1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Vakili M, Goli H, Javidnia J, Alipour T, Eslami M. Genetic diversity and antibiotic resistance patterns of Escherichia coli isolates causing septicemia: A phylogenetic typing and PFGE analysis. Diagn Microbiol Infect Dis 2025; 111:116586. [PMID: 39522361 DOI: 10.1016/j.diagmicrobio.2024.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION This study aims to analyze clinical isolates of E. coli causing septicemia across various phylogroups utilizing the PFGE method. MATERIALS AND METHODS A total of 100 clinical isolates were collected. The presence of CTX-M, TEM, SHV, KPC, MBL and OXA-48 genes was detected by PCR. Additionally, phylotyping, serotyping, and virulence-typing assay were done by PCR and PFGE methods to investigate the genetic diversity of the isolates. RESULTS The O1 serotype and the HlyA gene were the most prevalent serotype and virulence gene, respectively. Notably, 34% of the isolates harbored SHV, TEM, and CTX-M-1 β-lactamase genes. All isolates showed resistance to amoxicillin and tetracycline, but no resistance to fosfomycin was seen. The most and least common phylotypes, according to PFGE analysis, belonged to phylogroups B2 and B1, respectively. CONCLUSION The data offers valuable insights into the genetic diversity and antibiotic resistance patterns of E. coli isolates responsible for septicemia.
Collapse
Affiliation(s)
- Mahshid Vakili
- Reference Laboratory of Health, Semnan University of Medical Sciences, Semnan, Iran; Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Goli
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Javidnia
- Invasive Fungi Research Centre (IFRC), Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Tahereh Alipour
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Dhahi MAR. Analysis of the partial sequencing of clbA, clbB and clbQ in Escherichia coli isolates that produce colibactin and multilocus sequence typing. Sci Rep 2024; 14:17966. [PMID: 39095472 PMCID: PMC11297330 DOI: 10.1038/s41598-024-68867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Colibactin, is a cyclomodulin expressed from polyketide synthase (pk) genomic islands. These bacterial toxins interfere with the eukaryotic cell cycle and induce DNA damage. The aim of the present study was to investigate the prevalence of colibactin production among E. coli strains recovered from different infections, determine the similarity of clb nucleotide sequences, and identify genotype of isolates using multilocus sequence typing(MLST). This was a prospective, cross-sectional study conducted from January 2022 to February 2023. A total of 117 clinical isolates were obtained from various sample types collected from outpatients and inpatients recruited to the Department of Bacteriology Labs in different hospitals in Baghdad, Iraq. clbA/clbR, clbB and clbP/clbQ were detected via conventional PCR, and partial sequencing of amplicons was performed via Sanger sequencing. For select isolates, MLST genotyping was performed. The most common phylogenetic group was B2 (61/106; 57.54%). Among the E. coli strains, 27/106 (25.47%) were clb + ve, and the most common type was clbB (13/27; 48.14%). Analysis of the partial sequencing of clb among the strains revealed high molecular similarity. Genotyping of 37 selected E. coli strains via MLST revealed 28 different genotypes. There was a high prevalence of colibactin production in phylogroup B2, and it seems that the clb + ve strains had conserved molecular structures. There was high genetic diversity among the strains tested.
Collapse
|
4
|
Fernandes R, Abreu R, Serrano I, Such R, Garcia-Vila E, Quirós S, Cunha E, Tavares L, Oliveira M. Resistant Escherichia coli isolated from wild mammals from two rescue and rehabilitation centers in Costa Rica: characterization and public health relevance. Sci Rep 2024; 14:8039. [PMID: 38580725 PMCID: PMC10997758 DOI: 10.1038/s41598-024-57812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
This study aimed to characterize the antimicrobial resistance (AMR) and virulence profiles of 67 Escherichia coli isolates obtained from faecal samples of 77 wild mammals from 19 different species, admitted in two rescue and rehabilitation centers in Costa Rica. It was possible to classify 48% (n = 32) of the isolates as multidrug-resistant, and while the highest resistance levels were found towards commonly prescribed antimicrobials, resistance to fluoroquinolones and third generation cephalosporins were also observed. Isolates obtained from samples of rehabilitated animals or animals treated with antibiotics were found to have significantly higher AMR levels, with the former also having a significant association with a multidrug-resistance profile. Additionally, the isolates displayed the capacity to produce α-haemolysins (n = 64, 96%), biofilms (n = 51, 76%) and protease (n = 21, 31%). Our results showed that AMR might be a widespread phenomenon within Costa Rican wildlife and that both free-ranging and rehabilitated wild mammals are potential carriers of bacteria with important resistance and virulence profiles. These results highlight the need to study potential sources of resistance determinants to wildlife, and to determine if wild animals can disseminate resistant bacteria in the environment, potentially posing a significant threat to public health and hindering the implementation of a "One Health" approach.
Collapse
Affiliation(s)
- Rita Fernandes
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Raquel Abreu
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Isa Serrano
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | | | | | - Sandy Quirós
- Alturas Wildlife Sanctuary, Puntarenas, Costa Rica
| | - Eva Cunha
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Luís Tavares
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA - Centro de Investigação Interdisciplinar Em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisbon, Portugal.
- AL4AnimalS - Associate Laboratory for Animal and Veterinary Sciences, Lisbon, Portugal.
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
5
|
Wang L, Zhang TL, Xiang Q, Fu CX, Qiao M, Ding LJ, Zhu D. Selective enrichment of virulence factor genes in the plastisphere under antibiotic and heavy metal pressures. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133319. [PMID: 38159517 DOI: 10.1016/j.jhazmat.2023.133319] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
The growing accumulation of plastic waste in the environment has created novel habitats known as the "plastisphere", where microorganisms can thrive. Concerns are rising about the potential for pathogenic microorganisms to proliferate in the plastisphere, posing risks to human health. However, our knowledge regarding the virulence and pathogenic potential of these microorganisms in the plastisphere remains limited. This study quantified the abundance of virulence factor genes (VFGs) in the plastisphere and its surrounding environments (water and soil) to better assess pathogenic risks. Our findings revealed a selective enrichment of VFGs in the plastisphere, which were attributed to the specific microbial community assembled. The presence of arsenic and ciprofloxacin in the plastisphere exerted additional co-selective pressures, intensifying the enrichment of VFGs. Notably, VFGs that encoded multiple functions or enhanced the survival of host microorganisms (e.g., encoding adherence functions) tended to accumulate in the plastisphere. These versatile and environmentally adaptable VFGs are more likely to be favored by bacteria in the environment, warranting increased attention in future investigations due to their potential for widespread dissemination. In terms of virulence and pathogenicity, this research offers new insights into evaluating pathogen-related risks in the plastisphere.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Chen-Xi Fu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China.
| |
Collapse
|
6
|
Dziuba A, Dzierżak S, Sodo A, Wawszczak-Kasza M, Zegadło K, Białek J, Zych N, Kiebzak W, Matykiewicz J, Głuszek S, Adamus-Białek W. Comparative study of virulence potential, phylogenetic origin, CRISPR- Cas regions and drug resistance of Escherichia coli isolates from urine and other clinical materials. Front Microbiol 2023; 14:1289683. [PMID: 38094634 PMCID: PMC10716328 DOI: 10.3389/fmicb.2023.1289683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 05/18/2025] Open
Abstract
INTRODUCTION Urinary tract infections (UTI), among which the main etiological factor is uropathogenic Escherichia coli (UPEC, E. coli), remain an important issue for clinicians. The aim of the study was to demonstrate clear differences in the pathogenic properties of urine-derived E. coli compared to other extraintestinal E. coli clinical isolates (derived from: blood, lower respiratory tracts, sputum, reproductive tract, body fluids, perianal pus, other pus, wound, postoperative wound and other sources). METHODS The collection of 784 E. coli isolates was collected from various materials of hospitalized patients. They were analyzed in terms of virulence-associated genes (papC, sfaD/sfaE, cnf1, usp., fimG/H, hlyA), belonging to phylogenetic groups and the presence of CRISPR-Cas regions using PCR. In addition, the epidemiological data and the antibiotic resistance profiles provided by the hospital's microbiology department were included for statistical analyses. RESULTS Urine-derived E. coli showed significantly greater virulence potential compared to other isolates, but they were generally unremarkable in terms of drug resistance. The isolates most often belonged to phylogenetic group B2. Drug resistance was negatively correlated with CRISPR 2 presence and high average virulence score, but positively correlated with CRISPR 4 presence. To the best of our knowledge, we are the first to report significant differences in sputum-derived isolates-they revealed the lowest virulence potential and, at the same time, the highest drug resistance. DISCUSSION In conclusion, we demonstrated significant differences of urinary-derived E. coli compared to other clinical E. coli isolates. We would like to suggest excluding penicillins from use in E. coli infection at this time and monitoring strains with a high pathogenicity potential.
