1
|
Sing A, Dangel A, Konrad R, Meinel DM, Schwabe I, Sting R, Rau J, Berger A. Corynebacterium rouxii in a free-roaming red fox: case report and historical review on diphtheria in animals. Infection 2025:10.1007/s15010-025-02515-x. [PMID: 40131725 DOI: 10.1007/s15010-025-02515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
We reported previously the finding of a non-toxigenic C. diphtheriae biovar belfanti strain in a free-roaming red fox (Vulpes vulpes). Recently, mainly based on Whole Genome Sequencing data the C. diphtheriae species complex was broadened, i.e. in the C. diphtheriae branch by the two novel species C. belfantii and C. rouxii. According to novel sequence data the reported isolate from the fox has to be re-classified as C. rouxii. An updated review on both C. diphtheriae and C. rouxii in animals is given.
Collapse
Affiliation(s)
- Andreas Sing
- National Consiliary Laboratory for Diphtheria, EU Reference Laboratory for Public Health on Diphtheria and Pertussis (EURL-PH-DIPE), WHO Collaborating Centre for Diphtheria, Oberschleißheim, Germany.
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany.
- National Consiliary Laboratory for Diphtheria, WHO Collaborating Centre for Diphtheria, Bavarian Health and Food Safety Authority, Veterinärstraße 2, 85764, Oberschleißheim, Germany.
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, Muttenz, Switzerland
| | - Ingo Schwabe
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Reinhard Sting
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
- Consiliary Laboratory for Corynebacterium Pseudotuberculosis, Fellbach, Germany
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Anja Berger
- National Consiliary Laboratory for Diphtheria, EU Reference Laboratory for Public Health on Diphtheria and Pertussis (EURL-PH-DIPE), WHO Collaborating Centre for Diphtheria, Oberschleißheim, Germany
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| |
Collapse
|
2
|
du Plessis M, Mikhari R, de Gouveia L, Duma N, Lovelock T, Lawrence C, Mahabeer P, Mahabeer Y, Govender N, Nzenze S, Featherston J, Moodley M, Moyes J, Walaza S, Cohen C, von Gottberg A. Corynebacterium diphtheriae Infections, South Africa, 2015-2023. Emerg Infect Dis 2025; 31:417-426. [PMID: 40023798 PMCID: PMC11878320 DOI: 10.3201/eid3103.241211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
We reviewed Corynebacterium spp. infection cases reported in South Africa during 2015-2023. We analyzed 84 isolates from 83 patients with C. diphtheriae, as well as 1 C. belfantii and 3 C. ulcerans isolates. Among C. diphtheriae cases, we observed respiratory diphtheria (26/83 patients [31%]), endocarditis (14/83 [17%]), cutaneous diphtheria (22/83 [27%]), nonspecific respiratory illnesses (5/83 [6%]), and asymptomatic carriage (16/83 [19%]). The median patient age was 19 (range 0-88) years. Diphtheria-tetanus-pertussis vaccination was incomplete for 26% (5/19) or unknown for 68% (13/19) of children 0-9 years of age. C. diphtheriae was intermediately resistant to penicillin (82/84 [98%] isolates; MIC90 0.5 μg/mL) but susceptible to erythromycin (83/84 [99%] isolates; MIC90 0.25 μg/mL). Eighteen unique sequence types were identified, corroborating C. diphtheriae heterogeneity. Toxin-producing strains were detected among cutaneous and respiratory diphtheria cases, indicating all forms of disease require monitoring and prompt public health action to curb transmission.
Collapse
|
3
|
Kozak S, Merda D, Chesnais V, Breuil MF, Harrison M, Zdovc I, Golob M, Petry S, Duquesne F. Core genome multilocus sequence typing schemes for epidemiological investigation of Taylorella equigenitalis and Taylorella asinigenitalis. Vet Microbiol 2025; 302:110419. [PMID: 39904078 DOI: 10.1016/j.vetmic.2025.110419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Taylorella equigenitalis is the causative agent of contagious equine metritis, an internationally regulated sexually-transmitted infection in horses, which is of great concern as it usually results in temporary infertility. Taylorella asinigenitalis, the second member of the genus, is mainly found in donkeys and is considered non-pathogenic, although a first natural outbreak was reported in 2019 in the United Arab Emirates. Multilocus sequence typing (MLST) is currently used to study the epidemiology of Taylorella spp. but, while highly transposable and reproducible, it only focuses on < 0.5 % of the genome (seven genes). We therefore aimed to develop a robust core genome MLST (cgMLST) based on the analysis of 370 T. equigenitalis and 68 T. asinigenitalis genomes belonging to 46 and 18 sequence types (STs), respectively. Typing results based on 1333 loci (84.0 % of the genome) from T. equigenitalis genomes and 1255 loci (80.3 %) from T. asinigenitalis genomes showed that the discriminatory power of both species-specific cgMLSTs was greater than that of MLST, with 368 and 68 distinct core genome STs (cgSTs), respectively. Clustering was congruent between the cgMLST and MLST methods, with few inconsistencies for T. equigenitalis. Maximum allelic distance between epidemiologically-related strains was used to define cgMLST clustering thresholds, set at ≤ 15 and 20 allelic distances for T. equigenitalis and T. asinigenitalis, respectively. These parameters grouped the cgSTs into 47 and 11 clonal groups (CGs), respectively. Overall, the cgMLST method outperformed conventional MLST in distinguishing clonal strains from epidemiologically-linked strains, supporting the hypothesis that typing based on a few housekeeping genes does not always accurately reflect genomic relatedness between strains, and making cgMLST more suitable for outbreak investigations.
