1
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
2
|
Koku R, Futse JE, Morrison J, Brayton KA, Palmer GH, Noh SM. The Use of the Antigenically Variable Major Surface Protein 2 in the Establishment of Superinfection during Natural Tick Transmission of Anaplasma marginale in Southern Ghana. Infect Immun 2023; 91:e0050122. [PMID: 36877065 PMCID: PMC10112223 DOI: 10.1128/iai.00501-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/01/2023] [Indexed: 03/07/2023] Open
Abstract
Many vector-borne pathogens, including Anaplasma spp., Borrelia spp., Trypanosoma spp., and Plasmodium spp., establish persistent infection in the mammalian host by using antigenic variation. These pathogens are also able to establish strain superinfection, defined as infection of an infected host with additional strains of the same pathogen despite an adaptive immune response. The ability to establish superinfection results in a population of susceptible hosts even with high pathogen prevalence. It is likely that antigenic variation, responsible for persistent infection, also plays a role in the establishment of superinfection. Anaplasma marginale, an antigenically variable, obligate intracellular, tickborne bacterial pathogen of cattle, is well suited for the study of the role of antigenically variant surface proteins in the establishment of superinfection. Anaplasma marginale establishes persistent infection by variation in major surface protein 2 (msp2), which is encoded by approximately six donor alleles that recombine into a single expression site to produce immune escape variants. Nearly all cattle in regions of high prevalence are superinfected. By tracking the acquisition of strains in calves through time, the complement of donor alleles, and how those donor alleles are expressed, we determined that simple variants derived from a single donor allele, rather than multiple donor alleles, were predominant. Additionally, superinfection is associated with the introduction of new donor alleles, but these new donor alleles are not predominantly used to establish superinfection. These findings highlight the potential for competition among multiple strains of a pathogen for resources within the host and the balance between pathogen fitness and antigenic variation.
Collapse
Affiliation(s)
- Roberta Koku
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, USA
| | - James E. Futse
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Jillian Morrison
- Department of Mathematical and Computational Sciences, The College of Wooster, Wooster, Ohio, USA
| | - Kelly A. Brayton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Guy H. Palmer
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, Washington, USA
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Crosby FL, Eskeland S, Bø-Granquist EG, Munderloh UG, Price LD, Al-Khedery B, Stuen S, Barbet AF. Comparative Whole Genome Analysis of an Anaplasma phagocytophilum Strain Isolated from Norwegian Sheep. Pathogens 2022; 11:pathogens11050601. [PMID: 35631122 PMCID: PMC9146208 DOI: 10.3390/pathogens11050601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Anaplasma phagocytophilum is a Gram-negative obligate intracellular tick-borne alphaproteobacteria (family Anaplasmatacea, order Rickettsiales) with a worldwide distribution. In Norway, tick borne fever (TBF), caused by A. phagocytophilum, presents a major challenge in sheep farming. Despite the abundance of its tick vector, Ixodes ricinus, and A. phagocytophilum infections in wild and domestic animals, reports of infections in humans are low compared with cases in the U.S. Although A. phagocytophilum is genetically diverse and complex infections (co-infection and superinfection) in ruminants and other animals are common, the underlying genetic basis of intra-species interactions and host-specificity remains unexplored. Here, we performed whole genome comparative analysis of a newly cultured Norwegian A. phagocytophilum isolate from sheep (ApSheep_NorV1) with 27 other A. phagocytophilum genome sequences derived from human and animal infections worldwide. Although the compared strains are syntenic, there is remarkable genetic diversity between different genomic loci including the pfam01617 superfamily that encodes the major, neutralization-sensitive, surface antigen Msp2/p44. Blast comparisons between the msp2/p44 pseudogene repertoires from all the strains showed high divergence between U. S. and European strains and even between two Norwegian strains. Based on these comparisons, we concluded that in ruminants, complex infections can be attributed to infection with strains that differ in their msp2/p44 repertoires, which has important implications for pathogen evolution and vaccine development. We also present evidence for integration of rickettsial DNA into the genome of ISE6 tick cells.
Collapse
Affiliation(s)
- Francy L. Crosby
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (B.A.-K.); (A.F.B.)
- Correspondence:
| | - Sveinung Eskeland
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1432, Norway; (S.E.); (E.G.B.-G.); (S.S.)
| | - Erik G. Bø-Granquist
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1432, Norway; (S.E.); (E.G.B.-G.); (S.S.)
| | - Ulrike G. Munderloh
- Department of Entomology, College of Food, Agricultural and Natural Resources, University of Minnesota, St. Paul, MN 55108, USA; (U.G.M.); (L.D.P.)
| | - Lisa D. Price
- Department of Entomology, College of Food, Agricultural and Natural Resources, University of Minnesota, St. Paul, MN 55108, USA; (U.G.M.); (L.D.P.)
| | - Basima Al-Khedery
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (B.A.-K.); (A.F.B.)
| | - Snorre Stuen
- Department of Production Animal Clinical Sciences, Section of Small Ruminant Research, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 1432, Norway; (S.E.); (E.G.B.-G.); (S.S.)
| | - Anthony F. Barbet
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA; (B.A.-K.); (A.F.B.)
| |
Collapse
|
4
|
Bauer BU, Răileanu C, Tauchmann O, Fischer S, Ambros C, Silaghi C, Ganter M. Anaplasma phagocytophilum and Anaplasma ovis-Emerging Pathogens in the German Sheep Population. Pathogens 2021; 10:1298. [PMID: 34684247 PMCID: PMC8537415 DOI: 10.3390/pathogens10101298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge on the occurrence of pathogenic tick-borne bacteria Anaplasma phagocytophilum and Anaplasma ovis is scarce in sheep from Germany. In 2020, owners from five flocks reported ill thrift lambs and ewes with tick infestation. Out of 67 affected sheep, 55 animals were clinically examined and hematological values, blood chemistry and fecal examinations were performed to investigate the underlying disease causes. Serological tests (cELISA, IFAT) and qPCR were applied to all affected sheep to rule out A. phagocytophilum and A. ovis as a differential diagnosis. Ticks were collected from selected pastures and tested by qPCR. Most animals (n = 43) suffered from selenium deficiency and endoparasites were detected in each flock. Anaplasma spp. antibodies were determined in 59% of examined sheep. Seventeen animals tested positive for A. phagocytophilum by qPCR from all flocks and A. phagocytophilum was also detected in eight pools of Ixodes ricinus. Anaplasma phagocytophilum isolates from sheep and ticks were genotyped using three genes (16S rRNA, msp4 and groEL). Anaplasma ovis DNA was identified in six animals from one flock. Clinical, hematological and biochemical changes were not significantly associated with Anaplasma spp. infection. The 16S rRNA analysis revealed known variants of A. phagocytophilum, whereas the msp4 and groEL showed new genotypes. Further investigations are necessary to evaluate the dissemination and health impact of both pathogens in the German sheep population particularly in case of comorbidities.
