve d'Ascq, F-59655, France
| | - Edwige Madec
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Villeneuve d'Ascq, F-59655, France
| | - Jean-Marie Lacroix
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS 8576, Université des Sciences et Technologies de Lille, Université de Lille, Villeneuve d'Ascq, F-59655, France
| |
Collapse
|
7
|
Parker JK, Wisotsky SR, Johnson EG, Hijaz FM, Killiny N, Hilf ME, De La Fuente L. Viability of 'Candidatus Liberibacter asiaticus' prolonged by addition of citrus juice to culture medium. PHYTOPATHOLOGY 2014; 104:15-26. [PMID: 23883155 DOI: 10.1094/phyto-05-13-0119-r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Huanglongbing, or citrus greening disease, is associated with infection by the phloem-limited bacterium 'Candidatus Liberibacter asiaticus'. Infection with 'Ca. L. asiaticus' is incurable; therefore, knowledge regarding 'Ca. L. asiaticus' biology and pathogenesis is essential to develop a treatment. However, 'Ca. L. asiaticus' cannot currently be successfully cultured, limiting its study. To gain insight into the conditions conducive for growth of 'Ca. L. asiaticus' in vitro, 'Ca. L. asiaticus' inoculum obtained from seed of fruit from infected pomelo trees (Citrus maxima 'Mato Buntan') was added to different media, and cell viability was monitored for up to 2 months using quantitative polymerase chain reaction in conjunction with ethidium monoazide. Media tested included one-third King's B (K), K with 50% juice from the infected fruit, K with 50% commercially available grapefruit juice, and 100% commercially available grapefruit juice. Results show that juice-containing media dramatically prolong viability compared with K in experiments reproduced during 2 years using different juice sources. Furthermore, biofilm formed at the air-liquid interface of juice cultures contained 'Ca. L. asiaticus' cells, though next-generation sequencing indicated that other bacterial genera were predominant. Chemical characterization of the media was conducted to discuss possible factors sustaining 'Ca. L. asiaticus' viability in vitro, which will contribute to future development of a culture medium for 'Ca. L. asiaticus'.
Collapse
|
8
|
Reverchon S, Nasser W. Dickeya ecology, environment sensing and regulation of virulence programme. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:622-36. [PMID: 24115612 DOI: 10.1111/1758-2229.12073] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/25/2013] [Accepted: 05/27/2013] [Indexed: 05/05/2023]
Abstract
The pectinolytic Dickeya spp. are soft-rot Gram-negative bacteria that cause severe disease in a wide range of plant species. In recent years, there has been an increase in the damage caused by Dickeya in potato crops in Europe. Soft-rot symptoms are due to the production and secretion of degradative enzymes that destroy the plant cell wall. However, an efficient colonization of the host plant requires many additional bacterial factors, including elements in the early stages allowing for the adhesion and penetration of the bacteria in the plant and different elements in the intermediate stages, involved in the adaptation to the new growth conditions encountered in the host. Dickeya pathogenicity is clearly a multifactorial process, and successful infection by these bacteria requires a temporal coordination of survival and virulence gene expression. This involves the ancestral nucleoid-associated proteins, Fis and H-NS, and modifications of DNA topology, as well as various specific regulatory systems, including a new quorum-sensing pathway and regulators that sense the bacterial metabolic status or environmental stresses. This review presents new information concerning the ecology of Dickeya and the strategies used by this bacterium to coordinate its survival and virulence programmes during infection.
Collapse
|
9
|
Transcriptome of Dickeya dadantii infecting Acyrthosiphon pisum reveals a strong defense against antimicrobial peptides. PLoS One 2013; 8:e54118. [PMID: 23342088 PMCID: PMC3544676 DOI: 10.1371/journal.pone.0054118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/05/2012] [Indexed: 01/01/2023] Open
Abstract
The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum. While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids. More than 150 genes were upregulated and 300 downregulated more than 5-fold at 3 days post infection. No homologue to known toxin genes could be identified in the upregulated genes. The upregulated genes reflect the response of the bacteria to the conditions encountered inside aphids. While only a few genes involved in the response to oxidative stress were induced, a strong defense against antimicrobial peptides (AMP) was induced. Expression of a great number of efflux proteins and transporters was increased. Besides the genes involved in LPS modification by addition of 4-aminoarabinose (the arnBCADTEF operon) and phosphoethanolamine (pmrC, eptB) usually induced in Gram negative bacteria in response to AMPs, dltBAC and pbpG genes, which confer Gram positive bacteria resistance to AMPs by adding alanine to teichoic acids, were also induced. Both types of modification confer D. dadantii resistance to the AMP polymyxin. A. pisum harbors symbiotic bacteria and it is thought that it has a very limited immune system to maintain these populations and do not synthesize AMPs. The arnB mutant was less pathogenic to A. pisum, which suggests that, in contrast to what has been supposed, aphids do synthesize AMP.