Collapse
Affiliation(s)
- Anna Dziuba
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Sylwia Dzierżak
- Department of Microbiology, Regional Hospital, Kielce, Poland
| | - Anna Sodo
- Department of Microbiology, Regional Hospital, Kielce, Poland
| | | | - Katarzyna Zegadło
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Jakub Białek
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Natalia Zych
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | - Wojciech Kiebzak
- Institute of Health Science, Jan Kochanowski University, Kielce, Poland
| | | | - Stanisław Głuszek
- Institute of Medical Sciences, Jan Kochanowski University, Kielce, Poland
| | | |
Collapse
|
7
|
Sajeev S, Hamza M, Rajan V, Vijayan A, Sivaraman GK, Shome BR, Holmes MA. Resistance profiles and genotyping of extended-spectrum beta-lactamase (ESBL) -producing and non-ESBL-producing E. coli and Klebsiella from retail market fishes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105446. [PMID: 37245778 DOI: 10.1016/j.meegid.2023.105446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
Studies on antimicrobial resistance (AMR) profiles and epidemiological affirmation for AMR transmission are limited in fisheries and aquaculture settings. Since 2015, based on Global Action Plan on AMR by World Health Organization (WHO) and World Organization for Animal Health (OIE), several initiatives have been under taken to enhance the knowledge, skills and capacity to establish AMR trends through surveillance and strengthening of epidemiological evidence. The focus of this study was to determine the prevalence of antimicrobial resistance (AMR), its resistance profiles and molecular characterization with respect to phylogroups, antimicrobial resistance genes (ARGs), virulence genes (VGs), quaternary ammonium compounds resistance (QAC) genes and plasmid typing in retail market fishes. Pulse field gel electrophoresis (PFGE) to understand the genetic lineage of the two most important Enterobacteriaceae members, E. coli and Klebsiella sp. was performed. 94 fish samples were collected from three different sites viz., Silagrant (S1), Garchuk (S2) and North Guwahati Town Committee (NGTC) Region (S3) in Guwahati, Assam. Out of the 113 microbial isolates from the fish samples, 45 (39.82%) were E. coli; 23 (20.35%) belonged to Klebsiella genus. Among E. coli, 48.88% (n = 22) of the isolates were alerted by the BD Phoenix M50 instrument as ESBL, 15.55% (n = 7) as PCP and 35.55% (n = 16) as non-ESBL. E. coli (39.82%) was the most prevalent pathogen among the Enterobacteriaceae members screened and showed resistance to ampicillin (69%) followed by cefazoline (64%), cefotaxime (49%) and piperacillin (49%). In the present study, 66.66% of E. coli and 30.43% of Klebsiella sp. were categorized as multi drug resistance (MDR) bacteria. CTX-M-gp-1, with CTX-M-15 variant (47%), was the most widely circulating beta-lactamase gene, while other ESBL genes blaTEM (7%), blaSHV (2%) and blaOXA-1-like (2%) were also identified in E. coli. Out of the 23 isolates of Klebsiella, 14(60.86%) were ampicillin (AM)-resistant (11(47.82%) K. oxytoca, 3(13.04%) K. aerogenes), whereas 8(34.78%) isolates of K. oxytoca showed intermediate resistance to AM. All Klebsiella isolates were susceptible to AN, SCP, MEM and TZP, although two K. aerogenes were resistant to imipenem. DHA and LAT genes were detected, respectively, in 7(16%) and 1(2%) of the E. coli strains while a single K. oxytoca (4.34%) isolate carried MOX, DHA and blaCMY-2 genes. The fluoroquinolone resistance genes identified in E. coli included qnrB (71%), qnrS (84%), oqxB (73%) and aac(6)-Ib-cr (27%); however, in Klebsiella, these genes, respectively, had a prevalence of 87%, 26%, 74% and 9%. The E. coli isolates belonged to phylogroup A(47%), B1(33%) and D(14%). All of the 22(100%) ESBL E. coli had chromosome-mediated disinfectant resistance genes viz., ydgE, ydgF, sugE(c), mdfA while 82% of ESBL E. coli had emrE. Among the non-ESBL E. coli isolates, 87% of them showed the presence of ydgE, ydgF and sugE(c) genes, while 78% of the isolates had mdfA and 39% had emrE genes respectively. 59% of the ESBL and 26% of the non-ESBL E. coli had showed the presence of qacEΔ1. The sugE(p) was present in 27% of the ESBL-producing E. coli and in 9% of non-ESBL isolates. Out of the 3 ESBL-producing Klebsiella isolates, 2(66.66%) K. oxytoca isolates were found harboring plasmid-mediated qacEΔ1 gene while one (33.33%) K. oxytoca isolate had sugE(p) gene. IncFI was the most prevalent plasmid type detected in the isolates studied, with A/C (18%), P (14%), X, Y (9% each) and I1-Iγ (14%, 4%). 50% (n = 11) of the ESBL and 17% (n = 4) of the non-ESBL E. coli isolates harboured IncFIB and 45% (n = 10) ESBL and one (4.34%) non-ESBL E. coli isolates harboured IncFIA. Dominance of E. coli over other Enterobacterales and diverse phylogenetic profiles of E. coli and Klebsiella sp. suggests the possibility of contamination and this may be due to compromised hygienic practices along the supply chain and contamination of aquatic ecosystem. Continuous surveillance in domestic markets must be a priority in addressing antimicrobial resistance in fishery settings and to identify any unwarranted epidemic clones of E. coli and Klebsiella that can challenge public health sector.
Collapse
Affiliation(s)
- Sudha Sajeev
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - Muneeb Hamza
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - Vineeth Rajan
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - Ardhra Vijayan
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India
| | - Gopalan Krishnan Sivaraman
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin, India.
| | - Bibek R Shome
- Department of Disease Investigation, ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, UK
| |
Collapse
|
8
|
Bogdanchikova N, Maklakova M, Villarreal-Gómez LJ, Nefedova E, Shkil NN, Plotnikov E, Pestryakov A. Revealing the Second and the Third Causes of AgNPs Property to Restore the Bacterial Susceptibility to Antibiotics. Int J Mol Sci 2023; 24:ijms24097854. [PMID: 37175561 PMCID: PMC10178359 DOI: 10.3390/ijms24097854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The increase in bacterial resistance to antibiotics is a global problem for public health. In our previous works, it was shown that the application of AgNPs in cow mastitis treatment increased S. aureus and S. dysgalactiae susceptibility to 31 antibiotics due to a decrease in the bacterial efflux effect. The aim of the present work was to shed light on whether the change in adhesive and anti-lysozyme activities caused by AgNPs also contribute to the restoration of bacterial susceptibility to antibiotics. In vivo sampling was performed before and after cow mastitis treatments with antibiotics or AgNPs. The isolates were identified, and the adhesive and anti-lysozyme activities were assessed. These data were compared with the results obtained for in vitro pre-treatment of reference bacteria with AgNPs or antibiotics. The present study revealed that bacterial treatments in vitro and in vivo with AgNPs: (1) decrease the bacterial ability to adhere to cells to start an infection and (2) decrease bacterial anti-lysozyme activity, thereby enhancing the activity of lysozyme, a natural "antibiotic" present in living organisms. The obtained data contribute to the perspective of the future application of AgNPs for recovering the activity of antibiotics rapidly disappearing from the market.
Collapse
Affiliation(s)
- Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22800, BC, Mexico
| | - Maria Maklakova
- Facultad de Pedagogía e Innovación Educativa, Universidad Autónoma de Baja California, Av. Monclova Esq con Calle Río Mocorito S/n, Ex-Ejido Coahuila, Mexicali 21360, BC, Mexico
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario 1000, Unidad Valle de Las Palmas, Tijuana 22260, BC, Mexico
| | - Ekaterina Nefedova
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, 630501 Novosibirsk, Russia
| | - Nikolay N Shkil
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, 630501 Novosibirsk, Russia
| | - Evgenii Plotnikov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Mental Health Research Institute, 634014 Tomsk, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
9
|
Shokoohizadeh L, Rabiei M, Baharifar A, Keramat F, Ali L, Alikhani MY, Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran, Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran, Department of Pharmacology, Hamadan University of Medical Sciences, Hamadan, Iran, Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran, Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan, Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. Evaluation of the Virulence Genes in Quinolone and Fluoroquinolones- resistant Uropathogenic Escherichia coli Isolates. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Virulence genes, phylogenetic analysis, and antimicrobial resistance of Escherichia coli isolated from urinary tract infection in hospitalized patients and outpatients. J Appl Genet 2022; 63:805-813. [PMID: 35972677 DOI: 10.1007/s13353-022-00718-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection (UTI) in hospitalized and community patients. The aim was to compare the genetic characteristics of E. coli isolated from inpatients (IPs) and outpatients (OPs) with UTI regarding their phylogenies, virulence traits, and resistance trends. In this cross-sectional study, 130 epidemiologically unrelated E. coli isolates were collected from patients with UTI. Extended-spectrum beta-lactamase (ESBL) production was detected by the combination disk method. UPEC and intestinal pathogenic E. coli (IPEC) virulence genes were detected by polymerase chain reaction. The isolates were analyzed for phylogenetic grouping. A P value of < 0.05 was considered significant. Of the 130 isolates, 62.3% were from OPs and 37.7% from IPs. About 35.8% of the OPs and 49% of the IPs were ESBL positive. Moreover, 56.8% of the OPs and 59.2% of the IPs were positive for UPEC virulence genes. Notably, 50% of the isolates from each group exhibited IPEC virulence properties. The predominant phylogroup was B2 (43.2% in the OPs and 40.8% in the IPs). No significant difference was found between the IP and OP isolates (P > 0.05). Our results may indicate that consideration should also be given to hygienic standards in the community. The marked genetic plasticity of E. coli has allowed the emergence of strains showing arrays of genes from different pathotypes. Characterization of E. coli isolates in different areas may guide the selection of effective infection control strategies.
Collapse
|
11
|
Plasmid-mediated quinolone resistance determinants in fluoroquinolone-nonsusceptible Escherichia coli isolated from patients with urinary tract infections in a university hospital, 2009-2010 and 2020: PMQR in UTI E. coli. J Glob Antimicrob Resist 2022; 30:241-248. [PMID: 35691573 DOI: 10.1016/j.jgar.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES This study aimed to characterize the plasmid-mediated quinolone resistance (PMQR) in fluoroquinolone non-susceptible E. coli (FQNSEC) isolated from patients with urinary tract infections (UTIs) in 2019-2010 and 2020. METHODS A total of 844 E. coli isolates were collected from UTI patients at National Cheng Kung University Hospital (NCKUH). The antimicrobial susceptibility of E. coli isolates to 21 antibiotics was determined by disk diffusion tests. The distribution of phylogenetic groups, virulence factor, and PMQR genes, was determined by PCR. Conjugation assays were performed to investigate the transferrability of qnr genes from FQNSEC isolates to E. coli C600. RESULTS We found 211 (41.9%) and 152 (44.7%) E. coli isolates were FQNSEC in 2009-2010 and 2020, respectively. Phylogenetic group B2 was dominant in FQNSEC isolates (52.34%), followed by group F (10.47%), group B1 (9.64%), and group D (9.64%). FQNSEC isolates were more resistant to 17 of 19 tested antimicrobial agents, compared to the FQ susceptible E. coli. PMQR screening results showed that 34, 22, and 10 FQNSEC isolates containing aac(6')-Ib-cr, qnr genes, and efflux pump genes (qepA or oqxAB), respectively. PMQR E. coli isolates were more non-susceptible to gentamicin, amoxicillin, ampicillin/sulbactam, imipenem, cefazolin, cefuroxime, cefmetazole, ceftriaxone, ceftazidime, and cefepime, compared to non-PMQR FQNSEC. Moreover, 16 of 22 qnr-carrying plasmids were transferrable to the recipient C600. CONCLUSION Here, we reported the high prevalence of MDR- and XDR-E. coli in FQNSEC isolates. Moreover, qnr-carrying plasmids were highly transferable and lead to the resistance to other classes of antibiotics in the transconjugants.