Collapse
Affiliation(s)
- Benjamin Ulrich Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Cristian Răileanu
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Oliver Tauchmann
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Susanne Fischer
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
| | - Christina Ambros
- Sheep Health Service, Bavarian Animal Health Service, Senator-Gerauer-Straße 23, 85586 Poing-Grub, Germany;
| | - Cornelia Silaghi
- Institute of Infectiology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald Isle of Riems, Germany; (C.R.); (O.T.); (S.F.); (C.S.)
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Domstraße 11, 17489 Greifswald, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| |
Collapse
|
5
|
Keyte S, Abdullah S, James K, Newbury H, Helps C, Tasker S, Wall R. Prevalence and distribution of Anaplasma phagocytophilum in ticks collected from dogs in the United Kingdom. Vet Rec 2021; 188:e12. [PMID: 33818768 DOI: 10.1002/vetr.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Anaplasma phagocytophilum is the etiological agent of canine granulocytic anaplasmosis in dogs and causes human granulocytic anaplasmosis (HGA). Tick-borne anaplasmosis has been recognised as an emerging zoonotic health concern worldwide. The aim of the present study was to determine the prevalence of A. phagocytophilum in ticks collected from dogs in the UK and map its distribution. Routine surveillance of tick-borne disease is essential as part of a "One Health" approach to infectious disease management. METHODS Tick DNA samples collected in 2015 as part of a large-scale tick surveillance programme were analysed using a previously validated diagnostic quantitative PCR for A. phagocytophilum. RESULTS PCR analysis indicated that 138 out of 2994 tick DNA samples analysed were positive for A. phagocytophilum, a prevalence of 4.6% (95% CI: 3.89-5.42). Among these 138 tick DNA samples, 131 were from Ixodes ricinus, six were from Ixodes hexagonus and one was from Ixodes canisuga. Three of the I. ricinus tick DNA samples positive for A. phagocytophilum DNA were also positive for Borrelia spp. DNA and one was positive for Babesia spp. DNA, indicating co-infection. The ticks positive for the pathogen DNA were found widely distributed throughout the UK. CONCLUSIONS These data provide important information on the prevalence and wide distribution of A. phagocytophilum in ticks infesting dogs within the UK.
Collapse
Affiliation(s)
- Sophie Keyte
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Swaid Abdullah
- School of Biological Sciences, University of Bristol, Bristol, UK.,School of Veterinary Science, University of Queensland, Queensland, Australia
| | - Kate James
- Molecular Diagnostic Unit, Diagnostic Laboratories, Langford Vets, University of Bristol, Bristol, UK
| | | | - Chris Helps
- Molecular Diagnostic Unit, Diagnostic Laboratories, Langford Vets, University of Bristol, Bristol, UK
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol, UK.,Molecular Diagnostic Unit, Diagnostic Laboratories, Langford Vets, University of Bristol, Bristol, UK
| | - Richard Wall
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Clinical and immunological responses in sheep after inoculation with Himar1-transformed Anaplasma phagocytophilum and subsequent challenge with a virulent strain of the bacterium. Vet Immunol Immunopathol 2020; 231:110165. [PMID: 33316536 DOI: 10.1016/j.vetimm.2020.110165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/21/2022]
Abstract
In Norway, the tick-transmitted bacterium Anaplasma phagocytophilum is estimated to cause tick-borne fever (TBF) in 300 000 lambs on pastures each year, resulting in economic and animal welfare consequences. Today, prophylactic measures mainly involve the use of acaricides, but a vaccine has been requested by farmers and veterinarians for decades. Several attempts have been made to produce a vaccine against A. phagocytophilum including antigenic surface proteins, inactivated whole cell vaccines and challenge followed by treatment. In the current study, a virulent wild type strain of A. phagocytophilum named Ap.Norvar1 (16S rRNA sequence partial identical to sequence in GenBank acc.no M73220) was subject to genetic transformation with a Himar1-transposon, which resulted in three bacterial mutants, capable of propagation in a tick cell line (ISE6). In order to test the immunogenicity and pathogenicity of the live, mutated bacteria, these were clinically tested in an inoculation- and challenge study in sheep. One group was inoculated with the Ap.Norvar1 as an infection control. After inoculation, the sheep inoculated with mutated bacteria and the Ap.Norvar1 developed typical clinical signs of infection and humoral immune response. After challenge with Ap.Norvar1, 28 days later all groups inoculated with mutated bacteria showed clinical signs of tick-borne fever and bacteremia while the group initially inoculated with the Ap.Norvar1, showed protection against clinical disease. The current study shows a weak, but partial protection against infection in animals inoculated with mutated bacteria, while animals that received Ap.Norvar1 both for inoculation and challenge, responded with homologues protection.
Collapse
|
7
|
Almazán C, Fourniol L, Rouxel C, Alberdi P, Gandoin C, Lagrée AC, Boulouis HJ, de la Fuente J, Bonnet SI. Experimental Ixodes ricinus-Sheep Cycle of Anaplasma phagocytophilum NV2Os Propagated in Tick Cell Cultures. Front Vet Sci 2020; 7:40. [PMID: 32118063 PMCID: PMC7015893 DOI: 10.3389/fvets.2020.00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
The causative agent of tick-borne fever and human granulocytic anaplasmosis, Anaplasma phagocytophilum, is transmitted by Ixodes ricinus, and is currently considered an emerging disease throughout Europe. In this study, we established a model of A. phagocytophilum sheep infection and I. ricinus transmission using the European Norway variant 2 ovine strain (NV2Os) propagated in both IDE8 and ISE6 tick cells. Two sheep were inoculated with IDE8 tick cells infected with NV2Os. Both sheep developed A. phagocytophilum infection as determined by qPCR and PCR, the presence of fever 4 days post inoculation (dpi), the observation of morulae in granulocytes at 6 dpi, and the detection of A. phagocytophilum antibodies at 14 dpi. A. phagocytophilum was detected by PCR in skin, lung, small intestine, liver, spleen, uterus, bone marrow, and mesenteric lymph node from necropsies performed at 14 and 15 dpi. One sheep was infested during the acute phase of infection with I. ricinus nymphs from a pathogen-free colony. After molting, A. phagocytophilum transstadial transmission in ticks was validated with qPCR positive bacterial detection in 80% of salivary glands and 90% of midguts from female adults. Infected sheep blood collected at 14 dpi was demonstrated to be able to infect ISE6 tick cells, thus enabling the infection of two additional naive sheep, which then went on to develop similar clinical signs to the sheep infected previously. One of the sheep remained persistently infected until 115 dpi when it was euthanized, and transmitted bacteria to 70 and 2.7% of nymphs engorged as larvae during the acute and persistent infection stages, respectively. We then demonstrated that these infected nymphs were able to transmit the bacteria to one of two other naive infested sheep. As expected, when I. ricinus females were engorged during the acute phase of infection, no A. phagocytophilum transovarial transmission was detected. The development of this new experimental model will facilitate future research on this tick-borne bacterium of increasing importance, and enable the evaluation of any new tick/transmission control strategies.