Collapse
Affiliation(s)
- Sofia Kozak
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| | - Déborah Merda
- ANSES, Paris Est University, SPAAD Unit, Maisons-Alfort, France.
| | | | - Marie-France Breuil
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| | - Megan Harrison
- APHA Veterinary Investigation Centre, Merrythought, Calthwaite, Penrith, UK.
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, Ljubljana, Slovenia.
| | - Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, Ljubljana, Slovenia.
| | - Sandrine Petry
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| | - Fabien Duquesne
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| |
Collapse
|
4
|
de Oliveira Sant'Anna L, Dos Santos LS, Ramos JN, Bokermann S, Bernardes Sousa MÂ, Prates FD, Mattos-Guaraldi AL, Vieira VV, Araújo MRB. Genotypic and phenotypic characterization of the first Latin America isolates of Corynebacterium rouxii, a recently described member of the Corynebacterium diphtheriae complex reported in Europe. Braz J Microbiol 2024; 55:3269-3277. [PMID: 39373943 PMCID: PMC11711730 DOI: 10.1007/s42770-024-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
The genus Corynebacterium is the largest genera among corynebacteria and has a range of species widely spread in ecological niches, some with epidemic potential and capable of causing fatal diseases. In recent years, due to the reclassifications and discoveries of new potentially toxin-producing species, microbiological identification and epidemiological control have been compromised, becoming possible only with sequencing techniques. Two bacterial strains isolated from a cat were identified by MALDI-TOF mass spectrometry as Corynebacterium diphtheriae and sent to the collaborating center of the Brazilian Ministry of Health for molecular identification and determination of toxigenicity potential, which were initially performed by multiplex PCR method. In addition, the antimicrobial susceptibility profile was determined according to BrCAST. Finally, for the final identification at the species level and effective epidemiological monitoring, the sequencing of the 16S rRNA and rpoB housekeeping genes was carried out. The isolates were identified as nontoxigenic C. diphtheriae strains by mPCR. Both strains were found susceptible to all antimicrobial agents. Although the identification at the species level was not possible through similarity analysis of S rRNA and rpoB housekeeping genes, the phylogenetic analysis showed that the isolates belonged to the species Corynebacterium rouxii with a high value of reliability. This is the first report of the isolation of C. rouxii in Latin America. Molecular identification, whether by the MALDI-TOF mass spectrometry or PCR techniques, does not discriminate C. rouxii from C. diphtheriae, requiring gene sequencing and phylogenetic analysis for correct identification at the species level.
Collapse
Affiliation(s)
- Lincoln de Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Bokermann
- Bacteriology Branch, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Mireille Ângela Bernardes Sousa
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus, Hermes Pardini Institute, Microbiology, Minas Gerais, Brazil
| | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
Popowitch EB, Tran TH, Escapa IF, Bhatt E, Sozat AK, Ahmed N, Deming C, Roberts AQ, Segre JA, Kong HH, Conlan S, Lemon KP, Kelly MS. Description of two novel Corynebacterium species isolated from human nasal passages and skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624533. [PMID: 39605597 PMCID: PMC11601546 DOI: 10.1101/2024.11.21.624533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Strains of two novel Corynebacterium species were cultured from samples of human nostrils and skin collected in the United States and Botswana. These strains demonstrated growth on Columbia Colistin-Nalidixic Acid agar with 5% sheep blood and in liquid media (brain heart infusion and tryptic soy broth) supplemented with Tween 80, a source of the fatty acid oleic acid. Cells were Gram-positive, non-spore-forming, non-motile bacilli that showed catalase but not oxidase activity. Major fatty acids in both of these species were 18:1 ω9c (oleic acid), 16:0 (palmitic acid), and 18:0 (stearic acid). Analysis of the 16S ribosomal RNA gene sequences identified these strains as belonging to the genus Corynebacterium (family Corynebacteriaceae). Whole-genome sequencing revealed that these strains formed distinct branches on a phylogenomic tree, with C. tuberculostearicum being the closest relative but with average nucleotide identities of < 95% relative to all previously described species. These results indicate that these strains represent novel species of Corynebacterium, for which we propose the names Corynebacterium hallux sp. nov., with the type strain CTNIH22T (=ATCC TSD-435T=DSM 117774T), and Corynebacterium nasorum sp. nov., with the type strain KPL3804T (=ATCC TSD-439T=DSM 117767T). We also describe the characteristics of two strains isolated from human nasal passages that are members of the recently named species Corynebacterium yonathiae.
