1
|
Shleeva MO, Demina GR, Kaprelyants AS. Biochemistry of Reactivation of Dormant Mycobacteria. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S193-S213. [PMID: 40164159 DOI: 10.1134/s0006297924603757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 08/23/2024] [Indexed: 04/02/2025]
Abstract
An important aspect of medical microbiology is identification of the causes and mechanisms of reactivation (resuscitation) of dormant non-sporulating bacteria. In particular, dormant Mycobacterium tuberculosis (Mtb) can cause latent tuberculosis (TB), which could be reactivated in the human organism to the active form of the disease. Analysis of experimental data suggested that reactivation of mycobacteria and reversion of the growth processes include several stages. The initial stage is associated with breakdown of the storage substances like trehalose upon the action of trehalase and with peptidoglycan hydrolysis. Demethylation of tetramethyl porphyrins accumulated in hydrophobic sites (membranes) of the dormant cell also occur in this stage. Metabolic reactivation, starting with cAMP synthesis and subsequent activation of metabolic reactions and biosynthetic processes take place at the stage two as has been shown in the omics studies. Mechanisms of cell reactivation by exogenous free fatty acids via activation of adenylate cyclase and cAMP production have been also suggested. Onset of the cell division is a key benchmark of the third and final stage. Hydrolysis of peptidoglycan as a result of enzymatic action of peptidoglycan hydrolases of the Rpf family is an important process in reactivation of the dormant mycobacteria. Two possible mechanisms for participation of Rpf proteins in reactivation of the dormant bacteria are discussed. On the one hand, muropeptides could be formed as products of peptidoglycan hydrolysis, which could interact with appropriate receptors in bacterial cells transducing activating signal via the PknB phosphotransferase. On the other hand, Rpf protein could presumably change structure of the cell wall, making it more permeable to nutrients and substrates. Both hypotheses were examined in this review. Upon reactivation, independent enzymatic reactions resume their functioning from the beginning of reactivation. Such activation of the entire metabolism occurs rather stochastically, which concludes in combining all biochemical processes in one. This review presents current knowledge regarding biochemical mechanisms of the dormant mycobacteria reactivation, which is important for both fundamental and medical microbiology.
Collapse
Affiliation(s)
- Margarita O Shleeva
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Galina R Demina
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Arseny S Kaprelyants
- Federal Research Centre "Fundamentals of Biotechnology", A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
2
|
Khan H, Paul P, Goar H, Bamniya B, Baid N, Sarkar D. Mycobacterium tuberculosis PhoP integrates stress response to intracellular survival by regulating cAMP level. eLife 2024; 13:RP92136. [PMID: 38739431 PMCID: PMC11090507 DOI: 10.7554/elife.92136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Survival of Mycobacterium tuberculosis within the host macrophages requires the bacterial virulence regulator PhoP, but the underlying reason remains unknown. 3',5'-Cyclic adenosine monophosphate (cAMP) is one of the most widely used second messengers, which impacts a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-bacterial cAMP level could be controlled by PhoP since this major regulator plays a key role in bacterial responses against numerous stress conditions. A transcriptomic analysis reveals that PhoP functions as a repressor of cAMP-specific phosphodiesterase (PDE) Rv0805, which hydrolyzes cAMP. In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis, leading to the depletion of intra-bacterial cAMP level. Thus, genetic manipulation to inactivate PhoP-rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacillus.
Collapse
Affiliation(s)
- Hina Khan
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Partha Paul
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Harsh Goar
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Bhanwar Bamniya
- CSIR, Institute of Microbial TechnologyChandigarhIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| | - Navin Baid
- CSIR, Institute of Microbial TechnologyChandigarhIndia
| | - Dibyendu Sarkar
- CSIR, Institute of Microbial TechnologyChandigarhIndia
- Academy of Scientific and Innovative ResearchGhaziabadIndia
| |
Collapse
|
3
|
Wong AI, Beites T, Planck KA, Fieweger RA, Eckartt KA, Li S, Poulton NC, VanderVen BC, Rhee KY, Schnappinger D, Ehrt S, Rock J. Cyclic AMP is a critical mediator of intrinsic drug resistance and fatty acid metabolism in M. tuberculosis. eLife 2023; 12:e81177. [PMID: 36810158 PMCID: PMC9995111 DOI: 10.7554/elife.81177] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger that transduces signals from cellular receptors to downstream effectors. Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, devotes a considerable amount of coding capacity to produce, sense, and degrade cAMP. Despite this fact, our understanding of how cAMP regulates Mtb physiology remains limited. Here, we took a genetic approach to investigate the function of the sole essential adenylate cyclase in Mtb H37Rv, Rv3645. We found that a lack of rv3645 resulted in increased sensitivity to numerous antibiotics by a mechanism independent of substantial increases in envelope permeability. We made the unexpected observation that rv3645 is conditionally essential for Mtb growth only in the presence of long-chain fatty acids, a host-relevant carbon source. A suppressor screen further identified mutations in the atypical cAMP phosphodiesterase rv1339 that suppress both fatty acid and drug sensitivity phenotypes in strains lacking rv3645. Using mass spectrometry, we found that Rv3645 is the dominant source of cAMP under standard laboratory growth conditions, that cAMP production is the essential function of Rv3645 in the presence of long-chain fatty acids, and that reduced cAMP levels result in increased long-chain fatty acid uptake and metabolism and increased antibiotic susceptibility. Our work defines rv3645 and cAMP as central mediators of intrinsic multidrug resistance and fatty acid metabolism in Mtb and highlights the potential utility of small molecule modulators of cAMP signaling.
Collapse
Affiliation(s)
- Andrew I Wong
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Tiago Beites
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Kyle A Planck
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Kathryn A Eckartt
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell MedicineNew YorkUnited States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - Jeremy Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
4
|
Khan H, Paul P, Sevalkar RR, Kachhap S, Singh B, Sarkar D. Convergence of two global regulators to coordinate expression of essential virulence determinants of Mycobacterium tuberculosis. eLife 2022; 11:80965. [PMID: 36350294 PMCID: PMC9645806 DOI: 10.7554/elife.80965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Cyclic AMP (cAMP) is known to function as a global regulator of Mycobacterium tuberculosis gene expression. Sequence-based transcriptomic profiling identified the mycobacterial regulon controlled by the cAMP receptor protein, CRP. In this study, we identified a new subset of CRP-associated genes including virulence determinants which are also under the control of a major regulator, PhoP. Our results suggest that PhoP as a DNA binding transcription factor, impacts expression of these genes, and phosphorylated PhoP promotes CRP recruitment at the target promoters. Further, we uncover a distinct regulatory mechanism showing that activation of these genes requires direct recruitment of both PhoP and CRP at their target promoters. The most fundamental biological insight is derived from the inhibition of CRP binding at the regulatory regions in a PhoP-deleted strain owing to CRP-PhoP protein-protein interactions. Based on these results, a model is proposed suggesting how CRP and PhoP function as co-activators of the essential pathogenic determinants. Taken together, these results uncover a novel mode of regulation where a complex of two interacting virulence factors impact expression of virulence determinants. These results have significant implications on TB pathogenesis.
Collapse
Affiliation(s)
- Hina Khan
- CSIR-Institute of Microbial Technology
| | | | | | | | | | | |
Collapse
|
5
|
Hadizadeh Tasbiti A, Badmasti F, Siadat SD, Fateh A, Yari F, GHzanfari Jajin M, Yari S. Recognition of specific immunogenic antigens with potential diagnostic value in multi-drug resistant Mycobacterium tuberculosis inducing humoral immunity in MDR-TB patients. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105328. [PMID: 35788051 DOI: 10.1016/j.meegid.2022.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Tuberculosis (TB) as a public health crisis is caused by the intracellular bacterium Mycobacterium tuberculosis. Detection of immunogenic proteins in TB is valuable for the development of diagnostic tests, vaccine formulations and monitoring treatment outcome. In this study, we differentiated the immune-reactivity of proteins in multidrug-resistant tuberculosis (MDRTB) and drug-susceptible strains using purified anti-MDRTB antibodies isolated from inpatients. Our data showed that the anti- MDRTB antibody was well able to detect the MDR strain in the patient's sputum. The immunogenic proteins of MDRTB were purified by affinity chromatography and subjected to matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Analysis of the data revealed that seven MDRTB immunogenic proteins, including Rv2986c (HupB), Rv3699, Rv1133c (MetE), Rv0440 (GroEL), Rv3057c, Rv2558 and Rv2971 are involved in DNA stability, metabolism, cellular processes and some unknown functions. Similarities in the electrophoresis protein profiles were evident between the extracts of MDR and sensitive TB strains. However, the protein expression patterns of MDRTB isolates were distinguishable from that formed by susceptible TB strains.