Collapse
Affiliation(s)
- Consuelo Almazán
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Lisa Fourniol
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Clotilde Rouxel
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Christelle Gandoin
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Anne-Claire Lagrée
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Henri-Jean Boulouis
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Sarah I Bonnet
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
8
|
Razanske I, Rosef O, Radzijevskaja J, Bratchikov M, Griciuviene L, Paulauskas A. Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer ( Cervus elaphus) and roe deer ( Capreolus capreolus) in Southern Norway. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:127-134. [PMID: 30766793 PMCID: PMC6360459 DOI: 10.1016/j.ijppaw.2019.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/19/2023]
Abstract
Anaplasma phagocytophilum and Babesia spp. are causative agents of tick-borne infections that are increasingly considered as a threat to animal and public health. To assess the role of cervids in the maintenance of zoonotic pathogens in Norway, we investigated the prevalence of A. phagocytophilum and Babesia spp. in free-ranging roe deer and red deer. Initial screening of spleen samples of 104 animals by multiplex real-time PCR targeting the major surface protein (msp2) gene and 18S rRNA revealed the presence of A. phagocytophilum infection in 81.1% red deer (Cervus elaphus) and 88.1% roe deer (Capreolus capreolus), and Babesia spp. parasites in 64.9% red deer and 83.6% roe deer, respectively. Co-infections were found in 62.2% red deer and 79.9% roe deer. Nested PCR and sequence analysis of partial msp4 and 18S rRNA genes were performed for molecular characterization of A. phagocytophilum strains and Babesia species. A total of eleven A. phagocytophilum msp4 gene sequence variants were identified: five different variants were 100% identical to corresponding A. phagocytophilum sequences deposited in the GenBank database, while other six sequence variants had unique nucleotide polymorphisms. Sequence analysis of the 18S rRNA gene demonstrated the presence of multiple Babesia species, including Babesia capreoli, Babesia divergens, Babesia venatorum and Babesia odocoilei/Babesia cf. odocoilei. This study is the first report demonstrating the prevalence and molecular characterization of A. phagocytophilum strains and Babesia species in roe deer and red deer in Norway. The high infection and co-infection rates with A. phagocytophilum and Babesia spp. in red deer and roe deer suggest that these cervids may play an important role in the transmission of single and multiple pathogens.
Collapse
Affiliation(s)
- Irma Razanske
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania
| | - Olav Rosef
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania.,Rosef Field Research Station, Frolandsveien 2667, 4828, Mjåvatn, Norway
| | - Jana Radzijevskaja
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania
| | - Maksim Bratchikov
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania.,Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, M.K. Čiurlionio 21, LT-03101, Vilnius, Lithuania
| | - Loreta Griciuviene
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania
| | - Algimantas Paulauskas
- Department of Biology, Vytautas Magnus University, Vileikos 8, LT -444404, Kaunas, Lithuania
| |
Collapse
|
9
|
Hovius E, de Bruin A, Schouls L, Hovius J, Dekker N, Sprong H. A lifelong study of a pack Rhodesian ridgeback dogs reveals subclinical and clinical tick-borne Anaplasma phagocytophilum infections with possible reinfection or persistence. Parasit Vectors 2018; 11:238. [PMID: 29650038 PMCID: PMC5898011 DOI: 10.1186/s13071-018-2806-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Background Various tick-borne infections often occur without specific clinical signs and are therefore notoriously hard to diagnose separately in veterinary practice. Longitudinal studies over multiple tick seasons performing clinical, serological and molecular investigations in parallel, may elucidate the relationship between infection and disease. In this regard, six related Rhodesian Ridgeback dogs living as a pack became subject of lifetime studies due to ongoing tick infestations and recurring clinical problems. Blood samples for diagnostic tests were obtained throughout the years 2000 to 2009. Methods Data collected from clinical observations, hemograms, serology and detection of Anaplasma phagocytophilum, either by microscopy or by DNA amplification and typing, were placed in a time line. This dataset essentially presents as a prospective study enabling the association of the Anaplasma infections with occurring disease. Results All six dogs were infected, and two of them developed particular clinical symptoms that could be associated with Anaplasma infections over time. More specifically, episodes of general malaise with fever and purpura with thrombocytopenia and bacterial inclusions in granulocytes, were found concurrently with Anaplasma DNA and specific antibodies in peripheral blood samples. DNA from A. phagocytophilum variant 4 (of 16S rRNA) was found in multiple and sequential samples. DNA-sequences from variant 1 and the human granulocytic ehrlichiosis (HGE) agent were also detected. Conclusions In this study two lifelong cases of canine anaplasmosis (CGA) are presented. The data show that dogs can be naturally infected concurrently with A. phagocytophilum variant 1, variant 4 and the HGE agent. The ongoing presence of specific antibodies and Anaplasma DNA in one dog indicates one year of persisting infection. Treatment with doxycycline during recurring clinical episodes in the other dog resulted in transient clinical improvement and subsequent disappearance of specific antibodies and DNA suggesting that re-infection occurred. Electronic supplementary material The online version of this article (10.1186/s13071-018-2806-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emil Hovius
- Amphipoda, Biology and Veterinary Science, Veldhoven, The Netherlands.
| | - Arnout de Bruin
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo Schouls
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Joppe Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels Dekker
- Department of Infectious Diseases and Immunology, Veterinary Faculty, Utrecht University, Utrecht, The Netherlands
| | - Hein Sprong
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
10
|
Teshale S, Geysen D, Ameni G, Dorny P, Berkvens D. Survey of Anaplasma phagocytophilum and Anaplasma sp. 'Omatjenne' infection in cattle in Africa with special reference to Ethiopia. Parasit Vectors 2018. [PMID: 29523210 PMCID: PMC5845267 DOI: 10.1186/s13071-018-2633-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background As evidence of the infection of domestic animals by Anaplasma phagocytophilum and Anaplasma sp. ‘Omatjenne’ is presently becoming available, understanding the epidemiological and ecological significance of infection is important to quantify the clinical and socio-economic impact of the diseases they cause. Methods The first aim of this study was to analyse the occurrence of A. phagocytophilum and Anaplasma sp. ‘Omatjenne’ in cattle samples collected from selected African countries using a polymerase chain reaction and restriction enzyme fragment length polymorphism. Secondly, this study was aimed at the molecular identification of Ehrlichia spp. and Anaplasma spp. infection in ruminants raised under different production systems in selected sites in central Ethiopia. Results In total, 695 samples from cattle in six African countries were analysed. Overall, 45 positive results were obtained for Anaplasma sp. ‘Omatjenne’ (6.47%) and 19 for A. phagocytophilum (2.73%). Anaplasma sp. ‘Omatjenne’ was detected in all countries except Tanzania while A. phagocytophilum was detected only in samples from Ethiopia. The proportion of samples tested positive for Anaplasma sp. ‘Omatjenne’ ranged from 1.2% in Morocco to 16% in Rwanda. The occurrence of both agents is now confirmed in African cattle. For the survey in Ethiopia a semi-nested 16S rDNA polymerase chain reaction followed by restriction fragment length polymorphism was used for the identification of Ehrlichia spp. and Anaplasma spp. in blood samples. Randomly selected samples were also analysed by pCS20 polymerase chain reaction for the detection of E. ruminantium. Positive results were obtained for E. ruminantium and five species of Anaplasma including a zoonotic species. To our knowledge, this is the first report of infection of domestic ruminants with A. phagocytophilum, A. ovis and Anaplasma sp. ‘Omatjenne’ in Ethiopia. Conclusion The present study showed widespread occurrence of Anaplasma sp. 'Omatijenne' in African cattle and five Anaplasma species in Ethiopia.
