1
|
Landivar SM, Melli LJ, Maiztegui C, Schesi C, Baschkier A, Francisetti V, Chinen I, Miliwebsky E, Rivas M, Comerci DJ, Ugalde JE, Ciocchini AE. A novel multiplex and glycoprotein-based immunochromatographic serologic IgM test for the rapid diagnosis of Escherichia coli O157 and O145 causing bloody diarrhea and hemolytic uremic syndrome. J Clin Microbiol 2024; 62:e0100324. [PMID: 39480070 PMCID: PMC11633091 DOI: 10.1128/jcm.01003-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are the main etiological agents of hemolytic uremic syndrome (HUS). Good clinical management of STEC infections and HUS depends on early, rapid, and accurate diagnosis. Here, we have developed and evaluated the first multiplex and glycoprotein-based immunochromatographic test for the detection of IgM antibodies against the O-polysaccharide of the lipopolysaccharide of E. coli O157 and O145 in human serum samples. A retrospective study was carried out resulting in a diagnostic sensitivity of the E. coli O157/O145 LFIA (lateral flow immunoassay) of 97.1% and 98.9% for O157 and O145, respectively, and 97.9% for both serogroups. The diagnostic specificity was 98.7% for O157 and O145, and the overall specificity 97.4%. In samples obtained before 3 days after the onset of diarrhea, the detection percentage was 83%, increasing to 100% from 3 days onward. Finally, the association of bloody diarrhea (BD) or HUS cases to an STEC infection increased from 22.8% to 77.2% when stool culture and stx/Stx detection were combined with serology by LFIA. Our results demonstrate that the E. coli O157/O145 LFIA is a highly accurate and serospecific test for the early and rapid diagnosis of E. coli O157 and O145 infections in BD or HUS cases. This test allows the detection of specific IgM antibodies very early in the course of the infection, making it an ideal diagnostic tool to be implemented in pediatric emergencies and, thus, avoid delays in the application of the correct supportive or specific treatment and prevent complications associated with HUS.
Collapse
Affiliation(s)
- Stella M. Landivar
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Luciano J. Melli
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
- Chemtest Argentina S. A., San Martín, Buenos Aires, Argentina
| | - Cynthia Maiztegui
- Laboratorio Nacional de Referencia, Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carla Schesi
- Laboratorio Nacional de Referencia, Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariela Baschkier
- Laboratorio Nacional de Referencia, Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Francisetti
- Laboratorio Central de la Provincia de Córdoba, Ministerio de Salud de la Provincia de Córdoba, Córdoba, Argentina
| | - Isabel Chinen
- Laboratorio Nacional de Referencia, Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Elizabeth Miliwebsky
- Laboratorio Nacional de Referencia, Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marta Rivas
- Laboratorio Nacional de Referencia, Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
- Inmunova S. A., San Martin, Buenos Aires, Argentina
| | - Diego J. Comerci
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Juan E. Ugalde
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Andrés E. Ciocchini
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
2
|
Fernandez-Brando RJ, Sacerdoti F, Amaral MM, Bernal AM, Da Rocha M, Belardo M, Palermo MS, Ibarra CA. Detection of plasma anti-lipopolysaccharide (LPS) antibodies against enterohemorrhagic Escherichia coli (EHEC) in asymptomatic kindergarten teachers from Buenos Aires province. Rev Argent Microbiol 2024; 56:25-32. [PMID: 37704516 DOI: 10.1016/j.ram.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 09/15/2023] Open
Abstract
In Argentina, hemolytic uremic syndrome (HUS) caused by EHEC has the highest incidence in the world. EHEC infection has an endemo-epidemic behavior, causing 20-30% of acute bloody diarrhea syndrome in children under 5 years old. In the period 2016-2020, 272 new cases per year were notified to the National Health Surveillance System. Multiple factors are responsible for HUS incidence in Argentina including person-to-person transmission. In order to detect possible EHEC carriers, we carried out a preliminary study of the frequency of kindergarten teachers with anti-LPS antibodies against the most prevalent EHEC serotypes in Argentina. We analyzed 61 kindergarten teachers from 26 institutions from José C. Paz district, located in the suburban area of Buenos Aires province, Argentina. Fifty-one percent of the plasma samples had antibodies against O157, O145, O121 and O103 LPS: 6.4% of the positive samples had IgM isotype (n=2), 61.3% IgG isotype (n=19) and 32.3% IgM and IgG (n=10). Given that antibodies against LPS antigens are usually short-lived specific IgM detection may indicate a recent infection. In addition, the high percentage of positive samples may indicate a frequent exposure to EHEC strains in the cohort studied, as well as the existence of a large non-symptomatic population of adults carrying pathogenic strains that could contribute to the endemic behavior through person-to-person transmission. The improvement of continuous educational programs in kindergarten institutions could be a mandatory measure to reduce HUS cases not only in Argentina but also globally.