Collapse
Affiliation(s)
- Elena B. Popowitch
- Division of Pediatric Infectious Diseases, Duke University School
of Medicine, Durham, NC, USA
| | - Tommy H. Tran
- Alkek Center for Metagenomics & Microbiome Research,
Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston,
Texas, USA
| | - Isabel Fernandez Escapa
- Alkek Center for Metagenomics & Microbiome Research,
Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston,
Texas, USA
| | | | | | - Nashwa Ahmed
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Clayton Deming
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Ari Q. Roberts
- Alkek Center for Metagenomics & Microbiome Research,
Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston,
Texas, USA
| | | | - Julia A. Segre
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Heidi H. Kong
- National Institute of Arthritis and Musculoskeletal and Skin
Diseases, Bethesda, MD, USA
| | - Sean Conlan
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Katherine P. Lemon
- Alkek Center for Metagenomics & Microbiome Research,
Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston,
Texas, USA
- Division of Infectious Diseases, Texas Children’s
Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew S. Kelly
- Division of Pediatric Infectious Diseases, Duke University School
of Medicine, Durham, NC, USA
| |
Collapse
|
6
|
Araújo MRB, Prates FD, Viana MVC, Santos LS, Mattos-Guaraldi AL, Camargo CH, Sacchi CT, Campos KR, Vieira VV, Santos MBN, Bokermann S, Ramos JN, Azevedo V. Genomic analysis of two penicillin- and rifampin-resistant Corynebacterium rouxii strains isolated from cutaneous infections in dogs. Res Vet Sci 2024; 179:105396. [PMID: 39213744 DOI: 10.1016/j.rvsc.2024.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Although diphtheria is a vaccine-preventable disease, numerous cases are still reported around the world, as well as outbreaks in countries, including European ones. Species of the Corynebacterium diphtheriae complex are potentially toxigenic and, therefore, must be considered given the possible consequences, such as the circulation of clones and transmission of antimicrobial resistance and virulence genes. Recently, Corynebacterium rouxii was characterized and included among the valid species of the complex. Therefore, two cases of C. rouxii infection arising from infections in domestic animals are presented here. We provide molecular characterization, phylogenetic analyses, genome sequencing, and CRISPR-Cas analyses to contribute to a better understanding of the molecular bases, pathogenesis, and epidemiological monitoring of this species, which is still little studied. We confirmed its taxonomic position with genome sequencing and in silico analysis and identified the ST-918 for both strains. The clinical isolates were sensitive resistance to benzylpenicillin and rifampin. Antimicrobial resistance genes, including tetB, rpoB2, and rbpA genes, were predicted. The bla and ampC genes were not found. Several virulence factors were also detected, including adhesion, iron uptake systems, gene regulation (dtxR), and post-translational modification (MdbA). Finally, one prophage and the Type I-E CRISPR-Cas system were identified.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute (Fleury Group), Av. das Nações, 2448, Santo Antônio, 33200-000 Vespasiano, MG, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute (Fleury Group), Av. das Nações, 2448, Santo Antônio, 33200-000 Vespasiano, MG, Brazil; Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Canário Viana
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Louisy Sanches Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Ana Luiza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Carlos Henrique Camargo
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Cláudio Tavares Sacchi
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Benedito Nascimento Santos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil..
| |
Collapse
|
7
|
Ramos JN, Araújo MRB, Baio PVP, Sant'Anna LO, Veras JFC, Vieira ÉMD, Sousa MÂB, Camargo CH, Sacchi CT, Campos KR, Santos MBN, Bokermann S, Alvim LB, Sanches Dos Santos L, de Mattos-Guaraldi AL, Vieira VV. Molecular characterization and phylogenetic analysis of the first Corynebacterium rouxii strains isolated in Brazil: a recent member of Corynebacterium diphtheriae complex. BMC Genom Data 2023; 24:65. [PMID: 37940844 PMCID: PMC10634135 DOI: 10.1186/s12863-023-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Corynebacterium diphtheriae complex was formed by the species C. diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis in the recent past. In addition to C. diphtheriae, C. ulcerans and C. pseudotuberculosis species can carry the tox gene, which encodes diphtheria toxin. Currently, three new species have been included in the complex: Corynebacterium rouxii, Corynebacterium silvaticum, and Corynebacterium belfantii. C. rouxii is derived from the ancient Belfanti biovar of C. diptheriae. We provide the complete genome sequences of two non-toxigenic strains C. rouxii isolated from a cat with a purulent infection in Brazil. The taxonomic status and sequence type, as well as the presence of resistance and virulence genes, and CRISPR-Cas system were additionally defined. RESULTS The genomes showed an average size of 2.4 Mb and 53.2% GC content, similar to the type strain of the species deposited in Genbank/NCBI. Strains were identified as C. rouxii by the rMLST database, with 95% identity. ANI and DDH in silico were consistent with values above the proposed cut-off points for species limit, corroborating the identification of the strains as C. rouxii. MLST analyses revealed a new ST, which differs from ST-537 only by the fusA allele. No horizontal transfer resistance gene was predicted in both genomes and no mutation was detected in the constitutive genes gyrA and rpoB. Some mutations were found in the seven penicillin-binding proteins (PBPs) detected. The tox gene was not found, but its regulatory gene dtxR was present. Among the predicted virulence genes are those involved in iron uptake and adherence, in addition to the DIP0733 protein involved in epithelial cell adhesion and invasion. The CRISPR-Cas type I-E system was detected in both genomes, with 16 spacer sequences each. Of them, half are unknown according to the databases used, indicating that there is an unexplored reservoir of corynebacteriophages and plasmids. CONCLUSIONS This is the first genomic study of C. rouxii reported in Brazil. Here we performed taxonomic analysis and the prediction of virulence factors. The genomic analyses performed in this study may help to understand the potential pathogenesis of non-toxigenic C. rouxii strains.