Collapse
|
12
|
Pathogenic features of urinary Escherichia coli strains causing asymptomatic bacteriuria during pregnancy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Derakhshan S, Ahmadi S, Ahmadi E, Nasseri S, Aghaei A. Characterization of Escherichia coli isolated from urinary tract infection and association between virulence expression and antimicrobial susceptibility. BMC Microbiol 2022; 22:89. [PMID: 35387587 PMCID: PMC8985246 DOI: 10.1186/s12866-022-02506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The capacity of antibiotics to modulate bacterial virulence has raised concerns over the appropriateness of antibiotic therapies, including when dosing strategies fall below sub-therapeutic levels. In this work, we investigated the ability of antibiotics to influence virulence in Escherichia coli isolated from urinary tract infection (UTI). RESULTS Out of 120 isolates, 32.5% carried pap, 21.7% carried hlyA, and 17.5% carried cnf. The predominant B2 phylogroup was significantly associated with the quinolone-resistant isolates. A significant association was seen between the presence of hlyA hemolysin and susceptibility to ceftriaxone and ciprofloxacin (P < 0.05). Sub-inhibitory concentrations of both antibiotics reduced the levels of hlyA expression and hemolysis in isolates treated with antibiotics compared to untreated isolates (P < 0.05). Growth rate assay showed that the decrease in hlyA expression was not an effect of decreased growth rate. CONCLUSION Our study indicated the inhibitory effect of ciprofloxacin and ceftriaxone on the level of hemolysis, suggesting that the sub-inhibitory concentrations of these antibiotics may affect the outcome of infections. Further studies, including animal models may elucidate the outcome of virulence modulation by these antibiotics in UTI pathogenesis.
Collapse
Affiliation(s)
- Safoura Derakhshan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Sanaz Ahmadi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Erfan Ahmadi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Aghaei
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
14
|
Haley BJ, Kim SW, Salaheen S, Hovingh E, Van Kessel JAS. Virulome and genome analyses identify associations between antimicrobial resistance genes and virulence factors in highly drug-resistant Escherichia coli isolated from veal calves. PLoS One 2022; 17:e0265445. [PMID: 35298535 PMCID: PMC8929554 DOI: 10.1371/journal.pone.0265445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Food animals are known reservoirs of multidrug-resistant (MDR) Escherichia coli, but information regarding the factors influencing colonization by these organisms is lacking. Here we report the genomic analysis of 66 MDR E. coli isolates from non-redundant veal calf fecal samples. Genes conferring resistance to aminoglycosides, β-lactams, sulfonamides, and tetracyclines were the most frequent antimicrobial resistance genes (ARGs) detected and included those that confer resistance to clinically significant antibiotics (blaCMY-2, blaCTX-M, mph(A), erm(B), aac(6’)Ib-cr, and qnrS1). Co-occurrence analyses indicated that multiple ARGs significantly co-occurred with each other, and with metal and biocide resistance genes (MRGs and BRGs). Genomic analysis also indicated that the MDR E. coli isolated from veal calves were highly diverse. The most frequently detected genotype was phylogroup A-ST Cplx 10. A high percentage of isolates (50%) were identified as sequence types that are the causative agents of extra-intestinal infections (ExPECs), such as ST69, ST410, ST117, ST88, ST617, ST648, ST10, ST58, and ST167, and an appreciable number of these isolates encoded virulence factors involved in the colonization and infection of the human urinary tract. There was a significant difference in the presence of multiple accessory virulence factors (VFs) between MDR and susceptible strains. VFs associated with enterohemorrhagic infections, such as stx, tir, and eae, were more likely to be harbored by antimicrobial-susceptible strains, while factors associated with extraintestinal infections such as the sit system, aerobactin, and pap fimbriae genes were more likely to be encoded in resistant strains. A comparative analysis of SNPs between strains indicated that several closely related strains were recovered from animals on different farms indicating the potential for resistant strains to circulate among farms. These results indicate that veal calves are a reservoir for a diverse group of MDR E. coli that harbor various resistance genes and virulence factors associated with human infections. Evidence of co-occurrence of ARGs with MRGs, BRGs, and iron-scavenging genes (sit and aerobactin) may lead to management strategies for reducing colonization of resistant bacteria in the calf gut.
Collapse
Affiliation(s)
- Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
- * E-mail:
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Ernest Hovingh
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States of America
| | - Jo Ann S. Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| |
Collapse
|
15
|
Allami M, Bahreini M, Sharifmoghadam MR. Antibiotic resistance, phylogenetic typing, and virulence genes profile analysis of uropathogenic Escherichia coli isolated from patients in southern Iraq. J Appl Genet 2022; 63:401-412. [PMID: 35143031 DOI: 10.1007/s13353-022-00683-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/17/2021] [Accepted: 01/12/2022] [Indexed: 12/26/2022]
Abstract
Of the most common infectious diseases that occur mainly by uropathogenic Escherichia coli (UPEC) is urinary tract infections (UTIs). The purpose of this study was to investigate virulence factors, antibiotic resistance, and phylogenetic groups among UPEC strains isolated from patients with UTI in southern Iraq. A total of 100 UPEC isolates were collected from urine samples of UTI patients from various hospitals in southern Iraq, and confirmed by morphological and biochemical tests. Antimicrobial susceptibility testing on isolates was performed by disk diffusion method. Multiplex PCR techniques were used to evaluate the phylogenetic groups based on Clermont method and to detect the presence of six virulence factor genes. The majority of isolates belonged to the phylogenetic groups B2 (46%) and C (13%). The most prevalent virulence factors were fimH (96%), followed by aer (47%), papC (36%), cnf1 (17%), hly (15%), and afa (8%). Phenotypic testing showed that the isolates were most resistant to piperacillin, ticarcillin, amoxicillin/clavulanic acid (92%, 91%, and 88%, respectively) and most sensitive to amikacin and imipenem, respectively. The maximum antibiotic resistance and virulence factors were observed in the phylogenetic group B2. The results showed that the UPEC isolates had all six virulence factors with high frequency and the highest drug resistance. Besides, the results showed a direct relationship between virulence factors, gene diversity, phylogenetic background, and antimicrobial resistance in the UPEC isolates.
Collapse
Affiliation(s)
- Mohammed Allami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoumeh Bahreini
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
16
|
Morgan RN, Farrag HA, Aboulwafa MM, Saleh SE. "Effect of Subinhibitory Concentrations of Some Antibiotics and Low Doses of Gamma Radiation on the Cytotoxicity and Expression of Colibactin by an Uropathogenic Escherichia coli isolate". Curr Microbiol 2021; 78:544-557. [PMID: 33388934 DOI: 10.1007/s00284-020-02331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/10/2020] [Indexed: 01/10/2023]
Abstract
Colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are cyclomodulins secreted by uropathogenic E. coli. In this study, uropathogenic E. coli expressing colibactin and Cnf 1 was exposed to antibiotics subMICs and gamma radiation to investigate their effects on its cytotoxicity and expression of colibactin. The test isolate was exposed to three subMIC levels of levofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole and ceftriaxone and irradiated with gamma rays at 10 and 24.4 Gy. The cytotoxicity for either antibiotic or gamma rays treated cultures was measured using MTT assay and the expression of colibactin encoding genes was determined by RT-PCR. Treatment with fluoroquinolones nearly abolished the cytotoxicity of E. coli isolate and significantly downregulated clbA gene expression at the tested subMICs (P ≤ 0.05) while trimethoprim/sulfamethoxazole treated cultures exerted significant downregulation of clbA and clbQ genes at 0.5 MIC only (P ≤ 0.05). Ceftriaxone treated cultured exhibited reduction in the cytotoxicity and insignificant effects on expression of clbA, clbQ and clbM genes. On contrast, significant upregulation in the expression of clbA and clbQ genes was observed in irradiated cultures (P ≤ 0.05). Fluoroquinolones reduced both the cytotoxicity of UPEC isolate and colibactin expression at different subMICs while ceftriaxone at subMICs failed to suppress the expression of genotoxin, colibactin, giving an insight to the risks associated upon their choice for UTI treatment. Colibactin expression was enhanced by gamma irradiation at doses resembling these received during pelvic radiotherapy which might contribute to post-radiotherapy complications.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor Street, Nasr city, Cairo, 11787, Egypt
| | - Hala A Farrag
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Ahmed El-Zomor Street, Nasr city, Cairo, 11787, Egypt
| | - Mohammad M Aboulwafa
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African union organization Street, Abbassia, Cairo, 11566, Egypt.
- Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sedr, Egypt.
| | - Sarra E Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African union organization Street, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
17
|
Mahmoud AT, Ibrahem RA, Salim MT, Gabr A, Halby HM. Prevalence of some virulence factors and genotyping of hospital-acquired uropathogenic Escherichia coli isolates recovered from cancer patients. J Glob Antimicrob Resist 2020; 23:211-216. [PMID: 32916331 DOI: 10.1016/j.jgar.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES This study aimed to determine the prevalence of virulence factors among uropathogenic Escherichia coli (UPEC) isolates from cancer patients and to investigate their genetic diversity using ERIC-PCR. METHODS A total of 42 E. coli were recovered from urine samples from cancer patients admitted to Assiut University Hospital. PCR was used to detect the presence of three virulence genes (papC, iutA and cnf1). Genetic diversity of the isolates was determined using the ERIC-PCR fingerprinting method, and amplified products were separated by agarose gel electrophoresis. Gel electrophoresis banding patterns were used for dendrogram generation using NTSYSpc software. RESULTS Among the 42 UPEC isolates, papC was the most common virulence gene (55% of isolates), followed by iutA (38%) and cnf1 (2%). ERIC-PCR successfully produced multiple amplicons (range 2-11 bands) in each strain, with molecular weights ranging from 285 to 3000 bp. Some UPEC isolates had identical ERIC-PCR profiles (identical banding patterns), whilst 22 UPEC isolates had different ERIC-PCR profiles. The phylogenetic dendrogram of ERIC-PCR showed that the 42 isolates can be differentiated into three major clusters (I, II and III), with cluster I representing 76% of isolates, cluster II representing 19% and cluster III representing 5%. CONCLUSIONS The results of this study suggest that both papC and iutA genes may have an important role in the pathogenesis of overt urinary tract infection. Dendrogram analysis of the ERIC-PCR profiles revealed that all UPEC isolates were assigned into three main clusters, indicating the spread of distinct clonal groups that are responsible for hospital-acquired infections.
