1
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
2
|
Qiu Y, Freedman SB, Williamson-Urquhart S, Farion KJ, Gouin S, Poonai N, Schuh S, Finkelstein Y, Xie J, Lee BE, Chui L, Pang X, On Behalf Of The Pediatric Emergency Research Canada Probiotic Regimen For Outpatient Gastroenteritis Utility Of Treatment Progut Trial Group. Significantly Longer Shedding of Norovirus Compared to Rotavirus and Adenovirus in Children with Acute Gastroenteritis. Viruses 2023; 15:1541. [PMID: 37515227 PMCID: PMC10386448 DOI: 10.3390/v15071541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Worldwide, acute gastroenteritis (AGE) is a major cause of morbidity and mortality in children under 5 years of age. Viruses, including norovirus, rotavirus, and enteric adenovirus, are the leading causes of pediatric AGE. In this prospective cohort study, we investigated the viral load and duration of shedding of norovirus, rotavirus, and adenovirus in stool samples collected from 173 children (median age: 15 months) with AGE who presented to emergency departments (EDs) across Canada on Day 0 (day of enrollment), and 5 and 28 days after enrollment. Quantitative RT-qPCR was performed to assess the viral load. On Day 0, norovirus viral load was significantly lower compared to that of rotavirus and adenovirus (p < 0.001). However, on Days 5 and 28, the viral load of norovirus was higher than that of adenovirus and rotavirus (p < 0.05). On Day 28, norovirus was detected in 70% (35/50) of children who submitted stool specimens, while rotavirus and adenovirus were detected in 52.4% (11/24) and 13.6% (3/22) of children (p < 0.001), respectively. Overall, in stool samples of children with AGE who presented to EDs, rotavirus and adenovirus had higher viral loads at presentation compared to norovirus; however, norovirus was shed in stool for the longest duration.
Collapse
Affiliation(s)
- Yuanyuan Qiu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Stephen B Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Departments of Pediatrics and Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Sarah Williamson-Urquhart
- Paediatric Emergency Research Team, Alberta Children's Hospital, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Ken J Farion
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Serge Gouin
- Division of Paediatric Emergency Medicine, Department of Pediatrics, Centre Hospitalier Universitaire Ste-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Naveen Poonai
- Division of Pediatric Emergency Medicine, Departments of Pediatrics, Internal Medicine, Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, London, ON N6A 5W9, Canada
| | - Suzanne Schuh
- Division of Paediatric Emergency Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Yaron Finkelstein
- Divisions of Emergency Medicine and Clinical Pharmacology and Toxicology, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Jianling Xie
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Bonita E Lee
- Department of Pediatrics, Faculty of Medicine & Dentistry, Women and Children's Health Research Institute, Stollery Children's Hospital, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Alberta Precision Laboratory, Public Health Laboratory, Edmonton, AB T6G 2J2, Canada
| | | |
Collapse
|
3
|
Ottosson L, Hagbom M, Svernlöv R, Nyström S, Carlsson B, Öman M, Ström M, Svensson L, Nilsdotter-Augustinsson Å, Nordgren J. Long Term Norovirus Infection in a Patient with Severe Common Variable Immunodeficiency. Viruses 2022; 14:v14081708. [PMID: 36016330 PMCID: PMC9413339 DOI: 10.3390/v14081708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Norovirus is the most common cause of acute non-bacterial gastroenteritis. Immunocompromised patients can become chronically infected, with or without symptoms. In Europe, common variable immunodeficiency (CVID) is one of the most common inborn errors of immunity. A potentially severe complication is CVID-associated enteropathy, a disorder with similar histopathology to celiac disease. Studies suggest that chronic norovirus infection may be a contributor to CVID enteropathy, and that the antiviral drug ribavirin can be effective against norovirus. Here, a patient with CVID-like disease with combined B- and T-cell deficiency, had chronic norovirus infection and enteropathy. The patient was routinely administered subcutaneous and intravenous immunoglobulin replacement therapy (SCIg and IVIg). The patient was also administered ribavirin for ~7.5 months to clear the infection. Stool samples (collected 2013–2016) and archived paraffin embedded duodenal biopsies were screened for norovirus by qPCR, confirming a chronic infection. Norovirus genotyping was done in 25 stool samples. For evolutionary analysis, the capsid (VP1) and polymerase (RdRp) genes were sequenced in 10 and 12 stool samples, respectively, collected before, during, and after ribavirin treatment. Secretor phenotyping was done in saliva, and serum was analyzed for histo-blood group antigen (HBGA) blocking titers. The chronic norovirus strain formed a unique variant subcluster, with GII.4 Den Haag [P4] variant, circulating around 2009, as the most recent common ancestor. This corresponded to the documented debut of symptoms. The patient was a secretor and had HBGA blocking titers associated with protection in immunocompetent individuals. Several unique amino acid substitutions were detected in immunodominant epitopes of VP1. However, HBGA binding sites were conserved. Ribavirin failed in treating the infection and no clear association between ribavirin-levels and quantity of norovirus shedding was observed. In conclusion, long term infection with norovirus in a patient with severe CVID led to the evolution of a unique norovirus strain with amino acid substitutions in immunodominant epitopes, but conservation within HBGA binding pockets. Regularly administered SCIg, IVIg, and ~7.5-month ribavirin treatment failed to clear the infection.
