1
|
Li X, Busch LM, Piersma S, Wang M, Liu L, Gesell Salazar M, Surmann K, Mäder U, Völker U, Buist G, van Dijl JM. Functional and Proteomic Dissection of the Contributions of CodY, SigB and the Hibernation Promoting Factor HPF to Interactions of Staphylococcus aureus USA300 with Human Lung Epithelial Cells. J Proteome Res 2024; 23:4742-4760. [PMID: 39302699 PMCID: PMC11459534 DOI: 10.1021/acs.jproteome.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Staphylococcus aureus is a leading cause of severe pneumonia. Our recent proteomic investigations into S. aureus invasion of human lung epithelial cells revealed three key adaptive responses: activation of the SigB and CodY regulons and upregulation of the hibernation-promoting factor SaHPF. Therefore, our present study aimed at a functional and proteomic dissection of the contributions of CodY, SigB and SaHPF to host invasion using transposon mutants of the methicillin-resistant S. aureus USA300. Interestingly, disruption of codY resulted in a "small colony variant" phenotype and redirected the bacteria from (phago)lysosomes into the host cell cytoplasm. Furthermore, we show that CodY, SigB and SaHPF contribute differentially to host cell adhesion, invasion, intracellular survival and cytotoxicity. CodY- or SigB-deficient bacteria experienced faster intracellular clearance than the parental strain, underscoring the importance of these regulators for intracellular persistence. We also show an unprecedented role of SaHPF in host cell adhesion and invasion. Proteomic analysis of the different mutants focuses attention on the CodY-perceived metabolic state of the bacteria and the SigB-perceived environmental cues in bacterial decision-making prior and during infection. Additionally, it underscores the impact of the nutritional status and bacterial stress on the initiation and progression of staphylococcal lung infections.
Collapse
Affiliation(s)
- Xiaofang Li
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Larissa M. Busch
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Sjouke Piersma
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Min Wang
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Lei Liu
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Manuela Gesell Salazar
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Kristin Surmann
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty
Institute for Genetics and Functional Genomics, Department Functional
Genomics, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Girbe Buist
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
2
|
Doğan E, Sydow K, Heiden SE, Eger E, Wassilew G, Proctor RA, Bohnert JA, Idelevich EA, Schaufler K, Becker K. Klebsiella pneumoniae exhibiting a phenotypic hyper-splitting phenomenon including the formation of small colony variants. Front Cell Infect Microbiol 2024; 14:1372704. [PMID: 38601740 PMCID: PMC11004228 DOI: 10.3389/fcimb.2024.1372704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.
Collapse
Affiliation(s)
- Eyüp Doğan
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Sydow
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Elias Eger
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
| | - Georgi Wassilew
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Evgeny A. Idelevich
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Schaufler
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research Helmholtz Center for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
das Chagas E Silva de Carvalho LF, de Lima Morais TM, Nogueira MS. Providing potential solutions by using FT-IR spectroscopy for biofluid analysis: Clinical impact of optical screening and diagnostic tests. Photodiagnosis Photodyn Ther 2023; 44:103753. [PMID: 37597683 DOI: 10.1016/j.pdpdt.2023.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Currently, the potential of FT-IR spectroscopy for rapid diagnosis of many pathologies has been demonstrated by numerous research studies including those targeting COVID-19 detection. However, the number of clinicians aware of this potential and who are willing to use spectroscopy in their clinics and hospitals is still negligible. In addition, lack of awareness creates a huge gap between clinicians and researchers involved in clinical translation of current FT-IR technology hence hindering initiatives to bring basic and applied research together for the direct benefit of patients. METHODS Knowledge and medical training on FT-IR on the side of clinicians should be one of the first steps to be able to integrate it into the list of complementary exams which may be requested by health professionals. Countless FT-IR applications could have a life-changing impact on patients' lives, especially screening and diagnostic tests involving biofluids such as blood, saliva and urine which are routinely non-invasively or minimally-invasively. RESULTS Blood may be the most difficult to obtain by the invasive method of collection, but much can be evaluated in its components, and areas such as hematology, infectiology, oncology and endocrinology can be directly benefited. Urine with a relatively simple collection method can provide pertinent information from the entire urinary system, including the actual condition of the kidneys. Saliva collection can be simpler for the patient and can provide information on diseases affecting the mouth and digestive system and can be used to diagnose diseases such as oral cancer in its early-stages. An unavoidable second step is the active involvement of industries to design robust and portable instruments for specific purposes, as the medical community requires user-friendly instruments of advanced computational algorithms. A third step resides in the legal situation involving the global use of the technique as a new diagnostic modality. CONCLUSIONS It is important to note that decentralized funds for variety of technologies hinders the training of clinical and medical professionals for the use of newly arising technologies and affect the engagement of these professionals with technology developers. As a result of decentralized funding, research efforts are spread out over a range of technologies which take a long time to get validated and translated to the clinic. Partnership over similar groups of technologies and efforts to test the same technologies while overcoming barriers posed to technology validation in different areas around the globe may benefit the clinical/medical, research and industry community globally.
Collapse
Affiliation(s)
| | | | - Marcelo Saito Nogueira
- Tyndall National Institute, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland; Department of Physics, University College Cork, College Road, Cork T12 K8AF, Ireland.
| |
Collapse
|
4
|
Becker K. Detection, Identification and Diagnostic Characterization of the Staphylococcal Small Colony-Variant (SCV) Phenotype. Antibiotics (Basel) 2023; 12:1446. [PMID: 37760742 PMCID: PMC10525764 DOI: 10.3390/antibiotics12091446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
While modern molecular methods have decisively accelerated and improved microbiological diagnostics, phenotypic variants still pose a challenge for their detection, identification and characterization. This particularly applies if they are unstable and hard to detect, which is the case for the small-colony-variant (SCV) phenotype formed by staphylococci. On solid agar media, staphylococcal SCVs are characterized by tiny colonies with deviant colony morphology. Their reduced growth rate and fundamental metabolic changes are the result of their adaptation to an intracellular lifestyle, regularly leading to specific auxotrophies, such as for menadione, hemin or thymidine. These alterations make SCVs difficult to recognize and render physiological, biochemical and other growth-based methods such as antimicrobial susceptibility testing unreliable or unusable. Therefore, diagnostic procedures require prolonged incubation times and, if possible, confirmation by molecular methods. A special approach is needed for auxotrophy testing. However, standardized protocols for SCV diagnostics are missing. If available, SCVs and their putative parental isolates should be genotyped to determine clonality. Since their detection has significant implications for the treatment of the infection, which is usually chronic and relapsing, SCV findings should be specifically reported, commented on, and managed in close collaboration with the microbiological laboratory and the involved clinicians.