Collapse
Affiliation(s)
- Sori Teshale
- Addis Ababa University, College of Veterinary Medicine and Agriculture, Bishoftu, Ethiopia. .,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Ghent University, Faculty of Veterinary Medicine, Merelbeke, Belgium.
| | - Dirk Geysen
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Gobena Ameni
- Addis Ababa University, Akililu Lemma Institute of Pathobiology, Addis Ababa, Ethiopia
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Ghent University, Faculty of Bio-engineering Sciences, Ghent, Belgium
| | - Dirk Berkvens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Ghent University, Faculty of Bio-engineering Sciences, Ghent, Belgium
| |
Collapse
|
11
|
Lagrée AC, Rouxel C, Kevin M, Dugat T, Girault G, Durand B, Pfeffer M, Silaghi C, Nieder M, Boulouis HJ, Haddad N. Co-circulation of different A. phagocytophilum variants within cattle herds and possible reservoir role for cattle. Parasit Vectors 2018. [PMID: 29523202 PMCID: PMC5845262 DOI: 10.1186/s13071-018-2661-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Anaplasma phagocytophilum is a zoonotic tick-borne intracellular alpha-proteobacterium causing tick-borne fever, which leads to significant economic losses in domestic ruminants in Europe. Its epidemiological cycles are complex and reservoir host species of bovine strains have not yet been identified. Given that little genetic information is available on strains circulating within a defined bovine environment, our objective was to assess the genetic diversity of A. phagocytophilum obtained from the same farms over time. Methods Blood samplings were performed several times in two European herds. In the French herd, 169 EDTA-blood samples were obtained from 115 cows (32 were sampled two to four times). In the German herd, 20 cows were sampled six times (120 EDTA-blood samples). The presence of A. phagocytophilum DNA was assessed using a qPCR targeting msp2. The positive DNA samples underwent MLST at nine genetic markers (typA, ctrA, msp4, pleD, recG, polA, groEL, gyrA, and ankA). For each locus, sequences were aligned with available bacterial sequences derived from cattle, horse, dog, and roe deer hosts, and concatenated neighbor joining trees were constructed using three to six loci. Results Around 20% (57/289) of samples were positive. Forty positive samples from 23 French and six German cows (11 of them being positive at two time points) were sequenced. Six loci (typA, ctrA, msp4, pleD, recG, and polA) allowed to build concatenated phylogenetic trees, which led to two distinct groups of bovine variants in the French herd (hereafter called A and B), whereas only group A was detected in the German herd. In 42% of French samples, double chromatogram peaks were encountered in up to four loci. Eleven cows were found infected three weeks to 17 months after first sampling and harboured a new variant belonging to one or the other group. Conclusions Our results demonstrate the occurrence of two major bovine strain groups and the simultaneous infection of single cows by more than one A. phagocytophilum strain. This challenges the role of cattle as reservoirs for A. phagocytophilum. This role may be facilitated via long-term bacterial persistence in individual cows and active circulation at the herd scale. Electronic supplementary material The online version of this article (10.1186/s13071-018-2661-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Claire Lagrée
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Anses, INRA, Université Paris-Est, Maisons-Alfort, France
| | - Clotilde Rouxel
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Anses, INRA, Université Paris-Est, Maisons-Alfort, France
| | - Maëllys Kevin
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Anses, INRA, Université Paris-Est, Maisons-Alfort, France.,Unité Zoonoses Bactériennes, Anses, Université Paris-Est, Maisons-Alfort, France
| | - Thibaud Dugat
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Anses, INRA, Université Paris-Est, Maisons-Alfort, France
| | - Guillaume Girault
- Unité Zoonoses Bactériennes, Anses, Université Paris-Est, Maisons-Alfort, France
| | - Benoît Durand
- Unité d'Epidémiologie, Anses, Université Paris-Est, Maisons-Alfort, France
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Cornelia Silaghi
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marion Nieder
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Henri-Jean Boulouis
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Anses, INRA, Université Paris-Est, Maisons-Alfort, France
| | - Nadia Haddad
- UMR BIPAR, Ecole Nationale Vétérinaire d'Alfort, Anses, INRA, Université Paris-Est, Maisons-Alfort, France.
| |
Collapse
|
12
|
|
13
|
Stuen S, Okstad W, Artursson K, Al-Khedery B, Barbet A, Granquist EG. Lambs immunized with an inactivated variant of Anaplasma phagocytophilum. Acta Vet Scand 2015. [PMID: 26205515 PMCID: PMC4513959 DOI: 10.1186/s13028-015-0131-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) is an obligate intracellular bacterium causing the disease tick-borne fever (TBF) in domestic ruminants. An effective vaccine against the infection has been demanded for livestock by sheep farmers and veterinary practitioners for years. Findings In the present study, we immunized lambs with an inactivated suspension of 1 × 108 killed A. phagocytophilum organisms mixed with adjuvant (Montanide ISA 61VG; Seppic). Twelve 9-months-old lambs of the Norwegian White Sheep breed were used. A full two-dose series of immunization was given subcutaneously to six lambs with a 4 week interval between injections. One month after the last immunization, all lambs were challenged with the homologous viable variant of A. phagocytophilum. After challenge, all lambs showed clinical responses for several days, although the immunized lambs reacted with an anamnestic response, i.e. significant reduction in infection rate and a significantly higher antibody titer. Conclusion Immunization with inactivated A. phagocytophilum did not protect lambs TBF.
Collapse
|
14
|
Chastagner A, Dugat T, Vourc'h G, Verheyden H, Legrand L, Bachy V, Chabanne L, Joncour G, Maillard R, Boulouis HJ, Haddad N, Bailly X, Leblond A. Multilocus sequence analysis of Anaplasma phagocytophilum reveals three distinct lineages with different host ranges in clinically ill French cattle. Vet Res 2014; 45:114. [PMID: 25487348 PMCID: PMC4334609 DOI: 10.1186/s13567-014-0114-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
Molecular epidemiology represents a powerful approach to elucidate the complex epidemiological cycles of multi-host pathogens, such as Anaplasma phagocytophilum. A. phagocytophilum is a tick-borne bacterium that affects a wide range of wild and domesticated animals. Here, we characterized its genetic diversity in populations of French cattle; we then compared the observed genotypes with those found in horses, dogs, and roe deer to determine whether genotypes of A. phagocytophilum are shared among different hosts. We sampled 120 domesticated animals (104 cattle, 13 horses, and 3 dogs) and 40 wild animals (roe deer) and used multilocus sequence analysis on nine loci (ankA, msp4, groESL, typA, pled, gyrA, recG, polA, and an intergenic region) to characterize the genotypes of A. phagocytophilum present. Phylogenic analysis revealed three genetic clusters of bacterial variants in domesticated animals. The two principal clusters included 98% of the bacterial genotypes found in cattle, which were only distantly related to those in roe deer. One cluster comprised only cattle genotypes, while the second contained genotypes from cattle, horses, and dogs. The third contained all roe deer genotypes and three cattle genotypes. Geographical factors could not explain this clustering pattern. These results suggest that roe deer do not contribute to the spread of A. phagocytophilum in cattle in France. Further studies should explore if these different clusters are associated with differing disease severity in domesticated hosts. Additionally, it remains to be seen if the three clusters of A. phagocytophilum genotypes in cattle correspond to distinct epidemiological cycles, potentially involving different reservoir hosts.