Collapse
Affiliation(s)
- Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Lincoln Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - João Flávio Carneiro Veras
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil
| | - Érica Miranda Damásio Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil
| | | | - Carlos Henrique Camargo
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Cláudio Tavares Sacchi
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | | | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Luige Biciati Alvim
- Operational Technical Nucleus, Research and Development, Hermes Pardini Institute, Belo Horizonte, Brazil
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ana Luiza de Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Verônica Viana Vieira
- Laboratório Interdisciplinar de Pesquisas Médicas (LIPMED) - Instituto Oswaldo Cruz - Fundação Oswaldo Cruz (Fiocruz), Av. Brasil, 4365. Pavilhão Cardoso Fontes, 1°. andar, sala 17. Manguinhos, Rio de Janeiro, CEP:21040-900, Brazil.
| |
Collapse
|
8
|
Spielberger BD, Hansel A, Nazary A, Kleißle EM, Lehr CG, Utz M, Hofer J, Rieg S, Kern WV. Imported Toxigenic Corynebacterium Diphtheriae in Refugees with Polymicrobial Skin Infections, Germany, 2022. Emerg Infect Dis 2023; 29:2112-2115. [PMID: 37690442 PMCID: PMC10521595 DOI: 10.3201/eid2910.230285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
During August-December 2022, toxigenic Corynebacterium diphtheriae was isolated from 25 refugees with skin infections and 2 refugees with asymptomatic throat colonization at a refugee reception center in Germany. None had systemic toxin-mediated illness. Of erosive/ulcerative skin infections, 96% were polymicrobial. Erosive/ulcerative wounds in refugees should undergo testing to rule out cutaneous diphtheria.
Collapse
|
9
|
Luo Q, Luo H, Zhang T, Liu X, Chen X, Chen Q, Feng J, Qu P, Chen C, Xu N. Corynebacterium lipophilum sp. nov., a lipophilic bacterium isolated from clinical breast specimens and emended description of the species Corynebacterium pilbarense. Antonie Van Leeuwenhoek 2023; 116:1091-1101. [PMID: 37610475 DOI: 10.1007/s10482-023-01854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2023] [Indexed: 08/24/2023]
Abstract
Two isolates (MC-18T and MC-17D), representing the Gram-stain-positive, facultatively anaerobic, irregular rod-shaped, non-motile, and non-spore-forming actinobacteria, were isolated from clinical breast specimens in Guangzhou, China. The growth of the isolates is enhanced by supplementing 1% Tween-80 on Luria Bertani agar. Optimal growth of the isolates was observed at 37 °C, pH 7-8, and with 1% (w/v) NaCl on Columbia blood agar. Pairwise comparison of the 16S rRNA gene sequences revealed that isolates MC-18T and MC-17D shared the highest sequence similarities with Corynebacterium liangguodongii 2184T (96.9%), which were lower than the threshold value for species delineation (98.65%). Phylogenetic dendrograms based on the 16S rRNA gene, rpoB gene, and core genomes indicated that two isolates formed a distinct lineage within the genus Corynebacterium. The estimated dDDH, ANIb, ANIm, and AAI values between strain MC-18T and its closely related strains were below the threshold values generally considered for recognizing a new species. The genome DNA G + C contents of both the isolates MC-18T and MC-17D are 60.6%. The two isolates have virulence-related genes of the VF classes of adhesion and antiphagocytosis, and also contain the antimicrobial resistance genes ErmX, mtrA, rpoB2, and RbpA. The major fatty acids (> 10%) of isolates MC-18T and MC-17D were C16:0, C18:1 ω9c, C18:0 and summed feature 5 (anteiso-C18:0 and/or C18:2 ω6,9c). The main respiratory quinone of strain MC-18T was MK-8(H2), and the polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, three unidentified glycolipids, an unidentified aminolipid, and four unidentified phosphoglycolipids. The two isolates lack mycolic acids in the cell envelope. Based on the above findings, the two isolates are considered to represent a novel species of the genus Corynebacterium, for which the name Corynebacterium lipophilum sp. nov. is proposed, with isolate MC-18T (= NBRC 115144T = CCTCC AB 2020201T) as the type strain. An emended description of the Corynebacterium pilbarense is also provided.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Haimin Luo
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Tianqi Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiaofang Liu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xiaowei Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qianming Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Junhui Feng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Pinghua Qu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Cha Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Ning Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
10
|
Araújo MRB, Ramos JN, de Oliveira Sant'Anna L, Bokermann S, Santos MBN, Mattos-Guaraldi AL, Azevedo V, Prates FD, Rodrigues DLN, Aburjaile FF, Sacchi CT, Campos KR, Alvim LB, Vieira VV, Camargo CH, Dos Santos LS. Phenotypic and molecular characterization and complete genome sequence of a Corynebacterium diphtheriae strain isolated from cutaneous infection in an immunized individual. Braz J Microbiol 2023; 54:1325-1334. [PMID: 37597133 PMCID: PMC10485220 DOI: 10.1007/s42770-023-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023] Open