Collapse
Affiliation(s)
- Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße 1, 17489 Greifswald, Germany
| |
Collapse
|
5
|
Comparison of fast Fourier transform infrared spectroscopy biotyping with whole genome sequencing-based genotyping in common nosocomial pathogens. Anal Bioanal Chem 2022; 414:7179-7189. [PMID: 35962141 PMCID: PMC9482911 DOI: 10.1007/s00216-022-04270-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Early detection of bacterial transmission and outbreaks in hospitals is important because nosocomial infections can result in health complications and longer hospitalization. Current practice to detect outbreaks uses genotyping methods amplified fragment length polymorphism (AFLP) and whole genome sequencing (WGS), which are not suitable methods for real-time transmission screening of both susceptible and resistant bacteria. The aim was to assess the typing technique Fourier transform infrared (FTIR) spectroscopy as real-time screening method to discriminate large amounts of susceptible and resistant bacteria at strain level when there is no evident outbreak in comparison with the WGS reference. Isolates of past hospital outbreak strains of Acinetobacter baumannii/calcoaceticus complex (n = 25), Escherichia coli (n = 31), Enterococcus faecium (n = 22), Staphylococcus aureus (n = 37) and Pseudomonas aeruginosa (n = 30) were used for validation of FTIR. Subsequently, Enterococcus faecalis (n = 106) and Enterococcus faecium (n = 104) isolates from weekly routine screening samples when no potential outbreak was present were analysed. FTIR showed reproducibility and congruence of cluster composition with WGS for A. baumannii/calcoaceticus complex and E. faecium outbreak isolates. The FTIR results of E. faecalis and E. faecium isolates from routine samples showed reproducibility, but the congruence of cluster composition with WGS was low. For A. baumannii/calcoaceticus complex and E. faecium outbreak isolates, FTIR appears to be a discriminatory typing tool. However, our study shows the discriminatory power is too low to screen real-time for transmission of E. faecium and E. faecalis at patient wards based on isolates acquired in routine surveillance cultures when there is no clear suspicion of an ongoing outbreak.
Collapse
|
6
|
Heme-Dependent Siderophore Utilization Promotes Iron-Restricted Growth of the Staphylococcus aureus hemB Small-Colony Variant. J Bacteriol 2021; 203:e0045821. [PMID: 34606375 DOI: 10.1128/jb.00458-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Respiration-deficient Staphylococcus aureus small-colony variants (SCVs) frequently cause persistent infections, which necessitates they acquire iron, yet how SCVs obtain iron remains unknown. To address this, we created a stable hemB mutant from S. aureus USA300 strain LAC. The hemB SCV utilized exogenously supplied hemin but was attenuated for growth under conditions of iron starvation. Transcriptome sequencing (RNA-seq) showed that both wild-type (WT) S. aureus and the hemB mutant sense and respond to iron starvation; however, growth assays show that the hemB mutant is defective for siderophore-mediated iron acquisition. Indeed, the hemB SCV demonstrated limited utilization of endogenous staphyloferrin B or exogenously provided staphyloferrin A, deferoxamine mesylate (Desferal), and epinephrine. Direct measurement of intracellular ATP in hemB and WT S. aureus revealed that both strains can generate comparable levels of ATP during exponential growth, suggesting defects in ATP production cannot account for the inability to efficiently utilize siderophores. Defective siderophore utilization by hemB bacteria was also evident in vivo, as administration of Desferal failed to promote hemB bacterial growth in every organ analyzed except for the kidneys. In support of the hypothesis that S. aureus accesses heme in kidney abscesses, in vitro analyses revealed that increased hemin availability enables hemB bacteria to utilize siderophores for growth when iron availability is restricted. Taken together, our data support the conclusion that hemin is used not only as an iron source itself but also as a nutrient that promotes utilization of siderophore-iron complexes. IMPORTANCE S. aureus small-colony variants (SCVs) are associated with chronic recurrent infection and worsened clinical outcome. SCVs persist within the host despite administration of antibiotics. This study yields insight into how S. aureus SCVs acquire iron, which during infection of a host is a difficult-to-acquire metal nutrient. Under hemin-limited conditions, hemB S. aureus is impaired for siderophore-dependent growth, and in agreement, murine infection indicates that hemin-deficient SCVs meet their nutritional requirement for iron through utilization of hemin. Importantly, we demonstrate that hemB SCVs rely upon hemin as a nutrient to promote siderophore utilization. Therefore, perturbation of heme biosynthesis and/or utilization represents a viable to strategy to mitigate the ability of SCV bacteria to acquire siderophore-bound iron during infection.
Collapse
|
7
|
Anti-bacterial performance evaluation of hydrophobic poly (dimethylsiloxane)-ZnO coating using Pseudomonas aeruginosa. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01205-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Valasi L, Georgiadou M, Tarantilis PA, Yanniotis S, Pappas CS. Rapid screening on aflatoxins' presence in Pistachia vera nuts using diffuse reflectance infrared Fourier transform spectroscopy and chemometrics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:356-365. [PMID: 33505080 DOI: 10.1007/s13197-020-04549-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 11/29/2022]
Abstract
Aflatoxin contamination in pistachios has been analyzed in this work, using Diffuse Reflectance Infrared Spectroscopy (DRIFTS) with chemometrics. Forty-nine Greek pistachio samples of different aflatoxin concentrations were classified into aflatoxin and non-aflatoxin groups using the 3035-2821, 1770-1721, 1570-1481 and 1260-1061 cm-1 spectral regions in Kubelka-Munk conversion and first derivative form. A chemometric model was developed using twenty-eight samples as calibration, 11 as validation and 10 as test set. The discrimination analysis separated correctly the 100% of the calibration and the validation set and the 80% of the test set. The proposed chemometric model is simple, rapid, economical and environmentally friendly since it does not require chemical pre-treatment of the samples. It is expected that the present method may be proved useful in food industry and the inspection authorities as a rapid decision-making tool to detect batches that must be rejected and enhance consumers' protection from aflatoxin contaminated pistachios.
Collapse
Affiliation(s)
- Lydia Valasi
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Maria Georgiadou
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Petros A Tarantilis
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Stavros Yanniotis
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Christos S Pappas
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
9
|
Michalik M, Samet A, Podbielska-Kubera A, Savini V, Międzobrodzki J, Kosecka-Strojek M. Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: a review. Ann Clin Microbiol Antimicrob 2020; 19:26. [PMID: 32498711 PMCID: PMC7271473 DOI: 10.1186/s12941-020-00367-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
This review article shows that coagulase-negative staphylococci (CoNS) are widely responsible for laryngological diseases. General characteristics of CoNS infections are shown in the introduction, and the pathogenicity in terms of virulence determinants, biofilm formation and genetic regulation mechanisms of these bacteria is presented in the first part of the paper to better display the virulence potential of staphylococci. The PubMed search keywords were as follows: CoNS and: nares infections, nasal polyps, rhinosinusitis, necrosing sinusitis, periprosthetic joint infection, pharyngitis, osteomyelitis of skull and neck bones, tonsillitis and recurrent tonsillitis. A list of laryngological infections and those related to skull and neck bones was presented with descriptions of the following diseases: rhinosinusitis, necrotizing sinusitis, nasal polyps, nares and nasal skin infections, periprosthetic joint infections, osteomyelitis, pharyngitis, and tonsillitis. Species identification and diagnostic problems challenging for diagnosticians are presented. Concluding remarks regarding the presence of CoNS in humans and their distribution, particularly under the effect of facilitating factors, are mentioned.