Collapse
|
10
|
The Pseudomonas aeruginosa PhoP-PhoQ two-component regulatory system is induced upon interaction with epithelial cells and controls cytotoxicity and inflammation. Infect Immun 2012; 80:3122-31. [PMID: 22710876 DOI: 10.1128/iai.00382-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The adaptation of Pseudomonas aeruginosa to its environment, including the host, is tightly controlled by its network of regulatory systems. The two-component regulatory system PhoPQ has been shown to play a role in the virulence and polymyxin resistance of P. aeruginosa as well as several other Gram-negative species. Dysregulation of this system has been demonstrated in clinical isolates, yet how it affects virulence of P. aeruginosa is unknown. To investigate this, an assay was used whereby bacteria were cocultured with human bronchial epithelial cells. The interaction of wild-type (WT) bacteria that had adhered to epithelial cells led to a large upregulation of the expression of the oprH-phoP-phoQ operon and its target, the arn lipopolysaccharide (LPS) modification operon, in a PhoQ-dependent manner, compared to cells in the supernatant that had failed to adhere. Relative to the wild type, a phoQ mutant cocultured on epithelial cells produced less secreted protease and lipase and, like the phoQ mutant, piv, lipH, and lasB mutants demonstrated reduced cytotoxicity toward epithelial cells. Mutation in phoQ also resulted in alterations to lipid A and to increased inflammatory LPS. These data indicate that mutation of phoQ results in a phenotype that is similar to the less virulent but more inflammatory phenotype of clinical strains isolated from chronic-stage cystic fibrosis lung infections.
Collapse
|
11
|
Attenuated Salmonella typhimurium SV4089 as a potential carrier of oral DNA vaccine in chickens. J Biomed Biotechnol 2012; 2012:264986. [PMID: 22701301 PMCID: PMC3373249 DOI: 10.1155/2012/264986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022] Open
Abstract
Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV) subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2%) and MCF-10A (0.5%) human breast cancer cells. Newly hatched specific-pathogen-free (SPF) chicks were inoculated once by oral gavage with 10(9) colony-forming unit (CFU) of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.
Collapse
|
12
|
Rio-Alvarez I, Rodríguez-Herva JJ, Cuartas-Lanza R, Toth I, Pritchard L, Rodríguez-Palenzuela P, López-Solanilla E. Genome-wide analysis of the response of Dickeya dadantii 3937 to plant antimicrobial peptides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:523-533. [PMID: 22204647 DOI: 10.1094/mpmi-09-11-0247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial peptides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.
Collapse
Affiliation(s)
- Isabel Rio-Alvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, Hugouvieux-Cotte-Pattat N, López Solanilla E, Low D, Moleleki L, Pirhonen M, Pitman A, Perna N, Reverchon S, Rodríguez Palenzuela P, San Francisco M, Toth I, Tsuyumu S, van der Waals J, van der Wolf J, Van Gijsegem F, Yang CH, Yedidia I. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:425-49. [PMID: 22702350 DOI: 10.1146/annurev-phyto-081211-173013] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria. They also produce and detect multiple types of small molecules to coordinate pathogenesis, modify the plant environment, attack competing microbes, and perhaps to attract insect vectors. This review integrates new information about the role protein secretion and detection and production of ions and small molecules play in soft-rot pathogenicity.