Collapse
Affiliation(s)
- Ahmed Talaat Mahmoud
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Reham Ali Ibrahem
- Department of Microbiology and Immunology, Faculty of Pharmacy, El-Minia University, Minia 61111, Egypt
| | - Mohamed Taha Salim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Adel Gabr
- Department of Medical Oncology and Malignant Hematology, South Egypt Cancer Institute, Assuit University, Assuit 71515, Egypt
| | - Hamada Mohamed Halby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt.
| |
Collapse
|
18
|
Ahani F, Pirouzi A, Mohsenzadeh M, Khaledi A. Evaluate the presence of class 1 integrons among uropathogenic Escherichia coli recovered from children urinary tract infection; a systematic review and meta-analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Yazdanpour Z, Tadjrobehkar O, Shahkhah M. Significant association between genes encoding virulence factors with antibiotic resistance and phylogenetic groups in community acquired uropathogenic Escherichia coli isolates. BMC Microbiol 2020; 20:241. [PMID: 32758126 PMCID: PMC7409443 DOI: 10.1186/s12866-020-01933-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/30/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Antibiotic resistance is an increasing phenomenon in many bacterial pathogens including uropathogenic Escherichia coli. Hypothetical anti-virulent agents could be a solution, but first clear virulence associated gene-pool of antibiotic resistant isolates have to be determined. The aim of this study is to investigate the significant associations between genes encoding VFs with antibiotic resistance and phylogenetic groups in UPEC isolates. RESULTS The majority of 248 UPEC isolates belonged to phylogenetic group B2 (67.3%). The maximum and minimum resistance was attributed to amoxicillin (90.3%) and both fosfomycin and imipenem (1.6%) respectively. 11.3% of isolates were resistant to all antibiotic agents except that of imipenem, nitrofurantoin and fosfomycin. These highly resistant isolates were placed only in group B2 and D. The most prevalent virulence gene was ompA (93.5%). The hlyA was the only virulence gene that was significantly more prevalent in the highly resistant isolates. The ompA, malX and hlyA genes were obviously more abundant in the antibiotic resistant isolates in comparison to susceptible isolates. The papC gene was associated with amoxicillin resistance (p-value = 0.006, odds ratio: 26.00). CONCLUSIONS Increased resistance to first line drugs prescribed for UTIs were detected in CA-UPEC isolates in our study.. Minimal resistance was observed against nitrofurantoin, fosfomycin and imipenem. Therefore, they are introduced for application in empirical therapy of UTIs. Fosfomycin may be the most effective antibiotic agent against highly resistant UPEC isolates. The presence of the ompA, malX and hlyA genes were significantly associated with resistance to different antibiotic agents. We assume that the ability of UPEC isolates to upgrade their antibiotic resistance capacity may occurs in compliance with the preliminary existence of specific virulence associated genes. But, more investigation with higher number of bacterial isolates, further virulence associated genes and comparison of gene pools from CA-UPEC isolates with HA-UPEC are proposed to confirm these finding and discovering new aspects of this association.
Collapse
Affiliation(s)
- Zahra Yazdanpour
- Microbiology and Parasitology Department, Medical Faculty, Zabol University of Medical Sciences, Zabol, Iran
| | - Omid Tadjrobehkar
- Bacteriology and Virology Department, Medical Faculty, Kerman University of Medical Sciences, Kerman, Iran.
| | - Motahareh Shahkhah
- Microbiology Department, Medical Faculty, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
20
|
Genetic diversity, antimicrobial resistance and extended-spectrum β-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China. J Glob Antimicrob Resist 2020; 22:726-732. [PMID: 32659505 DOI: 10.1016/j.jgar.2020.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES In this study, the genetic diversity, phylogenetic grouping, antimicrobial resistance and extended-spectrum β-lactamase (ESBL) types of Escherichia coli isolates from chickens, dogs, pigs and yaks in six prefectures of Gansu and Qinghai Provinces, China, were investigated. METHODS E. coli was isolated from diarrhoeic and healthy faecal samples. Multilocus sequence typing (MLST), phylogenetic grouping, antimicrobial resistance and ESBL profiles were investigated. RESULTS A total of 142 MLST sequence types (STs) were identified from 400 E. coli isolates. eBURST clustering analysis resolved the 142 STs into 19 clonal complexes (CCs) and 67 singletons. PCR phylogenetic typing determined the isolation rate of potentially pathogenic B2/D group isolates among all E. coli to be 12.5% from healthy animal samples and 17.5% from diarrhoeic samples. Antimicrobial susceptibility testing revealed 78 antimicrobial resistance patterns. E. coli resistance rates were highest to doxycycline, ampicillin and tetracycline, whereas polymyxin B and meropenem had the lowest resistance rates. All polymyxin B-resistant E. coli isolates were positive for the mcr-1 gene. A total of 62 ESBL-producing isolates were identified. The ESBL prevalence was 55.0% in diarrhoeic samplings and 5.6% in healthy animals. TEM (82.3%) was the predominant ESBL type, followed by CTM (43.5%) and SHV (19.4%). CONCLUSION E. coli isolates in the study area have a high diversity of genetic and antimicrobial resistance patterns but a relatively low isolation rate of potentially pathogenic phylogroups. However, the somewhat high isolation rate of multidrug-resistant E. coli, particularly ESBL-producing isolates, requires continual surveillance of E. coli from animals in these areas.
Collapse
|
21
|
Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 2020; 18:211-226. [PMID: 32071440 DOI: 10.1038/s41579-020-0324-0] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are common, recurrent infections that can be mild to life-threatening. The continued emergence of antibiotic resistance, together with our increasing understanding of the detrimental effects conferred by broad-spectrum antibiotic use on the health of the beneficial microbiota of the host, has underscored the weaknesses in our current treatment paradigm for UTIs. In this Review, we discuss how recent microbiological, structural, genetic and immunological studies have expanded our understanding of host-pathogen interactions during UTI pathogenesis. These basic scientific findings have the potential to shift the strategy for UTI treatment away from broad-spectrum antibiotics targeting conserved aspects of bacterial replication towards pathogen-specific antibiotic-sparing therapeutics that target core determinants of bacterial virulence at the host-pathogen interface.
Collapse
|
22
|
Khairy RM, Mohamed ES, Abdel Ghany HM, Abdelrahim SS. Phylogenic classification and virulence genes profiles of uropathogenic E. coli and diarrhegenic E. coli strains isolated from community acquired infections. PLoS One 2019; 14:e0222441. [PMID: 31513642 PMCID: PMC6742363 DOI: 10.1371/journal.pone.0222441] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The emergence of E.coli strains displaying patterns of virulence genes from different pathotypes shows that the current classification of E.coli pathotypes may be not enough, the study aimed to compare the phylogenetic groups and urovirulence genes of uropathogenic Escherichia coli (UPEC) and diarrheagenic E.coli (DEC) strains to extend the knowledge of E.coli classification into different pathotypes. A total of 173 UPEC and DEC strains were examined for phylogenetic typing and urovirulence genes by PCR amplifications. In contrast to most reports, phylogenetic group A was the most prevalent in both UPEC and DEC strains, followed by B2 group. Amplification assays revealed that 89.32% and 94.29% of UPEC and DEC strains, respectively, carried at least one of the urovirulence genes, 49.5% and 31.4% of UPEC and DEC strains, respectively, carried ≥ 2 of the urovirulence genes, fim H gene was the most prevalent (66.9% and 91.4%) in UPEC and DEC strains respectively. Twenty different patterns of virulence genes were identified in UPEC while 5 different patterns in DEC strains. Strains with combined virulence patterns of four or five genes were belonged to phylogenetic group B2. Our finding showed a closer relationship between the DEC and UPEC, so raised the suggestion that some DEC strains might be potential uropathogens. These findings also provide different insights into the phylogenetic classification of E. coli as pathogenic or commensals where group A can be an important pathogenic type as well as into the classification as intestinal or extra- intestinal virulence factors.
Collapse
Affiliation(s)
- Rasha M. Khairy
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Ebtisam S. Mohamed
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hend M. Abdel Ghany
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Soha S. Abdelrahim
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
23
|
Morgan RN, Saleh SE, Farrag HA, Aboulwafa MM. Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: experimental and bioinformatics analyses. Gut Pathog 2019; 11:22. [PMID: 31139264 PMCID: PMC6525971 DOI: 10.1186/s13099-019-0304-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Background The colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are toxins with cell cycle modulating effects that contribute to tumorgenesis and hyperproliferation. This study aimed to investigate the prevalence and pathologic effects of Cnf 1 and colibactin among hemolytic uropathogenic Escherichia coli (UPEC). The bioinformatics approach incorporated in this study aimed to expand the domain of the in vitro study and explore the prevalence of both toxins among other bacterial species. A total of 125 E. coli isolates were recovered from UTIs patients. The isolates were tested for their hemolytic activity, subjected to tissue culture and PCR assays to detect the phenotypic and genotypic features of both toxins. A rat ascending UTI in vivo model was conducted using isolates expressing or non-expressing Cnf 1 and colibactin (ClbA and ClbQ). The bioinformatics analyses were inferred by Maximum likelihood method and the evolutionary relatedness was deduced by MEGA X. Results Only 21 (16.8%) out of 125 isolates were hemolytic and 10 of these (47.62%) harbored the toxins encoding genes (cnf 1+, clbA+ and clbQ+). The phenotypic features of both toxins were exhibited by only 7 of the (cnf 1+clbA+clbQ+) harboring isolates. The severest infections, hyperplastic and genotoxic changes in kidneys and bladders were observed in rats infected with the cnf 1+clbA+clbQ+ isolates. Conclusion Only 33.3% of the hemolytic UPEC isolates exhibited the phenotypic and genotypic features of Cnf 1 and Colibactin. The in vivo animal model results gives an evidence of active Cnf 1 and Colibactin expression and indicates the risks associated with recurrent and chronic UTIs caused by UPEC. The bioinformatics analyses confirmed the predominance of colibactin pks island among Enterobacteriaceae family (92.86%), with the highest occurrence among Escherichia species (53.57%), followed by Klebsiella (28.57%), Citrobacter (7.14%), and Enterobacter species (3.57%). The Cnf 1 is predominant among Escherichia coli (94.05%) and sporadically found among Shigella species (1.08%), Salmonella enterica (0.54%), Yersinia pseudotuberculosis (1.08%), Photobacterium (1.08%), Moritella viscosa (0.54%), and Carnobacterium maltaromaticum (0.54%). A close relatedness was observed between the 54-kb pks island of Escherichia coli, the probiotic Escherichia coli Nissle 1917, Klebsiella aerogenes, Klebsiella pneumoniae and Citrobacter koseri. Electronic supplementary material The online version of this article (10.1186/s13099-019-0304-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radwa N Morgan
- 1Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 3 Ahmed El-Zomor Street, Nasr City, Cairo, 11787 Egypt
| | - Sarra E Saleh
- 2Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566 Egypt
| | - Hala A Farrag
- 1Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), 3 Ahmed El-Zomor Street, Nasr City, Cairo, 11787 Egypt
| | - Mohammad M Aboulwafa
- 2Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, 11566 Egypt
| |
Collapse
|
24
|
Tharwat N, El-Sherif R, Elnagdy S, Marzaban R, Amer S. Virulent Escherichia coli strains among Egyptian patients with acute diarrhoea versus urinary tract infection, and their antibiotic susceptibility. Arab J Gastroenterol 2019; 20:74-80. [PMID: 30905635 DOI: 10.1016/j.ajg.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2018] [Accepted: 01/20/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND STUDY AIMS Diarrhoea and urinary tract infection (UTI) are common clinical problems. Meanwhile, Escherichia coli (E. coli), is the commonest bacterial pathogen reported in both of them. This study aimed to evaluate the pathogenic E. coli (PEC) in stool of acute diarrhoea and urine of UTI regarding their virulence genes and their influence on the susceptibility to routinely prescribed antibiotics. PATIENTS AND METHODS Twenty two stool and another 22 urine samples of patients with acute diarrhoea and UTI respectively were collected from patients admitted at Kasr Al-Ainy Hospital, Faculty of Medicine, Cairo University, Egypt. E. coli isolation, identification of their phyla; chuA, yjaA, and TspE4.C2, and further identification of 10 virulent genes; fimH, papC, papG//, papG///, papEF, afa, sfa, CNF1, iroN & hlyA was performed. Antibiotic susceptibility was studied against quinolones, gentamicin (GM), and trimethoprim-sulphamethoxazole (TMP-SMX). RESULTS The studied virulence genes were comparably detected in both pathogenic samples. In diarrheogenic E. coli (DEC); phylum A was significantly related to both ciprofloxacin (CIP) and TMP-SMX resistance, and both of the virulence genes fimH and iroN were significantly related to all the studied antibiotics resistance, while afa was significantly related to nalidixic acid (NA) resistance. In uropathogenic E. coli (UEC); phylum D was significantly related to CIP and levofloxacin resistance, and both of the virulence genes fimH and iroN were significantly related to most of the studied antibiotics resistance. CONCLUSION The isolated PEC was evidently and broadly resistant to the studied antibiotics, with limited influence of their phyla and virulence genes (fimH and iroN).