Collapse
Affiliation(s)
| | | | | | - Vincenzo Savini
- Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara, PE, Italy
| | - Jacek Międzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
10
|
Watkins KE, Unnikrishnan M. Evasion of host defenses by intracellular Staphylococcus aureus. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:105-141. [PMID: 32762866 DOI: 10.1016/bs.aambs.2020.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is one of the leading causes of hospital and community-acquired infections worldwide. The increasing occurrence of antibiotic resistant strains and the high rates of recurrent staphylococcal infections have placed several treatment challenges on healthcare systems. In recent years, it has become evident that S. aureus is a facultative intracellular pathogen, able to invade and survive in a range of cell types. The ability to survive intracellularly provides this pathogen with yet another way to evade antibiotics and immune responses during infection. Intracellular S. aureus have been strongly linked to several recurrent infections, including severe bone infections and septicemias. S. aureus is armed with an array of virulence factors as well as an intricate network of regulators that enable it to survive, replicate and escape from a number of immune and nonimmune host cells. It is able to successfully manipulate host cell pathways and use it as a niche to multiply, disseminate, as well as persist during an infection. This bacterium is also known to adapt to the intracellular environment by forming small colony variants, which are metabolically inactive. In this review we will discuss the clinical evidence, the molecular pathways involved in S. aureus intracellular persistence, and new treatment strategies for targeting intracellular S. aureus.
Collapse
|
11
|
Acker KP, Wong Fok Lung T, West E, Craft J, Narechania A, Smith H, O'Brien K, Moustafa AM, Lauren C, Planet PJ, Prince A. Strains of Staphylococcus aureus that Colonize and Infect Skin Harbor Mutations in Metabolic Genes. iScience 2019; 19:281-290. [PMID: 31401351 PMCID: PMC6700416 DOI: 10.1016/j.isci.2019.07.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is the most common cause of skin and soft tissue infections, yet the bacterial genetic changes associated with adaptation to human skin are not well characterized. S. aureus strains isolated from patients with chronic skin colonization and intermittent infection were used to determine the staphylococcal genotypes or phenotypes associated with adaptation to human skin. We demonstrate that polymorphisms in metabolic genes, particularly those involved in the tricarboxylic acid cycle, the fumarate-succinate axis, and the generation of terminal electron transporters, are unexpectedly common. These skin-adapted strains activated glycolysis and hypoxia-inducible factor-1α, interleukin (IL)-1β, and IL-18 release from keratinocytes and promoted dermatopathology equivalent to a methicillin-resistant Staphylococcus aureus USA300 control in a murine model of infection. However, in contrast to USA300, a skin-adapted isolate failed to generate protection from a secondary infectious challenge. Within the context of human skin, there appears to be selection for S. aureus metabolic adaptive changes that promote glycolysis and maintain pathogenicity.
Collapse
Affiliation(s)
- Karen P Acker
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Tania Wong Fok Lung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Emily West
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Joshua Craft
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Hannah Smith
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kelsey O'Brien
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ahmed M Moustafa
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christine Lauren
- Department of Dermatology and Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Paul J Planet
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA; Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice Prince
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
12
|
Schleimer N, Kaspar U, Ballhausen B, Fotiadis SA, Streu JM, Kriegeskorte A, Proctor RA, Becker K. Adaption of an Episomal Antisense Silencing Approach for Investigation of the Phenotype Switch of Staphylococcus aureus Small-Colony Variants. Front Microbiol 2019; 10:2044. [PMID: 31551979 PMCID: PMC6738336 DOI: 10.3389/fmicb.2019.02044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/20/2019] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus small-colony variants (SCVs) are associated with chronic, persistent, and relapsing courses of infection and are characterized by slow growth combined with other phenotypic and molecular traits. Although certain mechanisms have been described, the genetic basis of clinical SCVs remains often unknown. Hence, we adapted an episomal tool for rapid identification and investigation of putative SCV phenotype-associated genes via antisense gene silencing based on previously described Tnl0-encoded tet-regulatory elements. Targeting the SCV phenotype-inducing enoyl-acyl-carrier-protein reductase gene (fabI), plasmid pSN1-AS‘fabI’ was generated leading to antisense silencing, which was proven by pronounced growth retardation in liquid cultures, phenotype switch on solid medium, and 200-fold increase of antisense ‘fabI’ expression. A crucial role of TetR repression in effective regulation of the system was demonstrated. Based on the use of anhydrotetracycline as effector, an easy-to-handle one-plasmid setup was set that may be applicable to different S. aureus backgrounds and cell culture studies. However, selection of the appropriate antisense fragment of the target gene remains a critical factor for effectiveness of silencing. This inducible gene expression system may help to identify SCV phenotype-inducing genes, which is prerequisite for the development of new antistaphylococcal agents and future alternative strategies to improve treatment of therapy-refractory SCV-related infections by iatrogenically induced phenotypic switch. Moreover, it can be used as controllable phenotype switcher to examine important aspects of SCV biology in cell culture as well as in vivo.
Collapse
Affiliation(s)
- Nina Schleimer
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Britta Ballhausen
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Sarah A Fotiadis
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jessica M Streu
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - André Kriegeskorte
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Richard A Proctor
- Departments of Medical Microbiology/Immunology and Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
13
|
Al-Mariri A, Ramadan L, Abou Younes A, Al-Laham A. Identification of Listeria species by Fourier-transform infrared spectroscopy. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2019. [DOI: 10.15547/bjvm.2065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Differentiation of the genus Listeria is significant for food industry, but only few reliable methods are available so far. In the present study, 56 strains isolated from 345 samples of cow raw milk were used. The isolated pure cultures were defined by PCR-based method using specific primers of 16S-23S IGS region of DNA. Bacterial strain samples were submitted to spectroscopic measurements by the trans-mission method at a wavelength of 3000–700 cm–1 using Fourier-transform infrared (FTIR) spectro-photometry. Hierarchical cluster analysis (HCA) was performed based on the identification of the 56 isolated strains. The utilisation of HCA in univariate-FTIR spectral analyses as the most progressive chemometric method was supported by the correct identification of 86.9% bacteria of the genus Listeria at the species level. These results explained the ability of univariate-FTIR spectrum analysis for determination of suspected Listeria species.