Collapse
Affiliation(s)
- Alireza Hadizadeh Tasbiti
- Tuberculosis and Pulmonary Research Dept, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzad Badmasti
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran; Bacteriology Dept, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Dept, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Tuberculosis and Pulmonary Research Dept, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Yari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion, Iran
| | | | - Shamsi Yari
- Tuberculosis and Pulmonary Research Dept, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Nziza N, Cizmeci D, Davies L, Irvine EB, Jung W, Fenderson BA, de Kock M, Hanekom WA, Franken KLMC, Day CL, Ottenhoff THM, Alter G. Defining Discriminatory Antibody Fingerprints in Active and Latent Tuberculosis. Front Immunol 2022; 13:856906. [PMID: 35514994 PMCID: PMC9066635 DOI: 10.3389/fimmu.2022.856906] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis (TB) is among the leading causes of death worldwide from a single infectious agent, second only to COVID-19 in 2020. TB is caused by infection with Mycobacterium tuberculosis (Mtb), that results either in a latent or active form of disease, the latter associated with Mtb spread. In the absence of an effective vaccine, epidemiologic modeling suggests that aggressive treatment of individuals with active TB (ATB) may curb spread. Yet, clinical discrimination between latent (LTB) and ATB remains a challenge. While antibodies are widely used to diagnose many infections, the utility of antibody-based tests to diagnose ATB has only regained significant traction recently. Specifically, recent interest in the humoral immune response to TB has pointed to potential differences in both targeted antigens and antibody features that can discriminate latent and active TB. Here we aimed to integrate these observations and broadly profile the humoral immune response across individuals with LTB or ATB, with and without HIV co-infection, to define the most discriminatory humoral properties and diagnose TB disease more easily. Using 209 Mtb antigens, striking differences in antigen-recognition were observed across latently and actively infected individuals that was modulated by HIV serostatus. However, ATB and LTB could be discriminated, irrespective of HIV-status, based on a combination of both antibody levels and Fc receptor-binding characteristics targeting both well characterized (like lipoarabinomannan, 38 kDa or antigen 85) but also novel Mtb antigens (including Rv1792, Rv1528, Rv2435C or Rv1508). These data reveal new Mtb-specific immunologic markers that can improve the classification of ATB versus LTB.
Collapse
Affiliation(s)
- Nadege Nziza
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Leela Davies
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward B. Irvine
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Wonyeong Jung
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Brooke A. Fenderson
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Cheryl L. Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| |
Collapse
|
7
|
Wilburn KM, Montague CR, Qin B, Woods AK, Love MS, McNamara CW, Schultz PG, Southard TL, Huang L, Petrassi HM, VanderVen BC. Pharmacological and genetic activation of cAMP synthesis disrupts cholesterol utilization in Mycobacterium tuberculosis. PLoS Pathog 2022; 18:e1009862. [PMID: 35134095 PMCID: PMC8856561 DOI: 10.1371/journal.ppat.1009862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/18/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3', 5'-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.
Collapse
Affiliation(s)
- Kaley M. Wilburn
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - Christine R. Montague
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - Bo Qin
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Ashley K. Woods
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Melissa S. Love
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Case W. McNamara
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Peter G. Schultz
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Teresa L. Southard
- Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Lu Huang
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| | - H. Michael Petrassi
- Calibr, a division of The Scripps Research Institute, San Diego, California, United States of America
| | - Brian C. VanderVen
- Microbiology & Immunology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
8
|
Zarrella TM, Yang J, Metzger DW, Bai G. Bacterial Second Messenger Cyclic di-AMP Modulates the Competence State in Streptococcus pneumoniae. J Bacteriol 2020; 202:e00691-19. [PMID: 31767779 PMCID: PMC6989799 DOI: 10.1128/jb.00691-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a naturally competent organism that causes diseases such as pneumonia, otitis media, and bacteremia. The essential bacterial second messenger cyclic di-AMP (c-di-AMP) is an emerging player in the stress responses of many pathogens. In S. pneumoniae, c-di-AMP is produced by a diadenylate cyclase, CdaA, and cleaved by phosphodiesterases Pde1 and Pde2. c-di-AMP binds a transporter of K+ (Trk) family protein, CabP, which subsequently halts K+ uptake via the transporter TrkH. Recently, it was reported that Pde1 and Pde2 are essential for pneumococcal virulence in mouse models of disease. To elucidate c-di-AMP-mediated transcription that may lead to changes in pathogenesis, we compared the transcriptomes of wild-type (WT) and Δpde1 Δpde2 strains by transcriptome sequencing (RNA-Seq) analysis. Notably, we found that many competence-associated genes are significantly upregulated in the Δpde1 Δpde2 strain compared to the WT. These genes play a role in DNA uptake, recombination, and autolysis. Competence is induced by a quorum-sensing mechanism initiated by the secreted factor competence-stimulating peptide (CSP). Surprisingly, the Δpde1 Δpde2 strain exhibited reduced transformation efficiency compared to WT bacteria, which was c-di-AMP dependent. Transformation efficiency was also directly related to the [K+] in the medium, suggesting a link between c-di-AMP function and the pneumococcal competence state. We found that a strain that possesses a V76G variation in CdaA produced less c-di-AMP and was highly susceptible to CSP. Deletion of cabP and trkH restored the growth of these bacteria in medium with CSP. Overall, our study demonstrates a novel role for c-di-AMP in the competence program of S. pneumoniaeIMPORTANCE Genetic competence in bacteria leads to horizontal gene transfer, which can ultimately affect antibiotic resistance, adaptation to stress conditions, and virulence. While the mechanisms of pneumococcal competence signaling cascades have been well characterized, the molecular mechanism behind competence regulation is not fully understood. The bacterial second messenger c-di-AMP has previously been shown to play a role in bacterial physiology and pathogenesis. In this study, we provide compelling evidence for the interplay between c-di-AMP and the pneumococcal competence state. These findings not only attribute a new biological function to this dinucleotide as a regulator of competence, transformation, and survival under stress conditions in pneumococci but also provide new insights into how pneumococcal competence is modulated.
Collapse
Affiliation(s)
- Tiffany M Zarrella
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Jun Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
9
|
Shleeva MO, Kondratieva TK, Goncharenko AV, Apt AS, Kaprelyants AS. cAMP-Dependent Transcription Factor in Mycobacterium tuberculosis Coded by the Rv3676 Gene as a Possible Target for the Development of Antituberculosis Drugs. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ha SI, Park KG, Suk HS, Shin JS, Shin DP, Kwon MO, Park YJ. Study on the Growth Factors for Rapidly Cultivating Mycobacteriumspp. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sung-Il Ha
- Department of Laboratory Medicine, The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, Korea
| | - Kang-Gyun Park
- Department of Laboratory Medicine, The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, Korea
| | - Hyun-Soo Suk
- Department of Laboratory Medicine, The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, Korea
| | - Jeong-Seob Shin
- Department of Laboratory Medicine, The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, Korea
| | - Dong-Pil Shin
- Department of Laboratory Medicine, The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, Korea
| | - Min-O Kwon
- Department of Laboratory Medicine, The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, The Catholic University of Korea, College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Johnson RM, McDonough KA. Cyclic nucleotide signaling in Mycobacterium tuberculosis: an expanding repertoire. Pathog Dis 2019; 76:4995197. [PMID: 29905867 DOI: 10.1093/femspd/fty048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful microbial pathogens, and currently infects over a quarter of the world's population. Mtb's success depends on the ability of the bacterium to sense and respond to dynamic and hostile environments within the host, including the ability to regulate bacterial metabolism and interactions with the host immune system. One of the ways Mtb senses and responds to conditions it faces during infection is through the concerted action of multiple cyclic nucleotide signaling pathways. This review will describe how Mtb uses cyclic AMP, cyclic di-AMP and cyclic di-GMP to regulate important physiological processes, and how these signaling pathways can be exploited for the development of novel thereapeutics and vaccines.
Collapse
Affiliation(s)
- Richard M Johnson
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201-2002, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| |
Collapse
|
12
|
Girardin RC, Bai G, He J, Sui H, McDonough KA. AbmR (Rv1265) is a novel transcription factor of Mycobacterium tuberculosis that regulates host cell association and expression of the non-coding small RNA Mcr11. Mol Microbiol 2018; 110:811-830. [PMID: 30207611 PMCID: PMC6282994 DOI: 10.1111/mmi.14126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/11/2022]
Abstract
Gene regulatory networks used by Mycobacterium tuberculosis (Mtb) during infection include many genes of unknown function, confounding efforts to determine their roles in Mtb biology. Rv1265 encodes a conserved hypothetical protein that is expressed during infection and in response to elevated levels of cyclic AMP. Here, we report that Rv1265 is a novel auto‐inhibitory ATP‐binding transcription factor that upregulates expression of the small non‐coding RNA Mcr11, and propose that Rv1265 be named ATP‐binding mcr11regulator (AbmR). AbmR directly and specifically bound DNA, as determined by electrophoretic mobility shift assays, and this DNA‐binding activity was enhanced by AbmR’s interaction with ATP. Genetic knockout of abmR in Mtb increased abmR promoter activity and eliminated growth phase‐dependent increases in mcr11 expression during hypoxia. Mutagenesis identified arginine residues in the carboxy terminus that are critical for AbmR’s DNA‐binding activity and gene regulatory function. Limited similarity to other DNA‐ or ATP‐binding domains suggests that AbmR belongs to a novel class of DNA‐ and ATP‐binding proteins. AbmR was also found to form large organized structures in solution and facilitate the serum‐dependent association of Mtb with human lung epithelial cells. These results indicate a potentially complex role for AbmR in Mtb biology.