Collapse
Affiliation(s)
- Nagwa Tharwat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Rasha El-Sherif
- Microbiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Raghda Marzaban
- Tropical Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sabah Amer
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Detection of Colony Adhesion Factors and Genetic Background of Adhesion Genes Among Multidrug-Resistant Uropathogenic Escherichia coli Isolated in Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Important Virulence Factors and Related Genes in Uropathogenic E. coli and their Relation to Fluoroquinolone Resistance. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Chakraborty A, Adhikari P, Shenoy S, Saralaya V. Molecular characterisation of uropathogenic Escherichia coli isolates at a tertiary care hospital in South India. Indian J Med Microbiol 2018; 35:305-310. [PMID: 28681829 DOI: 10.4103/ijmm.ijmm_14_291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) express a multitude of virulence factors (VFs) to break the inertia of the mucosal barrier of the urinary tract. The aim of the present study was undertaken to characterised the UPEC strains and to correlate carriage of specific virulence markers with different phylogroups and also to correlate these findings with clinical outcome of patients. A total of 156 non-repeated, clinically significant UPEC isolates were studied. Virulent genes were determined by two set of multiplex polymerase chain reaction (PCR). Phylogenetic analysis was performed by triplex PCR methods. Antibiograms and patient's clinical outcomes were collected in a structured pro forma. Of the 156 patients infected by UPEC strains with significant bacterial counts the most common predisposing factors were diabetes (45.5%) followed by carcinoma (7%). On analysis of the VF genes of the isolates, a majority of strains (140; 90%) were possessing the fimH gene followed by iutA (98; 63%), papC (76; 49%), cnf1 (46; 29.5%), hlyA (45; 29%) and neuC (8; 5%), respectively. On phylogenetic analysis, 27 (17%) isolates were belong to phylogroup A, 16 (10%) strains to Group B1, 59 (38%) were from Group B2 and 54 (35%) were from Group D. High prevalence of antibiotic resistance was observed among the isolates. The incidence of papC, cnf1 and hlyA was significantly higher (P < 0.05) among the isolates from relapse patients. Our findings indicate that virulent as well as commensal strains are capable of causing urinary tract infection. Virulence genes as well as patients-related factors are equally responsible for the development of infections and also that virulence genes may help such isolates to persist even with appropriate chemotherapy and be responsible for recurrent infections.
Collapse
Affiliation(s)
- Arindam Chakraborty
- Department of Microbiology, Motilal Nehru Medical College, Allahabad, Uttar Pradesh, India
| | - Prabha Adhikari
- Department of Medicine, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India
| | - Shalini Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India
| | - Vishwas Saralaya
- Department of Microbiology, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India
| |
Collapse
|
28
|
Zhou K, Luo Q, Wang Q, Huang C, Lu H, Rossen JWA, Xiao Y, Li L. Silent transmission of an IS1294b-deactivated mcr-1 gene with inducible colistin resistance. Int J Antimicrob Agents 2018; 51:822-828. [PMID: 29339296 DOI: 10.1016/j.ijantimicag.2018.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
Global dissemination of the mobile colistin resistance mcr-1 is of particular concern as colistin is one of the last-resort antibiotics for the treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria. In this study, an inactive form of mcr-1 in a fluoroquinolone-resistant and colistin-susceptible uropathogenic Escherichia coli isolate (ECO3347) was characterised. The mcr-1 gene was deactivated by insertion of a 1.7-kb IS1294b element flanked by two tetramers (GTTC) and located on a 62-kb pHNSHP45-like plasmid (p3347-mcr-1). Single-step and multistep selections were used to induce colistin resistance in vitro in ECO3347. ECO3347 acquired colistin resistance (MIC = 16-32 mg/L) only after a serial passage selection with increasing concentrations of colistin (2-8 mg/L). Deactivated mcr-1 was re-activated by loss of IS1294b without any remnants in most colistin-resistant mutants. In addition, a novel amino acid variant (Leu105Pro) in the CheY homologous receiver domain of PmrA was detected in one colistin-resistant mutant. Plasmid p3347-mcr-1+ carrying the re-activated mcr-1 gene is transferrable to E. coli J53 recipient with a high conjugation rate (ca. 10-1 cells per recipient cell). Transconjugants showed an identical growth status to J53, suggesting lack of a fitness cost after acquiring p3347-mcr-1+. These results highlight that the disrupted mcr-1 gene has the potential for wide silent dissemination with the help of pHNSHP45-like epidemic plasmids. Inducible colistin resistance may likely compromise the success of clinical treatment and infection control. Continuous monitoring of mcr-1 is imperative for understanding and tackling its dissemination in different forms.
Collapse
Affiliation(s)
- Kai Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| | - Qin Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| | - Chen Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medicine School, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
29
|
Abstract
The following study is investigating the different GyrB mutations associated withEscherichia coliclinical isolates. The study interrogates part of the ATPase binding site (a.a 132-199) as it covers most of the naturally occurring mutations in GyrB. The following results were obtained: for Arg-136 two isolates had mutations, the first is isolate-1 (Ala-136), and the second is isolate-5 (Cys-136). Gly-164 had no changes for all tested isolates. For Thr-165 only isolate-3 had a change to Ser-165. Accuracy of sequence translation was checked by sequencing both CFT073 and MG1655. The current study presents novel mutations in the GyrB24 subdomain of the gyrase enzyme. These new mutations showed normal enzyme activity (no reduction in ATPase functions) indicating that they might be a result of GyrB interaction with ATP analog molecules rather than antibacterial agents such as coumarins. Furthermore, our findings are supporting the idea that mutations in the GyrB24 would require synchronization with the efflux pumps to maintain antibiotic resistance against coumarins.
Collapse
|
30
|
ALIZADE H. Escherichia coli in Iran: An Overview of Antibiotic Resistance: A Review Article. IRANIAN JOURNAL OF PUBLIC HEALTH 2018; 47:1-12. [PMID: 29318111 PMCID: PMC5756583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Escherichia coli is the most prominent cause of infectious diseases that span from the gastrointestinal tract to extra-intestinal sites such as urinary tract infection, septicaemia, and neonatal meningitis. The emergence and spread of antibiotic resistance in E. coli is an increasing public health concern across the world. Rising resistance in E. coli isolates is also observed in Iran. This review summarizes the status of antibiotic resistance of E. coli isolates in Iran from 2007 to 2016. METHODS The data of the prevalence of E. coli antibiotic resistance were collected from databases such as Web of Science, PubMed, Scopus, Embase, Cochrane Library, Google Scholar and Scientific Information Database. RESULTS Antibiotic resistance in E. coli is on the rise. CONCLUSION Prevalence of antibiotic resistance of E. coli varies from region to region in Iran.
Collapse
|
31
|
Schreiber HL, Conover MS, Chou WC, Hibbing ME, Manson AL, Dodson KW, Hannan TJ, Roberts PL, Stapleton AE, Hooton TM, Livny J, Earl AM, Hultgren SJ. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci Transl Med 2017; 9:9/382/eaaf1283. [PMID: 28330863 DOI: 10.1126/scitranslmed.aaf1283] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/12/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023]
Abstract
Urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC) strains. In contrast to many enteric E. coli pathogroups, no genetic signature has been identified for UPEC strains. We conducted a high-resolution comparative genomic study using E. coli isolates collected from the urine of women suffering from frequent recurrent UTIs. These isolates were genetically diverse and varied in their urovirulence, that is, their ability to infect the bladder in a mouse model of cystitis. We found no set of genes, including previously defined putative urovirulence factors (PUFs), that were predictive of urovirulence. In addition, in some patients, the E. coli strain causing a recurrent UTI had fewer PUFs than the supplanted strain. In competitive experimental infections in mice, the supplanting strain was more efficient at colonizing the mouse bladder than the supplanted strain. Despite the lack of a clear genomic signature for urovirulence, comparative transcriptomic and phenotypic analyses revealed that the expression of key conserved functions during culture, such as motility and metabolism, could be used to predict subsequent colonization of the mouse bladder. Together, our findings suggest that UTI risk and outcome may be determined by complex interactions between host susceptibility and the urovirulence potential of diverse bacterial strains.