Collapse
Affiliation(s)
- Loa Ottosson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Rikard Svernlöv
- Department of Gastroenterology and Hepatology, Linköping University, 58185 Linköping, Sweden; (R.S.); (M.S.)
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Beatrice Carlsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Mattias Öman
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
| | - Magnus Ström
- Department of Gastroenterology and Hepatology, Linköping University, 58185 Linköping, Sweden; (R.S.); (M.S.)
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, 17111 Stockholm, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Infectious Diseases/Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (L.O.); (M.H.); (S.N.); (B.C.); (M.Ö.); (L.S.)
- Correspondence:
| |
Collapse
|
4
|
Fraenkel CJ, Böttiger B, Söderlund-Strand A, Inghammar M. Risk of environmental transmission of norovirus infection from prior room occupants. J Hosp Infect 2021; 117:74-80. [PMID: 34547321 DOI: 10.1016/j.jhin.2021.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Environmental contamination of norovirus (NoV) is believed to be a significant source for further transmission in hospitals. AIM To investigate the risk of acquiring NoV in a cleaned room previously occupied by a patient with NoV infection. The risk of having a roommate with recent NoV infection was also assessed. METHODS In a retrospective cohort, comprising 33,788 room stays at five infectious Disease wards in southern Sweden from 2013 to 2018, the risk of acquiring NoV infection after admission to an exposed or non-exposed room was analysed with uni- and multivariable statistical analysis, controlling for age, colonization pressure and any roommate. RNA sequencing of the NoV strains involved in suspected room transmission was also performed. RESULTS Five of the 1106 patients exposed to a room with a prior occupant with NoV infection and 49 in the non-exposed group acquired NoV infection. An association between NoV acquisition was found in the univariable analysis (odds ratio (OR) 3.3, P=0.01), but not when adjusting for potential confounders (OR 1.9, P=0.2). Sequencing of the NoV samples showed that only two of the five exposed patients with acquired NoV infection were infected by identical strains to the prior room occupant, inferring a room transmission risk of 0.2% (95% confidence interval 0.05-0.78%). None of the 52 patients who shared room with a roommate with NoV symptoms resolved for ≥48 h acquired NoV infection. CONCLUSIONS In absolute terms, the risk of room transmission of NoV is low. Discontinuation of isolation ≥48 h after resolution of symptoms seems adequate.
Collapse
Affiliation(s)
- C-J Fraenkel
- Department of Infection Control, Region Skåne, Lund, Sweden; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden.