Abstract
Diphtheria is an infectious disease potentially fatal that constitutes a threat to global health security, with possible local and systemic manifestations that result mainly from the production of diphtheria toxin (DT). In the present work, we report a case of infection by Corynebacterium diphtheriae in a cutaneous lesion of a fully immunized individual and provided an analysis of the complete genome of the isolate. The clinical isolate was first identified by MALDI-TOF Mass Spectrometry. The commercial strip system and mPCR performed phenotypic and genotypic characterization, respectively. The antimicrobial susceptibility profile was determined by the disk diffusion method. Additionally, genomic DNA was sequenced and analyzed for species confirmation and sequence type (ST) determination. Detection of resistance and virulence genes was performed by comparisons against ResFinder and VFDB databases. The isolate was identified as a nontoxigenic C. diphtheriae biovar Gravis strain. Its genome presented a size of 2.46 Mbp and a G + C content of 53.5%. Ribosomal Multilocus Sequence Typing (rMLST) allowed the confirmation of species as C. diphtheriae with 100% identity. DDH in silico corroborated this identification. Moreover, MLST analyses revealed that the isolate belongs to ST-536. No resistance genes were predicted or mutations detected in antimicrobial-related genes. On the other hand, virulence genes, mostly involved in iron uptake and adherence, were found. Presently, we provided sufficient clinical data regarding the C. diphtheriae cutaneous infection in addition to the phenotypic and genomic data of the isolate. Our results indicate a possible circulation of ST-536 in Brazil, causing cutaneous infection. Considering that cases of C. diphtheriae infections, as well as diphtheria outbreaks, have still been reported in several regions of the world, studies focusing on taxonomic analyzes and predictions of resistance genes may help to improve the diagnosis and to monitor the propagation of resistant clones. In addition, they can contribute to understanding the association between variation in genetic factors and resistance to antimicrobials.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus (Microbiology), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Juliana Nunes Ramos
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lincoln de Oliveira Sant'Anna
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, São Paulo, São Paulo, Brazil
| | | | - Ana Luiza Mattos-Guaraldi
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus (Microbiology), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Diego Lucas Neres Rodrigues
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luige Biciati Alvim
- Operational Technical Nucleus (Research and Development), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Louisy Sanches Dos Santos
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Elsinga J, van Meijeren D, Reubsaet F. Surveillance of diphtheria in the Netherlands between 2000-2021: cutaneous diphtheria supersedes the respiratory form. BMC Infect Dis 2023; 23:420. [PMID: 37344769 PMCID: PMC10283224 DOI: 10.1186/s12879-023-08388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Diphtheria is a severe respiratory or cutaneous infectious disease, caused by exotoxin producing Corynebacterium diphtheriae, C. ulcerans and C. pseudotuberculosis. Diphtheria is once again prevalent due to breakdown of immunisation programmes, social disruption and unrest. AIM This study describes the notified diphtheria cases in the Netherlands between 2000-2021 and isolates that were sent to the National Institute for Public Health and the Environment (RIVM). METHODS File investigation was performed including all notified cases and isolates of C. diphtheriae, C. ulcerans and C. pseudotuberculosis that were tested for toxin production using a toxin-PCR and Elek test. An exploratory review was performed to understand transmission in populations with a high vaccination uptake. RESULTS Eighteen diphtheria notifications were made with confirmed toxigenic C. diphtheriae (n = 9) or ulcerans (n = 9) between 2000 and 2021. Seventeen (94.4%) presented with a cutaneous infection. All cases with a suspected source abroad (n = 8) concerned infection with C. diphtheriae. In contrast, 9/10 cases infected in the Netherlands were caused by C. ulcerans, a zoonosis. Secondary transmission was not reported. Isolates of C. ulcerans sent to the RIVM produced more often the diphtheria exotoxin (11/31; 35%) than C. diphtheriae (7/89; 7.9%). CONCLUSION Both human-to-human transmission of C. diphtheriae and animal-to-human transmission of C. ulcerans rarely occurs in the Netherlands. Cases mainly present with a cutaneous infection. Travel-related cases remain a risk for transmission to populations with low vaccination coverage, highlighting the importance of immunization and diphtheria control measures.