Collapse
Affiliation(s)
- Henry L Schreiber
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Matt S Conover
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | - Wen-Chi Chou
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael E Hibbing
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | - Abigail L Manson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA
| | - Thomas J Hannan
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Pacita L Roberts
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ann E Stapleton
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Hooton
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan Livny
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Ashlee M Earl
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University, St. Louis, MO 63110, USA. .,Center for Women's Infectious Disease Research, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
32
|
Salehzadeh A, Zamani H. Characterization of (Uropathogenic) E. coli isolated from urinary tract infections: phylogenetic typing and distribution of virulence-associated traits. Br J Biomed Sci 2017; 75:40-42. [DOI: 10.1080/09674845.2017.1336834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Hojjatolah Zamani
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
33
|
Zorgani A, Almagatef A, Sufya N, Bashein A, Tubbal A. Detection of CTX-M-15 Among Uropathogenic Escherichia coli Isolated from Five Major Hospitals in Tripoli, Libya. Oman Med J 2017; 32:322-327. [PMID: 28804585 PMCID: PMC5534234 DOI: 10.5001/omj.2017.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Multidrug resistance (MDR) and emergence of extended-spectrum β-lactamases (ESBLs) among uropathogenic Escherichia coli have been reported worldwide, but there was no information on the detection of blaCTX-M-15 in major teaching hospitals in Libya. The aim of the study was to investigate the occurrence of CTX-M-15 β-lactamases producers isolated from five teaching hospitals in Tripoli, Libya. METHODS A total of 346 urine samples were collected from hospitalized patients in five teaching hospitals with a diagnosis of urinary tract infection (UTI). Phenotypic confirmation of ESBLs was confirmed by E-test strip; all ESBL-producing E. coli isolates were screened for the blaCTX-M-15 gene. RESULTS The distribution of ESBL-producing E. coli varied among the five hospitals. The highest proportion was identified in Tripoli Medical Centre (67.6%). There were extremely high proportions of isolates resistant to ceftriaxone, cefepime, and ceftazidime (93.0-100.0%) among ESBL producers compared to non-ESBL producers (2.2-4.7%). MDR was detected in 22.2% of isolates. The majority of isolates (85.9%) in which blaCTX-M-15 was identified were ESBL producers. There was a correlation (p < 0.001) between expression of CTX-M-15 and resistance to ceftazidime. CONCLUSIONS The isolation of MDR ESBL-producing uropathogens expressing the CTX-M-15 gene will limit the choices clinicians have to treat their patients with UTIs. Continued surveillance and implementation of efficient infection control measures are required.
Collapse
Affiliation(s)
- Abdulaziz Zorgani
- Medical Microbiology, Faculty of Medicine, University of Tripoli, Tripoli, Libya,Address correspondence and reprints request to: Abdulaziz Zorgani, Medical Microbiology, Faculty of Medicine, University of Tripoli, Tripoli, Libya. E-mail:
| | - Asma Almagatef
- Microbiology Department, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Najib Sufya
- Microbiology Department, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Abdulla Bashein
- Biochemistry Department, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Abdullatif Tubbal
- Department of Statistics, Faculty of Science, University of Tripoli, Tripoli, Libya
| |
Collapse
|
34
|
de Souza da-Silva AP, de Sousa VS, Martins N, da Silva Dias RC, Bonelli RR, Riley LW, Moreira BM. Escherichia coli sequence type 73 as a cause of community acquired urinary tract infection in men and women in Rio de Janeiro, Brazil. Diagn Microbiol Infect Dis 2017; 88:69-74. [PMID: 28214224 PMCID: PMC5392417 DOI: 10.1016/j.diagmicrobio.2017.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Escherichia coli clones ST131, ST69, ST95, and ST73 are frequent causes of urinary tract infections (UTI) and bloodstream infections. Specific clones and virulence profiles of E. coli causing UTI in men has been rarely described. The aim of this study was to characterize patient and clonal characteristics of community-acquired UTI caused by E. coli in men (n=12) and women (n=127) in Rio de Janeiro, Brazil, complementing a previous work. We characterized isolates in phylogenetic groups, ERIC2-PCR and PFGE types, MLST, genome similarity and virulence gene-profiles. UTI from men were more frequently caused by phylogenetic group B2 isolates (83% versus 42%, respectively, P = 0.01), a group with significantly higher virulence scores compared with women. ST73 was the predominant clone in men (50%) and the second most frequent in women (12%), with the highest virulence score (mean and median=9) among other clones. ST73 gnomes formed at least six clusters. E. coli from men carried significantly higher numbers of virulence genes, such as sfa/focDE (67% versus 27%), hlyA (58% versus 24%), cnf 1 (58% versus 16%), fyuA (100% versus 82%) and MalX (92% versus 44%), compared with isolates from women. These data suggest the predominance and spread of ST73 isolates likely relates to an abundance of virulence determinants.
Collapse
Affiliation(s)
| | - Viviane Santos de Sousa
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Rio de Janeiro, 21941-902, Brazil
| | - Natacha Martins
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Rio de Janeiro, 21941-902, Brazil
| | | | - Raquel Regina Bonelli
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Rio de Janeiro, 21941-902, Brazil
| | - Lee W Riley
- School of Public Health, University of California, Berkeley, CA
| | - Beatriz Meurer Moreira
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
35
|
Stephenson S, Brown PD. Distribution of virulence determinants among antimicrobial-resistant and antimicrobial-susceptible Escherichia coli implicated in urinary tract infections. Indian J Med Microbiol 2017; 34:448-456. [PMID: 27934822 DOI: 10.4103/0255-0857.195354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Uropathogenic Escherichia coli (UPEC) rely on the correlation of virulence expression with antimicrobial resistance to persist and cause severe urinary tract infections (UTIs). OBJECTIVES We assessed the virulence pattern and prevalence among UPEC strains susceptible and resistant to multiple antimicrobial classes. METHODS A total of 174 non-duplicate UPEC strains from patients with clinically significant UTIs were analysed for susceptibility to aminoglycoside, antifolate, cephalosporin, nitrofuran and quinolone antibiotics for the production of extended-spectrum β-lactamases and for the presence of six virulence determinants encoding adhesins (afimbrial, Type 1 fimbriae, P and S-fimbriae) and toxins (cytotoxic necrotising factor and haemolysin). RESULTS Relatively high resistance rates to nalidixic acid, ciprofloxacin, cephalothin and trimethoprim-sulfamethoxazole (82%, 78%, 62% and 59%, respectively) were observed. Fourteen distinct patterns were identified for the virulence determinants such as afaBC, cnfI, fimH, hylA, papEF and sfaDE. The toxin gene, cnfI (75.3%), was the second most prevalent marker to the adhesin, fimH (97.1%). The significant association of sfaDE/hylA (P < 0.01) among antimicrobial resistant and susceptible strains was also observed notwithstanding an overall greater occurrence of virulence factors among the latter. CONCLUSIONS This study provides a snapshot of UPEC complexity in Jamaica and highlights the significant clonal heterogeneity among strains. Such outcomes emphasise the need for evidence-based strategies in the effective management and control of UTIs.
Collapse
Affiliation(s)
- Sam Stephenson
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| | - P D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of the West Indies, Kingston, Jamaica
| |
Collapse
|
36
|
Distribution of Uropathogenic Virulence Genes in Escherichia coli Isolated from Children with Urinary Tract Infection in Sanandaj, Iran. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2017. [DOI: 10.5812/pedinfect.41995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Characterization of Ciprofloxacin-Resistant and Ciprofloxacin-Susceptible Uropathogenic Escherichia coli Obtained from Patients with Gynecological Cancer. Curr Microbiol 2016; 73:624-632. [DOI: 10.1007/s00284-016-1104-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022]
|
38
|
Lee YC, Hsiao CY, Hung MC, Hung SC, Wang HP, Huang YJ, Wang JT. Bacteremic Urinary Tract Infection Caused by Multidrug-Resistant Enterobacteriaceae Are Associated With Severe Sepsis at Admission: Implication for Empirical Therapy. Medicine (Baltimore) 2016; 95:e3694. [PMID: 27196480 PMCID: PMC4902422 DOI: 10.1097/md.0000000000003694] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The purpose of this study is to compare the clinical features and treatment outcomes among patients with bacteremic urinary tract infection (UTI) caused by multidrug-resistant (MDR) and non-MDR Enterobacteriaceae and to identify whether MDR pathogens were independently associated with severe sepsis or septic shock at presentation.The clinical data of adult patients visiting and being treated at Chia-Yi Christian Hospital due to bacteremic UTI caused by Enterobacteriaceae from January 2006 to August 2015 were retrospectively analyzed.A total of 585 patients were enrolled. Among them, 220 (37.6%) were caused by the MDR Enterobacteriaceae. A total of 206 patients (35.2%) developed severe sepsis or septic shock at presentation. Patients in the MDR group tend to be male and have a past history of gout, recurrent UTI, prior hospitalization, hydronephrosis, renal stone, ureteral stone, indwelling urinary catheter, newly development of renal dysfunction, severe sepsis or septic shock, intensive care unit (ICU) admission, receipt of ineffective empirical therapy, longer hospital stay, and higher in-hospital mortality (2.7% vs 1.9%, P = 0.569). Using multivariate logistic regression analysis, it is revealed that independent predictors associated with severe sepsis or septic shock at presentation were liver cirrhosis (OR 2.868; 95% CI 1.439-5.716; P = 0.003), indwelling urinary catheter (OR 1.936; 95% CI 1.238-3.027; P = 0.004), and MDR Enterobacteriaceae (OR 1.447; 95% CI 1.002-2.090; P = 0.049).Multidrug resistance was associated with the development of severe sepsis or septic shock upon presentation among patients with bacteremic UTI caused by Enterobacteriaceae. Therefore, empirical antibiotics therapy for patients with UTI presented with severe sepsis and/or septic shock should be more broad-spectrum to effectively cover MDR Enterobacteriaceae.