Collapse
|
14
|
Novais Â, Freitas AR, Rodrigues C, Peixe L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis 2018; 38:427-448. [DOI: 10.1007/s10096-018-3431-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023]
|
15
|
Schleimer N, Kaspar U, Drescher M, Seggewiß J, von Eiff C, Proctor RA, Peters G, Kriegeskorte A, Becker K. The Energy-Coupling Factor Transporter Module EcfAA'T, a Novel Candidate for the Genetic Basis of Fatty Acid-Auxotrophic Small-Colony Variants of Staphylococcus aureus. Front Microbiol 2018; 9:1863. [PMID: 30154773 PMCID: PMC6102330 DOI: 10.3389/fmicb.2018.01863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022] Open
Abstract
Staphylococcal small-colony variants (SCVs) are invasive and persistent due to their ability to thrive intracellularly and to evade the host immune response. Thus, the course of infections due to this phenotype is often chronic, relapsing, and therapy-refractory. In order to improve treatment of patients suffering from SCV-associated infections, it is of major interest to understand triggers for the development of this phenotype, in particular for strains naturally occurring in clinical settings. Within this study, we comprehensively characterized two different Staphylococcus aureus triplets each consisting of isogenic strains comprising (i) clinically derived SCV phenotypes with auxotrophy for unsaturated fatty acids, (ii) the corresponding wild-types (WTs), and (iii) spontaneous in vitro revertants displaying the normal phenotype (REVs). Comparison of whole genomes revealed that clinical SCV isolates were closely related to their corresponding WTs and REVs showing only seven to eight alterations per genome triplet. However, both SCVs carried a mutation within the energy-coupling factor (ECF) transporter-encoding ecf module (EcfAA’T) resulting in truncated genes. In both cases, these mutations were shown to be naturally restored in the respective REVs. Since ECF transporters are supposed to be essential for optimal bacterial growth, their dysfunction might constitute another mechanism for the formation of naturally occurring SCVs. Another three triplets analyzed revealed neither mutations in the EcfAA’T nor in other FASII-related genes underlining the high diversity of mechanisms leading to the fatty acid-dependent phenotype. This is the first report on the ECF transporter as genetic basis of fatty acid–auxotrophic staphylococcal SCVs.
Collapse
Affiliation(s)
- Nina Schleimer
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Ursula Kaspar
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Mike Drescher
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Jochen Seggewiß
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Christof von Eiff
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Richard A Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - André Kriegeskorte
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
16
|
Zhang P, Wright JA, Osman AA, Nair SP. An aroD Ochre Mutation Results in a Staphylococcus aureus Small Colony Variant That Can Undergo Phenotypic Switching via Two Alternative Mechanisms. Front Microbiol 2017; 8:1001. [PMID: 28620368 PMCID: PMC5449664 DOI: 10.3389/fmicb.2017.01001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus can undergo phenotypic switching between a normal colony phenotype (NCP) and a small colony variant (SCV). The SCV phenotype confers increased antibiotic resistance and the capacity to persist within human tissues and cells, and because these cells can revert back to the NCP they cause chronic and/or recurrent infections that are very difficult to treat. A complete picture of the genetic events that can lead to phenotypic switching in S. aureus is currently lacking. We describe the selection of an SCV with a previously unreported genetic alteration leading to an ochre mutation of aroD. In addition to the known mechanisms of phenotypic switching between the SCV and the NCP we describe a previously unreported mechanism involving tRNA ochre suppressors arising. The ochre suppressor strains had wild-type growth rates and restored antibiotic sensitivity, similar to the wild-type strain. However, whilst they had increased virulence compared to the SCV parent strain, their virulence was not restored to that of the NCP parental strain. These findings establish that phenotypic switching between the NCP and SCV states can give rise to strains with different pathogenic potential.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College LondonLondon, United Kingdom
| | - John A Wright
- Immunology Catalyst, GlaxoSmithKline plcStevenage, United Kingdom
| | - Ahmed A Osman
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College LondonLondon, United Kingdom
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College LondonLondon, United Kingdom
| |
Collapse
|
17
|
Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections. Clin Microbiol Rev 2016; 29:401-27. [PMID: 26960941 DOI: 10.1128/cmr.00069-15] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small colony variants (SCVs) were first described more than 100 years ago for Staphylococcus aureus and various coagulase-negative staphylococci. Two decades ago, an association between chronic staphylococcal infections and the presence of SCVs was observed. Since then, many clinical studies and observations have been published which tie recurrent, persistent staphylococcal infections, including device-associated infections, bone and tissue infections, and airway infections of cystic fibrosis patients, to this special phenotype. By their intracellular lifestyle, SCVs exhibit so-called phenotypic (or functional) resistance beyond the classical resistance mechanisms, and they can often be retrieved from therapy-refractory courses of infection. In this review, the various clinical infections where SCVs can be expected and isolated, diagnostic procedures for optimized species confirmation, and the pathogenesis of SCVs, including defined underlying molecular mechanisms and the phenotype switch phenomenon, are presented. Moreover, relevant animal models and suggested treatment regimens, as well as the requirements for future research areas, are highlighted.
Collapse
|
18
|
Day M. Yeast petites and small colony variants: for everything there is a season. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:1-41. [PMID: 23942147 DOI: 10.1016/b978-0-12-407672-3.00001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The yeast petite mutant was first found in the yeast Saccharomyces cerevisiae. The colony is small because of a block in the aerobic respiratory chain pathway, which generates ATP. The petite yeasts are thus unable to grow on nonfermentable carbon sources (such as glycerol or ethanol), and form small anaerobic-sized colonies when grown in the presence of fermentable carbon sources (such as glucose). The petite phenotype results from mutations in the mitochondrial genome, loss of mitochondria, or mutations in the host cell genome. The latter mutations affect nuclear-encoded genes involved in oxidative phosphorylation and these mutants are termed neutral petites. They all produce wild-type progeny when crossed with a wild-type strain. The staphylococcal small colony variant (SCV) is a slow-growing mutant that typically exhibits the loss of many phenotypic characteristics and pathogenic traits. SCVs are mostly small, nonpigmented, and nonhaemolytic. Their small size is often due to an inability to synthesize electron transport chain components and so cannot generate ATP by oxidative phosphorylation. Evidence suggests that they are responsible for persistent and/or recurrent infections. This chapter compares the physiological and genetic basis of the petite mutants and SCVs. The review focuses principally on two representatives, the eukaryote S. cerevisiae and the prokaryote Staphylococcus aureus. There is, clearly, commonality in the physiological response. Interestingly, the similarity, based on their physiological states, has not been commented on previously. The finding of an overlapping physiological response that occurs across a taxonomic divide is novel.