| | - B Böttiger
- Department of Clinical Microbiology, University and Regional Laboratories, Lund, Sweden
| | - A Söderlund-Strand
- Department of Clinical Microbiology, University and Regional Laboratories, Lund, Sweden
| | - M Inghammar
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| |
Collapse
|
5
|
Nonthabenjawan N, Boonyos P, Phattanawiboon B, Towayunanta W, Chuntrakool K, Ngaopravet K, Ruchusatsawat K, Uppapong B, Sangkitporn S, Mekada E, Matsuura Y, Tatsumi M, Mizushima H. Identification of GII.14[P7] norovirus and its genomic mutations from a case of long-term infection in a post-symptomatic individual. INFECTION GENETICS AND EVOLUTION 2020; 86:104612. [PMID: 33137471 DOI: 10.1016/j.meegid.2020.104612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Norovirus is a leading cause of acute gastroenteritis worldwide. Norovirus shedding typically lasts one week to one month after the onset of diarrhea in immunocompetent hosts. The occurrence of mutations in the genome during infection has contributed to the evolution of norovirus. It has been suggested that genomic mutations in the P2-domain of capsid protein VP1, the major antigenic site for virus clearance, are involved in the evasion of host immunity and prolonged shedding of norovirus. In our previous study, we found a case of long-term shedding of GII.14 norovirus in a post-symptomatic immunocompetent individual that lasted about three months. In this study, we characterized the genomic sequence of the GII.14 strain to gain insight into the context of long-term shedding. By sequencing a 4.8 kb region of the genome corresponding to half of ORF1 and the entire ORF2 and ORF3, which encode several non-structural proteins and the structural proteins VP1 and VP2, the GII.14 strain was found to be classified as recombinant GII.14[P7]. Six point-mutations occurred during the three-month period of infection in a time-dependent manner in the genomic regions encoding RNA-dependent RNA polymerase, VP1, and VP2. Three of the six mutations were sense mutations, but no amino acid substitution was identified in the P2-domain of VP1. These results suggest that there is a mechanism by which long-term shedding of norovirus occurs in immunocompetent individuals independent of P2-domain mutations.
Collapse
Affiliation(s)
- Nutthawan Nonthabenjawan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Patcharaporn Boonyos
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Benjarat Phattanawiboon
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | | | | | | | - Kriangsak Ruchusatsawat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Ballang Uppapong
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Somchai Sangkitporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eisuke Mekada
- Research and Education Promotion Foundation, Bangkok, Thailand
| | - Yoshiharu Matsuura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand
| | - Hiroto Mizushima
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand.
| |
Collapse
|
6
|
Burke RM, Shah MP, Wikswo ME, Barclay L, Kambhampati A, Marsh Z, Cannon JL, Parashar UD, Vinjé J, Hall AJ. The Norovirus Epidemiologic Triad: Predictors of Severe Outcomes in US Norovirus Outbreaks, 2009-2016. J Infect Dis 2020; 219:1364-1372. [PMID: 30445538 DOI: 10.1093/infdis/jiy569] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/19/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Noroviruses are the leading cause of acute gastroenteritis outbreaks worldwide. Clarifying the viral, host, and environmental factors (epidemiologic triad) associated with severe outcomes can help target public health interventions. METHODS Acute norovirus outbreaks reported to the National Outbreak Reporting System (NORS) in 2009-2016 were linked to laboratory-confirmed norovirus outbreaks reported to CaliciNet. Outbreaks were analyzed for differences in genotype (GII.4 vs non-GII.4), hospitalization, and mortality rates by timing, setting, transmission mode, demographics, clinical symptoms, and health outcomes. RESULTS A total of 3747 norovirus outbreaks were matched from NORS and CaliciNet. Multivariable models showed that GII.4 outbreaks (n = 2353) were associated with healthcare settings (odds ratio [OR], 3.94 [95% confidence interval {CI}, 2.99-5.23]), winter months (November-April; 1.55 [95% CI, 1.24-1.93]), and older age of cases (≥50% aged ≥75 years; 1.37 [95% CI, 1.04-1.79]). Severe outcomes were more likely among GII.4 outbreaks (hospitalization rate ratio [RR], 1.54 [95% CI, 1.23-1.96]; mortality RR, 2.77 [95% CI, 1.04-5.78]). Outbreaks in healthcare settings were also associated with higher hospitalization (RR, 3.22 [95% CI, 2.34-4.44]) and mortality rates (RR, 5.65 [95% CI, 1.92-18.70]). CONCLUSIONS Severe outcomes more frequently occurred in norovirus outbreaks caused by GII.4 and those in healthcare settings. These results should help guide preventive interventions for targeted populations, including vaccine development.