Collapse
Affiliation(s)
- Amy Charkowski
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nadarasah G, Stavrinides J. Insects as alternative hosts for phytopathogenic bacteria. FEMS Microbiol Rev 2011; 35:555-75. [DOI: 10.1111/j.1574-6976.2011.00264.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Costechareyre D, Dridi B, Rahbé Y, Condemine G. Cyt toxin expression reveals an inverse regulation of insect and plant virulence factors of Dickeya dadantii. Environ Microbiol 2011; 12:3290-301. [PMID: 20649641 DOI: 10.1111/j.1462-2920.2010.02305.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The plant pathogenic bacteria Dickeya dadantii is also a pathogen of the pea aphid Acyrthosiphon pisum. The genome of the bacteria contains four cyt genes, encoding homologues of Bacillus thuringiensis Cyt toxins, which are involved in its pathogenicity to insects. We show here that these genes are transcribed as an operon, and we determined the conditions necessary for their expression. Their expression is induced at high temperature and at an osmolarity equivalent to that found in the plant phloem sap. The regulators of cyt genes have also been identified: their expression is repressed by H-NS and VfmE and activated by PecS. These genes are already known to regulate plant virulence factors, but in an opposite way. When tested in a virulence assay by ingestion, the pecS mutant was almost non-pathogenic while hns and vfmE mutants behaved in the same way as the wild-type strain. Mutants of other regulators of plant virulence, GacA, OmpR and PhoP, that do not control Cyt toxin production, also showed reduced pathogenicity. In an assay by injection of bacteria, the gacA strain was less pathogenic but, surprisingly, the pecS mutant was slightly more virulent. These results show that Cyt toxins are not the only virulence factors required to kill aphids, and that these factors act at different stages of the infection. Moreover, their production is controlled by general virulence regulators known for their role in plant virulence. This integration could indicate that virulence towards insects is a normal mode of life for D. dadantii.
Collapse
|
16
|
Reverchon S, Van Gijsegem F, Effantin G, Zghidi-Abouzid O, Nasser W. Systematic targeted mutagenesis of the MarR/SlyA family members of Dickeya dadantii 3937 reveals a role for MfbR in the modulation of virulence gene expression in response to acidic pH. Mol Microbiol 2010; 78:1018-37. [PMID: 21062374 DOI: 10.1111/j.1365-2958.2010.07388.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathogenicity of Dickeya dadantii is a process involving several factors, such as plant cell wall-degrading enzymes and adaptation systems to adverse conditions encountered in the apoplast. Regulators of the MarR family control a variety of biological processes, including adaptation to hostile environments and virulence. Analysis of the members of this family in D. dadantii led to the identification of a new regulator, MfbR, which controls virulence. MfbR represses its own expression but activates genes encoding plant cell wall-degrading enzymes. Purified MfbR increases the binding of RNA polymerase at the virulence gene promoters and inhibits transcription initiation at the mfbR promoter. MfbR activity appeared to be modulated by acidic pH, a stress encountered by pathogens during the early stages of infection. Expression of mfbR and its targets, during infection, showed that MfbR is unable to activate virulence genes in acidic conditions at an early step of infection. In contrast, alkalinization of the apoplast, during an advanced stage of infection, led to the potentialization of MfbR activity resulting in plant cell wall degrading enzyme production. This report presents a new example of how pathogens adjust virulence-associated factors during the time-course of an infection.
Collapse
|
17
|
Nakka S, Qi M, Zhao Y. The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems. Microbiol Res 2010; 165:665-73. [PMID: 20116983 DOI: 10.1016/j.micres.2009.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/23/2009] [Accepted: 11/28/2009] [Indexed: 01/17/2023]
Abstract
The PhoPQ system is a pleiotropic two-component signal transduction system that controls many pathogenic properties in several mammalian and plant pathogens. Three different cues have been demonstrated to activate the PhoPQ system including a mild acidic pH, antimicrobial peptides, and low Mg(2+). In this study, our results showed that phoPQ mutants were more resistant to strong acidic conditions (pH 4.5 or 5) than that of the wild-type (WT) strain, suggesting that this system in Erwinia amylovora may negatively regulate acid resistance gene expression. Furthermore, the PhoPQ system negatively regulated gene expression of two novel type III secretion systems in E. amylovora. These results are in contrast to those reported for the PhoPQ system in Salmonella and Xanthomonas, where it positively regulates type III secretion system and acid resistance. In addition, survival of phoPQ mutants was about 10-fold lower than that of WT when treated with cecropin A at pH 5.5, suggesting that the PhoPQ system renders the pathogen more resistant to cecropin A.