Collapse
Affiliation(s)
- Martin Day
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
19
|
Dash HR, Das S. Diversity, community structure, and bioremediation potential of mercury-resistant marine bacteria of estuarine and coastal environments of Odisha, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6960-6971. [PMID: 26686519 DOI: 10.1007/s11356-015-5991-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Both point and non-point sources increase the pollution status of mercury and increase the population of mercury-resistant marine bacteria (MRMB). They can be targeted as the indicator organism to access marine mercury pollution, besides utilization in bioremediation. Thus, sediment and water samples were collected for 2 years (2010-2012) along Odisha coast of Bay of Bengal, India. Mercury content of the study sites varied from 0.47 to 0.99 ppb irrespective of the seasons of sampling. A strong positive correlation was observed between mercury content and MRMB population (P < 0.05) suggesting the utilization of these bacteria to assess the level of mercury pollution in the marine environment. Seventy-eight percent of the MRMB isolates were under the phylum Firmicutes, and 36 and 31% of them could resist mercury by mer operon-mediated volatilization and mercury biosorption, respectively. In addition, most of the isolates could resist a number of antibiotics and toxic metals. All the MRMB isolates possess the potential of growth and survival at cardinal pH (4-8), temperature (25-37 °C), and salinity (5-35 psu). Enterobacteria repetitive intergenic consensus (ERIC) and repetitive element palindromic PCR (REP-PCR) produced fingerprints corroborating the results of 16S rRNA gene sequencing. Fourier transform infrared (FTIR) spectral analysis also revealed strain-level speciation and phylogenetic relationships.
Collapse
Affiliation(s)
- Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
20
|
Johler S, Stephan R, Althaus D, Ehling-Schulz M, Grunert T. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy. Syst Appl Microbiol 2016; 39:189-194. [PMID: 27021524 DOI: 10.1016/j.syapm.2016.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing.
Collapse
Affiliation(s)
- Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Denise Althaus
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, AT-1210 Vienna, Austria
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, AT-1210 Vienna, Austria.
| |
Collapse
|
21
|
Synergy and Mode of Action of Ceftazidime plus Quercetin or Luteolin on Streptococcus pyogenes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:759459. [PMID: 26576195 PMCID: PMC4631891 DOI: 10.1155/2015/759459] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/06/2015] [Accepted: 09/30/2015] [Indexed: 12/28/2022]
Abstract
Streptococcus pyogenes causes streptococcal toxic shock syndrome. The recommended therapy has been often failure through the interfering of beta-lactamase-producing bacteria (BLPB). The present study was to investigate antibacterial activity, synergy, and modes of action of luteolin and quercetin using alone and plus ceftazidime against S. pyogenes. The MICs of ceftazidime, luteolin, and quercetin against all S. pyogenes were 0.50, 128, and 128 µg mL−1, respectively. A synergistic effect was exhibited on luteolin and quercetin plus ceftazidime against these strains at fractional inhibitory concentration indices 0.37 and 0.27, respectively, and was confirmed by the viable count. These combinations increased cytoplasmic membrane (CM) permeability, caused irregular cell shape, peptidoglycan, and CM damage, and decreased nucleic acid but increased proteins in bacterial cells. Enzyme assay demonstrated that these flavonoids had an inhibitory activity against β-lactamase. In summary, this study provides evidence that the inhibitory mode of action of luteolin and quercetin may be mediated via three mechanisms: (1) inhibiting of peptidoglycan synthesis, (2) increasing CM permeability, and (3) decreasing nucleic acid but increasing the protein contents of bacterial cells. So, luteolin and quercetin propose the high potential to develop adjunct to ceftazidime for the treatment of coexistence of the BLPB and S. pyogenes infections.
Collapse
|
22
|
Abstract
The definition of the heterogeneous group of coagulase-negative staphylococci (CoNS) is still based on diagnostic procedures that fulfill the clinical need to differentiate between Staphylococcus aureus and those staphylococci classified historically as being less or nonpathogenic. Due to patient- and procedure-related changes, CoNS now represent one of the major nosocomial pathogens, with S. epidermidis and S. haemolyticus being the most significant species. They account substantially for foreign body-related infections and infections in preterm newborns. While S. saprophyticus has been associated with acute urethritis, S. lugdunensis has a unique status, in some aspects resembling S. aureus in causing infectious endocarditis. In addition to CoNS found as food-associated saprophytes, many other CoNS species colonize the skin and mucous membranes of humans and animals and are less frequently involved in clinically manifested infections. This blurred gradation in terms of pathogenicity is reflected by species- and strain-specific virulence factors and the development of different host-defending strategies. Clearly, CoNS possess fewer virulence properties than S. aureus, with a respectively different disease spectrum. In this regard, host susceptibility is much more important. Therapeutically, CoNS are challenging due to the large proportion of methicillin-resistant strains and increasing numbers of isolates with less susceptibility to glycopeptides.
Collapse
Affiliation(s)
- Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Christine Heilmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
23
|
Inactivation of thyA in Staphylococcus aureus attenuates virulence and has a strong impact on metabolism and virulence gene expression. mBio 2014; 5:e01447-14. [PMID: 25073642 PMCID: PMC4128360 DOI: 10.1128/mbio.01447-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). While it has been shown that TD-SCVs were associated with mutations in thymidylate synthase (TS; thyA), the impact of such mutations on protein function is lacking. In this study, we showed that mutations in thyA were leading to inactivity of TS proteins, and TS inactivity led to tremendous impact on S. aureus physiology and virulence. Whole DNA microarray analysis of the constructed ΔthyA mutant identified severe alterations compared to the wild type. Important virulence regulators (agr, arlRS, sarA) and major virulence determinants (hla, hlb, sspAB, and geh) were downregulated, while genes important for colonization (fnbA, fnbB, spa, clfB, sdrC, and sdrD) were upregulated. The expression of genes involved in pyrimidine and purine metabolism and nucleotide interconversion changed significantly. NupC was identified as a major nucleoside transporter, which supported growth of the mutant during TMP-SMX exposure by uptake of extracellular thymidine. The ΔthyA mutant was strongly attenuated in virulence models, including a Caenorhabditis elegans killing model and an acute pneumonia mouse model. This study identified inactivation of TS as the molecular basis of clinical TD-SCV and showed that thyA activity has a major role for S. aureus virulence and physiology. Thymidine-dependent small-colony variants (TD-SCVs) of Staphylococcus aureus carry mutations in the thymidylate synthase (TS) gene (thyA) responsible for de novo synthesis of thymidylate, which is essential for DNA synthesis. TD-SCVs have been isolated from patients treated for long periods with trimethoprim-sulfamethoxazole (TMP-SMX) and are associated with chronic and recurrent infections. In the era of community-associated methicillin-resistant S. aureus, the therapeutic use of TMP-SMX is increasing. Today, the emergence of TD-SCVs is still underestimated due to misidentification in the diagnostic laboratory. This study showed for the first time that mutational inactivation of TS is the molecular basis for the TD-SCV phenotype and that TS inactivation has a strong impact on S. aureus virulence and physiology. Our study helps to understand the clinical nature of TD-SCVs, which emerge frequently once patients are treated with TMP-SMX.