Collapse
Affiliation(s)
- Romina J Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina
| | - María M Amaral
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina
| | - Alan M Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina
| | - Marcelo Da Rocha
- Asociación Lucha contra el Síndrome Urémico Hemolítico (LUSUH), Carlos Pellegrini 781 Piso 8, C1009 CABA, Argentina
| | - Marcela Belardo
- Instituto de Estudios Sociales en Contexto de Desigualdades (IESCODE-CONICET), Universidad Nacional de José C. Paz, Leandro N. Alem 4731, B1665, José C. Paz, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina.
| | - Cristina A Ibarra
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina.
| |
Collapse
|
3
|
Giraldo-Rubio V, Arango-Gil BS, Granobles-Velandia CV. First report of the prevalence of Shiga toxinproducing Escherichia coli in ground beef in Quindío, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:474-482. [PMID: 38109140 PMCID: PMC10781425 DOI: 10.7705/biomedica.7004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen associated with clinical cases of diarrhea in humans. Its main virulence factors are the Shiga toxins (Stx1 and Stx2). Cattle are the main reservoir of STEC, and many outbreaks in humans have been related to the consumption of undercooked ground beef contaminated with this pathogen. OBJECTIVE To determine the prevalence of STEC in ground beef commercialized in all the butcher shops of a township in the department of Quindío and to characterize the virulence genes of the strains found. MATERIALS AND METHODS Thirty ground beef samples were taken in three different times; stx genes and other STEC virulence factors (eae, ehxA, saa) were detected by multiplex PCR. RESULTS The overall prevalence of STEC was 33.33 % (10/30 positive samples). We isolated eight non-O157 (LEE-negative) strains with four different genetic profiles: stx2 / stx2-ehxA-saa / stx1-stx2-ehxA-saa / stx1-saa. CONCLUSION This is the first report on the prevalence of STEC in ground beef in a township in the department of Quindío.
Collapse
Affiliation(s)
- Valentina Giraldo-Rubio
- Grupo de Inmunología Molecular (GYMOL), Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia.
| | - Brayan Stiven Arango-Gil
- Grupo de Inmunología Molecular (GYMOL), Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia.
| | | |
Collapse
|
4
|
Rivas M, Pichel M, Colonna M, Casanello AL, Alconcher LF, Galavotti J, Principi I, Araujo SP, Ramírez FB, González G, Pianciola LA, Mazzeo M, Suarez Á, Oderiz S, Ghezzi LFR, Arrigo DJ, Paladini JH, Baroni MR, Pérez S, Tamborini A, Chinen I, Miliwebsky ES, Goldbaum F, Muñoz L, Spatz L, Sanguineti S. Surveillance of Shiga toxin-producing Escherichia coli associated bloody diarrhea in Argentina. Rev Argent Microbiol 2023; 55:345-354. [PMID: 37301652 DOI: 10.1016/j.ram.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
In Argentina, hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli (STEC-HUS) infection is endemic, and reliable data about prevalence and risk factors have been available since 2000. However, information about STEC-associated bloody diarrhea (BD) is limited. A prospective study was performed during the period October 2018-June 2019 in seven tertiary-hospitals and 18 referral units from different regions, aiming to determine (i) the frequency of STEC-positive BD cases in 714 children aged 1-9 years of age and (ii) the rate of progression of bloody diarrhea to HUS. The number and regional distribution of STEC-HUS cases in the same hospitals and during the same period were also assessed. Twenty-nine (4.1%) of the BD patients were STEC-positive, as determined by the Shiga Toxin Quik Chek (STQC) test and/or the multiplex polymerase chain reaction (mPCR) assay. The highest frequencies were found in the Southern region (Neuquén, 8.7%; Bahía Blanca, 7.9%), in children between 12 and 23 month of age (8.8%), during summertime. Four (13.8%) cases progressed to HUS, three to nine days after diarrhea onset. Twenty-seven STEC-HUS in children under 5 years of age (77.8%) were enrolled, 51.9% were female; 44% were Stx-positive by STQC and all by mPCR. The most common serotypes were O157:H7 and O145:H28 and the prevalent genotypes, both among BD and HUS cases, were stx2a-only or -associated. Considering the endemic behavior of HUS and its high incidence, these data show that the rate of STEC-positive cases is low among BD patients. However, the early recognition of STEC-positive cases is important for patient monitoring and initiation of supportive treatment.
Collapse
Affiliation(s)
- Marta Rivas
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina.