Collapse
Affiliation(s)
- Roxie C Girardin
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Jie He
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Haixin Sui
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 22002, Albany, NY, 12201-2002, USA.,Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
13
|
Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria. J Bacteriol 2018; 200:JB.00743-17. [PMID: 29378893 DOI: 10.1128/jb.00743-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas) provide bacteria and archaea with adaptive immunity to specific DNA invaders. Mycobacterium tuberculosis encodes a type III CRISPR-Cas system that has not been experimentally explored. In this study, we found that the CRISPR-Cas systems of both M. tuberculosis and Mycobacterium bovis BCG were highly upregulated by deletion of Rv2837c (cnpB), which encodes a multifunctional protein that hydrolyzes cyclic di-AMP (c-di-AMP), cyclic di-GMP (c-di-GMP), and nanoRNAs (short oligonucleotides of 5 or fewer residues). By using genetic and biochemical approaches, we demonstrated that the CnpB-controlled transcriptional regulation of the CRISPR-Cas system is mediated by an Orn-like activity rather than by hydrolyzing the cyclic dinucleotides. Additionally, our results revealed that tuberculosis (TB) complex mycobacteria are functional in processing CRISPR RNAs (crRNAs), which are also more abundant in the ΔcnpB strain than in the parent strain. The elevated crRNA levels in the ΔcnpB strain could be partially reduced by expressing Escherichia coli orn Our findings provide new insight into transcriptional regulation of bacterial CRISPR-Cas systems.IMPORTANCE Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas) provide adaptive immunity to specific DNA invaders. M. tuberculosis encodes a type III CRISPR-Cas system that has not been experimentally explored. In this study, we first demonstrated that the CRISPR-Cas systems in tuberculosis (TB) complex mycobacteria are functional in processing CRISPR RNAs (crRNAs). We also showed that Rv2837c (CnpB) controls the expression of the CRISPR-Cas systems in TB complex mycobacteria through an oligoribonuclease (Orn)-like activity, which is very likely mediated by nanoRNA. Since little is known about regulation of CRISPR-Cas systems, our findings provide new insight into transcriptional regulation of bacterial CRISPR-Cas systems.
Collapse
|
14
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
15
|
Smith LJ, Bochkareva A, Rolfe MD, Hunt DM, Kahramanoglou C, Braun Y, Rodgers A, Blockley A, Coade S, Lougheed KEA, Hafneh NA, Glenn SM, Crack JC, Le Brun NE, Saldanha JW, Makarov V, Nobeli I, Arnvig K, Mukamolova GV, Buxton RS, Green J. Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence. Nucleic Acids Res 2017; 45:6600-6612. [PMID: 28482027 PMCID: PMC5499769 DOI: 10.1093/nar/gkx406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 04/28/2017] [Indexed: 12/05/2022] Open
Abstract
Mycobacterium tuberculosis (MTb) is the causative agent of pulmonary tuberculosis (TB). MTb colonizes the human lung, often entering a non-replicating state before progressing to life-threatening active infections. Transcriptional reprogramming is essential for TB pathogenesis. In vitro, Cmr (a member of the CRP/FNR super-family of transcription regulators) bound at a single DNA site to act as a dual regulator of cmr transcription and an activator of the divergent rv1676 gene. Transcriptional profiling and DNA-binding assays suggested that Cmr directly represses dosR expression. The DosR regulon is thought to be involved in establishing latent tuberculosis infections in response to hypoxia and nitric oxide. Accordingly, DNA-binding by Cmr was severely impaired by nitrosation. A cmr mutant was better able to survive a nitrosative stress challenge but was attenuated in a mouse aerosol infection model. The complemented mutant exhibited a ∼2-fold increase in cmr expression, which led to increased sensitivity to nitrosative stress. This, and the inability to restore wild-type behaviour in the infection model, suggests that precise regulation of the cmr locus, which is associated with Region of Difference 150 in hypervirulent Beijing strains of Mtb, is important for TB pathogenesis.
Collapse
Affiliation(s)
- Laura J Smith
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.,School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | | | - Matthew D Rolfe
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Debbie M Hunt
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Christina Kahramanoglou
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Yvonne Braun
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Angela Rodgers
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Alix Blockley
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Stephen Coade
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Kathryn E A Lougheed
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Nor Azian Hafneh
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Sarah M Glenn
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - José W Saldanha
- Division of Mathematical Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Vadim Makarov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Kristine Arnvig
- Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Galina V Mukamolova
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Roger S Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
16
|
Shleeva MO, Kondratieva TK, Demina GR, Rubakova EI, Goncharenko AV, Apt AS, Kaprelyants AS. Overexpression of Adenylyl Cyclase Encoded by the Mycobacterium tuberculosis Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice. Front Cell Infect Microbiol 2017; 7:370. [PMID: 28861399 PMCID: PMC5562752 DOI: 10.3389/fcimb.2017.00370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 01/21/2023] Open
Abstract
Earlier we demonstrated that the adenylyl cyclase (AC) encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis (Mtb), the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro, the AC-overexpressing pMindRv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo, AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence) in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMindRv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo.
Collapse
Affiliation(s)
- Margarita O Shleeva
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, A. N. Bach Institute of BiochemistryMoscow, Russia
| | - Tatyana K Kondratieva
- Department of Immunology, Laboratory for Immunogenetics, Central Institute for TuberculosisMoscow, Russia
| | - Galina R Demina
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, A. N. Bach Institute of BiochemistryMoscow, Russia
| | - Elvira I Rubakova
- Department of Immunology, Laboratory for Immunogenetics, Central Institute for TuberculosisMoscow, Russia
| | - Anna V Goncharenko
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, A. N. Bach Institute of BiochemistryMoscow, Russia
| | - Alexander S Apt
- Department of Immunology, Laboratory for Immunogenetics, Central Institute for TuberculosisMoscow, Russia.,Department of Immunology, School of Biology, Lomonosov Moscow State UniversityMoscow, Russia
| | - Arseny S Kaprelyants
- Department of Immunology, Laboratory for Immunogenetics, Central Institute for TuberculosisMoscow, Russia
| |
Collapse
|
17
|
Interaction of Erp Protein of Mycobacterium tuberculosis with Rv2212 Enhances Intracellular Survival of Mycobacterium smegmatis. J Bacteriol 2016; 198:2841-52. [PMID: 27481930 DOI: 10.1128/jb.00120-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/24/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The Mycobacterium tuberculosis exported repetitive protein (RvErp) is a crucial virulence-associated factor as determined by its role in the survival and multiplication of mycobacteria in cultured macrophages and in vivo Although attempts have been made to understand the function of Erp protein, its exact role in Mycobacterium pathogenesis is still elusive. One way to determine this is by searching for novel interactions of RvErp. Using a yeast two-hybrid assay, an adenylyl cyclase (AC), Rv2212, was found to interact with RvErp. The interaction between RvErp and Rv2212 is direct and occurs at the endogenous level. The Erp protein of Mycobacterium smegmatis (MSMEG_6405, or MsErp) interacts neither with Rv2212 nor with Ms_4279, the M. smegmatis homologue of Rv2212. Deletion mutants of Rv2212 revealed its adenylyl cyclase domain to be responsible for the interaction. RvErp enhances Rv2212-mediated cyclic AMP (cAMP) production. Also, the biological significance of the interaction between RvErp and Rv2212 was demonstrated by the enhanced survival of M. smegmatis within THP-1 macrophages. Taken together, these studies address a novel mechanism by which Erp executes its function. IMPORTANCE RvErp is one of the important virulence factors of M. tuberculosis This study describes a novel function of RvErp protein of M. tuberculosis by identifying Rv2212 as its interacting protein. Rv2212 is an adenylyl cyclase (AC) and produces cAMP, one of the prime second messengers that regulate the intracellular survival of mycobacteria. Therefore, the significance of investigating novel interactions of RvErp is paramount in unraveling the mechanisms governing the intracellular survival of mycobacteria.
Collapse
|
18
|
Abstract
Mycobacteria inhabit a wide range of intracellular and extracellular environments. Many of these environments are highly dynamic and therefore mycobacteria are faced with the constant challenge of redirecting their metabolic activity to be commensurate with either replicative growth or a non-replicative quiescence. A fundamental feature in this adaptation is the ability of mycobacteria to respire, regenerate reducing equivalents and generate ATP via oxidative phosphorylation. Mycobacteria harbor multiple primary dehydrogenases to fuel the electron transport chain and two terminal respiratory oxidases, an aa3 -type cytochrome c oxidase and cytochrome bd-type menaquinol oxidase, are present for dioxygen reduction coupled to the generation of a protonmotive force. Hypoxia leads to the downregulation of key respiratory complexes, but the molecular mechanisms regulating this expression are unknown. Despite being obligate aerobes, mycobacteria have the ability to metabolize in the absence of oxygen and a number of reductases are present to facilitate the turnover of reducing equivalents under these conditions (e.g. nitrate reductase, succinate dehydrogenase/fumarate reductase). Hydrogenases and ferredoxins are also present in the genomes of mycobacteria suggesting the ability of these bacteria to adapt to an anaerobic-type of metabolism in the absence of oxygen. ATP synthesis by the membrane-bound F1FO-ATP synthase is essential for growing and non-growing mycobacteria and the enzyme is able to function over a wide range of protonmotive force values (aerobic to hypoxic). The discovery of lead compounds that target respiration and oxidative phosphorylation in Mycobacterium tuberculosis highlights the importance of this area for the generation of new front line drugs to combat tuberculosis.