Collapse
Affiliation(s)
- Yi-Chien Lee
- From the Department of Internal Medicine (Y-CL, C-YH, H-PW), Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi; Department of Hospital and Health Care Administration (C-YH), Chia Nan University of Pharmacy and Science, Tainan; Department of Pediatrics (M-CH); Department of Radiology (S-CH), Taipei Veterans General Hospital; School of Medicine (S-CH), National Yang-Ming University, Taipei; Department of Colorectal Surgery (Y-JH), Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi; and Department of Internal Medicine (J-TW), National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Staji H, Khoshgoftar J, Javaheri Vayeghan A, Salimi Bejestani MR. Phylogenetic Grouping and Assessment of Virulence Genotypes, With Antibiotic Resistance Patterns, of Escherichia Coli Strains Implicated in Female Urinary Tract Infections. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2016. [DOI: 10.17795/ijep31609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Multilocus Sequence Typing and Virulence Profiles in Uropathogenic Escherichia coli Isolated from Cats in the United States. PLoS One 2015; 10:e0143335. [PMID: 26587840 PMCID: PMC4654559 DOI: 10.1371/journal.pone.0143335] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/03/2015] [Indexed: 11/19/2022] Open
Abstract
The population structure, virulence, and antimicrobial resistance of uropathogenic E. coli (UPEC) from cats are rarely characterized. The aim of this study was to compare and characterize the UPEC isolated from cats in four geographic regions of USA in terms of their multilocus sequence typing (MLST), virulence profiles, clinical signs, antimicrobial resistance and phylogenetic grouping. The results showed that a total of 74 E. coli isolates were typed to 40 sequence types with 10 being novel. The most frequent phylogenetic group was B2 (n = 57). The most frequent sequence types were ST73 (n = 12) and ST83 (n = 6), ST73 was represented by four multidrug resistant (MDR) and eight non-multidrug resistant (SDR) isolates, and ST83 were significantly more likely to exhibit no drug resistant (NDR) isolates carrying the highest number of virulence genes. Additionally, MDR isolates were more diverse, and followed by SDR and NDR isolates in regards to the distribution of the STs. afa/draBC was the most prevalent among the 29 virulence-associated genes. Linking virulence profile and antimicrobial resistance, the majority of virulence-associated genes tested were more prevalent in NDR isolates, and followed by SDR and MDR isolates. Twenty (50%) MLST types in this study have previously been associated with human isolates, suggesting that these STs are potentially zoonotic. Our data enhanced the understanding of E. coli population structure and virulence association from cats. The diverse and various combinations of virulence-associated genes implied that the infection control may be challenging.
Collapse
|
41
|
Parker KS, Wilson JD, Marschall J, Mucha PJ, Henderson JP. Network Analysis Reveals Sex- and Antibiotic Resistance-Associated Antivirulence Targets in Clinical Uropathogens. ACS Infect Dis 2015; 1:523-532. [PMID: 26985454 PMCID: PMC4788272 DOI: 10.1021/acsinfecdis.5b00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 01/29/2023]
Abstract
Increasing antibiotic resistance among uropathogenic Escherichia coli (UPEC) is driving interest in therapeutic targeting of nonconserved virulence factor (VF) genes. The ability to formulate efficacious combinations of antivirulence agents requires an improved understanding of how UPEC deploy these genes. To identify clinically relevant VF combinations, we applied contemporary network analysis and biclustering algorithms to VF profiles from a large, previously characterized inpatient clinical cohort. These mathematical approaches identified four stereotypical VF combinations with distinctive relationships to antibiotic resistance and patient sex that are independent of traditional phylogenetic grouping. Targeting resistance- or sex-associated VFs based upon these contemporary mathematical approaches may facilitate individualized anti-infective therapies and identify synergistic VF combinations in bacterial pathogens.
Collapse
Affiliation(s)
| | | | - Jonas Marschall
- Department
of Infectious Diseases, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | | | | |
Collapse
|
42
|
Calhau V, Domingues S, Ribeiro G, Mendonça N, Da Silva GJ. Interplay between pathogenicity island carriage, resistance profile and plasmid acquisition in uropathogenic Escherichia coli. J Med Microbiol 2015; 64:828-835. [PMID: 26293926 DOI: 10.1099/jmm.0.000104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study aimed to characterize the relationship between pathogenicity islands (PAIs), single virulence genes and resistance among uropathogenic Escherichia coli, evaluating the resistance plasmid carriage fitness cost related to PAIs. For 65 urinary E. coli, antimicrobial susceptibility and extended-spectrum β-lactamase production were determined with the Vitek 2 Advanced Expert system. Phylogroup determination, detection of PAIs and virulence genes papAH, papC, sfa/foc, afa/dra, iutA, kpsMII, cnf1, eaeA, hlyA, stx1 and stx2, plasmid replicon typing and screening for plasmidic resistance determinants qnr, aac(6')-Ib-cr, qepA and bla(CTX-M) were carried out by PCR. Conjugation was performed between a donor carrying IncF, IncK and bla(CTX-M-15), and receptors carrying one to six PAIs. The relative fitness of transconjugants was estimated by pairwise competition experiments. PAI IV(536) (68 %), gene iutA (57 %) and resistance to ampicillin were the most prevalent traits. PAI I(536), PAI II(536), PAI III(536) and PAI II(J96) were exclusively associated with susceptibility to amoxicillin/clavulanic acid, cefotaxime, ceftazidime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole, and were more prevalent in strains susceptible to ampicillin and cefalotin. PAI IV(536), PAI II(CFT073) and PAI I(CFT073) were more prevalent among isolates showing resistance to amoxicillin/clavulanic acid, cefalotin, cefotaxime, ceftazidime and gentamicin. An inverse relationship was observed between the number of plasmids and the number of PAIs carried. Transconjugants were obtained for receptors carrying three or fewer PAIs. The mean relative fitness rates of these transconjugants were 0.87 (two PAIs), 1.00 (one PAI) and 1.09 (three PAI). The interplay between resistance, PAI carriage and fitness cost of plasmid acquisition could be considered PAI specific, and not necessarily associated with the number of PAIs.
Collapse
Affiliation(s)
- Vera Calhau
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Clinical Pathology Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Sara Domingues
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Graça Ribeiro
- Clinical Pathology Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Nuno Mendonça
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gabriela Jorge Da Silva
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Sedighi I, Arabestani MR, Rahimbakhsh A, Karimitabar Z, Alikhani MY. Dissemination of Extended-Spectrum β-Lactamases and Quinolone Resistance Genes Among Clinical Isolates of Uropathogenic Escherichia coli in Children. Jundishapur J Microbiol 2015; 8:e19184. [PMID: 26421128 PMCID: PMC4584072 DOI: 10.5812/jjm.19184v2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 07/23/2014] [Accepted: 07/26/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Urinary tract infection (UTI) is one of the most common childhood bacterial infections and Escherichia coli is the major pathogen. Producing β-lactamase enzymes are the most common mechanism of bacterial resistance. OBJECTIVES This study aimed to determine the prevalence of Extended-Spectrum β-Lactamases (ESBLs) and Quinolone Resistance (qnr) genes in E. coli strains isolated from UTIs. MATERIALS AND METHODS In this study, a total of 120 isolates of E. coli from urinary tract infections of the children were collected at Besat Hospital in Hamadan, Iran, from October 2010 to October 2011. The bacterial isolates were identified by standard biochemical methods. Antimicrobial susceptibilities were determined by disk diffusion method, and ESBLs-producing was confirmed phenotypically using the double-disk synergy (DDS) test. The presence and identification of ESBLs and qnr genes were determined by Polymerase Chain Reaction (PCR). RESULTS The highest sensitivity was seen to imipenem (96.7%), amikacin (92.5%), nitrofurantoin (93.3%), ofloxacin (81.7%), gentamicin norfloxacin (70.8%), and ciprofloxacin (79.2%). In contrast, the highest rate of resistance was seen to co-trimoxazole (77%) and nalidixic acid (40.9%). The results showed that 6 (2.18%) and 4 (1.12%) isolates of ESBL-producing E. coli were positive with respect to having qnrB and qnrS genes, respectively. No isolates was found to have qnrA. CONCLUSIONS CTX-M was the most prevalent ESBL genotype in uropathogenic E. coli (UPEC) isolated from UTI. In addition, a high frequency of qnr genes among ESBL-producing E. coli was identified in this study. In order to avoid treatment failures, we recommend using phenotypic and molecular methods to diagnose these enzymes and qnr genes.
Collapse
Affiliation(s)
- Iraj Sedighi
- Department of Pediatric, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Ali Rahimbakhsh
- Department of Microbiology, Faculty of Basic and Medical Sciences, Islamic Azad University of Zanjan, Zanjan, IR Iran
| | - Zahra Karimitabar
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, IR Iran
- Corresponding author: Mohammad Yousef Alikhani, Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, IR Iran. Tel: +98-8118380755, Fax: +98-8118380130, E-mail:
| |
Collapse
|
44
|
Goldstone RJ, Popat R, Schuberth HJ, Sandra O, Sheldon IM, Smith DGE. Genomic characterisation of an endometrial pathogenic Escherichia coli strain reveals the acquisition of genetic elements associated with extra-intestinal pathogenicity. BMC Genomics 2014; 15:1075. [PMID: 25481482 PMCID: PMC4298941 DOI: 10.1186/1471-2164-15-1075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Strains of Escherichia coli cause a wide variety of intestinal and extra-intestinal diseases in both humans and animals, and are also often found in healthy individuals or the environment. Broadly, a strong phylogenetic relationship exists that distinguishes most E. coli causing intestinal disease from those that cause extra-intestinal disease, however, isolates within a recently described subclass of Extra-Intestinal Pathogenic E. coli (ExPEC), termed endometrial pathogenic E. coli, tend to be phylogenetically distant from the vast majority of characterised ExPECs, and more closely related to human intestinal pathogens. In this work, we investigate the genetic basis for ExPEC infection in the prototypic endometrial pathogenic E. coli strain MS499. RESULTS By investigating the genome of MS499 in comparison with a range of other E. coli sequences, we have discovered that this bacterium has acquired substantial lengths of DNA which encode factors more usually associated with ExPECs and less frequently found in the phylogroup relatives of MS499. Many of these acquired factors, including several iron acquisition systems and a virulence plasmid similar to that found in several ExPECs such as APEC O1 and the neonatal meningitis E. coli S88, play characterised roles in a variety of typical ExPEC infections and appear to have been acquired recently by the evolutionary lineage leading to MS499. CONCLUSIONS Taking advantage of the phylogenetic relationship we describe between MS499 and several other closely related E. coli isolates from across the globe, we propose a step-wise evolution of a novel clade of sequence type 453 ExPECs within phylogroup B1, involving the recruitment of ExPEC virulence factors into the genome of an ancestrally non-extraintestinal E. coli, which has repurposed this lineage with the capacity to cause extraintestinal disease. These data reveal the genetic components which may be involved in this phenotype switching, and argue that horizontal gene exchange may be a key factor in the emergence of novel lineages of ExPECs.