Collapse
Affiliation(s)
- Jelte Elsinga
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Dimphey van Meijeren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Frans Reubsaet
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| |
Collapse
|
12
|
Tessier E, Hennart M, Badell E, Passet V, Toubiana J, Biron A, Gourinat AC, Merlet A, Colot J, Brisse S. Genomic Epidemiology of Corynebacterium diphtheriae in New Caledonia. Microbiol Spectr 2023; 11:e0461622. [PMID: 37042786 PMCID: PMC10269643 DOI: 10.1128/spectrum.04616-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
An increasing number of isolations of Corynebacterium diphtheriae has been observed in recent years in the archipelago of New Caledonia. We aimed to analyze the clinical and microbiological features of samples with C. diphtheriae. All C. diphtheriae isolates identified in New Caledonia from May 2015 to May 2019 were included. For each case, a retrospective consultation of the patient files was conducted. Antimicrobial susceptibility phenotypes, tox gene and diphtheria toxin expression, biovar, and the genomic sequence were determined. Core genome multilocus sequence typing (cgMLST), 7-gene MLST, and search of genes of interest were performed from genomic assemblies. Fifty-eight isolates were included, with a median age of patients of 28 years (range: 9 days to 78 years). Cutaneous origin accounted for 51 of 58 (87.9%) isolates, and C. diphtheriae was associated with Staphylococcus aureus and/or Streptococcus pyogenes in three-quarters of cases. Half of cases came either from the main city Noumea (24%, 14/58) or from the sparsely populated island of Lifou (26%, 15/58). Six tox-positive isolates were identified, associated with recent travel to Vanuatu; 5 of these cases were linked and cgMLST confirmed recent transmission. Two cases of endocarditis in young female patients with a history of rheumatic fever involved tox-negative isolates. The 58 isolates were mostly susceptible to commonly used antibiotics. In particular, no isolate was resistant to the first-line molecules amoxicillin or erythromycin. Resistance to tetracycline was found in a genomic cluster of 17 (29%) isolates, 16 of which carried the tetO gene. There were 13 cgMLST sublineages, most of which were also observed in the neighboring country Australia. Cutaneous infections may harbor nontoxigenic C. diphtheriae isolates, which circulate largely silently in nonspecific wounds. The possible introduction of tox-positive strains from a neighboring island illustrates that diphtheria surveillance should be maintained in New Caledonia, and that immunization in neighboring islands must be improved. Genomic sequencing uncovers how genotypes circulate locally and across neighboring countries. IMPORTANCE The analysis of C. diphtheriae from the tropical archipelago of New Caledonia revealed a high genetic diversity with sublineages that may be linked to Polynesia, Australia, or metropolitan France. Genomic typing allowed confirming or excluding suspected transmission events among cases and contacts. A highly prevalent tetracycline-resistant sublineage harboring the tetO gene was uncovered. Toxigenic isolates were observed from patients returning from Vanuatu, showing the importance of improving vaccination coverage in settings where it is insufficient. This study also illustrates the importance for diphtheria surveillance of the inclusion of isolates from cutaneous sources in addition to respiratory cases, in order to provide a more complete epidemiological picture of the diversity and transmission of C. diphtheriae.
Collapse
Affiliation(s)
- Eve Tessier
- CHU Nantes, Service de Bactériologie et des Contrôles Microbiologiques, Nantes, France
- Microbiology Laboratory, Centre Hospitalier Territorial Gaston Bourret, Nouméa, New Caledonia
| | - Melanie Hennart
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the diphtheriae complex, Paris, France
| | - Virginie Passet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the diphtheriae complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the diphtheriae complex, Paris, France
- Université Paris Cité, Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker–Enfants Malades, APHP, Paris, France
| | - Antoine Biron
- Microbiology Laboratory, Centre Hospitalier Territorial Gaston Bourret, Nouméa, New Caledonia
| | - Ann-Claire Gourinat
- Microbiology Laboratory, Centre Hospitalier Territorial Gaston Bourret, Nouméa, New Caledonia
| | - Audrey Merlet
- Infectious diseases unit, Centre Hospitalier Territorial Gaston Bourret, Nouméa, New Caledonia
| | - Julien Colot
- Microbiology Laboratory, Centre Hospitalier Territorial Gaston Bourret, Nouméa, New Caledonia
- Institut Pasteur de Nouvelle Calédonie, Groupe de Bactériologie médicale et environnementale Nouméa, New Caledonia
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the diphtheriae complex, Paris, France
| |
Collapse
|
13
|
Cui H, Zhang C, Zhao K, Liu J, Pu J, Kong Y, Dong S, Chen L, Zhao Y, Chen Y, Chen Z, Zhang L, Wang Z, Guo Z. Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Int J Hyg Environ Health 2023; 251:114173. [PMID: 37119673 DOI: 10.1016/j.ijheh.2023.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Jilin University, 5333 Xi'an Avenue, Changchun, 130062, Jilin, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Kui Zhao
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Avenue, Changchun, 130062, Jilin, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Yanbin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Yanyan Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Zhaoliang Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Lei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Zhongyi Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China.