Collapse
|
19
|
Abstract
All cells must adapt to changing conditions, and many use cyclic AMP (cAMP) as a second messenger to sense and respond to fluctuations in their environment. cAMP is made by adenylyl cyclases (ACs), and mycobacteria have an unusually large number of biochemically distinct ACs. cAMP is important for gene regulation in mycobacteria, and the ability to secrete cAMP into host macrophages during infection contributes to Mycobacterium tuberculosis pathogenesis. This article discusses the many roles of cAMP in mycobacteria and reviews what is known about the factors that contribute to production, destruction, and utilization of this important signal molecule. Special emphasis is placed on cAMP signaling in M. tuberculosis complex bacteria and its importance to M. tuberculosis during host infection.
Collapse
|
20
|
Baer CE, Rubin EJ, Sassetti CM. New insights into TB physiology suggest untapped therapeutic opportunities. Immunol Rev 2015; 264:327-43. [PMID: 25703570 DOI: 10.1111/imr.12267] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current regimens used to treat tuberculosis are largely comprised of serendipitously discovered drugs that are combined based on clinical experience. Despite curing millions, these drug regimens are limited by the long course of therapy, the emergence of resistance, and the persistent tissue damage that remains after treatment. The last two decades have produced only a single new drug but have represented a renaissance in our understanding of the physiology of tuberculosis infection. The advent of mycobacterial genetics, sophisticated immunological methods, and imaging technologies have transformed our understanding of bacterial physiology as well as the contribution of the host response to disease outcome. Specific alterations in bacterial metabolism, heterogeneity in bacterial state, and drug penetration all limit the effectiveness of antimicrobial therapy. This review summarizes these new biological insights and discusses strategies to exploit them for the rational development of more effective therapeutics. Three general strategies are discussed. First, our emerging insight into bacterial physiology suggests new pathways that might be targeted to accelerate therapy. Second, we explore whether the concept of genetic synergy can be used to design effective combination therapies. Finally, we outline possible approaches to modulate the host response to accentuate antibiotic efficacy. These biology-driven strategies promise to produce more effective therapies.
Collapse
Affiliation(s)
- Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | |
Collapse
|
21
|
Ranganathan S, Bai G, Lyubetskaya A, Knapp GS, Peterson MW, Gazdik M, C Gomes AL, Galagan JE, McDonough KA. Characterization of a cAMP responsive transcription factor, Cmr (Rv1675c), in TB complex mycobacteria reveals overlap with the DosR (DevR) dormancy regulon. Nucleic Acids Res 2015; 44:134-51. [PMID: 26358810 PMCID: PMC4705688 DOI: 10.1093/nar/gkv889] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) Cmr (Rv1675c) is a CRP/FNR family transcription factor known to be responsive to cAMP levels and during macrophage infections. However, Cmr's DNA binding properties, cellular targets and overall role in tuberculosis (TB) complex bacteria have not been characterized. In this study, we used experimental and computational approaches to characterize Cmr's DNA binding properties and identify a putative regulon. Cmr binds a 16-bp palindromic site that includes four highly conserved nucleotides that are required for DNA binding. A total of 368 binding sites, distributed in clusters among ∼200 binding regions throughout the Mycobacterium bovis BCG genome, were identified using ChIP-seq. One of the most enriched Cmr binding sites was located upstream of the cmr promoter, and we demonstrated that expression of cmr is autoregulated. cAMP affected Cmr binding at a subset of DNA loci in vivo and in vitro, including multiple sites adjacent to members of the DosR (DevR) dormancy regulon. Our findings of cooperative binding of Cmr to these DNA regions and the regulation by Cmr of the DosR-regulated virulence gene Rv2623 demonstrate the complexity of Cmr-mediated gene regulation and suggest a role for Cmr in the biology of persistent TB infection.
Collapse
Affiliation(s)
- Sridevi Ranganathan
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA
| | - Guangchun Bai
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - Anna Lyubetskaya
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Gwendowlyn S Knapp
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | | | - Michaela Gazdik
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA
| | | | - James E Galagan
- Bioinformatics Program, Boston University, Boston, MA 02215, USA Department of Microbiology, Boston University, Boston, MA 02215, USA Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY 12201, USA Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| |
Collapse
|
22
|
Luo H, Zeng J, Huang Q, Liu M, Abdalla AE, Xie L, Wang H, Xie J. Mycobacterium tuberculosisRv1265 promotes mycobacterial intracellular survival and alters cytokine profile of the infected macrophage. J Biomol Struct Dyn 2015; 34:585-99. [DOI: 10.1080/07391102.2015.1046935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Gopinath V, Raghunandanan S, Gomez RL, Jose L, Surendran A, Ramachandran R, Pushparajan AR, Mundayoor S, Jaleel A, Kumar RA. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation. Mol Cell Proteomics 2015; 14:2160-76. [PMID: 26025969 DOI: 10.1074/mcp.m115.051151] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic intervention to prevent reactivation of latent tuberculosis.
Collapse
Affiliation(s)
- Vipin Gopinath
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Sajith Raghunandanan
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Roshna Lawrence Gomez
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Leny Jose
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Arun Surendran
- §Mass Spectrometry and Proteomic Core Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Ranjit Ramachandran
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Akhil Raj Pushparajan
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Sathish Mundayoor
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Abdul Jaleel
- §Mass Spectrometry and Proteomic Core Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India
| | - Ramakrishnan Ajay Kumar
- From the ‡Mycobacterium Research Group, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O., Thiruvananthapuram 695014, India;
| |
Collapse
|
24
|
Knapp GS, Lyubetskaya A, Peterson MW, Gomes ALC, Ma Z, Galagan JE, McDonough KA. Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c-Rv0247c in TB complex mycobacteria. Nucleic Acids Res 2015; 43:5377-93. [PMID: 25940627 PMCID: PMC4477654 DOI: 10.1093/nar/gkv420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/19/2015] [Indexed: 11/14/2022] Open
Abstract
Bacterial pathogens adapt to changing environments within their hosts, and the signaling molecule adenosine 3', 5'-cyclic monophosphate (cAMP) facilitates this process. In this study, we characterized in vivo DNA binding and gene regulation by the cAMP-responsive protein CRP in M. bovis BCG as a model for tuberculosis (TB)-complex bacteria. Chromatin immunoprecipitation followed by deep-sequencing (ChIP-seq) showed that CRP associates with ∼900 DNA binding regions, most of which occur within genes. The most highly enriched binding region was upstream of a putative copper transporter gene (ctpB), and crp-deleted bacteria showed increased sensitivity to copper toxicity. Detailed mutational analysis of four CRP binding sites upstream of the virulence-associated Rv0249c-Rv0247c succinate dehydrogenase genes demonstrated that CRP directly regulates Rv0249c-Rv0247c expression from two promoters, one of which requires sequences intragenic to Rv0250c for maximum expression. The high percentage of intragenic CRP binding sites and our demonstration that these intragenic DNA sequences significantly contribute to biologically relevant gene expression greatly expand the genome space that must be considered for gene regulatory analyses in mycobacteria. These findings also have practical implications for an important bacterial pathogen in which identification of mutations that affect expression of drug target-related genes is widely used for rapid drug resistance screening.