Collapse
Affiliation(s)
- Sridevi Nakka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201W. Gregory Dr., Urbana, IL 61801, USA
| | | | | |
Collapse
|
18
|
Antunez-Lamas M, Cabrera E, Lopez-Solanilla E, Solano R, González-Melendi P, Chico JM, Toth I, Birch P, Pritchard L, Prichard L, Liu H, Rodriguez-Palenzuela P. Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues. Mol Microbiol 2009; 74:662-71. [PMID: 19818025 DOI: 10.1111/j.1365-2958.2009.06888.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Jasmonate is a key signalling compound in plant defence that is synthesized in wounded tissues. In this work, we have found that this molecule is also a strong chemoattractant for the phythopathogenic bacteria Dickeya dadantii (ex-Erwinia chysanthemi). Jasmonic acid induced the expression of a subset of bacterial genes possibly involved in virulence/survival in the plant apoplast and bacterial cells pre-treated with jasmonate showed increased virulence in chicory and Saintpaulia leaves. We also showed that tissue wounding induced bacterial spread through the leaf surface. Moreover, the jasmonate-deficient aos1 Arabidopsis thaliana mutant was more resistant to bacterial invasion by D. dadantii than wild-type plants. These results are consistent with the hypothesis that sensing jasmonic acid by this bacterium helps the pathogen to ingress inside plant tissues.
Collapse
Affiliation(s)
- Maria Antunez-Lamas
- Centro de Biotecnología y Genómica de Plantas (CBGP), Departamento de Biotecnología. E. T. S. Ingenieros Agrónomos. Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Antimicrobial peptides (AMPs) form a crucial part of human innate host defense, especially in neutrophil phagosomes and on epithelial surfaces. Bacteria have a variety of efficient resistance mechanisms to human AMPs, such as efflux pumps, secreted proteases, and alterations of the bacterial cell surface that are aimed to minimize attraction of the typically cationic AMPs. In addition, bacteria have specific sensors that activate AMP resistance mechanisms when AMPs are present. The prototypical Gram-negative PhoP/PhoQ and the Gram-positive Aps AMP-sensing systems were first described and investigated in Salmonella typhimurium and Staphylococcus epidermidis, respectively. Both include a classical bacterial two-component sensor/regulator system, but show many structural, mechanistic, and functional differences. The PhoP/PhoQ regulon controls a variety of genes not necessarily limited to AMP resistance mechanisms, but apparently aimed to combat innate host defense on a broad scale. In contrast, the staphylococcal Aps system predominantly upregulates AMP resistance mechanisms, namely the D-alanylation of teichoic acids, inclusion of lysyl-phosphati-dylglycerol in the cytoplasmic membrane, and expression of the putative VraFG AMP efflux pump. Notably, both systems are crucial for virulence and represent possible targets for antimicrobial therapy.
Collapse
|
20
|
Perez JC, Shin D, Zwir I, Latifi T, Hadley TJ, Groisman EA. Evolution of a bacterial regulon controlling virulence and Mg(2+) homeostasis. PLoS Genet 2009; 5:e1000428. [PMID: 19300486 PMCID: PMC2650801 DOI: 10.1371/journal.pgen.1000428] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 02/17/2009] [Indexed: 12/25/2022] Open
Abstract
Related organisms typically rely on orthologous regulatory proteins to respond to a given signal. However, the extent to which (or even if) the targets of shared regulatory proteins are maintained across species has remained largely unknown. This question is of particular significance in bacteria due to the widespread effects of horizontal gene transfer. Here, we address this question by investigating the regulons controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+) homeostasis in several bacterial species. We establish that the ancestral PhoP protein directs largely different gene sets in ten analyzed species of the family Enterobacteriaceae, reflecting both regulation of species-specific targets and transcriptional rewiring of shared genes. The two targets directly activated by PhoP in all ten species (the most distant of which diverged >200 million years ago), and coding for the most conserved proteins are the phoPQ operon itself and the lipoprotein-encoding slyB gene, which decreases PhoP protein activity. The Mg(2+)-responsive PhoP protein dictates expression of Mg(2+) transporters and of enzymes that modify Mg(2+)-binding sites in the cell envelope in most analyzed species. In contrast to the core PhoP regulon, which determines the amount of active PhoP and copes with the low Mg(2+) stress, the variable members of the regulon contribute species-specific traits, a property shared with regulons controlled by dissimilar regulatory proteins and responding to different signals.