| | - Mariana Pichel
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Mariana Colonna
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | | | - Laura F Alconcher
- Hospital Interzonal "Dr. José Penna", Av. Laínez 2401, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Jimena Galavotti
- Hospital Interzonal "Dr. José Penna", Av. Laínez 2401, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Iliana Principi
- Hospital de Niños "Dr. Humberto Notti", Av. Bandera de los Andes 2603, M5521 Guaymallén, Mendoza, Argentina
| | - Sofía Pérez Araujo
- Hospital de Niños "Dr. Humberto Notti", Av. Bandera de los Andes 2603, M5521 Guaymallén, Mendoza, Argentina
| | - Flavia B Ramírez
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Q8300 Neuquén, Argentina
| | - Gladys González
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Q8300 Neuquén, Argentina
| | - Luis A Pianciola
- Laboratorio Central, Gregorio Martínez 65, Q8300 Neuquén, Argentina
| | - Melina Mazzeo
- Laboratorio Central, Gregorio Martínez 65, Q8300 Neuquén, Argentina
| | - Ángela Suarez
- Hospital De Niños "Sor María Ludovica", Calle 14 1631 entre 65 y 66, B1904CSI La Plata, Buenos Aires, Argentina
| | - Sebastián Oderiz
- Hospital De Niños "Sor María Ludovica", Calle 14 1631 entre 65 y 66, B1904CSI La Plata, Buenos Aires, Argentina
| | - Lidia F R Ghezzi
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199AB, Buenos Aires, Argentina
| | - Diego J Arrigo
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199AB, Buenos Aires, Argentina
| | - José H Paladini
- Hospital Dr. Orlando Alassia, Mendoza 4151, 3000 Santa Fe, Argentina
| | - María R Baroni
- Hospital Dr. Orlando Alassia, Mendoza 4151, 3000 Santa Fe, Argentina
| | - Susana Pérez
- Hospital "Dr. Lucio Molas", Raúl B. Díaz Pilcomayo, 6300 Santa Rosa, La Pampa, Argentina
| | - Ana Tamborini
- Hospital "Dr. Lucio Molas", Raúl B. Díaz Pilcomayo, 6300 Santa Rosa, La Pampa, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - Elizabeth S Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - Fernando Goldbaum
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Luciana Muñoz
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Linus Spatz
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Santiago Sanguineti
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| |
Collapse
|
5
|
Fiorentino GA, Miliwebsky E, Ramos MV, Zolezzi G, Chinen I, Guzmán G, Nocera R, Fernández-Brando R, Santiago A, Exeni R, Palermo MS. Etiological diagnosis of post-diarrheal hemolytic uremic syndrome (HUS): humoral response contribution. Pediatr Nephrol 2023; 38:739-748. [PMID: 35802271 DOI: 10.1007/s00467-022-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. HUS is classified according to its etiology as post-diarrheal or atypical HUS. Differential diagnosis of both entities continues to be a challenge for pediatric physicians. METHODS The aim was to improve the rapid etiological diagnosis of post-diarrheal HUS cases based on the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection by screening of stx1/stx2 and rfbO157 in cultured stools by multiplex PCR, and the additional detection of anti-lipopolysaccharide (anti-LPS) O157, O145, and O121 antibodies by Glyco-iELISA test. In addition, we studied patients' relatives to detect circulating pathogenic strains that could contribute to HUS diagnosis and/or lead to the implementation of measures to prevent dissemination of familial outbreaks. This study describes the diagnosis of 31 HUS patients admitted to Hospital Municipal de Niños Prof Dr Ramón Exeni during the 2017-2020 period. RESULTS Stool PCR confirmed the diagnosis of STEC associated with HUS in 38.7% of patients (12/31), while anti-LPS serology did in 88.9% (24/27). In those patients in which both methods were carried out (n = 27), a strong association between the results obtained was found. We found that 30.4% of HUS patients had at least one relative positive for STEC. CONCLUSIONS We could identify 96.3% (26/27) of HUS cases as secondary to STEC infections when both methods (genotyping and serology) were used. The results demonstrated a high circulation of STEC in HUS families and the prevalence of the STEC O157 serotype (83%) in our pediatric cohort. A higher-resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Gabriela A Fiorentino
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elizabeth Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - María Victoria Ramos
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gisela Zolezzi
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Glenda Guzmán
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Rubén Nocera
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Romina Fernández-Brando
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Santiago
- Departamento de Nefrología, Hospital Municipal de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Ramón Exeni
- Departamento de Nefrología, Hospital Municipal de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Marina S Palermo
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Novak A, Melli LJ, Rey Serantes DA, Caillava AJ, Comerci DJ, Ugalde JE, Ciocchini AE. Development of a novel glycoprotein-based immunochromatographic test for the rapid serodiagnosis of bovine brucellosis. J Appl Microbiol 2022; 132:4277-4288. [PMID: 35357068 DOI: 10.1111/jam.15556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/06/2021] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
AIMS Bovine brucellosis is a worldwide zoonotic disease that causes important economic losses and public health concerns. Because control of the disease depends on vaccination, serodiagnosis and isolation of the infected animals; affordable, rapid and accurate point of care (POC) tests are needed. METHODS AND RESULTS We developed and evaluated a novel glycoprotein-based immunochromatographic test for the detection of IgG antibodies against the O-polysaccharide of Brucella in bovine serum samples. Brucella GlycoStrip combines the power of immunochromatographic and bacterial glycoengineering technologies for the diagnosis of bovine brucellosis. The analysis of positive and negative reference samples indicated that the test has a diagnostic sensitivity and specificity of 96.9% (95% CI: 92.7-100.0%) and 100%, respectively. CONCLUSIONS Due to the recombinant glycoprotein-based antigen OAg-AcrA, which consists of the O-side chain of Brucella smooth lipopolysaccharide (sLPS) covalently linked to the carrier protein AcrA, the test is highly accurate, allows the differentiation of infected animals from those vaccinated with a rough strain or with a single dose of a smooth strain and fulfill the minimum diagnostic requirements established by the national and international regulations. SIGNIFICANCE AND IMPACT OF STUDY This strip test could provide a rapid (10 min) and accurate diagnosis of bovine brucellosis in the field contributing to the control of the disease.