Collapse
Affiliation(s)
- Gwendowlyn S Knapp
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - Anna Lyubetskaya
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | | | | | - Zhuo Ma
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | - James E Galagan
- Bioinformatics Program, Boston University, Boston, MA 02215, USA Department of Biomedical Engineering, Boston, MA 02215, USA Department of Microbiology, Boston University, Boston, MA 02215, USA
| | - Kathleen A McDonough
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY 12201, USA
| |
Collapse
|
25
|
Aung HL, Dixon LL, Smith LJ, Sweeney NP, Robson JR, Berney M, Buxton RS, Green J, Cook GM. Novel regulatory roles of cAMP receptor proteins in fast-growing environmental mycobacteria. MICROBIOLOGY-SGM 2014; 161:648-61. [PMID: 25525207 DOI: 10.1099/mic.0.000015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mycobacterium smegmatis is a fast-growing, saprophytic, mycobacterial species that contains two cAMP-receptor protein (CRP) homologues designated herein as Crp1 and Crp2. Phylogenetic analysis suggests that Crp1 (Msmeg_0539) is uniquely present in fast-growing environmental mycobacteria, whereas Crp2 (Msmeg_6189) occurs in both fast- and slow-growing species. A crp1 mutant of M. smegmatis was readily obtained, but crp2 could not be deleted, suggesting it was essential for growth. A total of 239 genes were differentially regulated in response to crp1 deletion (loss of function), including genes coding for mycobacterial energy generation, solute transport and catabolism of carbon sources. To assess the role of Crp2 in M. smegmatis, the crp2 gene was overexpressed (gain of function) and transcriptional profiling studies revealed that 58 genes were differentially regulated. Identification of the CRP promoter consensus in M. smegmatis showed that both Crp1 and Crp2 recognized the same consensus sequence (TGTGN8CACA). Comparison of the Crp1- and Crp2-regulated genes revealed distinct but overlapping regulons with 11 genes in common, including those of the succinate dehydrogenase operon (MSMEG_0417-0420, sdh1). Expression of the sdh1 operon was negatively regulated by Crp1 and positively regulated by Crp2. Electrophoretic mobility shift assays with purified Crp1 and Crp2 demonstrated that Crp1 binding to the sdh1 promoter was cAMP-independent whereas Crp2 binding was cAMP-dependent. These data suggest that Crp1 and Crp2 respond to distinct signalling pathways in M. smegmatis to coordinate gene expression in response to carbon and energy supply.
Collapse
Affiliation(s)
- Htin Lin Aung
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Laura L Dixon
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Laura J Smith
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Nathan P Sweeney
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jennifer R Robson
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael Berney
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roger S Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Jeffrey Green
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
26
|
Xie J, Zhou F, Xu G, Mai G, Hu J, Wang G, Li F. Genome-wide screening of pathogenicity islands in Mycobacterium tuberculosis based on the genomic barcode visualization. Mol Biol Rep 2014; 41:5883-9. [PMID: 25108673 DOI: 10.1007/s11033-014-3463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/13/2014] [Indexed: 10/24/2022]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is one of the most widely spread human pathogenic bacteria, and it frequently exchanges pathogenesis genes among its strains or with other pathogenic microbes. The purpose of this study was to screen the pathogenicity islands (PAIs) in M. tuberculosis using the genomic barcode visualization technique and to characterize the functions of the detected PAIs. By visually screening the barcode image of the M. tuberculosis chromosomes, three candidate PAIs were detected as MPI-1, MPI-2 and MPI-3, among which MPI-2 and MPI-3 were known to harbor pathogenesis genes, and MPI-1 represents a novel candidate. Based on the functional annotations of Pfam domains and GO categories, both MPI-2 and MPI-3 carry genes encoding PE/PPE family proteins, MPI-2 encodes the type VII secretion system, and MPI-3 encodes genes for mycolic acid synthesis in the cell wall. Some of these genes were already widely used in early diagnosis or treatment of M. tuberculosis. The novel candidate PAI MPI-1 encodes CRISPR-C as family proteins, which are known to be associated with persistent infection of M. tuberculosis. Our data represents a molecular basis and protocol for comprehensive annotating the pathogenic systems of M. tuberculosis, and will also facilitate the development of diagnosis and vaccination techniques of M. tuberculosis.
Collapse
Affiliation(s)
- Jiao Xie
- Norman Bethune Medical College of Jilin University, Changchun, 130021, Jilin, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Pedroza-Roldán C, Aceves-Sánchez MDJ, Zaveri A, Charles-Niño C, Elizondo-Quiroga DE, Hernández-Gutiérrez R, Allen K, Visweswariah SS, Flores-Valdez MA. The adenylyl cyclase Rv2212 modifies the proteome and infectivity of Mycobacterium bovis BCG. Folia Microbiol (Praha) 2014; 60:21-31. [PMID: 25038956 DOI: 10.1007/s12223-014-0335-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022]
Abstract
All organisms have the capacity to sense and respond to environmental changes. These signals often involve the use of second messengers such as cyclic adenosine monophosphate (cAMP). This second messenger is widely distributed among organisms and coordinates gene expression related with pathogenesis, virulence, and environmental adaptation. Genomic analysis in Mycobacterium tuberculosis has identified 16 adenylyl cyclases (AC) and one phosphodiesterase, which produce and degrade cAMP, respectively. To date, ten AC have been biochemically characterized and only one (Rv0386) has been found to be important during murine infection with M. tuberculosis. Here, we investigated the impact of hsp60-driven Rv2212 gene expression in Mycobacterium bovis Bacillus Calmette-Guerin (BCG) during growth in vitro, and during macrophage and mice infection. We found that hsp60-driven expression of Rv2212 resulted in an increased capacity of replication in murine macrophages but an attenuated phenotype in lungs and spleen when administered intravenously in mice. Furthermore, this strain displayed an altered proteome mainly affecting proteins associated with stress conditions (bfrB, groEL-2, DnaK) that could contribute to the attenuated phenotype observed in mice.
Collapse
Affiliation(s)
- César Pedroza-Roldán
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Col. Colinas de la Normal, 44270, Guadalajara, Jalisco, Mexico,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Expression of a subset of heat stress induced genes of mycobacterium tuberculosis is regulated by 3',5'-cyclic AMP. PLoS One 2014; 9:e89759. [PMID: 24587015 PMCID: PMC3938503 DOI: 10.1371/journal.pone.0089759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) secretes excess of a second messenger molecule, 3',5'-cyclic AMP (cAMP), which plays a critical role in the survival of Mtb in host macrophages. Although Mtb produces cAMP in abundance, its exact role in the physiology of mycobacteria is elusive. In this study we have analyzed the expression of 16 adenylate cyclases (ACs) and kinetics of intracellular cAMP levels in Mtb during in vitro growth under the regular culture conditions, and after exposure to different stress agents. We observed a distinct expression pattern of these ACs which is correlated with intracellular cAMP levels. Interestingly cAMP levels are significantly elevated in Mtb following heat stress, whereas other stress conditions such as oxidative, nitrosative or low pH do not affect intracellular cAMP pool in vitro. A significant increase in expression by >2-fold of five ACs namely Rv1647, Rv2212, Rv1625c, Rv2488c and Rv0386 after heat stress further suggested that cAMP plays an important role in controlling Mtb response to heat stress. In the light of these observations, effect of exogenous cAMP on global gene expression profile was examined by using microarrays. The microarray gene expression analysis demonstrated that cAMP regulates expression of a subset of heat stress-induced genes comprising of dnaK, grpE, dnaJ, and Rv2025c. Further we performed electrophoretic mobility shift assay by using cAMP-receptor protein of Mtb (CRP(M)), which demonstrated that CRP(M) specifically recognizes a sequence -301AGCGACCGTCAGCACG-286 in 5'-untranslated region of dnaK.
Collapse
|
29
|
Puspita ID, Kamagata Y, Tanaka M, Asano K, Nakatsu CH. Are uncultivated bacteria really uncultivable? Microbes Environ 2012; 27:356-66. [PMID: 23059723 PMCID: PMC4103542 DOI: 10.1264/jsme2.me12092] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 06/20/2012] [Indexed: 11/16/2022] Open
Abstract
Many strategies have been used to increase the number of bacterial cells that can be grown from environmental samples but cultivation efficiency remains a challenge for microbial ecologists. The difficulty of cultivating a fraction of bacteria in environmental samples can be classified into two non-exclusive categories. Bacterial taxa with no cultivated representatives for which appropriate laboratory conditions necessary for growth are yet to be identified. The other class is cells in a non-dividing state (also known as dormant or viable but not culturable cells) that require the removal or addition of certain factors to re-initiate growth. A number of strategies, from simple to high throughput techniques, are reviewed that have been used to increase the cultivation efficiency of environmental samples. Some of the underlying mechanisms that contribute to the success of these cultivation strategies are described. Overall this review emphasizes the need of researchers to first understand the factors that are hindering cultivation to identify the best strategies to improve cultivation efficiency.
Collapse
Affiliation(s)
- Indun Dewi Puspita
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Yoichi Kamagata
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2–17 Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido 062–8517,
Japan
| | - Michiko Tanaka
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Kozo Asano
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
| | - Cindy H. Nakatsu
- Graduate School of Agriculture, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060–8589,
Japan
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
30
|
Stapleton MR, Smith LJ, Hunt DM, Buxton RS, Green J. Mycobacterium tuberculosis WhiB1 represses transcription of the essential chaperonin GroEL2. Tuberculosis (Edinb) 2012; 92:328-32. [PMID: 22464736 PMCID: PMC3430963 DOI: 10.1016/j.tube.2012.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 11/29/2022]
Abstract
A central feature of TB pathogenesis is the formation of Mycobacterium tuberculosis latent infections that can persist for decades. Nitric oxide produced by infected lung macrophages promotes expression of genes associated with dormancy, and impaired nitric oxide production can lead to reactivation of latent disease. Recently, WhiB1 was identified as a nitric oxide-responsive transcription factor. Here it is shown that apo-WhiB1 binds to groEL2 (Rv0440) promoter DNA. Apo-WhiB1 inhibited transcription from the groEL2 promoter in vitro and the transcript start was located ∼181 bases upstream of the groEL2 start codon. Electrophoretic mobility shift assays with sub-fragments of the groEL2 promoter indicated that the complete Rv0439c-Rv0440 intergenic region was required for WhiB1 binding, suggesting that this region possessed more than one WhiB1-binding site. DNase I footprinting identified a WhiB1-binding region that overlapped the −35 element of the groEL2 promoter. The CRP-family transcription factor Cmr (Rv1675c) was shown to bind the groEL2 promoter and activate transcription in vitro in the presence or absence of cAMP. Therefore, it is suggested that WhiB1 acts to oppose Cmr-mediated cAMP-independent activation of groEL2 expression in the presence of nitric oxide by promoter occlusion.