Collapse
Affiliation(s)
- J. Christian Perez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dongwoo Shin
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Igor Zwir
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tammy Latifi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tricia J. Hadley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo A. Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev 2009; 33:191-205. [PMID: 19054113 PMCID: PMC2704929 DOI: 10.1111/j.1574-6976.2008.00149.x] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/06/2008] [Accepted: 10/24/2008] [Indexed: 11/30/2022] Open
Abstract
The measure of the quality of a systems biology model is how well it can reproduce and predict the behaviors of a biological system such as a microbial cell. In recent years, these models have been built up in layers, and each layer has been growing in sophistication and accuracy in parallel with a global data set to challenge and validate the models in predicting the content or activities of genes (genomics), proteins (proteomics), metabolites (metabolomics), and ultimately cell phenotypes (phenomics). This review focuses on the latter, the phenotypes of microbial cells. The development of Phenotype MicroArrays, which attempt to give a global view of cellular phenotypes, is described. In addition to their use in fleshing out and validating systems biology models, there are many other uses of this global phenotyping technology in basic and applied microbiology research, which are also described.
Collapse
|
22
|
Lebeau A, Reverchon S, Gaubert S, Kraepiel Y, Simond-Côte E, Nasser W, Van Gijsegem F. The GacA global regulator is required for the appropriate expression of Erwinia chrysanthemi 3937 pathogenicity genes during plant infection. Environ Microbiol 2008; 10:545-59. [DOI: 10.1111/j.1462-2920.2007.01473.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J Bacteriol 2008; 190:2183-97. [PMID: 18203830 DOI: 10.1128/jb.01406-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH.
Collapse
|
24
|
Yuan ZC, Liu P, Saenkham P, Kerr K, Nester EW. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 2008. [PMID: 17993523 DOI: 10.1128/jb.01387-1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Department of Microbiology, Box 357242, University of Washington, Seattle, WA 98195-7242, USA
| | | | | | | | | |
Collapse
|
25
|
Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B. Identification and rational design of novel antimicrobial peptides for plant protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2008; 46:273-301. [PMID: 18439131 DOI: 10.1146/annurev.phyto.121307.094843] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Peptides and small proteins exhibiting antimicrobial activity have been isolated from many organisms ranging from insects to humans, including plants. Their role in defense is established, and their use in agriculture was already being proposed shortly after their discovery. However, some natural peptides have undesirable properties that complicate their application. Advances in peptide synthesis and high-throughput activity screening have made possible the de novo and rational design of novel peptides with improved properties. This review summarizes findings in the identification and design of short antimicrobial peptides with activity against plant pathogens, and will discuss alternatives for their heterologous production suited to plant disease control. Recent studies suggest that peptide antimicrobial action is not due solely to microbe permeation as previously described, but that more subtle factors might account for the specificity and absence of toxicity of some peptides. The elucidation of the mode of action and interaction with microbes will assist the improvement of peptide design with a view to targeting specific problems in agriculture and providing new tools for plant protection.
Collapse
Affiliation(s)
- Jose F Marcos
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, 46100 Burjassot, Spain.
| | | | | | | | | |
Collapse
|
26
|
Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 2007; 190:494-507. [PMID: 17993523 DOI: 10.1128/jb.01387-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer.
Collapse
|
27
|
Gupta S, Sinha A, Sarkar D. Transcriptional autoregulation byMycobacterium tuberculosisPhoP involves recognition of novel direct repeat sequences in the regulatory region of the promoter. FEBS Lett 2006; 580:5328-38. [PMID: 16979633 DOI: 10.1016/j.febslet.2006.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/22/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
The PhoP-PhoR two-component system is essential for virulence and intracellular growth of Mycobacterium tuberculosis (MTB) in human and mouse macrophages or in mice. Here, PhoP and truncated PhoR sensor proteins were shown to participate in phosphotransfer reactions using conserved residues characteristic of two-component signaling systems. beta-Galactosidase activity originating from phoP promoter-lacZ construct was inhibited in presence of PhoP, suggesting transcriptional auto-inhibition by the response regulator. In vitro binding of PhoP is consistent with the in vivo transcriptional repression, indicating phosphorylation-independent assembly of the transcription initiation complex at elevated concentrations of PhoP. DNaseI protection studies reveal a consensus recognition sequence within the phoP promoter that includes three 9-bp direct repeat units. Each repeat unit adjusts to the consensus (1)AC(T)/(G)(T)/(G)(T)/(G)P(y)AP(u)C(9). Alteration in the sequence of the newly-identified direct repeat units relieved phoP transcriptional repression in presence of PhoP, suggesting that PhoP represses its own expression by sequence-specific interaction(s) with the repeat units. Together, these results identify so far unknown PhoP-regulated genetic determinants in the regulatory region of the phoP promoter that are central to understanding of how PhoP may possibly function as a global regulator in MTB.