Collapse
|
24
|
Wenning M, Breitenwieser F, Konrad R, Huber I, Busch U, Scherer S. Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. J Microbiol Methods 2014; 103:44-52. [PMID: 24878140 DOI: 10.1016/j.mimet.2014.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 11/17/2022]
Abstract
The food industry requires easy, accurate, and cost-effective techniques for microbial identification to ensure safe products and identify microbial contaminations. In this work, FTIR spectroscopy and MALDI-TOF mass spectrometry were assessed for their suitability and applicability for routine microbial diagnostics of food-related microorganisms by analyzing their robustness according to changes in incubation time and medium, identification accuracy and their ability to differentiate isolates down to the strain level. Changes in the protocol lead to a significantly impaired performance of FTIR spectroscopy, whereas they had only little effects on MALDI-TOF MS. Identification accuracy was tested using 174 food-related bacteria (93 species) from an in-house strain collection and 40 fresh isolates from routine food analyses. For MALDI-TOF MS, weaknesses in the identification of bacilli and pseudomonads were observed; FTIR spectroscopy had most difficulties in identifying pseudomonads and enterobacteria. In general, MALDI-TOF MS obtained better results (52-85% correct at species level), since the analysis of mainly ribosomal proteins is more robust and seems to be more reliable. FTIR spectroscopy suffers from the fact that it generates a whole-cell fingerprint and intraspecies diversity may lead to overlapping species borders which complicates identification. In the present study values between 56% and 67% correct species identification were obtained. On the opposite, this high sensitivity offers the opportunity of typing below the species level which was not possible using MALDI-TOF MS. Using fresh isolates from routine diagnostics, both techniques performed well with 88% (MALDI-TOF) and 75% (FTIR) correct identifications at species level, respectively.
Collapse
Affiliation(s)
- Mareike Wenning
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany.
| | - Franziska Breitenwieser
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany; Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Regina Konrad
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Ingrid Huber
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Ulrich Busch
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit (LGL), Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Siegfried Scherer
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs-und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany; Lehrstuhl für Mikrobielle Ökologie, Department of Biosciences, Technische Universität München, D-85350 Freising, Germany
| |
Collapse
|
25
|
Chronisch rezidivierende Infektionen der Haut und Weichgewebe durch Staphylococcus aureus. Hautarzt 2014; 65:15-25. [DOI: 10.1007/s00105-013-2636-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Kumar S, R, Chaudhary S, S, Jain DC. Vibrational Studies of Different Human Body Disorders Using FTIR Spectroscopy. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojapps.2014.43012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Aspiroz C, Díez-Manglano J, Villuendas MC, Toyas C. Aislamiento de Enterococcus faecalis con variantes de colonia pequeña en un paciente con endocarditis aórtica sobre válvula nativa. Enferm Infecc Microbiol Clin 2013; 31:631-3. [DOI: 10.1016/j.eimc.2013.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
|
28
|
Isolation of a new Pseudomonas halophila strain possess bacteriorhodopsin-like protein by a novel method for screening of photoactive protein producing bacteria. World J Microbiol Biotechnol 2013; 30:585-94. [PMID: 24002576 DOI: 10.1007/s11274-013-1453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
Bacteriorhodopsin (bR) is a transmembrane protein deposited in the purple membrane of Halobacterium salinarum which absorbs energy from photons to create a photo-induced proton gradient across the membrane. A bR molecule can be considered as a natural solar device transforming light into other types of energy and therefore is of interest for a wide range of applications including two and three-dimensional memory storage, optical data processing, artificial cells, holographic media, the artificial retina and photo sensor devices. H. salinarum is a slow-growing, halophilic Archaea present in red salt waters. The present study introduces a novel bR-like pigment from a new strain of Pseudomonas halophila (with registered accession number KC959570 in the NCBI databank) which has a very significant degree of light-dependent activity. This is the first report on the presence of functional bR-like protein in the Pseudomonas family. The isolate is a fast-growing, halophilic bacterium and is comparable with other photoactive protein producer microorganisms. Also, in the present study a novel isolation method for screen light-stimulating protein producing microorganisms is introduced. For this purpose 2,3,5-triphenyltetrazolium chloride (TTC) was employed for the first time as an artificial hydrogen acceptor in the proton-transfer processes. The TTC test is an easy and susceptible method for estimating hydrogen production during the proton transport process. This is the first report of the use of TTC for photo activity measurement and selection of bacteria containing light dependent proteins.
Collapse
|
29
|
Wenning M, Scherer S. Identification of microorganisms by FTIR spectroscopy: perspectives and limitations of the method. Appl Microbiol Biotechnol 2013; 97:7111-20. [PMID: 23860713 DOI: 10.1007/s00253-013-5087-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 11/29/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy was introduced in 1991 as a technique to identify and classify microbes. Since then, it has gained growing interest and has undergone a remarkable evolution. Highly sophisticated spectrometers have been developed, enabling a high sample throughput. Today, the generation of high-quality data in a short time and the application of the technique for rapid and reliable identification of microbes to the species level are well documented. What makes FTIR spectroscopy even more attractive is the fact that spectral information can also be exploited for strain typing purposes, which is particularly important for epidemiological analyses and some technological applications. Accordingly, in recent years, FTIR spectroscopy has been increasingly used for typing and classifying microorganisms below the species level. The intention of this review is to give an overview over current knowledge and strategies of using FTIR spectroscopy for species identification and to describe different approaches for strain typing.
Collapse
Affiliation(s)
- Mareike Wenning
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung-ZIEL, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| | | |
Collapse
|
30
|
Idelevich EA, Pogoda CA, Ballhausen B, Wüllenweber J, Eckardt L, Baumgartner H, Waltenberger J, Peters G, Becker K. Pacemaker lead infection and related bacteraemia caused by normal and small colony variant phenotypes of Bacillus licheniformis. J Med Microbiol 2013; 62:940-944. [PMID: 23518654 DOI: 10.1099/jmm.0.051987-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here, we report what we believe to be the first case of bacteraemia with small colony variants of Bacillus licheniformis related to a pacemaker lead infection by B. licheniformis displaying the normal phenotype. Arbitrarily primed PCR analysis showed a clonal strain. The infection was cured after the removal of the infected device.