Collapse
Affiliation(s)
- Melanie R Stapleton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | | |
Collapse
|
31
|
A screen for non-coding RNA in Mycobacterium tuberculosis reveals a cAMP-responsive RNA that is expressed during infection. Gene 2012; 500:85-92. [PMID: 22446041 DOI: 10.1016/j.gene.2012.03.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 02/26/2012] [Accepted: 03/04/2012] [Indexed: 01/21/2023]
Abstract
A key to the success of Mycobacterium tuberculosis (Mtb) is the bacteria's ability to survive and thrive in the presence of numerous stresses mounted by the host. Small, non-coding RNAs (sRNAs) have been shown to modulate numerous stress responses in bacteria, yet to date only two studies have screened the Mtb transcriptome to identify sRNA. Their association with oxidative and acid stress has been demonstrated but the cellular function and role of these sRNAs in the pathogenesis of tuberculosis (TB) remain unknown. Here, we have identified an sRNA, ncrMT1302, in a locus involved in cAMP metabolism and demonstrate that expression of ncrMT1302 responds to changes in pH and cAMP concentration. The differential expression of ncrMT1302 observed in wild-type Mtb during growth is abolished in a strain lacking MT1302, an adenylyl cyclase encoding gene. We report that ncrMT1302 is expressed in Mtb residing in the lungs of mice during an active infection.
Collapse
|
32
|
Bai G, Schaak DD, Smith EA, McDonough KA. Dysregulation of serine biosynthesis contributes to the growth defect of a Mycobacterium tuberculosis crp mutant. Mol Microbiol 2011; 82:180-98. [PMID: 21902733 DOI: 10.1111/j.1365-2958.2011.07806.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis CRP(Mt), encoded by Rv3676 (crp), is a CRP-like transcription factor that binds with the serC-Rv0885 intergenic region. In the present study, we evaluated CRP(Mt) 's regulation of serC and Rv0885 in M. tuberculosis and M. bovis BCG, using site-specific mutagenesis, promoter fusions and reverse-transcriptase PCR (RT-PCR). The CRP(Mt) binding site was required for full expression of serC and Rv0885, and expression of both genes was reduced in M. tuberculosis and M. bovis BCG crp mutants. These data show that CRP(Mt) binding directly activates both serC and Rv0885 expression. M. tuberculosis serC restored the ability of an Escherichia coli serC mutant to grow in serine-dropout medium, demonstrating that M. tuberculosis serC encodes a phosphoserine aminotransferase. Serine supplementation, or overexpression of serC, accelerated the growth of M. tuberculosis and M. bovis BCG crp mutants in mycomedium, but not within macrophages. These results establish a role for CRP(Mt) in the regulation of amino acid biosynthesis, and show that reduced serine production contributes to the slow-growth phenotype of M. tuberculosis and M. bovis BCG crp mutants in vitro. Restoration of serine biosynthesis by serC expression will facilitate identification of additional CRP(Mt)-regulated factors required by M. tuberculosis during macrophage and host infection.
Collapse
Affiliation(s)
- Guangchun Bai
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | | | | | | |
Collapse
|
33
|
Chakraborti PK, Matange N, Nandicoori VK, Singh Y, Tyagi JS, Visweswariah SS. Signalling mechanisms in Mycobacteria. Tuberculosis (Edinb) 2011; 91:432-40. [PMID: 21570916 DOI: 10.1016/j.tube.2011.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/28/2011] [Accepted: 04/10/2011] [Indexed: 11/18/2022]
Abstract
The importance of inter- and intracellular signal transduction in all forms of life cannot be underestimated. A large number of genes dedicated to cellular signalling are found in almost all sequenced genomes, and Mycobacteria are no exception. What appears to be interesting in Mycobacteria is that well characterized signalling mechanisms used by bacteria, such as the histidine-aspartate phosphorelay seen in two-component systems, are found alongside signalling components that closely mimic those seen in higher eukaryotes. This review will describe the important contribution made by researchers in India towards the identification and characterization of proteins involved in two-component signalling, protein phosphorylation and cyclic nucleotide metabolism.
Collapse
|
34
|
Affiliation(s)
- Hyejin Kim
- Korean Institute of Tuberculosis, Osong, Chungcheongbuk-do, Korea
| | - Sungweon Ryoo
- Korean Institute of Tuberculosis, Osong, Chungcheongbuk-do, Korea
| |
Collapse
|
35
|
Bai G, Knapp GS, McDonough KA. Cyclic AMP signalling in mycobacteria: redirecting the conversation with a common currency. Cell Microbiol 2010; 13:349-58. [PMID: 21199259 DOI: 10.1111/j.1462-5822.2010.01562.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
cAMP is an ancient second messenger, and is used by many organisms to regulate a wide range of cellular functions. Mycobacterium tuberculosis complex bacteria are exceptional in that they have genes for at least 15 biochemically distinct adenylyl cyclases, the enzymes that generate cAMP. cAMP-associated gene regulation within tubercle bacilli is required for their virulence, and secretion of cAMP produced by M. tuberculosis bacteria into host macrophages disrupts the host's immune response to infection. In this review, we discuss recent advances in our understanding of the means by which cAMP levels are controlled within mycobacteria, the importance of cAMP to M. tuberculosis during host infection, and the role of cAMP in mycobacterial gene regulation. Understanding the myriad aspects of cAMP signalling in tubercle bacilli will establish new paradigms for cAMP signalling, and may contribute to new approaches for prevention and/or treatment of tuberculosis disease.
Collapse
Affiliation(s)
- Guangchun Bai
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
36
|
Smith LJ, Stapleton MR, Fullstone GJM, Crack JC, Thomson AJ, Le Brun NE, Hunt DM, Harvey E, Adinolfi S, Buxton RS, Green J. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem J 2010; 432:417-27. [PMID: 20929442 PMCID: PMC2992795 DOI: 10.1042/bj20101440] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. In the present study it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however, in the presence of apo-WhiB1, transcription was severely inhibited, irrespective of the presence or absence of the CRP (cAMP receptor protein) Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections.
Collapse
Affiliation(s)
- Laura J. Smith
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Melanie R. Stapleton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Gavin J. M. Fullstone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jason C. Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew J. Thomson
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Debbie M. Hunt
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Evelyn Harvey
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Salvatore Adinolfi
- Division of Molecular Structure, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Roger S. Buxton
- Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
37
|
Kumar M, Khan FG, Sharma S, Kumar R, Faujdar J, Sharma R, Chauhan DS, Singh R, Magotra SK, Khan IA. Identification of Mycobacterium tuberculosis genes preferentially expressed during human infection. Microb Pathog 2010; 50:31-8. [PMID: 21035536 DOI: 10.1016/j.micpath.2010.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
The identification of Mycobacterium tuberculosis genes, specifically expressed during infection is a key step in understanding molecular mechanism of mycobacterial pathogenesis. Such genes likely encode proteins required for mycobacterium's survival and progressive infection within the host. In this study, we applied in-vivo-induced antigen technology (IVIAT) to M. tuberculosis and identified 11 putative in-vivo induced genes encoding for immunogenic proteins of diverse functions; these included transcriptional regulators (Rv1460 and Rv2565), biosynthesis and macromolecule metabolism (leuD, guaB1, plcC, hupB and glyS), polyketide synthases (pks6 and pks9), cell processes (ctpA) and one with unknown function (Rv3701c). Quantitative real time-PCR analysis of these genes in the specimens obtained from TB patients demonstrated induced expression of eight genes as compared with bacteria grown in-vitro. In addition, distribution of these genes in different strains of M. tuberculosis was analyzed using PCR and their nucleotide sequence alignments and they were found to be widely distributed among M. tuberculosis isolates including multiple-drug resistant (MDR) and extensively-drug resistant (XDR). This study identified several antigenic determinants of M. tuberculosis expressed during infection, which might help pathogens adapt to or counter hostile environments and suggesting their role during disease process.