Collapse
Affiliation(s)
- Analia Novak
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martín (IIB-UNSAM, IIBIO-CONICET), San Martín, Buenos Aires, Argentina
| | - Luciano J Melli
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martín (IIB-UNSAM, IIBIO-CONICET), San Martín, Buenos Aires, Argentina
| | - Diego A Rey Serantes
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martín (IIB-UNSAM, IIBIO-CONICET), San Martín, Buenos Aires, Argentina
| | - Ana J Caillava
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martín (IIB-UNSAM, IIBIO-CONICET), San Martín, Buenos Aires, Argentina
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martín (IIB-UNSAM, IIBIO-CONICET), San Martín, Buenos Aires, Argentina.,Comisión Nacional de Energía Atómica, Grupo Pecuario, Centro Atómico Ezeiza, Buenos Aires, Argentina
| | - Juan E Ugalde
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martín (IIB-UNSAM, IIBIO-CONICET), San Martín, Buenos Aires, Argentina
| | - Andrés E Ciocchini
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martín (IIB-UNSAM, IIBIO-CONICET), San Martín, Buenos Aires, Argentina
| |
Collapse
|
7
|
Balestracci A, Meni Battaglia L, Toledo I, Martin SM, Alvarado C. Prodromal Phase of Hemolytic Uremic Syndrome Related to Shiga Toxin-Producing Escherichia coli: The Wasted Time. Pediatr Emerg Care 2021; 37:e625-e630. [PMID: 31290797 DOI: 10.1097/pec.0000000000001850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to evaluate practice patterns during prodromal phase of hemolytic uremic syndrome related to Shiga toxin-producing Escherichia coli (STEC-HUS). METHODS Trajectories of children from first symptoms until STEC-HUS admitted consecutively at our center (period 2000-2017) were retrospectively reviewed. Early recommended practices include identification of STEC infections, antibiotics and antiperistaltic avoidance, and administration of anticipatory intravenous fluids; therefore, implementation and changes over time (before and after 2011) of such interventions were assessed. In addition, early management was correlated with acute disease outcomes. RESULTS Of 172 patients, 98 (57%) had early consults, 75 of them visit the pediatric emergency department. Those seen with watery diarrhea (n = 74) were managed as outpatients, whereas 27 of the 45 assisted with bloody diarrhea were hospitalized for diagnosis other than STEC-HUS. Stool cultures were performed in 13.4% (23/172), 18% (31/172) received antibiotics, and 12.8% (22/172) received endovenous fluids; none received antiperistaltic agents. Shiga toxin-producing E. coli infection was proven in 4% (7/172) before HUS. Rate of cultured patients and treated with intravenous fluids remained unchanged over time (P = 0.13 and P = 0.48, respectively), whereas antibiotic prescription decreased from 42.8% to 16.6% (P = 0.005). Main acute outcomes (need for dialysis, pancreatic compromise, central nervous system involvement, and death) were similar (P > 0.05) regardless of whether they received antibiotics or intravenous fluids. CONCLUSIONS During the diarrheal phase, 57% of patients consulted; three-quarters of them consulted to the pediatric emergency department. Shiga toxin-producing E. coli detection was poor, antibiotic use remained high, and anticipatory volume expansion was underused. These findings outline the critical need to improve the early management of STEC-HUS.
Collapse
Affiliation(s)
- Alejandro Balestracci
- From the Nephrology Unit, Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
8
|
Bonany P, Bilkis MD, Iglesias G, Braun A, Tello J, Ratto V, Vargas A, Koch E, Jannello P, Monteverde E. Fluid restriction versus volume expansion in children with diarrhea-associated HUS: a retrospective observational study. Pediatr Nephrol 2021; 36:103-109. [PMID: 32681274 DOI: 10.1007/s00467-020-04673-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Fifty percent of patients with typical diarrhea-associated hemolytic uremic syndrome (D+HUS) require kidney replacement therapy (KRT). In these patients, dehydration worsens disease prognosis. We evaluated dialysis requirement, presence of seizures, and mortality rate among patients diagnosed with D+HUS treated with volume expansion (VE) versus fluid restriction (FR). METHODS Thirty-five patients with D+HUS were enrolled; 16 received VE and 19 were historical patients who received conventional FR. RESULTS Upon admission or during treatment, neither group presented evidence of fluid overload. The VE group received higher volumes of saline (VE 27 ml/kg [10-30] over a 3-h period vs. FR 0 ml), had higher urine output after 12 h (VE vs. FR: OR 6.2 [1.2-41.6], P = 0.03), and required less dialysis (VE 2 [12.5%, CI 95% 0-29] vs. FR 9 [47.4%, CI 95% 24-70], P = 0.035). The VE group had an absolute risk reduction of 0.34 (CI 95% 0.07-0.63); hence, three patients treated with VE were required to avoid one KRT. VE also corrected initial hyponatremia and maintained serum sodium within normal ranges. No statistical differences were observed regarding number of patients with seizures (P = 0.08) or mortality (P = 1.0). CONCLUSIONS VE markedly reduces the number of patients requiring KRT and keeps serum sodium within a normal range. We propose to initially hydrate every patient with D+HUS and without signs of fluid overload, with 10 ml/kg/h 0.9% saline solution IV, over a 3-h period. Afterwards, if urine output is ≥ 0.5 ml/kg/h, it is recommended to not dialyze and continue IV hydration schedule with isotonic (D5) saline solution, according to their needs.