Collapse
Affiliation(s)
- Evgeny A Idelevich
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| | - Christian A Pogoda
- Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Britta Ballhausen
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| | - Jörg Wüllenweber
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Helmut Baumgartner
- Adult Congenital and Valvular Heart Disease Center, Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Johannes Waltenberger
- Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Georg Peters
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| |
Collapse
|
31
|
XIE YANPING, XU SHUJUN, HU YU, CHEN WANYI, HE YIPING, SHI XIANMING. RAPID IDENTIFICATION AND CLASSIFICATION OF STAPHYLOCOCCUS AUREUS BY ATTENUATED TOTAL REFLECTANCE FOURIER TRANSFORM INFRARED SPECTROSCOPY. J Food Saf 2012. [DOI: 10.1111/j.1745-4565.2012.00365.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Application of FT-IR Spectroscopy for Fingerprinting ofZymomonas mobilisRespiratory Mutants. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/163712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Z. mobilisATCC 29191 and its respiratory knockout mutants,kat-, ndh-, cytB-,andcydB-, were grown under anaerobic and aerobic conditions. FT-IR spectroscopy was used to study the variations of the cell macromolecular composition. Quantitative analysis showed that the concentration ratios—nucleic acids to lipids, forZ. mobilisparent strain,kat-, ndh-, cytB-,andcydB-strains, clearly distinguishedZ. mobilisparent strain from its mutant derivatives and corresponded fairly well to the expected degree of biochemical similarity between the strains. Two different FT-IR-spectra hierarchical cluster analysis (HCA) methods were created to differentiateZ. mobilisparent strain and respiratory knockout mutant strains. HCA based on discriminative spectra ranges of carbohydrates, nucleic acids, and lipids allowed to evaluate the influence of growth environment (aeration, growth phase) on the macromolecular composition of cells and differentiate the strains. HCA based on IR spectra of inoculums, in a diagnostic region including the characteristic nucleic acid vibration modes, clearly discriminated the strains under study. Thus it was shown that FT-IR spectroscopy can distinguish various alterations ofZ. mobilisrespiratory metabolism by HCA of biomass spectra.
Collapse
|
33
|
Comparative in vitro activity of finafloxacin against staphylococci displaying normal and small colony variant phenotypes. J Antimicrob Chemother 2011; 66:2809-13. [DOI: 10.1093/jac/dkr393] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Prabhakar V, Kocaoglu-Vurma N, Harper J, Rodriguez-Saona L. Classification of Swiss cheese starter and adjunct cultures using Fourier transform infrared microspectroscopy. J Dairy Sci 2011; 94:4374-82. [DOI: 10.3168/jds.2011-4457] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
|
35
|
Kriegeskorte A, König S, Sander G, Pirkl A, Mahabir E, Proctor RA, von Eiff C, Peters G, Becker K. Small colony variants of Staphylococcus aureus
reveal distinct protein profiles. Proteomics 2011; 11:2476-90. [DOI: 10.1002/pmic.201000796] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 01/14/2023]
|
36
|
Tuchscherr L, Medina E, Hussain M, Völker W, Heitmann V, Niemann S, Holzinger D, Roth J, Proctor RA, Becker K, Peters G, Löffler B. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 2011; 3:129-41. [PMID: 21268281 PMCID: PMC3395110 DOI: 10.1002/emmm.201000115] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a frequent cause for serious, chronic and therapy-refractive infections in spite of susceptibility to antibiotics in vitro. In chronic infections, altered bacterial phenotypes, such as small colony variants (SCVs), have been found. Yet, it is largely unclear whether the ability to interconvert from the wild-type to the SCV phenotype is only a rare clinical and/or just laboratory phenomenon or is essential to sustain an infection. Here, we performed different long-term in vitro and in vivo infection models with S. aureus and we show that viable bacteria can persist within host cells and/or tissues for several weeks. Persistence induced bacterial phenotypic diversity, including SCV phenotypes, accompanied by changes in virulence factor expression and auxotrophism. However, the recovered SCV phenotypes were highly dynamic and rapidly reverted to the fully virulent wild-type form when leaving the intracellular location and infecting new cells. Our findings demonstrate that bacterial phenotype switching is an integral part of the infection process that enables the bacteria to hide inside host cells, which can be a reservoir for chronic and therapy-refractive infections.
Collapse
Affiliation(s)
- Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Alvarez-Ordóñez A, Mouwen DJM, López M, Prieto M. Fourier transform infrared spectroscopy as a tool to characterize molecular composition and stress response in foodborne pathogenic bacteria. J Microbiol Methods 2011; 84:369-78. [PMID: 21256893 DOI: 10.1016/j.mimet.2011.01.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Vibrational spectroscopy techniques have shown capacity to provide non-destructive, rapid, relevant information on microbial systematics, useful for classification and identification. Infrared spectroscopy enables the biochemical signatures from microbiological structures to be extracted and analyzed, in conjunction with advanced chemometrics. In addition, a number of recent studies have shown that Fourier Transform Infrared (FT-IR) spectroscopy can help understand the molecular basis of events such as the adaptive tolerance responses expressed by bacteria when exposed to stress conditions in the environment (e.g. those that cells confront in food and during food processing). The current review gives an overview of the published experimental techniques, data-processing algorithms and approaches used in FT-IR spectroscopy to assess the mechanisms of bacterial inactivation by food processing technologies and antimicrobial compounds, to monitor the spore and membrane properties of foodborne pathogens in changing environments, to detect stress-injured microorganisms in food-related environments, to assess dynamic changes in bacterial populations, and to study bacterial tolerance responses.
Collapse
|
38
|
Melter O, Radojevič B. Small colony variants of Staphylococcus aureus--review. Folia Microbiol (Praha) 2011; 55:548-58. [PMID: 21253898 DOI: 10.1007/s12223-010-0089-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 10/20/2010] [Indexed: 11/28/2022]
Abstract
Bacterial variants of Staphylococcus aureus called small colony variants (SCVs) originate by mutations in metabolic genes, resulting in emergence of auxotrophic bacterial subpopulations. These variants are not particularly virulent but are able to persist viable inside host cells. SCVs show their characteristic auxotrophic growth deficiency and depressed α-cytotoxin activity. Environmental pressure such as antibiotics, select for isogenic SCV cells that are frequently found coexisting with their parent wild-type strains in a mixed bacterial culture. SCV strains often grow on blood agar as non-pigmented or pinpoint pigmented colonies and their key biochemical tests are often non-reactive. Their altered metabolism or auxotrophism can result in long generation time and thus SCV phenotype, more often than not SCV can be overgrown by their wild-type counterparts and other competitive respiratory flora. This could affect laboratory detection. Thus, molecular methods, such as 16S rRNA partial sequencing or amplification of species-specific DNA targets (e.g. coagulase, nuclease) directly from clinical material or isolated bacterial colonies, become the method of choice. Patients at risk of infection by S. aureus SCVs include cystic fibrosis patients (CF), patients with skin and foreign-body related infections and osteomyelitis, as they suffer from chronic staphylococcal infections and are subject to long-term antibiotic therapy. Molecular evidence of SCV development has not been found except for some random mutations of the thymidylate synthase gene (thyA) described in SCV S. aureus strains of CF patients. These variants are able to bypass the antibiotic effect of folic acid antagonists such as sulfonamides and trimethoprim. Resistance to gentamicin and aminoglycosides in the hemin or menadione auxotrophic SCVs was hypothesized as being due to decreased influx of the drugs into cells as a result of decreased ATP production and decreased electrochemical gradient on cell membranes.