Collapse
Affiliation(s)
- Amélie Chastagner
- INRA, UR346 Epidémiologie Animale, F-63122, Saint Genès Champanelle, France.
| | - Thibaud Dugat
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 23 avenue du Général de Gaulle, 94706, Maisons-Alfort, France.
| | - Gwenaël Vourc'h
- INRA, UR346 Epidémiologie Animale, F-63122, Saint Genès Champanelle, France.
| | - Hélène Verheyden
- INRA, CEFS, UR035, 24 chemin de Borde Rouge - Auzeville, CS 52627, F-31326, Castanet Tolosan, France.
| | - Loïc Legrand
- LABÉO - Frank Duncombe, Unite Risques Microbiens (U2RM), Normandie Universite, EA 4655, Caen, Normandy, France.
| | - Véronique Bachy
- Laboratoire Vétérinaire Départemental du Rhône, Campus vétérinaire VetAgro Sup, 1 avenue Bourgelat, 69280, Marcy l'Etoile, France.
| | - Luc Chabanne
- Université de Lyon, VetAgro Sup, Jeune Equipe Hémopathogènes Vectorisés, F-69280, Marcy l'Etoile, France.
| | - Guy Joncour
- Groupe Vétérinaire de Callac, 26 rue du Cleumeur, 22160, Callac, France.
| | - Renaud Maillard
- Ecole Nationale Vétérinaire de Toulouse, Unité pathologie des ruminants, 23 Chemin des Capelles, 31076, Toulouse, France.
| | - Henri-Jean Boulouis
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 23 avenue du Général de Gaulle, 94706, Maisons-Alfort, France.
| | - Nadia Haddad
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 23 avenue du Général de Gaulle, 94706, Maisons-Alfort, France.
| | - Xavier Bailly
- INRA, UR346 Epidémiologie Animale, F-63122, Saint Genès Champanelle, France.
| | - Agnès Leblond
- INRA, UR346 Epidémiologie Animale, F-63122, Saint Genès Champanelle, France. .,Département Hippique, VetAgroSup, F-69280, Marcy L'Etoile, France.
| |
Collapse
|
15
|
Reif KE, Palmer GH, Crowder DW, Ueti MW, Noh SM. Restriction of Francisella novicida genetic diversity during infection of the vector midgut. PLoS Pathog 2014; 10:e1004499. [PMID: 25392914 PMCID: PMC4231110 DOI: 10.1371/journal.ppat.1004499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/02/2014] [Indexed: 11/26/2022] Open
Abstract
The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as “ecological filters” for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology. Co-infection, the presence of multiple genotypes of the same pathogen species within an infected individual, is common. Genotype diversity, defined as the number of unique genotypes, and the interaction between genotypes, can strongly influence virulence and pathogen transmission. Understanding how genotypic diversity affects transmission of pathogens that naturally cycle among disparate hosts, such as vector-borne pathogens, is especially important as the capacity of the host and vector to sustain genotypic diversity may differ. To address this, we exposed Dermacentor andersoni ticks, via infected mice, to variably diverse populations of Francisella novicida genotypes. Interestingly, we found that ticks served as greater ecological filters for genotypic diversity compared to mice. This loss in genotypic diversity was due to both stochastic and selective forces. Based on these data and a model, we determined that high numbers of ticks in an environment support high genotypic diversity, while genotypic diversity will be lost rapidly in environments with low tick numbers. Together, these results provide evidence that vector population dynamics, vector-to-host ratios, and competition among pathogen genotypes play critical roles in the maintenance of pathogen genotypic diversity.
Collapse
Affiliation(s)
- Kathryn E. Reif
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
- * E-mail:
| | - Guy H. Palmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - David W. Crowder
- Department of Entomology, Washington State University, Pullman, Washington, United States of America
| | - Massaro W. Ueti
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
| | - Susan M. Noh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington, United States of America
| |
Collapse
|
16
|
Temporal and spatial variation in Anaplasma phagocytophilum infection in Swedish moose (Alces alces). Epidemiol Infect 2013; 142:1205-13. [PMID: 24001524 PMCID: PMC4045167 DOI: 10.1017/s0950268813002094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
SUMMARY The occurrence of Anaplasma phagocytophilum was investigated in spleen and serum samples from Swedish moose (Alces alces) in southern Sweden (island and mainland). Samples were analysed for presence of A. phagocytophilum DNA by real-time PCR (n = 263), and for Anaplasma antibodies with ELISA serology (n = 234). All serum samples had antibodies against A. phagocytophilum. The mean DNA-based prevalence was 26·3%, and significant (P < 0·01) temporal, and spatial variation was found. Island moose had significantly (P < 0·001) higher prevalence of A. phagocytophilum DNA than moose from the mainland areas. Two samples were sequenced to determine genetic variation in the 16S rRNA and groESL genes. Genetic sequence similarity with the human granulocytic anaplasmosis agent, equine granulocytic ehrlichiosis agent, and different wildlife-associated A. phagocytophilum variants were observed in the 16S rRNA and groESL genes. Our study shows that moose are exposed to A. phagocytophilum in Sweden, and represent a potential wildlife reservoir of the pathogen.
Collapse
|
17
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
18
|
Grøva L, Olesen I, Steinshamn H, Stuen S. The effect of lamb age to a natural Anaplasma phagocytophilum infection. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|
20
|
Stuen S, Pettersen KS, Granquist EG, Bergström K, Bown KJ, Birtles RJ. Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks Tick Borne Dis 2013; 4:197-201. [PMID: 23414797 DOI: 10.1016/j.ttbdis.2012.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/11/2012] [Accepted: 11/28/2012] [Indexed: 11/15/2022]
Abstract
Infections by the ixodid tick-transmitted bacterial pathogen Anaplasma phagocytophilum are common in domestic ruminants and cervids in the coastal areas of southern Norway. Previous experimental work has shown that A. phagocytophilum strains recovered from red deer (Cervus elaphus) are infective in lambs, but epidemiological links between infections in red deer and sheep have yet to be established. To address this shortfall, the present study explores the genotypic relatedness between A. phagocytophilum strains infecting sympatric red deer and sheep. Blood from 32 lambs grazing on tick-infested pasture, and blood and tissues from 8 red deer shot in proximity to these pastures were collected during the summer and autumn of 2007. The presence of A. phagocytophilum in these samples was determined by PCR-based methods, and genotyping of detected strains was performed using comparative sequence analysis of 16S rDNA and msp4 fragments. A. phagocytophilum DNA was detected in 12 lambs and 7 red deer, 11 and 4 individuals of which 16S rDNA and msp4 sequence data were obtained from, respectively. A total of 9 genotypes were delineated, and only different individuals of the same host species were infected with indistinguishable A. phagocytophilum genotypes. Although 3 of the red deer-infecting genotypes belonged to a cluster of exclusively deer-associated strains phylogenetically remote from those commonly encountered in sheep, one red deer-infecting genotype, although unique, clustered tightly with genotypes associated with a wide range of hosts including sheep.