Collapse
Affiliation(s)
- Pablo Bonany
- Pediatrics Service, Establecimiento Asistencial Dr. Lucio Molas de Santa Rosa, Raúl B Díaz y Pilcomayo, 6300, Santa Rosa, La Pampa, Argentina.
| | - Manuel D Bilkis
- Emergency Department, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, 1425, Buenos Aires, Argentina.
| | - Guillermo Iglesias
- Pediatrics Service, Establecimiento Asistencial Dr. Lucio Molas de Santa Rosa, Raúl B Díaz y Pilcomayo, 6300, Santa Rosa, La Pampa, Argentina
| | - Amalia Braun
- Pediatrics Service, Establecimiento Asistencial Dr. Lucio Molas de Santa Rosa, Raúl B Díaz y Pilcomayo, 6300, Santa Rosa, La Pampa, Argentina
| | - Juliana Tello
- Pediatrics Service, Establecimiento Asistencial Dr. Lucio Molas de Santa Rosa, Raúl B Díaz y Pilcomayo, 6300, Santa Rosa, La Pampa, Argentina
| | - Viviana Ratto
- Nephrology Service, Fundación Hospitalaria, Buenos Aires, Argentina
| | - Ana Vargas
- Pediatrics Service, Policlínico Central U.O.M.R.A., Buenos Aires, Argentina
| | - Emilio Koch
- Pediatrics Service, Policlínico Central U.O.M.R.A., Buenos Aires, Argentina
| | - Patricia Jannello
- Pediatrics Service, Sanatorio San Cayetano - OSMATA, Buenos Aires, Argentina
| | - Ezequiel Monteverde
- Emergency Department, Hospital de Niños Dr. Ricardo Gutiérrez, Gallo 1330, 1425, Buenos Aires, Argentina
| |
Collapse
|
9
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Rastawicki W, Śmietańska K, Rokosz‐Chudziak N, Wołkowicz T. Antibody response to lipopolysaccharides and recombinant proteins of Shiga toxin (STX)‐producing
Escherichia coli
(STEC) in children with haemolytic uraemic syndrome in Poland. Lett Appl Microbiol 2020; 70:440-446. [DOI: 10.1111/lam.13295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Affiliation(s)
- W. Rastawicki
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - K. Śmietańska
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - N. Rokosz‐Chudziak
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - T. Wołkowicz
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| |
Collapse
|
11
|
Development and Evaluation of a Novel VHH-Based Immunocapture Assay for High-Sensitivity Detection of Shiga Toxin Type 2 (Stx2) in Stool Samples. J Clin Microbiol 2020; 58:JCM.01566-19. [PMID: 31826960 DOI: 10.1128/jcm.01566-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) is the main cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening clinical complication characterized by hemolytic anemia, thrombocytopenia, and acute renal failure that mainly affects children. A relevant feature of STEC strains is the production of Stx, and all of them express Stx1 and/or Stx2 regardless of the strain serotype. Therefore, Stx detection assays are considered the most suitable methods for the early detection of STEC infections. Single-domain antibodies from camelids (VHHs) exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis. In this work, we have exploited VHH technology for the development of an immunocapture assay for Stx2 detection. Thirteen anti-Stx2 VHHs previously obtained from a variable-domain repertoire library were selected and evaluated in 130 capture-detection pair combinations for Stx detection. Based on this analysis, two VHHs were selected and a double VHH-based biotin-streptavidin capture enzyme-linked immunosorbent assay (ELISA) with spectrophotometric detection was developed and optimized for Stx2 detection. This assay showed an excellent analytical and clinical sensitivity in both STEC culture supernatants and stool samples even higher than the sensitivity of a commercial ELISA. Furthermore, based on the analysis of stool samples, the VHH-based ELISA showed high correlation with stx 2 detection by PCR and a commercial rapid membrane-based immunoassay. The intrinsic properties of VHHs (high target affinity and specificity, stability, and ease of expression at high yields in recombinant bacteria) and their optimal performance for Stx detection make them attractive tools for the diagnosis of HUS related to STEC (STEC-HUS).
Collapse
|
12
|
Harding CM, Feldman MF. Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology 2020; 29:519-529. [PMID: 30989179 DOI: 10.1093/glycob/cwz031] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/23/2022] Open
Abstract
The first, general glycosylation pathway in bacteria, the N-linked glycosylation system of Campylobacter jejuni, was discovered two decades ago. Since then, many diverse prokaryotic glycosylation systems have been characterized, including O-linked glycosylation systems that have no homologous counterparts in eukaryotic organisms. Shortly after these discoveries, glycosylation pathways were recombinantly introduced into E. coli creating the field of bacterial glycoengineering. Bacterial glycoengineering is an emerging biotechnological tool that harnesses prokaryotic glycosylation systems for the generation of recombinantly glycosylated proteins using E. coli as a host. Over the last decade, as our understanding of prokaryotic glycosylation systems has advanced, so too has the glycoengineering toolbox. Currently, glycoengineering utilizes two broad approaches to recombinantly glycosylate proteins, both of which can generate N- or O-linkages: oligosaccharyltransferase (OTase)-dependent and OTase-independent. This review discusses the applications of these bacterial glycoengineering techniques as they relate to the development of glycoconjugate vaccines, therapeutic proteins, and diagnostics.