Collapse
Affiliation(s)
- Manoj Kumar
- Clinical Microbiology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu Tawi 180001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barba J, Alvarez AH, Flores-Valdez MA. Modulation of cAMP metabolism in Mycobacterium tuberculosis and its effect on host infection. Tuberculosis (Edinb) 2010; 90:208-12. [PMID: 20382084 DOI: 10.1016/j.tube.2010.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis remains the single most relevant bacterial infectious agent as Tuberculosis is estimated to affect one-third of the world population. Like other microorganisms, M. tuberculosis needs to sense and adapt to changes in the several niches where it is found, ranging from the environment to a number of host-adapted programs, including infection of cell types such as macrophages, dendritic cells, epithelial cells and adipocytes. A strategy commonly used by cells to respond to such changes consists of producing small molecules known as second messengers. 3',5'-cyclic adenosine monophosphate (cAMP) is one of the best-studied second messengers in many organisms, and in recent years its participation during the M. tuberculosis infection cycle has just begun to be thoroughly considered. In this work, we aimed to provide a perspective of how cAMP metabolism proceeds in M. tuberculosis, which genes are activated in response to cAMP signaling in this organism, and discuss the evidence for bacterially produced cAMP use during infection. Furthermore, key issues needing to be addressed for better understanding cAMP physiology in slow-growing pathogenic mycobacteria are presented.
Collapse
Affiliation(s)
- Jeannette Barba
- Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias, Departamento de Salud Pública, Km 15.5 carretera Guadalajara-Nogales, Las Agujas, C.P. 44171, Zapopan, Jalisco, México
| | | | | |
Collapse
|
39
|
Kumar G, Shankar H, Bisht D, Sharma P, Singhal N, Katoch VM, Joshi B. A simple and rapid method of sample preparation from culture filtrate of M. tuberculosis for two-dimensional gel electrophoresis. Braz J Microbiol 2010; 41:295-9. [PMID: 24031494 PMCID: PMC3768669 DOI: 10.1590/s1517-83822010000200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/06/2009] [Accepted: 11/07/2009] [Indexed: 11/24/2022] Open
Abstract
Sample preparation for Two-dimensional gel electrophoresis (2DE) is tedious and not sufficient to provide a comparative profile of secreted proteins for various strains of M. tuberculosis. High lipid content in mycobacteria limits the use of common methods as it can hinder the 2DE run. This study highlights the significance of SDS-TCA procedure over common used methods for the preparation of sample from culture filtrate as well as other proteinaceous fluids.
Collapse
Affiliation(s)
- Gavish Kumar
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR) , Tajganj , Agra 282 001(India)
| | | | | | | | | | | | | |
Collapse
|
40
|
Stapleton M, Haq I, Hunt DM, Arnvig KB, Artymiuk PJ, Buxton RS, Green J. Mycobacterium tuberculosis cAMP receptor protein (Rv3676) differs from the Escherichia coli paradigm in its cAMP binding and DNA binding properties and transcription activation properties. J Biol Chem 2010; 285:7016-27. [PMID: 20028978 PMCID: PMC2844151 DOI: 10.1074/jbc.m109.047720] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/18/2009] [Indexed: 11/06/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRP(Mt)) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRP(Mt) homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRP(Mt) was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRP(Mt)-binding sites (CRP1 at -58.5 and CRP2 at -37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRP(Mt) concentrations in the absence of cAMP, is a repressing site. Binding of CRP(Mt) to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRP(Mt) to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP.
Collapse
Affiliation(s)
- Melanie Stapleton
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN
| | - Ihtshamul Haq
- the Department of Chemistry, University of Sheffield, Sheffield S3 7HF, and
| | - Debbie M. Hunt
- the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Kristine B. Arnvig
- the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Peter J. Artymiuk
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN
| | - Roger S. Buxton
- the Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Jeffrey Green
- From the Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN
| |
Collapse
|
41
|
Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, Danilchanka O, Niederweis M. Physiology of mycobacteria. Adv Microb Physiol 2009; 55:81-182, 318-9. [PMID: 19573696 DOI: 10.1016/s0065-2911(09)05502-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection. These changes include: nutrient deprivation, hypoxia, various exogenous stress conditions and, in the case of the pathogenic species, the intraphagosomal environment. Knowledge of the physiology of M. tuberculosis during this process has been limited by the slow growth of the bacterium in the laboratory and other technical problems such as cell aggregation. Advances in genomics and molecular methods to analyze the M. tuberculosis genome have revealed that adaptive changes are mediated by complex regulatory networks and signals, resulting in temporal gene expression coupled to metabolic and energetic changes. An important goal for bacterial physiologists will be to elucidate the physiology of M. tuberculosis during the transition between the diverse conditions encountered by M. tuberculosis. This review covers the growth of the mycobacterial cell and how environmental stimuli are sensed by this bacterium. Adaptation to different environments is described from the viewpoint of nutrient acquisition, energy generation, and regulation. To gain quantitative understanding of mycobacterial physiology will require a systems biology approach and recent efforts in this area are discussed.
Collapse
Affiliation(s)
- Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
42
|
Gupta MK, Subramanian V, Yadav JS. Immunoproteomic Identification of Secretory and Subcellular Protein Antigens and Functional Evaluation of the Secretome Fraction of Mycobacterium immunogenum, a Newly Recognized Species of the Mycobacterium chelonae−Mycobacterium abscessus Group. J Proteome Res 2009; 8:2319-30. [DOI: 10.1021/pr8009462] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manish K. Gupta
- Microbial Pathogenesis Laboratory, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0056
| | - Venkataramanan Subramanian
- Microbial Pathogenesis Laboratory, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0056
| | - Jagjit S. Yadav
- Microbial Pathogenesis Laboratory, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0056
| |
Collapse
|
43
|
Bai G, Schaak DD, McDonough KA. cAMP levels within Mycobacterium tuberculosis and Mycobacterium bovis BCG increase upon infection of macrophages. ACTA ACUST UNITED AC 2008; 55:68-73. [PMID: 19076221 DOI: 10.1111/j.1574-695x.2008.00500.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP)-mediated signal transduction is common in both prokaryotes and eukaryotes, and several bacterial pathogens modulate cAMP signaling pathways of their mammalian hosts during infection. In this study, cAMP levels associated with Mycobacterium tuberculosis and Mycobacterium bovis BCG were measured during macrophage infection. cAMP levels within both bacteria increased c. 50-fold during infection of J774.16 macrophages, relative to the cAMP levels within bacteria incubated in tissue culture media alone. cAMP levels also increased within the macrophage cytoplasm upon uptake of live, but not dead, mycobacteria. The presence of albumin in the absence of oleic acid significantly decreased cAMP secretion and production by both M. tuberculosis and M. bovis BCG. These results suggest that cAMP signaling plays a role in the interaction of tuberculosis-complex mycobacteria with macrophages during infection, and that albumin may be a physiological indicator differentiating host environments during infection.
Collapse
Affiliation(s)
- Guangchun Bai
- New York State Department of Health, Wadsworth Center, Albany, NY 12201-2002, USA
| | | | | |
Collapse
|
44
|
Expression of Mycobacterium tuberculosis pe_pgrs33 is repressed during stationary phase and stress conditions, and its transcription is mediated by sigma factor A. Microb Pathog 2008; 46:119-27. [PMID: 19068228 DOI: 10.1016/j.micpath.2008.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 11/21/2022]
Abstract
Although recent work shows that the expression of the PE/PE_PGRS protein family occur both in vitro and in vivo under stress conditions, very little is known about their promoter and how they are regulated. In this work, the promoter region of a member of PE_PGRS family, the PE_PGRS33 was identified and the promoter boxes were determined. To date, this is one of the few reports that describe a promoter region of a PE_PGRS member. In addition, the gene promoter functionality was assayed in Mycobacterium smegmatis with the green fluorescent protein reporter gene fused to different lengths of pe_pgrs33 promoter sequences. The GFP was down-regulated in the stationary phase, under nutrient starvation and oxygen depletion, suggesting that, in stress conditions, regulation of the gene could be under control of a repressor molecule. A 5' rapid amplification of cDNA end assay of transcriptional fusions evaluated in M. smegmatis and in Mycobacterium tuberculosis mRNA revealed a transcription start point 75 nt upstream of the ATG codon and a -10 like-SigA box. Furthermore, a transcription run assay confirmed that SigA mediates in vitro transcription of pe_pgrs33. Interestingly, conserved -10 SigA boxes were found in the intergenic region of several PE_PGRS genes. These results suggest that expression of some PE_PGRS genes may be mediated by SigA, and the differences in expression observed in the gene family could be explained by the participation of additional regulatory genetic elements.
Collapse
|
45
|
Gazdik MA, Bai G, Wu Y, McDonough KA. Rv1675c (cmr) regulates intramacrophage and cyclic AMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Mol Microbiol 2008; 71:434-48. [PMID: 19040643 DOI: 10.1111/j.1365-2958.2008.06541.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclic AMP (cAMP) has recently been shown to be a global regulator of gene expression in Mycobacterium tuberculosis (Mtb). In this study we identified a new cAMP-associated regulon in Mtb and Mycobacterium bovis BCG, which is distinct from the previously described CRP(Mt) regulon. Proteomic comparison of wild-type M. bovis BCG with a Rv1675c (cmr) knockout strain showed dysregulated expression of four previously identified proteins encoded by the cAMP-induced genes (cAIGs) mdh, groEL2, Rv1265 and PE_PGRS6a. Regulated expression of these four cAIGs also occurred during macrophage infection, and this regulation required cmr in both Mtb and M. bovis BCG. Purified His-Cmr bound to the DNA sequences upstream of three cAIGs (mdh, groEL2, Rv1265) in electrophoretic mobility shift assays, suggesting direct regulation of these genes by Cmr. We also found that low pH stimulated cAMP production in both Mtb and M. bovis BCG, but broadly affected cAIG regulation only in M. bovis BCG. These studies identify Cmr as a transcription factor that regulates cAIGs within macrophages, and suggest that multiple factors affect cAMP-associated gene regulation in tuberculosis-complex mycobacteria. cAMP signalling and Cmr-mediated gene regulation during Mtb infection of macrophages may have implications for TB pathogenesis.