Collapse
Affiliation(s)
- Sankalp Gupta
- Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | | | | |
Collapse
|
28
|
Maggiorani Valecillos A, Rodríguez Palenzuela P, López-Solanilla E. The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:607-13. [PMID: 16776294 DOI: 10.1094/mpmi-19-0607] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The role of several multidrug resistance (MDR) systems in the pathogenicity of Erwinia chrysanthemi 3937 was analyzed. Using the blast algorithm, we have identified several MDR systems in the E. chrysanthemi genome and selected two acridine resistance (Acr)-like systems, two Emr-like systems, and one member of the major facilitator super-family family to characterize. We generated mutants in genes encoding for these systems and analyzed the virulence of the mutant strains in different hosts and their susceptibility to antibiotics, detergents, dyes, and plant compounds. We have observed that the mutant strains are differentially affected in their virulence in different hosts and that the susceptibility to toxic substances is also differential. Both Acr systems seem to be implicated in the resistance to the plant antimicrobial peptide thionin. Similarly, the emr1AB mutant is unable to grow in the presence of the potato protein tuber extract and shows a decreased virulence in this tissue. These results indicate that the function of these systems in plants could be related to the specificity to extrude a toxic compound that is present in a given host.
Collapse
Affiliation(s)
- Alfredo Maggiorani Valecillos
- Departamento de Biotecnología, Universidad Politécnica de Madrid, E.T.S. Ingenieros Agrónomos, Avda. Complutense S/N, E-28040 Madrid, Spain
| | | | | |
Collapse
|
29
|
Venkatesh B, Babujee L, Liu H, Hedley P, Fujikawa T, Birch P, Toth I, Tsuyumu S. The Erwinia chrysanthemi 3937 PhoQ sensor kinase regulates several virulence determinants. J Bacteriol 2006; 188:3088-98. [PMID: 16585768 PMCID: PMC1447017 DOI: 10.1128/jb.188.8.3088-3098.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PhoPQ two-component system regulates virulence factors in Erwinia chrysanthemi, a pectinolytic enterobacterium that causes soft rot in several plant species. We characterized the effect of a mutation in phoQ, the gene encoding the sensor kinase PhoQ of the PhoPQ two-component regulatory system, on the global transcriptional profile of E. chrysanthemi using cDNA microarrays and further confirmed our results by quantitative reverse transcription-PCR analysis. Our results indicate that a mutation in phoQ affects transcription of at least 40 genes, even in the absence of inducing conditions. Enhanced expression of several genes involved in iron metabolism was observed in the mutant, including that of the acs operon that is involved in achromobactin biosynthesis and transport. This siderophore is required for full virulence of E. chrysanthemi, and its expression is governed by the global repressor protein Fur. Changes in gene expression were also observed for membrane transporters, stress-related genes, toxins, and transcriptional regulators. Our results indicate that the PhoPQ system governs the expression of several additional virulence factors and may also be involved in interactions with other regulatory systems.
Collapse
Affiliation(s)
- Balakrishnan Venkatesh
- Laboratory of Plant Pathology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Toth IK, Pritchard L, Birch PRJ. Comparative genomics reveals what makes an enterobacterial plant pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:305-36. [PMID: 16704357 DOI: 10.1146/annurev.phyto.44.070505.143444] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The bacterial family Enterobacteriaceae contains some of the most devastating human and animal pathogens, including Escherichia coli, Salmonella enterica and species of Yersinia and Shigella. These are among the best-studied of any organisms, yet there is much to be learned about the nature and evolution of interactions with their hosts and with the wider environment. Comparative and functional genomics have fundamentally improved our understanding of their modes of adaptation to different ecological niches and the genes that determine their pathogenicity. In addition to animal pathogens, Enterobacteriaceae include important plant pathogens, such as Erwinia carotovora subsp. atroseptica (Eca), the first plant-pathogenic enterobacterium to be sequenced. This review focuses on genomic comparisons between Eca and other enterobacteria, with particular emphasis on the differences that exemplify or explain the plant-associated lifestyle(s) of Eca. Horizontal gene transfer in Eca may directly have led to the acquisition of a number of determinants that mediate its interactions, pathogenic or otherwise, with plants, offering a glimpse into its evolutionary divergence from animal-pathogenic enterobacteria.
Collapse
Affiliation(s)
- Ian K Toth
- Plant Pathology Program, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| | | | | |
Collapse
|