Collapse
Affiliation(s)
| | - Mario F Feldman
- VaxNewMo, St. Louis, MO, USA.,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Díaz-Amaya S, Zhao M, Lin LK, Ostos C, Allebach JP, Chiu GTC, Deering AJ, Stanciu LA. Inkjet Printed Nanopatterned Aptamer-Based Sensors for Improved Optical Detection of Foodborne Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805342. [PMID: 31033156 DOI: 10.1002/smll.201805342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The increasing incidence of infectious outbreaks from contaminated food and water supply continues imposing a global burden for food safety, creating a market demand for on-site, disposable, easy-to-use, and cost-efficient devices. Despite of the rapid growth of biosensors field and the generation of breakthrough technologies, more than 80% of the platforms developed at lab-scale never will get to meet the market. This work aims to provide a cost-efficient, reliable, and repeatable approach for the detection of foodborne pathogens in real samples. For the first time an optimized inkjet printing platform is proposed taking advantage of a carefully controlled nanopatterning of novel carboxyl-functionalized aptameric ink on a nitrocellulose substrate for the highly efficient detection of E. coli O157:H7 (25 colony forming units (CFU) mL-1 in pure culture and 233 CFU mL-1 in ground beef) demonstrating the ability to control the variation within ±1 SD for at least 75% of the data collected even at very low concentrations. From the best of the knowledge this work reports the lowest limit of detection of the state of the art for paper-based optical detection of E. coli O157:H7, with enough evidence (p > 0.05) to prove its high specificity at genus, species, strain, and serotype level.
Collapse
Affiliation(s)
- Susana Díaz-Amaya
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Min Zhao
- School of Electrical and Computer Engineering, Purdue University West Lafayette, IN, 47907, USA
| | - Li-Kai Lin
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Carlos Ostos
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellín, 050010, Colombia
| | - Jan P Allebach
- School of Electrical and Computer Engineering, Purdue University West Lafayette, IN, 47907, USA
| | - George T-C Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Amanda J Deering
- Department of Food Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Lia A Stanciu
- Department of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
Wijnsma KL, Veissi ST, van Bommel SAM, Heuver R, Volokhina EB, Comerci DJ, Ugalde JE, van de Kar NCAJ, van den Heuvel LPWJ. Glyco-iELISA: a highly sensitive and unambiguous serological method to diagnose STEC-HUS caused by serotype O157. Pediatr Nephrol 2019; 34:631-639. [PMID: 30367236 PMCID: PMC6394669 DOI: 10.1007/s00467-018-4118-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Providing proof of presence of Shiga toxin-producing E. coli (STEC) infection forms the basis for differentiating STEC-hemolytic uremic syndrome (HUS) and atypical HUS. As the gold standard to diagnose STEC-HUS has limitations, using ELISA to detect serum antibodies against STEC lipopolysaccharides (LPS) has proven additional value. Yet, conventional LPS-ELISA has drawbacks, most importantly presence of cross-reactivity due to the conserved lipid A part of LPS. The newly described glyco-iELISA tackles this issue by using modified LPS that eliminates the lipid A part. Here, the incremental value of glyco-iELISA compared to LPS-ELISA is assessed. METHODS A retrospective study was performed including all pediatric patients (n = 51) presenting with a clinical pattern of STEC-HUS between 1990 and 2014 in our hospital. Subsequently, the diagnostic value of glyco-iELISA was evaluated in a retrospective nationwide study (n = 264) of patients with thrombotic microangiopathy (TMA). LPS- and glyco-iELISA were performed to detect IgM against STEC serotype O157. Both serological tests were compared with each other and with fecal diagnostics. RESULTS Glyco-iELISA is highly sensitive and has no cross-reactivity. In the single-center cohort, fecal diagnostics, LPS-ELISA, and glyco-iELISA identified STEC O157 infection in 43%, 65%, and 78% of patients, respectively. Combining glyco-iELISA with fecal diagnostics, STEC infection due to O157 was detected in 89% of patients. In the nationwide cohort, 19 additional patients (8%) were diagnosed with STEC-HUS by glyco-iELISA. CONCLUSION This study shows that using glyco-iELISA to detect IgM against STEC serotype O157 has clear benefit compared to conventional LPS-ELISA, contributing to optimal diagnostics in STEC-HUS.