Collapse
Affiliation(s)
| | | | | | | | | | - David G E Smith
- Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
45
|
Abdi HA, Rashki A. Comparison of Virulence Factors Distribution in Uropathogenic E. coli Isolates From Phylogenetic Groups B2 and D. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2014. [DOI: 10.17795/ijep21725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
46
|
Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ, Pedroso A, Lee MD, Collett SR, Johnson TJ, Cox NA. The chicken gastrointestinal microbiome. FEMS Microbiol Lett 2014; 360:100-12. [PMID: 25263745 DOI: 10.1111/1574-6968.12608] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/27/2022] Open
Abstract
The domestic chicken is a common model organism for human biological research and of course also forms the basis of a global protein industry. Recent methodological advances have spurred the recognition of microbiomes as complex communities with important influences on the health and disease status of the host. In this minireview, we provide an overview of the current state of knowledge of the chicken gastrointestinal microbiome focusing on spatial and temporal variability, the presence and importance of human pathogens, the influence of the microbiota on the immune system, and the importance of the microbiome for poultry nutrition. Review and meta-analysis of public data showed cecal communities dominated by Firmicutes and Bacteroides at the phylum level, while at finer levels of taxonomic resolution, a phylogenetically diverse assemblage of microorganisms appears to have similar metabolic functions that provide important benefits to the host as inferred from metagenomic data. This observation of functional redundancy may have important implications for management of the microbiome. We foresee advances in strategies to improve gut health in commercial operations through management of the intestinal microbiota as an alternative to in-feed subtherapeutic antibiotics, improvements in pre- and probiotics, improved management of polymicrobial poultry diseases, and better control of human pathogens via colonization reduction or competitive exclusion strategies.
Collapse
Affiliation(s)
- Brian B Oakley
- Poultry Microbiological Safety Research Unit, Richard B. Russell Agricultural Research Center, USDA-Agricultural Research Service, Athens, GA, USA; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Navidinia M, Peerayeh SN, Fallah F, Bakhshi B, Sajadinia RS. Phylogenetic grouping and pathotypic comparison of urine and fecal Escherichia coli isolates from children with urinary tract infection. Braz J Microbiol 2014; 45:509-14. [PMID: 25242935 PMCID: PMC4166276 DOI: 10.1590/s1517-83822014000200019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the phylogenetic background and to assess hlyD (involved in the secretion of haemolysin A) and intI1 (encoding a class 1 integrase) in Escherichia coli isolates derived from urinary and fecal specimens. A total of 200 E. coli isolates was collected from patients presenting with urinary tract infection (UTI) during September 2009 to September 2010 and screened for hlyD and intI1 genes by polymerase chain reaction (PCR). Phylogenetic analysis showed that E. coli is composed of four main phylogenetic groups (A, B1, B2 and D) and that uropathogenic E. coli (UPEC) isolates mainly belong to groups B2 (54%) and D (34%) whereas group A (44%) and D (26%) are predominant among commensal E. coli isolates. In this study, hlyD was present in 26% of UPEC and 2% of commensal E. coli isolates. However, hemolytic activity was detected for 42% of UPEC and 6% of commensal E. coli isolates (p < 0.05). intI1 gene was more frequently expressed in UPEC (24%) in comparison with commensal E. coli isolates (12%). Resistance to aztreonam, co-trimoxazole and cefpodoxime were frequently found among UPEC isolates whereas commensal E. coli isolates were commonly resistant to co-trimoxazole, nalidixic acid and cefotaxime. Concluding, a considerable difference between UPEC and commensal E. coli isolates was observed regarding their phylogenetic groups, presence of class 1 integron and hlyD gene, hemolysin activity and resistance pattern. The detection of class 1 integrons and hlyD gene was higher among UPEC compared with commensal E. coli isolates. These findings may contribute for a better understanding of the factors involved in the pathogenesis of UPEC.
Collapse
Affiliation(s)
- Masoumeh Navidinia
- Bacteriology Department Tarbiat Modarres University Tehran Iran Bacteriology Department, Tarbiat Modarres University, Tehran, Iran
| | - Shahin Najar Peerayeh
- Bacteriology Department Tarbiat Modarres University Tehran Iran Bacteriology Department, Tarbiat Modarres University, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infection Research Center Mofid Childrens' Hospital Shahid Beheshti University of Medical Sciences Tehran Iran Pediatric Infection Research Center, Mofid Childrens' Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bita Bakhshi
- Bacteriology Department Tarbiat Modarres University Tehran Iran Bacteriology Department, Tarbiat Modarres University, Tehran, Iran
| | - Raheleh Sadat Sajadinia
- Shahid Beheshti University of Medical Sciences Tehran Iran Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Chandran S, Diwan V, Tamhankar A, Joseph B, Rosales-Klintz S, Mundayoor S, Lundborg C, Macaden R. Detection of carbapenem resistance genes and cephalosporin, and quinolone resistance genes along with oqxAB
gene in Escherichia coli
in hospital wastewater: a matter of concern. J Appl Microbiol 2014; 117:984-95. [DOI: 10.1111/jam.12591] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/07/2014] [Accepted: 06/25/2014] [Indexed: 01/22/2023]
Affiliation(s)
- S.P. Chandran
- Division of Infectious Diseases; St. John's Research Institute; Bangalore India
- Department of Microbiology; St. John's Medical College; Bangalore India
| | - V. Diwan
- Department of Public Health Sciences; Global Health/IHCAR; Karolinska Institutet; Stockholm Sweden
- Department of Public Health and Environment; R.D. Gardi Medical College; Ujjain India
- International Center for Health Research; R.D. Gardi Medical College; Ujjain India
| | - A.J. Tamhankar
- Department of Public Health Sciences; Global Health/IHCAR; Karolinska Institutet; Stockholm Sweden
- Department of Environmental Medicine; Indian Initiative for Management of Antibiotic Resistance (IIMAR); R D Gardi Medical College; Ujjain India
| | - B.V. Joseph
- Departments of Biotechnology; Christ University; Bangalore India
| | - S. Rosales-Klintz
- Department of Public Health Sciences; Global Health/IHCAR; Karolinska Institutet; Stockholm Sweden
| | - S. Mundayoor
- Mycobacterial Research Group; Department of Molecular Microbiology; Rajiv Gandhi Centre for Biotechnology; Thiruvananthapuram India
| | - C.S. Lundborg
- Department of Public Health Sciences; Global Health/IHCAR; Karolinska Institutet; Stockholm Sweden
| | - R. Macaden
- Division of Infectious Diseases; St. John's Research Institute; Bangalore India
| |
Collapse
|
49
|
Lower prevalence of hlyD, papC and cnf-1 genes in ciprofloxacin-resistant uropathogenic Escherichia coli than their susceptible counterparts isolated from southern India. J Infect Public Health 2014; 7:413-9. [PMID: 24861644 DOI: 10.1016/j.jiph.2014.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/04/2014] [Accepted: 04/09/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE The study was conducted to determine the association of the hlyD, papC and cnf-1 virulence genes with drug resistance in uropathogenic Escherichia coli (UPEC) isolated from cases of urinary tract infection (UTI). METHOD A total of 193 E. coli strains isolated from symptomatic cases of UTI in a tertiary care teaching hospital in Raichur, Northern Karnataka, India were included in the study. The antibiotic susceptibility pattern was determined by Kirby-Bauer's Disk Diffusion method, and the strains resistant to any of the third generation cephalosporins tested were further confirmed for extended-spectrum beta-lactamase (ESBL)-production by an E-strip test. Genotypic virulence markers, namely, hlyD, papC and cnf-1, were detected by the uniplex PCR method and the phylogenetic characterization was performed by a multiplex PCR assay. RESULTS The majority of the E. coli isolates belonged to the B2 phylogenetic group were significantly associated with ciprofloxacin-sensitivity and non-ESBL production (p<0.05). An increased prevalence of ciprofloxacin-sensitive strains over ciprofloxacin-resistant strains were observed among the UPEC isolates harboring the papC (72.9% vs. 40.2%; p<0.001), hlyD (43.7% vs. 21.6%; p<0.001) and cnf-1 (30.2% vs. 12.3%; p<0.05) genes. The presence of a multivirulent gene in the non-ESBL E. coli strains (44.5%) was significantly higher (p<0.05) than in the ESBL-producing strains (21%). CONCLUSIONS Among the UPEC isolates, the predominant B2 phylogenetic group was significantly associated with the ciprofloxacin-sensitive strains, as well as with the non-ESBL E. coli strains. The genotypic virulence markers of UPEC were associated with ciprofloxacin-sensitivity, and a significant number of the non-ESBL strains harbored multivirulent genes. The relationship between the presence of the virulence genes and ESBL production was complex and warrants further intensive studies.
Collapse
|
50
|
Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico. BIOMED RESEARCH INTERNATIONAL 2014; 2014:959206. [PMID: 24895634 PMCID: PMC4026957 DOI: 10.1155/2014/959206] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/20/2014] [Indexed: 12/04/2022]
Abstract
E coli isolates (108) from Mexican women, clinically diagnosed with urinary tract infection, were screened to identify virulence genes, phylogenetic groups, and antibiotic resistance. Isolates were identified by MicroScan4 system; additionally, the minimum inhibitory concentration (MIC) was assessed. The phylogenetic groups and 16 virulence genes encoding adhesins, toxins, siderophores, lipopolysaccharide (LPS), and invasins were identified by PCR. Phylogenetic groups distribution was as follows: B1 9.3%, A 30.6%, B2 55.6%, and D 4.6%. Virulence genes prevalence was ecp 98.1%, fimH 86.1%, traT 77.8%, sfa/focDE 74.1%, papC 62%, iutA 48.1%, fyuA 44.4%, focG 2.8%, sfaS 1.9%, hlyA 7.4%, cnf-1 6.5%, cdt-B 0.9%, cvaC 2.8%, ibeA 2.8%, and rfc 0.9%. Regarding antimicrobial resistance it was above 50% to ampicillin/sulbactam, ampicillin, piperacillin, trimethoprim/sulfamethoxazole, ciprofloxacin, and levofloxacin. Uropathogenic E. coli clustered mainly in the pathogenic phylogenetic group B2. The isolates showed a high presence of siderophores and adhesion genes and a low presence of genes encoding toxins. The high frequency of papC gene suggests that these isolates have the ability to colonize the kidneys. High resistance to drugs considered as first choice treatment such as trimethoprim/sulfamethoxazole and fluoroquinolones was consistently observed.
Collapse
|