Collapse
Affiliation(s)
- Michaela A Gazdik
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA
| | | | | | | |
Collapse
|
46
|
Expression of the Mycobacterium tuberculosis acr-coregulated genes from the DevR (DosR) regulon is controlled by multiple levels of regulation. Infect Immun 2008; 76:2478-89. [PMID: 18391009 DOI: 10.1128/iai.01443-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about how Mycobacterium tuberculosis regulates gene expression in response to its host environment, despite its importance as a pathogen. We previously characterized 10 acr-coregulated genes (ACGs), all of which belong to the DevR (DosR) "dormancy" regulon, and identified one to three copies of a conserved 18-bp palindromic DNA motif in the promoter of each ACG family member. In the present study, we used base substitution analyses to assess the importance of individual motif copies and to identify additional regulatory sequences in five ACG promoters. Regulation of acr, acg, Rv2623, narK2, and Rv1738 was examined by using single-copy M. tuberculosis promoter-lacZ reporter constructs in Mycobacterium bovis BCG under conditions of ambient air versus hypoxia, each in shaking versus standing shallow culture conditions. We found that regulation of these ACG promoters is more heterogeneous than expected and is controlled at multiple levels. In addition to the positive regulation previously associated with DevR (DosR) and the 18-bp ACG motif, we identified negative regulation associated with sequences in the 5' untranslated regions of acg and Rv2623 and positive regulation associated with far upstream regulatory regions of narK2 and Rv1738. The importance of individual ACG motifs varied among the promoters examined, and Rv1738 was exceptional in that its ACG motif copies were associated with negative, rather than positive, regulation under some conditions. Further understanding of this important regulon requires the identification of additional regulators that compete and/or collaborate with DevR (DosR) to regulate its individual gene members.
Collapse
|
47
|
Cyclic AMP in mycobacteria: characterization and functional role of the Rv1647 ortholog in Mycobacterium smegmatis. J Bacteriol 2008; 190:3824-34. [PMID: 18390660 DOI: 10.1128/jb.00138-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterial genomes are endowed with many eukaryote-like nucleotide cyclase genes encoding proteins that can synthesize 3',5'-cyclic AMP (cAMP). However, the roles of cAMP and the need for such redundancy in terms of adenylyl cyclase genes remain unknown. We measured cAMP levels in Mycobacterium smegmatis during growth and under various stress conditions and report the first biochemical and functional characterization of the MSMEG_3780 adenylyl cyclase, whose orthologs in Mycobacterium tuberculosis (Rv1647) and Mycobacterium leprae (ML1399) have been recently characterized in vitro. MSMEG_3780 was important for producing cAMP levels in the logarithmic phase of growth, since the DeltaMSMEG_3780 strain showed lower intracellular cAMP levels at this stage of growth. cAMP levels decreased in wild-type M. smegmatis under conditions of acid stress but not in the DeltaMSMEG_3780 strain. This was correlated with a reduction in MSMEG_3780 promoter activity, indicating that the effect of the reduction in cAMP levels on acid stress was caused by a decrease in the transcription of MSMEG_3780. Complementation of the DeltaMSMEG_3780 strain with the genomic integration of MSMEG_3780 or the Rv1647 gene could restore cAMP levels during logarithmic growth. The Rv1647 promoter was also acid sensitive, emphasizing the biochemical and functional similarities in these two adenylyl cyclases. This study therefore represents the first detailed biochemical and functional analysis of an adenylyl cyclase that is important for maintaining cAMP levels in mycobacteria and underscores the subtle roles that these genes may play in the physiology of the organism.
Collapse
|
48
|
Bai G, Gazdik MA, Schaak DD, McDonough KA. The Mycobacterium bovis BCG cyclic AMP receptor-like protein is a functional DNA binding protein in vitro and in vivo, but its activity differs from that of its M. tuberculosis ortholog, Rv3676. Infect Immun 2007; 75:5509-17. [PMID: 17785469 PMCID: PMC2168296 DOI: 10.1128/iai.00658-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis Rv3676 encodes a cyclic AMP (cAMP) receptor-like protein (CRP(Mt)) that has been implicated in global gene regulation and may play an important role during tuberculosis infection. The CRP(Mt) ortholog in Mycobacterium bovis BCG, CRP(BCG), is dysfunctional in an Escherichia coli CRP competition assay and has been proposed as a potential source of M. bovis BCG's attenuation. We compared CRP(BCG) and CRP(Mt) in vitro and in vivo, in M. bovis BCG and M. tuberculosis, to evaluate CRP(BCG)'s potential function in a mycobacterial system. Both proteins formed dimers in mycobacterial lysates, bound to the same target DNA sequences, and were similarly affected by the presence of cAMP in DNA binding assays. However, CRP(Mt) and CRP(BCG) differed in their relative affinities for specific DNA target sequences and in their susceptibilities to protease digestion. Surprisingly, CRP(BCG) DNA binding activity was stronger than that of CRP(Mt) both in vitro and in vivo, as measured by electrophoretic mobility shift and chromatin immunoprecipitation assays. Nutrient starvation-associated regulation of several CRP(Mt) regulon members also differed between M. bovis BCG and M. tuberculosis. We conclude that CRP(BCG) is a functional cAMP-responsive DNA binding protein with an in vivo DNA binding profile in M. bovis BCG similar to that of CRP(Mt) in M. tuberculosis. However, biologically significant functional differences may exist between CRP(BCG) and CRP(Mt) with respect to gene regulation, and this issue warrants further study.
Collapse
Affiliation(s)
- Guangchun Bai
- Wadsworth Center, 120 New Scotland Avenue, PO Box 22002, Albany, NY 12201-2002, USA
| | | | | | | |
Collapse
|
49
|
Bisht D, Singhal N, Sharma P, Venkatesan K. An improved sample preparation method for analyzing mycobacterial proteins in two-dimensional gels. BIOCHEMISTRY (MOSCOW) 2007; 72:672-4. [PMID: 17630913 DOI: 10.1134/s0006297907060119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two-dimensional gel electrophoresis (2-DE) is currently a widely used analytical method for resolving complex mixtures of proteins. Sample preparation has a marked influence on 2-DE pattern. To reduce impurities and to increase the low-abundance proteins, protein precipitation is often used for the preparation of samples before 2-DE. In this study, we revealed that addition of SDS prior to TCA precipitation of mycobacterial cell extract proteins increases the resolution of the 2-D gel pattern.
Collapse
Affiliation(s)
- D Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (Indian Council of Medical Research), Tajganj, Agra 282 001, India.
| | | | | | | |
Collapse
|
50
|
Kalamidas SA, Kuehnel MP, Peyron P, Rybin V, Rauch S, Kotoulas OB, Houslay M, Hemmings BA, Gutierrez MG, Anes E, Griffiths G. cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: consequences for mycobacteria. J Cell Sci 2007; 119:3686-94. [PMID: 16931599 DOI: 10.1242/jcs.03091] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We showed recently that actin assembly by phagosomal membranes facilitates fusion with late endocytic organelles in macrophages. Moreover, lipids that induced phagosomal actin also stimulated this fusion process. In macrophages infected with pathogenic mycobacteria actin-stimulatory lipids led to an increase in pathogen destruction, whereas inhibitors facilitated their growth. A model was proposed whereby phagosomal membrane actin assembly provides tracks for lysosomes to move towards phagosomes, thereby facilitating fusion. Here, we investigated how cAMP affected phagosomal actin assembly in vitro, and phagosomal actin, acidification and late fusion events in J774 macrophages. Latex bead phagosomes are shown to possess adenylyl cyclase activity, which synthesizes cAMP, and phosphodiesterase activity, which degrades cAMP. The system is regulated by protein kinase A (PKA). Increasing cAMP levels inhibited, whereas decreasing cAMP levels stimulated, actin assembly in vitro and within cells. Increasing cAMP levels also inhibited phagosome-lysosome fusion and acidification in cells, whereas reducing cAMP had the opposite effect. High cAMP levels induced an increase in intraphagosomal growth in macrophages of both the non-pathogenic Mycobacterium smegmatis and the pathogenic Mycobacterium tuberculosis, whereas low cAMP levels or inhibition of PKA correlated with increased bacterial destruction. We argue that the phagosome cAMP-PKA system behaves as a molecular switch that regulates phagosome actin and maturation in macrophages.
Collapse
|