Collapse
Affiliation(s)
- Kioa L Wijnsma
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Susan T Veissi
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Sheila A M van Bommel
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rik Heuver
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Juan E Ugalde
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Nicole C A J van de Kar
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Lambertus P W J van den Heuvel
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Development and Regeneration, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Caillava AJ, Ortiz GE, Melli LJ, Ugalde JE, Ciocchini AE, Comerci DJ. Improving bioreactor production of a recombinant glycoprotein in
Escherichia coli
: Effect of specific growth rate on protein glycosylation and specific productivity. Biotechnol Bioeng 2019; 116:1427-1438. [DOI: 10.1002/bit.26953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ana J. Caillava
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Gastón E. Ortiz
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Luciano J. Melli
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Juan E. Ugalde
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Andrés E. Ciocchini
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
| | - Diego J. Comerci
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús (IIB‐INTECH), Universidad Nacional de San Martín, CONICET, San MartínBuenos Aires Argentina
- Comisión Nacional de Energía Atómica, Grupo Pecuario, Centro Atómico EzeizaBuenos Aires Argentina
| |
Collapse
|
16
|
Bhat AH, Maity S, Giri K, Ambatipudi K. Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit Rev Microbiol 2019; 45:82-102. [PMID: 30632429 DOI: 10.1080/1040841x.2018.1547681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein glycosylation systems in many bacteria are often associated with crucial biological processes like pathogenicity, immune evasion and host-pathogen interactions, implying the significance of protein-glycan linkage. Similarly, host protein glycosylation has been implicated in antimicrobial activity as well as in promoting growth of beneficial strains. In fact, few pathogens notably modulate host glycosylation machineries to facilitate their survival. To date, diverse chemical and biological strategies have been developed for conjugate vaccine production for disease control. Bioconjugate vaccines, largely being produced by glycoengineering using PglB (the N-oligosaccharyltransferase from Campylobacter jejuni) in suitable bacterial hosts, have been highly promising with respect to their effectiveness in providing protective immunity and ease of production. Recently, a novel method of glycoconjugate vaccine production involving an O-oligosaccharyltransferase, PglL from Neisseria meningitidis, has been optimized. Nevertheless, many questions on defining antigenic determinants, glycosylation markers, species-specific differences in glycosylation machineries, etc. still remain unanswered, necessitating further exploration of the glycosylation systems of important pathogens. Hence, in this review, we will discuss the impact of bacterial protein glycosylation on its pathogenesis and the interaction of pathogens with host protein glycosylation, followed by a discussion on strategies used for bioconjugate vaccine development.
Collapse
Affiliation(s)
- Aadil Hussain Bhat
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Sudipa Maity
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kuldeep Giri
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Kiran Ambatipudi
- a Department of Biotechnology , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
17
|
Luz D, Shiga EA, Chen G, Quintilio W, Andrade FB, Maranhão AQ, Caetano BA, Mitsunari T, Silva MA, Rocha LB, Moro AM, Sidhu SS, Piazza RMF. Structural Changes in Stx1 Engineering Monoclonal Antibody Improves Its Functionality as Diagnostic Tool for a Rapid Latex Agglutination Test. Antibodies (Basel) 2018; 7:antib7010009. [PMID: 31544861 PMCID: PMC6698835 DOI: 10.3390/antib7010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/10/2018] [Accepted: 01/26/2018] [Indexed: 11/16/2022] Open
Abstract
Stx1 toxin is one of the AB5 toxins of Shiga toxin-producing Escherichia coli (STEC) responsible for foodborne intoxication during outbreaks. The single-chain variable fragment (scFv) is the most common recombinant antibody format; it consists of both variable chains connected by a peptide linker with conserved specificity and affinity for antigen. The drawbacks of scFv production in bacteria are the heterologous expression, conformation and stability of the molecule, which could change the affinity for the antigen. In this work, we obtained a stable and functional scFv-Stx1 in bacteria, starting from IgG produced by hybridoma cells. After structural modifications, i.e., change in protein orientation, vector and linker, its solubility for expression in bacteria was increased as well as the affinity for its antigen, demonstrated by a scFv dissociation constant (KD) of 2.26 × 10-7 M. Also, it was able to recognize purified Stx1 and cross-reacted with Stx2 toxin by ELISA (Enzyme-Linked Immunosorbent Assay), and detected 88% of Stx1-producing strains using a rapid latex agglutination test. Thus, the scFv fragment obtained in the present work is a bacteria-produced tool for use in a rapid diagnosis test, providing an alternative for STEC diagnosis.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Emerson A Shiga
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Gang Chen
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Wagner Quintilio
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Fernanda B Andrade
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Andrea Q Maranhão
- Laboratório de Imunologia, Universidade de Brasília, Brasília 70910-900, Brazil.
| | - Bruna A Caetano
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Thaís Mitsunari
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Míriam A Silva
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Letícia B Rocha
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Ana M Moro
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Sachdev S Sidhu
- Department of Molecular Genetics, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Roxane M F Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| |
Collapse
|
18
|
Yates LE, Mills DC, DeLisa MP. Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:167-200. [PMID: 30099598 DOI: 10.1007/10_2018_72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bacteria have garnered increased interest in recent years as a platform for the biosynthesis of a variety of glycomolecules such as soluble oligosaccharides, surface-exposed carbohydrates, and glycoproteins. The ability to engineer commonly used laboratory species such as Escherichia coli to efficiently synthesize non-native sugar structures by recombinant expression of enzymes from various carbohydrate biosynthesis pathways has allowed for the facile generation of important products such as conjugate vaccines, glycosylated outer membrane vesicles, and a variety of other research reagents for studying and understanding the role of glycans in living systems. This chapter highlights some of the key discoveries and technologies for equipping bacteria with the requisite biosynthetic machinery to generate such products. As the bacterial glyco-toolbox continues to grow, these technologies are expected to expand the range of glycomolecules produced recombinantly in bacterial systems, thereby opening up this platform to an even larger number of applications.