Collapse
Affiliation(s)
- Snorre Stuen
- Norwegian School of Veterinary Science, Department of Production Animal Clinical Sciences, Sandnes, Norway.
| | | | | | | | | | | |
Collapse
|
21
|
Stuen S, Enemark JMD, Artursson K, Nielsen B. Prophylactic treatment with flumethrin, a pyrethroid (Bayticol(®), Bayer), against Anaplasma phagocytophilum infection in lambs. Acta Vet Scand 2012; 54:31. [PMID: 22621773 PMCID: PMC3517450 DOI: 10.1186/1751-0147-54-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/08/2012] [Indexed: 11/23/2022] Open
Abstract
Backgroud Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) causes the disease tick-borne fever (TBF) in domestic ruminants and has for decades been one of the main scourges for the sheep industry in the coastal areas of Norway. Current control strategies are based on reduction of tick infestation by chemical acaricides. Methods In the present study, we investigated if frequent pour-on applications of pyrethroids would reduce tick infestion rate and seroprevalence of A. phagocytophilum infection in sheep. Forty lambs, one month old, of the Norwegian White Sheep breed were used. The lambs belonged to the experimental sheep flock at the Department of Production Animal Clinical Sciences. None of the lambs had been on I. ricinus infested pasture before turnout (day 0). All lambs were twins and twenty lambs were treated with a pour-on pyrethroid (Bayticol®, Bayer A/S, DK-2300) with a dose of 5 ml on days 0, 14, 28, 42, 56, 70, 84, 98, 112 and 128. Twenty lambs were untreated controls. The lambs were collected every fourteen days on pasture for treatment. In addition, the lambs were examined for ticks, blood sampled, weighed, and rectal temperature was recorded. Results and conclusion A significant reduction in tick infestion rate was detected on treated lambs. However, the present results indicate that frequent acaricide treatment does not reduce the seroprevalence to A. phagocytophilum on tick-infested pasture.
Collapse
|
22
|
Paulauskas A, Radzijevskaja J, Rosef O. Molecular detection and characterization of Anaplasma phagocytophilum strains. Comp Immunol Microbiol Infect Dis 2012; 35:187-95. [DOI: 10.1016/j.cimid.2012.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 11/29/2022]
|
23
|
Rar V, Golovljova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. INFECTION GENETICS AND EVOLUTION 2011; 11:1842-61. [DOI: 10.1016/j.meegid.2011.09.019] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/18/2022]
|
24
|
Silaghi C, Scheuerle MC, Friche Passos LM, Thiel C, Pfister K. PCR detection of Anaplasma phagocytophilum in goat flocks in an area endemic for tick-borne fever in Switzerland. Parasite 2011; 18:57-62. [PMID: 21395206 PMCID: PMC3671408 DOI: 10.1051/parasite/2011181057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Central Switzerland is a highly endemic region for tick-borne fever (TBF) in cattle, however, little is known about A. phagocytophilum in goats. In the present study, 72 animals from six goat flocks (373 EDTA blood-samples) in Central Switzerland were analysed for A. phagocytophilum DNA. A real-time PCR targeting the msp2 gene of A. phagocytophilum was performed and in positive samples the partial 16S rRNA, groEL and msp4 gene were amplified for sequence analysis. Four DNA extracts were positive. Different sequence types on basis of the amplified genes were found. For comparison, sequences of A. phagocytophilum from 12 cattle (originating from Switzerland and Southern Germany) were analysed. The 16S rRNA gene sequences from cattle were all identical amongst each other, but the groEL and msp4 gene differed depending on the origin of the cattle samples and differed from the variants from goats. This study clearly provides molecular evidence for the presence of different types of A. phagocytophilum in goat flocks in Switzerland, a fact which deserves more thorough attention in clinical studies.
Collapse
Affiliation(s)
- C Silaghi
- Institute of Comparative Tropical Medicine and Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Leopoldstr. 5, 80802 Munich, Germany
| | | | | | | | | |
Collapse
|
25
|
Grøva L, Olesen I, Steinshamn H, Stuen S. Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth. Acta Vet Scand 2011; 53:30. [PMID: 21569524 PMCID: PMC3117741 DOI: 10.1186/1751-0147-53-30] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 05/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A major challenge in sheep farming during the grazing season along the coast of south-western Norway is tick-borne fever (TBF) caused by the bacteria Anaplasma phagocytophilum that is transmitted by the tick Ixodes ricinus. METHODS A study was carried out in 2007 and 2008 to examine the prevalence of A. phagocytophilum infection and effect on weaning weight in lambs. The study included 1208 lambs from farms in Sunndal Ram Circle in Møre and Romsdal County in Mid-Norway, where ticks are frequently observed. All lambs were blood sampled and serum was analyzed by an indirect fluorescent antibody assay (IFA) to determine an antibody status (positive or negative) to A. phagocytophilum infection. Weight and weight gain and possible effect of infection were analyzed using ANOVA and the MIXED procedure in SAS. RESULTS The overall prevalence of infection with A. phagocytophilum was 55%. A lower weaning weight of 3% (1.34 kg, p < 0.01) was estimated in lambs seropositive to an A. phagocytophilum infection compared to seronegative lambs at an average age of 137 days. CONCLUSIONS The results show that A. phagocytophilum infection has an effect on lamb weight gain. The study also support previous findings that A. phagocytophilum infection is widespread in areas where ticks are prevalent, even in flocks treated prophylactic with acaricides.