Collapse
Affiliation(s)
- Rachel M Burke
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Minesh P Shah
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia.,Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary E Wikswo
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Leslie Barclay
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Anita Kambhampati
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia.,IHRC, Inc, Atlanta, Georgia
| | - Zachary Marsh
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia.,Oak Ridge Institute for Science and Education, Tennessee, Atlanta, Georgia
| | | | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Aron J Hall
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|
7
|
Lee S, Liu H, Wilen CB, Sychev ZE, Desai C, Hykes BL, Orchard RC, McCune BT, Kim KW, Nice TJ, Handley SA, Baldridge MT, Amarasinghe GK, Virgin HW. A Secreted Viral Nonstructural Protein Determines Intestinal Norovirus Pathogenesis. Cell Host Microbe 2019; 25:845-857.e5. [PMID: 31130511 PMCID: PMC6622463 DOI: 10.1016/j.chom.2019.04.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/08/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Murine norovirus (MNoV) infects a low percentage of enteric tuft cells and can persist in these cells for months following acute infection. Both tuft-cell tropism and resistance to interferon-λ (IFN-λ)-mediated clearance during persistent infection requires the viral nonstructural protein 1/2 (NS1/2). We show that processing of NS1/2 yields NS1, an unconventionally secreted viral protein that is central for IFN-λ resistance. MNoV infection globally suppresses intestinal IFN-λ responses, which is attributable to secreted NS1. MNoV NS1 secretion is triggered by caspase-3 cleavage of NS1/2, and a secreted form of human NoV NS1 is also observed. NS1 secretion is essential for intestinal infection and resistance to IFN-λ in vivo. NS1 vaccination alone protects against MNoV challenge, despite the lack of induction of neutralizing anti-capsid antibodies previously shown to confer protection. Thus, despite infecting a low number of tuft cells, NS1 secretion allows MNoV to globally suppress IFN responses and promote persistence.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Hejun Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Craig B Wilen
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zoi E Sychev
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barry L Hykes
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert C Orchard
- Department of Immunology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Broc T McCune
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ki-Wook Kim
- Department of Pharmacology and Center for Stem Cell and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Nordgren J, Svensson L. Genetic Susceptibility to Human Norovirus Infection: An Update. Viruses 2019; 11:E226. [PMID: 30845670 PMCID: PMC6466115 DOI: 10.3390/v11030226] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/15/2022] Open
Abstract
Noroviruses are the most common etiological agent of acute gastroenteritis worldwide. Despite their high infectivity, a subpopulation of individuals is resistant to infection and disease. This susceptibility is norovirus genotype-dependent and is largely mediated by the presence or absence of human histo-blood group antigens (HBGAs) on gut epithelial surfaces. The synthesis of these HBGAs is mediated by fucosyl- and glycosyltransferases under the genetic control of the FUT2 (secretor), FUT3 (Lewis) and ABO(H) genes. The so-called non-secretors, having an inactivated FUT2 enzyme, do not express blood group antigens and are resistant to several norovirus genotypes, including the predominant GII.4. Significant genotypic and phenotypic diversity of HBGA expression exists between different human populations. Here, we review previous in vivo studies on genetic susceptibility to norovirus infection. These are discussed in relation to population susceptibility, vaccines, norovirus epidemiology and the impact on public health.
Collapse
Affiliation(s)
- Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden.
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden.