Collapse
Affiliation(s)
- Laura E Yates
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Dominic C Mills
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
Castillo DS, Rey Serantes DA, Melli LJ, Ciocchini AE, Ugalde JE, Comerci DJ, Cassola A. A recombinant O-polysaccharide-protein conjugate approach to develop highly specific monoclonal antibodies to Shiga toxin-producing Escherichia coli O157 and O145 serogroups. PLoS One 2017; 12:e0182452. [PMID: 28981517 PMCID: PMC5628784 DOI: 10.1371/journal.pone.0182452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/08/2017] [Indexed: 01/07/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is the major etiologic agent of hemolytic-uremic syndrome (HUS). The high rate of HUS emphasizes the urgency for the implementation of primary prevention strategies to reduce its public health impact. Argentina shows the highest rate of HUS worldwide, being E. coli O157 the predominant STEC-associated HUS serogroup (>70%), followed by E. coli O145 (>9%). To specifically detect these serogroups we aimed at developing highly specific monoclonal antibodies (mAbs) against the O-polysaccharide (O-PS) section of the lipopolysaccharide (LPS) of the dominant STEC-associated HUS serogroups in Argentina. The development of hybridomas secreting mAbs against O157 or O145 was carried out through a combined immunization strategy, involving adjuvated-bacterial immunizations followed by immunizations with recombinant O-PS-protein conjugates. We selected hybridoma clones that specifically recognized the engineered O-PS-protein conjugates of O157 or O145 serogroups. Indirect ELISA of heat-killed bacteria showed specific binding to O157 or O145 serogroups, respectively, while no cross-reactivity with other epidemiological important STEC strains, Brucella abortus, Salmonella group N or Yersinia enterocolitica O9 was observed. Western blot analysis showed specific recognition of the sought O-PS section of the LPS by all mAbs. Finally, the ability of the developed mAbs to bind the surface of whole bacteria cells was confirmed by flow cytometry, confocal microscopy and agglutination assays, indicating that these mAbs present an exceptional degree of specificity and relative affinity in the detection and identification of E. coli O157 and O145 serogroups. These mAbs may be of significant value for clinical diagnosis and food quality control applications. Thus, engineered O-PS specific moieties contained in the recombinant glycoconjugates used for combined immunization and hybridoma selection are an invaluable resource for the development of highly specific mAbs.
Collapse
Affiliation(s)
- Daniela S. Castillo
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Diego A. Rey Serantes
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Luciano J. Melli
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Andrés E. Ciocchini
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Juan E. Ugalde
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Diego J. Comerci
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
20
|
Hu QY, Berti F, Adamo R. Towards the next generation of biomedicines by site-selective conjugation. Chem Soc Rev 2016; 45:1691-719. [PMID: 26796469 DOI: 10.1039/c4cs00388h] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bioconjugates represent an emerging class of medicines, which offer therapeutic opportunities overtaking those of the individual components. Many novel bioconjugates have been explored in order to address various emerging medical needs. The last decade has witnessed the exponential growth of new site-selective bioconjugation techniques, however very few methods have made the way into human clinical trials. Here we discuss various applications of site-selective conjugation in biomedicines, including half-life extension, antibody-drug conjugates, conjugate vaccines, bispecific antibodies and cell therapy. The review is intended to highlight both the progress and challenges, and identify a potential roadmap to address the gap.
Collapse
Affiliation(s)
- Qi-Ying Hu
- Novartis Institutes for Biomedical Research (NIBR), 100 Technology Square, Cambridge, MA 02139, USA.
| | - Francesco Berti
- GSK Vaccines (former Novartis Vaccines & Diagnostics), Via Fiorentina 1, 53100 Siena, Italy.
| | - Roberto Adamo
- GSK Vaccines (former Novartis Vaccines & Diagnostics), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
21
|
Sugar and Spice Make Bacteria Not Nice: Protein Glycosylation and Its Influence in Pathogenesis. J Mol Biol 2016; 428:3206-3220. [DOI: 10.1016/j.jmb.2016.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
22
|
Abstract
There is an ongoing race between bacterial evolution and medical advances. Pathogens have the advantages of short generation times and horizontal gene transfer that enable rapid adaptation to new host environments and therapeutics that currently outpaces clinical research. Antibiotic resistance, the growing impact of nosocomial infections, cancer-causing bacteria, the risk of zoonosis, and the possibility of biowarfare all emphasize the increasingly urgent need for medical research focussed on bacterial pathogens. Bacterial glycoproteins are promising targets for alternative therapeutic intervention since they are often surface exposed, involved in host-pathogen interactions, required for virulence, and contain distinctive glycan structures. The potential exists to exploit these unique structures to improve clinical prevention, diagnosis, and treatment strategies. Translation of the potential in this field to actual clinical impact is an exciting prospect for fighting infectious diseases.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jeffrey C Smith
- b Department of Chemistry and Institute of Biochemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|
23
|
A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis. J Clin Microbiol 2016; 54:1448-1455. [PMID: 26984975 DOI: 10.1128/jcm.00151-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans.
Collapse
|