Collapse
|
26
|
Stuen S, Longbottom D. Treatment and control of chlamydial and rickettsial infections in sheep and goats. Vet Clin North Am Food Anim Pract 2011; 27:213-233. [PMID: 21215905 DOI: 10.1016/j.cvfa.2010.10.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small ruminants are susceptible to several chlamydial and rickettsial infections. Some of them, such as Ehrlichia ruminantium, have a great impact on the sheep and goat industry while others, such as Coxiella burnetii, are important zoonotic agents. This review focuses on measures of treatment and control for the following organisms: Chlamydophila abortus (formerly Chlamydia psittaci immunotype 1), Coxiella burnetii, Anaplasma ovis, Anaplasma phagocytophilum, and Ehrlichia ruminantium.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, Kyrkjevegen 332/334, N-4325 Sandnes, Norway.
| | - David Longbottom
- Pentlands Science Park, Moredun Research Institute, International Research Centre, Bush Loan, Penicuik, Midlothian, Scotland, EH26 0PZ, UK
| |
Collapse
|
27
|
Franke J, Hildebrandt A, Meier F, Straube E, Dorn W. Prevalence of Lyme disease agents and several emerging pathogens in questing ticks from the German Baltic coast. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:441-444. [PMID: 21485387 DOI: 10.1603/me10182] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In summer 2008, a total of 512 Ixodes ricinus (Acari: Ixodidae) ticks was collected from vegetation in four areas at the Baltic coast of Germany and tested for the presence of Lyme disease spirochetes. Among them, 293 ticks from three areas were screened for Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), rickettsiae of the spotted fever group (Rickettsiales: Rickettsiaceae), and Babesia spp. (Piroplasmida: Babesiidae), respectively. Borrelia burgdorferi sensu lato genospecies (Spirochaetales: Spirochaetaceae) were detected in 3.1% of the tick samples. The prevalence ofA. phagocytophilum was 1.0%, rickettsiae were present in 8.5%, and pathogenic Babesia spp. in 8.9% of analyzed ticks. Coinfections occurred in five ticks. With this study we report first data on the coexistence of established and emerging pathogens in questing ticks from recreational areas of northeastern Germany, indicating the need of further studies for a reliable risk assessment.
Collapse
Affiliation(s)
- Jan Franke
- Institute of Nutrition, Department of Food and Environmental Hygiene, Friedrich-Schiller-University, Jena, Dornburger Str. 29, D-07743 Jena, Germany.
| | | | | | | | | |
Collapse
|
28
|
Franke J, Meier F, Moldenhauer A, Straube E, Dorn W, Hildebrandt A. Established and emerging pathogens in Ixodes ricinus ticks collected from birds on a conservation island in the Baltic Sea. MEDICAL AND VETERINARY ENTOMOLOGY 2010; 24:425-432. [PMID: 20868431 DOI: 10.1111/j.1365-2915.2010.00905.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tick-borne pathogens such as Lyme borreliosis spirochaetes, Anaplasma phagocytophilum, Rickettsia spp. and Babesia spp. cause a great variety of diseases in animals and humans. Although their importance with respect to emerging human diseases is increasing, many issues about their ecology are still unclear. In spring 2007, 191 Ixodes ricinus (Acari: Ixodidae) ticks were collected from 99 birds of 11 species on a bird conservation island in the Baltic Sea in order to test them for Borrelia spp., A. phagocytophilum, Rickettsia spp. and Babesia spp. infections. Identification of the pathogens was performed by polymerase chain reaction (PCR), restriction fragment length polymorphism and sequence analysis. The majority of birds with ticks testing positive were European robins and thrushes. Borrelia DNA was detected in 14.1%, A. phagocytophilum in 2.6%, rickettsiae in 7.3% and Babesia spp. in 4.7% of the ticks. Co-infections with different pathogens occurred in six ticks (3.1%). The fact that 11 ticks (five larvae, six nymphs) were infected with Borrelia afzelii suggests that birds may, contrary to current opinion, serve as reservoir hosts for this species. Among rickettsial infections, we identified Rickettsia monacensis and Rickettsia helvetica. As we detected five Rickettsia spp. positive larvae and two birds carried more than one infected tick, transmission of those pathogens from birds to ticks appears possible. Further characterization of Babesia infections revealed Babesia divergens and Babesia microti. The occurrence of Babesia spp. in a total of five larvae suggests that birds may be able to infect ticks, at least with Ba. microti, a species considered not to be transmitted transovarially in ticks.
Collapse
Affiliation(s)
- J Franke
- Department of Food and Environmental Hygiene, Institute of Nutrition, Friedrich Schiller University of Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Coexistence of pathogens in host-seeking and feeding ticks within a single natural habitat in Central Germany. Appl Environ Microbiol 2010; 76:6829-36. [PMID: 20729315 DOI: 10.1128/aem.01630-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of established and emerging tick-borne pathogens in Central and Northern Europe is steadily increasing. In 2007, we collected Ixodes ricinus ticks feeding on birds (n = 211) and rodents (n = 273), as well as host-seeking stages (n = 196), in a habitat in central Germany. In order to find out more about their natural transmission cycles, the ticks were tested for the presence of Lyme disease borreliae, Anaplasma phagocytophilum, spotted fever group (SFG) rickettsiae, Francisella tularensis, and babesiae. Altogether, 20.1% of the 680 ticks examined carried at least one pathogen. Bird-feeding ticks were more frequently infected with Borrelia spp. (15.2%) and A. phagocytophilum (3.2%) than rodent-feeding ticks (2.6%; 1.1%) or questing ticks (5.1%; 0%). Babesia spp. showed higher prevalence rates in ticks parasitizing birds (13.2%) and host-seeking ticks (10.7%), whereas ticks from small mammals were less frequently infected (6.6%). SFG rickettsiae and F. tularensis were also found in ticks collected off birds (2.1%; 1.2%), rodents (1.8%; 1.5%), and vegetation (4.1%; 1.6%). Various combinations of coinfections occurred in 10.9% of all positive ticks, indicating interaction of transmission cycles. Our results suggest that birds not only are important reservoirs for several pathogens but also act as vehicles for infected ticks and might therefore play a key role in the dispersal of tick-borne diseases.
Collapse
|
30
|
Haemorrhagic diathesis in a ram with Anaplasma phagocytophilum infection. J Comp Pathol 2010; 144:82-5. [PMID: 20591440 DOI: 10.1016/j.jcpa.2010.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 03/17/2010] [Accepted: 04/29/2010] [Indexed: 11/22/2022]
Abstract
A 10-month-old ram with fever, inappetence and haemorrhagic diathesis had petechiae and ecchymoses at various body sites and was infested by ticks. Haematological examination revealed pancytopenia, while serum biochemistry indicated hepatic dysfunction. Blood smears were negative for Ehrlichia spp. and other haemoparasites. Paired sera revealed infection by Anaplasma phagocytophilum, but testing by polymerase chain reaction was negative. Treatment with oxytetracycline was effective. This is the first reported clinical case of ovine anaplasmosis in Greece caused by A. phagocytophilum.
Collapse
|
31
|
Granquist EG, Bårdsen K, Bergström K, Stuen S. Variant -and individual dependent nature of persistent Anaplasma phagocytophilum infection. Acta Vet Scand 2010; 52:25. [PMID: 20398321 PMCID: PMC2859769 DOI: 10.1186/1751-0147-52-25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 04/15/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is the causative agent of tick-borne fever in ruminants and human granulocytotropic anaplasmosis (HGA). The bacterium is able to survive for several months in immune-competent sheep by modifying important cellular and humoral defence mechanisms. Little is known about how different strains of A. phagocytophilum propagate in their natural hosts during persistent infection. METHODS Two groups of five lambs were infected with each of two 16S rRNA gene variants of A. phagocytophilum, i.e. 16S variant 1 which is identical to GenBank no M73220 and 16S variant 2 which is identical to GenBank no AF336220, respectively. The lambs were infected intravenously and followed by blood sampling for six months. A. phagocytophilum infection in the peripheral blood was detected by absolute quantitative real-time PCR. RESULTS Both 16S rRNA gene variants of A. phagocytophilum established persistent infection for at least six months and showed cyclic bacteraemias, but variant 1 introduced more frequent periods of bacteraemia and higher number of organisms than 16S rRNA gene variant 2 in the peripheral blood. CONCLUSION Organisms were available from blood more or less constantly during the persistent infection and there were individual differences in cyclic activity of A. phagocytophilum in the infected animals. Two 16S rRNA gene variants of A. phagocytophilum show differences in cyclic activity during persistent infection in lambs.