| |
Collapse
|
14
|
Wołkowicz T, Zacharczuk K, Zasada AA. Genomic Analysis of Corynebacterium diphtheriae Strains Isolated in the Years 2007-2022 with a Report on the Identification of the First Non-Toxigenic tox Gene-Bearing Strain in Poland. Int J Mol Sci 2023; 24:ijms24054612. [PMID: 36902043 PMCID: PMC10003741 DOI: 10.3390/ijms24054612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Infections caused by non-toxigenic Corynebacterium diphtheriae have been reported every year in Poland since 2004, with the ST8 biovar gravis strains being most commonly isolated. This study analyzed thirty strains isolated between 2017 and 2022 and six previously isolated strains. All the strains were characterized using classic methods in terms of species, biovar level, and diphtheria toxin production, as well as by means of whole genome sequencing. The phylogenetic relationship based on SNP analysis was determined. The number of C. diphtheriae infections has been rising in Poland every year with a maximum of 22 cases in the year 2019. Since 2022, only the non-toxigenic gravis ST8 (most common) and mitis ST439 (less common) strains have been isolated. An analysis of the genomes of the ST8 strains showed that they had many potential virulence factors, such as adhesins and iron-uptake systems. The situation rapidly changed in 2022 and strains from different STs were isolated (ST32, 40, and 819). The ST40 biovar mitis strain was found to be non-toxigenic tox gene-bearing (NTTB), with the tox gene inactivated due to a single nucleotide deletion. Such strains were previously isolated in Belarus. The sudden appearance of new C. diphtheriae strains with different STs and the isolation of the first NTTB strain in Poland indicate that C. diphtheriae should be classified as a pathogen of special public health concern.
Collapse
Affiliation(s)
- Tomasz Wołkowicz
- Department of Bacteriology and Biocontamination Control, National Institute of Public Health NIH—National Research Institute, 24 Chocimska Str., 00-791 Warsaw, Poland
- Correspondence:
| | - Katarzyna Zacharczuk
- Department of Bacteriology and Biocontamination Control, National Institute of Public Health NIH—National Research Institute, 24 Chocimska Str., 00-791 Warsaw, Poland
| | - Aleksandra Anna Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, 24 Chocimska Str., 00-791 Warsaw, Poland
| |
Collapse
|
15
|
Arcari G, Hennart M, Badell E, Brisse S. Multidrug-resistant toxigenic Corynebacterium diphtheriae sublineage 453 with two novel resistance genomic islands. Microb Genom 2023; 9:mgen000923. [PMID: 36748453 PMCID: PMC9973851 DOI: 10.1099/mgen.0.000923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial therapy is important for case management of diphtheria, but knowledge on the emergence of multidrug-resistance in Corynebacterium diphtheriae is scarce. We report on the genomic features of two multidrug-resistant toxigenic isolates sampled from wounds in France 3 years apart. Both isolates were resistant to spiramycin, clindamycin, tetracycline, kanamycin and trimethoprim-sulfamethoxazole. Genes ermX, cmx, aph(3')-Ib, aph(6)-Id, aph(3')-Ic, aadA1, dfrA15, sul1, cmlA, cmlR and tet(33) were clustered in two genomic islands, one consisting of two transposons and one integron, the other being flanked by two IS6100 insertion sequences. One isolate additionally presented mutations in gyrA and rpoB and was resistant to ciprofloxacin and rifampicin. Both isolates belonged to sublineage 453 (SL453), together with 25 isolates from 11 other countries (https://bigsdb.pasteur.fr/diphtheria/). SL453 is a cosmopolitan toxigenic sublineage of C. diphtheriae, a subset of which acquired multidrug resistance. Even though penicillin, amoxicillin and erythromycin, recommended as the first line in the treatment of diphtheria, remain active, surveillance of diphtheria should consider the risk of dissemination of multidrug-resistant strains and their genetic elements.