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
9
|
Lindsay L, DuPont HL, Moe CL, Alberer M, Hatz C, Kirby AE, Wu HM, Verstraeten T, Steffen R. Estimating the incidence of norovirus acute gastroenteritis among US and European international travelers to areas of moderate to high risk of traveler's diarrhea: a prospective cohort study protocol. BMC Infect Dis 2018; 18:605. [PMID: 30509202 PMCID: PMC6276235 DOI: 10.1186/s12879-018-3461-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
Background Acute gastroenteritis (AGE) is the leading cause of illness among returning travelers seeking medical care. Multiple types of enteric pathogens can cause travel-acquired AGE and, while bacterial pathogens have a predominant role, the importance of viruses, such as norovirus, is increasingly recognized. There is a lack of information on travel-acquired norovirus incidence among symptomatic and asymptomatic individuals irrespective of healthcare-seeking behavior. Our aim is to estimate the incidence of travel-acquired AGE due to norovirus and to characterize the burden of disease among international travelers from the United States and Europe. Methods We describe a prospective cohort study implemented in five US and European sites to estimate the role of AGE due to norovirus among adult international travelers. We enrolled individuals aged 18 years and older who are traveling to regions of moderate-high risk of AGE, or via cruise ship with an international port stop, with a trip duration of 3–15 days. The study will generate a wide range of health and travel-related data for pre-, during, and up to 6-months post-travel. We will identify laboratory-confirmed travel-acquired norovirus infections among both symptomatic and asymptomatic individuals from self-collected whole stool samples tested via quantitative RT-PCR. Coinfections will be identified in a subset of travelers with AGE using a multiplex molecular-based assay. Discussion This study is unique in design and breadth of data collected. The prospective collection of health and behavioral data, as well as biologic samples from travelers irrespective of symptoms, will provide useful data to better understand the importance of norovirus AGE among international travelers. This study will provide data to estimate the incidence of norovirus infections and AGE and the risk of post-infectious sequelae in the 6-month post-travel period serving as a baseline for future norovirus AGE vaccination studies. This study will contribute valuable information to better understand the role of norovirus in travel-acquired AGE risk and the impact of these infections on a broad set of outcomes.
Collapse
Affiliation(s)
- Lisa Lindsay
- P95 Pharmacovigilance and Epidemiology Services, Koning Leopold III Laan 1, 3001, Leuven, Belgium.
| | - Herbert L DuPont
- University of Texas McGovern Medical School and School of Public Health, 1200 Pressler Street, Houston, TX, 77030, USA
| | - Christine L Moe
- Emory University, Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Martin Alberer
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Leopoldstrasse 5, 80802, Munich, Germany
| | - Christoph Hatz
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4056, Basel, Switzerland.,University of Basel, Petersplatz 1, 4001, Basel, Switzerland.,University of Zurich; Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Centre for Travellers' Health, Hirschengraben 84, 8001, Zurich, Switzerland
| | - Amy E Kirby
- Emory University, Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Henry M Wu
- Emory University, Division of Infectious Diseases, Department of Medicine, 550 Peachtree Street NE MOT 7, Atlanta, GA, 30308, USA
| | - Thomas Verstraeten
- P95 Pharmacovigilance and Epidemiology Services, Koning Leopold III Laan 1, 3001, Leuven, Belgium
| | - Robert Steffen
- University of Texas McGovern Medical School and School of Public Health, 1200 Pressler Street, Houston, TX, 77030, USA.,University of Zurich; Epidemiology, Biostatistics and Prevention Institute, WHO Collaborating Centre for Travellers' Health, Hirschengraben 84, 8001, Zurich, Switzerland
| |
Collapse
|
10
|
Lee S, Wilen CB, Orvedahl A, McCune BT, Kim KW, Orchard RC, Peterson ST, Nice TJ, Baldridge MT, Virgin HW. Norovirus Cell Tropism Is Determined by Combinatorial Action of a Viral Non-structural Protein and Host Cytokine. Cell Host Microbe 2017; 22:449-459.e4. [PMID: 28966054 PMCID: PMC5679710 DOI: 10.1016/j.chom.2017.08.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 08/29/2017] [Indexed: 01/24/2023]
Abstract
Cellular tropism during persistent viral infection is commonly conferred by the interaction of a viral surface protein with a host receptor complex. Norovirus, the leading global cause of gastroenteritis, can be persistently shed during infection, but its in vivo cellular tropism and tropism determinants remain unidentified. Using murine norovirus (MNoV), we determine that a small number of intestinal epithelial cells (IECs) serve as the reservoir for fecal shedding and persistence. The viral non-structural protein NS1, rather than a viral surface protein, determines IEC tropism. Expression of NS1 from a persistent MNoV strain is sufficient for an acute MNoV strain to target IECs and persist. In addition, interferon-lambda (IFN-λ) is a key host determinant blocking MNoV infection in IECs. The inability of acute MNoV to shed and persist is rescued in Ifnlr1-/- mice, suggesting that NS1 evades IFN-λ-mediated antiviral immunity. Thus, NS1 and IFN-λ interactions govern IEC tropism and persistence of MNoV.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Craig B Wilen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony Orvedahl
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ki-Wook Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert C Orchard
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefan T Peterson
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|