Collapse
|
32
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
33
|
Bown KJ, Lambin X, Ogden NH, Begon M, Telford G, Woldehiwet Z, Birtles RJ. Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. Emerg Infect Dis 2010; 15:1948-54. [PMID: 19961674 PMCID: PMC3044514 DOI: 10.3201/eid1512.090178] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The emerging tick-borne pathogen Anaplasma phagocytophilum is under increasing scrutiny for the existence of subpopulations that are adapted to different natural cycles. Here, we characterized the diversity of A. phagocytophilum genotypes circulating in a natural system that includes multiple hosts and at least 2 tick species, Ixodes ricinus and the small mammal specialist I. trianguliceps. We encountered numerous genotypes, but only 1 in rodents, with the remainder limited to deer and host-seeking I. ricinus ticks. The absence of the rodent-associated genotype from host-seeking I. ricinus ticks was notable because we demonstrated that rodents fed a large proportion of the I. ricinus larval population and that these larvae were abundant when infections caused by the rodent-associated genotype were prevalent. These observations are consistent with the conclusion that genotypically distinct subpopulations of A. phagocytophilum are restricted to coexisting but separate enzootic cycles and suggest that this restriction may result from specific vector compatibility.
Collapse
|
34
|
The potential role of migratory birds in transmission cycles of Babesia spp., Anaplasma phagocytophilum, and Rickettsia spp. Ticks Tick Borne Dis 2010; 1:105-7. [PMID: 21771516 DOI: 10.1016/j.ttbdis.2009.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/09/2009] [Accepted: 12/16/2009] [Indexed: 11/23/2022]
Abstract
Babesia spp., Anaplasma phagocytophilum, and Rickettsia spp. are potentially emerging tick-borne pathogens, whereas many issues about their ecology, e.g. reservoir host specificity, are still unclear. In spring 2007, we collected 191 feeding Ixodes ricinus ticks from 99 birds of 11 different species on a German bird conservation island in the Baltic Sea. Babesia spp. were detected in 4.7% (9/191), A. phagocytophilum was present in 2.6% (5/191), and Rickettsia spp. were identified in 7.3% (14/191) of the investigated ticks. Further characterization of Babesia spp. infections resulted in B. divergens and B. microti. Among the Rickettsia spp. infections, we identified at least 2 different species: R. monacensis and R. helvetica. Furthermore, 2 ticks harboured mixed infections. Our study provides first interesting insights into the role of migratory birds in the distribution of several emerging tick-borne pathogens.
Collapse
|
35
|
Stuen S, Torsteinbø WO, Bergström K, Bårdsen K. Superinfection occurs in Anaplasma phagocytophilum infected sheep irrespective of infection phase and protection status. Acta Vet Scand 2009; 51:41. [PMID: 19857248 PMCID: PMC2772837 DOI: 10.1186/1751-0147-51-41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 10/26/2009] [Indexed: 12/03/2022] Open
Abstract
Background Anaplasma phagocytophilum infection in domestic ruminants is widespread in the coastal areas of southern Norway. The bacteria may persist in mammalian hosts. Several genetic variants of A. phagocytophilum exist. In the present study, we investigate whether superinfection occurs in the acute and persistent phase of the infection. Methods Five-month-old lambs of the Norwegian Dala breed were experimentally infected with two 16S rRNA gene variants of A. phagocytophilum, i.e. A. phagocytophilum variant 1 (GenBank accession number M73220) and variant 2 (GenBank acc. no. AF336220). Eighteen lambs were used, two lambs in each group. Eight groups were experimentally inoculated with either variant 1 or 2 on day 0. Six of these groups were then challenged with the other variant on either days 7, 42 or 84, respectively. One group was left uninfected. The occurrence of A. phagocytophilum in blood samples was determined using semi-nested PCR analysis and gene sequencing. Specific antibodies were measured by an indirect immunofluorescence antibody assay (IFA). Results A. phagocytophilum variant 1 and 2 differed significantly with regards to clinical reaction and cross-immunity in infected lambs. Both variants were found in the blood after challenge. However, variant 1 was detected most frequently. Conclusion The present experiment indicates that superinfection of different genotypes occurs during the acute as well as the persistent phase of an A. phagocytophilum infection, even in lambs protected against the challenged infection.
Collapse
|
36
|
Wuritu, Ozawa Y, Gaowa, Kawamori F, Masuda T, Masuzawa T, Fujita H, Ohashi N. Structural analysis of a p44/msp2 expression site of Anaplasma phagocytophilum in naturally infected ticks in Japan. J Med Microbiol 2009; 58:1638-1644. [PMID: 19713360 DOI: 10.1099/jmm.0.011775-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anaplasma phagocytophilum, an agent of human granulocytic anaplasmosis, infects neutrophils and causes an emerging tickborne febrile disease. The genome of this bacterium contains a large number of p44/msp2-related genes encoding 44 kDa major outer-membrane proteins, and it is known that a specific p44/msp2 gene is predominantly transcribed from a single expression locus. This study successfully characterized the genomic expression site for p44/msp2 (3.8 kb) in uncultured A. phagocytophilum from Ixodes persulcatus ticks inhabiting a northern part of Japan. Comparative analysis of the sequences revealed that the structures of the expression sites in Japanese A. phagocytophilum were similar to those of US strains from human patients and European strains from a dog and sheep, but omp-1N (upstream from p44/msp2) and a truncated recA (downstream from p44/msp2) in the p44/msp2 expression site seemed to share similarities with those of US and European strains. The central hypervariable region sequences of Japanese p44/msp2 were found to be quite diverse (24.4-100 % amino acid similarities) and distinct from their closest relatives from US human patients or animal host origins (56.3-97.6 % amino acid similarities) with some exceptions. Thus, this study provides significant information about the molecular characteristics of A. phagocytophilum in East Asia, as well as the global diversity of p44/msp2.
Collapse
Affiliation(s)
- Wuritu
- Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| | - Yutaka Ozawa
- Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| | - Gaowa
- Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| | - Fumihiko Kawamori
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan.,Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| | - Takashi Masuda
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, Shizuoka, Japan
| | - Toshiyuki Masuzawa
- Laboratory of Microbiology and Immunology, Faculty of Pharmacy, Chiba Institute of Science, Choshi 288-0025, Japan
| | - Hiromi Fujita
- Ohara Research Laboratory, Ohara General Hospital, Fukushima 960-0195, Japan
| | - Norio Ohashi
- Laboratory of Microbiology, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka and Global COE Program, Shizuoka 422-8526, Japan
| |
Collapse
|