Collapse
Affiliation(s)
- O Melter
- Department of Medical Microbiology, 2nd Medical Faculty, Charles University in Prague, Prague 5-Motol, Czech Republic.
| | | |
Collapse
|
39
|
Samuels AC, Snyder AP, Emge DK, Amant D, Minter J, Campbell M, Tripathi A. Classification of select category A and B bacteria by Fourier transform infrared spectroscopy. APPLIED SPECTROSCOPY 2009; 63:14-24. [PMID: 19146715 DOI: 10.1366/000370209787169867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fourier transform infrared (FT-IR) spectroscopy historically is a powerful tool for the taxonomic classification of bacteria by genus, species, and strain when they are grown under carefully controlled conditions. Relatively few reports have investigated the determination and classification of pathogens such as the National Institute of Allergy and Infectious Diseases (NIAID) Category A Bacillus anthracis spores and cells (BA), Yersinia species, Francisella tularensis (FT), and Category B Brucella species from FT-IR spectra. We investigated the multivariate statistics classification ability of the FT-IR spectra of viable pathogenic and non-pathogenic NIAID Category A and B bacteria. The impact of different growth media, growth time and temperature, rolling circle filter of the data, and wavelength range were investigated for their microorganism differentiation capability. Viability of the bacteria was confirmed by agar plate growth after the FT-IR experimental procedures were performed. Principal component analysis (PCA) was reduced to maps of two PC vectors in order to distill the FT-IR spectral features into manageable, visual presentations. The PCA results of the strains of BA, FT, Brucella, and Yersinia spectra from conditions of varying growth media and culture time were readily separable in two-dimensional (2D) PC plots. FT spectra were separated from those of the three other genera. The BA pathogenic spore strains 1029, LA1, and Ames were clearly differentiated from the rest of the dataset. Yersinia rhodei, Y. enterocolitica, and Y. pestis species were distinctly separated from the remaining dataset and could also be classified by growth media. Different growth media produced distinct subsets in the FT, BA, and Yersinia spp. regions in the 2D PC plots. Various 2D PC plots provided differential degrees of separation with respect to the four viable bacterial genera including the BA sub-categories of pathogenic spores, vegetative cells, and nonpathogenic vegetative cells. This work provided evidence that FT-IR spectroscopy can indeed separate the four major pathogenic bacterial genera of NIAID Category A and B biological threat agents including details according to the growth conditions and statistical parameters.
Collapse
Affiliation(s)
- Alan C Samuels
- ECBC, Research and Technology Directorate, Edgewood Area, Aberdeen Proving Ground, Maryland 21010-5424, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Atalla H, Gyles C, Jacob CL, Moisan H, Malouin F, Mallard B. Characterization of aStaphylococcus aureusSmall Colony Variant (SCV) Associated with Persistent Bovine Mastitis. Foodborne Pathog Dis 2008; 5:785-99. [DOI: 10.1089/fpd.2008.0110] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Heba Atalla
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Carlton Gyles
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Christian L. Jacob
- Department of Biological Science, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Helene Moisan
- Department of Biological Science, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Malouin
- Department of Biological Science, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bonnie Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
41
|
von Eiff C. Staphylococcus aureus small colony variants: a challenge to microbiologists and clinicians. Int J Antimicrob Agents 2008; 31:507-10. [DOI: 10.1016/j.ijantimicag.2007.10.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
42
|
von Eiff C, Becker K. Small-colony variants (SCVs) of staphylococci: a role in foreign body-associated infections. Int J Artif Organs 2008; 30:778-85. [PMID: 17918122 DOI: 10.1177/039139880703000906] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Staphylococci have various strategies for resisting therapy that extend beyond classic mechanisms. Clinical experience with device-associated infections as well as with infections due to small-colony variants (SCVs) clearly shows that both antibacterial chemotherapy and host defense mechanisms are often unable to eliminate the pathogens and cure these infections. Of particular interest is the fact that in the past few years an increasing number of various foreign body-related infections due to staphylococcal SCVs have been reported. In this overview, the characteristics of SCVs recovered from clinical specimens and of defined mutants displaying the SCV phenotype are described. Their slow growth and changing biochemical and physiological features represent a challenge to clinical laboratory personnel, because recovery, identification, as well as susceptibility testing of these variants need particular efforts. In addition, the reduced susceptibility to aminoglycosides and the ability of SCVs to persist intracellularly require specific attention for the treatment of these infections. Thus, special efforts to search for these variants formed by Staphylococcus aureus or by coagulase-negative staphylococci should be considered when an infection is particularly resistant to therapy, persists for a long period or fails to respond to apparently adequate therapy with antimicrobial compounds.
Collapse
Affiliation(s)
- C von Eiff
- Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany.
| | | |
Collapse
|
43
|
Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus. Antimicrob Agents Chemother 2007; 51:4438-46. [PMID: 17923494 DOI: 10.1128/aac.00328-07] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small-colony variants (SCVs) of Staphylococcus aureus are a slow-growing subpopulation whose phenotypes can include resistance to aminoglycosides, defects in electron transport, and enhanced persistence in mammalian cells. Here we show that a subset of mutants selected as SCVs by reduced susceptibility to aminoglycosides are resistant to the antibiotic fusidic acid (FA) and conversely that a subset of mutants selected for resistance to FA are SCVs. Mutation analysis reveals different genetic classes of FA-resistant SCVs. One class, FusA-SCVs, have amino acid substitution mutations in the ribosomal translocase EF-G different from those found in classic FusA mutants. Most of these mutations are located in structural domain V of EF-G, but some are in domain I or III. FusA-SCVs are auxotrophic for hemin. A second class of FA-resistant SCVs carry mutations in rplF, coding for ribosomal protein L6, and are designated as FusE mutants. FusE mutants fall into two phenotypic groups: one auxotrophic for hemin and the other auxotrophic for menadione. Accordingly, we have identified new genetic and phenotypic classes of FA-resistant mutants and clarified the genetic basis of a subset of S. aureus SCV mutants. A clinical implication of these data is that FA resistance could be selected by antimicrobial agents other than FA.
Collapse
|