Collapse
Affiliation(s)
- Gabriele Arcari
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Department of Molecular Medicine, Sapienza Università di Roma, Rome, Italy
| | - Mélanie Hennart
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Collège doctoral, Sorbonne Université, F-75005 Paris, France
| | - Edgar Badell
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,Institut Pasteur, National Reference Center for Corynebacteria of the Diphtheriae Complex, Paris, France
| |
Collapse
|
16
|
Prygiel M, Polak M, Mosiej E, Wdowiak K, Formińska K, Zasada AA. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens 2022; 11:1264. [PMID: 36365015 PMCID: PMC9693595 DOI: 10.3390/pathogens11111264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Only three Corynebacterium species are known to produce a lethal exotoxin called diphtheria toxin. These are C. diphtheriae, C. ulcerans and C. pseudotuberculosis. The diphtheria toxin gene (tox) is carried in a family of closely related corynebacteriophages and therefore the toxin can be produced only through lysogenisation, in which the corynephage encoding tox is stably inserted into the chromosome. However, 'nontoxigenic tox gene-bearing' (NTTB) strains, which are genotypically tox-positive but do not express the protein, have been described. The emergence of NTTB strains was first observed during the 1990s diphtheria epidemic in Eastern Europe and nowadays such isolates have been detected in many countries in the world. Recently, novel species of Corynebacterium genus have been described which might have the potential of producing the diphtheria toxin due to the possession of the diphtheria toxin gene but it has not produced toxin in laboratory tests. The circulation of NTTB strains could be related to the increased risk for diphtheria disease arising from the risk of re-emerging toxin expression. The article presents the mechanism of diphtheria toxin expression and action, recently described novel species of NTTB corynebacteria as well as the taxonomic changes within the C. diphtheriae group.
Collapse
|
17
|
Sun W, Ma L, Li Y, Xu Y, Wei J, Sa L, Chen X, Su J. In vitro Studies of Non-Diphtheriae Corynebacterium Isolates on Antimicrobial Susceptibilities, Drug Resistance Mechanisms, and Biofilm Formation Capabilities. Infect Drug Resist 2022; 15:4347-4359. [PMID: 35971555 PMCID: PMC9375566 DOI: 10.2147/idr.s376328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Objective This study aimed to investigate the antimicrobial susceptibilities, drug resistance mechanisms, and biofilm formation capacities of non-diphtheriae Corynebacterium strains isolated from sterile midstream urine of hospitalized patients with clinical urinary tract infections (UTIs). Methods A total of 45 non-diphtheriae Corynebacterium isolates were recovered from sterile midstream urine. The available data of 45 patients were collected. Minimum inhibitory concentrations (MICs) of 10 commonly used antibiotics were determined. Meanwhile, the molecular resistance mechanisms of each agent were performed through PCR with specific primers. Moreover, the biofilm formation capability of each isolate on abiotic surfaces was detected with the MTT method. Results In this study, the most prevalent three species were C. striatum (15/45, 33.3%), C. glucuronolyticum (9/45, 20.0%) and C. urealyticum (8/45, 17.8%). These three species also accounted for most renal and ureteral calculi cases. Male patients older than 50 years, especially those with underlying diseases, were more susceptible to non-diphtheriae Corynebacterium infection. All the 45 isolates were 100% susceptible to vancomycin and linezolid, but highly resistant to macrolide–lincosamide–streptogramin B (MLSB), fluoroquinolones, tetracyclines and β-lactams with corresponding mechanisms. The detection rate of multidrug–resistant (MDR) non-diphtheriae Corynebacterium is 91.1%. All isolates are able to form biofilm on abiotic surfaces, except those of C. urealyticum, C. tuberculostearicum and C. jeikeium. Isolates of C. glucuronolyticum and C. Striatum possessed the strongest biofilm formation capacity. C. amycolatum could form biofilm, but varied greatly among different isolates. Conclusion C. striatum, C. glucuronolyticum and C. urealyticum were the most prevalent species relevant to UTIs. The high occurrence of MDR isolates and high diversities in resistance profiles, and the distinctive abilities of biofilm formation highlighted the urgency for identification to species level. We should pay more attention to the drug resistance profiles of non-diphtheriae Corynebacterium, which would help improve empirical antibiotic therapy and reduce drug resistance transmission.
Collapse
Affiliation(s)
- Wei Sun
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Liyan Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yana Li
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Ying Xu
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jingjuan Wei
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Lei Sa
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Xinxin Chen
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| |
Collapse
|
18
|
Hoefer A, Herrera-León S, Domínguez L, Gavín MO, Romero B, Piedra XBA, Calzada CS, Uría González MJ, Herrera-León L. Zoonotic Transmission of Diphtheria from Domestic Animal Reservoir, Spain. Emerg Infect Dis 2022; 28:1257-1260. [PMID: 35608831 PMCID: PMC9155899 DOI: 10.3201/eid2806.211956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toxigenic Corynebacterium ulcerans is as an emerging zoonotic agent of diphtheria. We describe the zoonotic transmission of diphtheria caused by toxigenic C. ulcerans from domestic animals in Spain, confirmed by core-genome multilocus sequence typing. Alongside an increasing number of recent publications, our findings highlight the public health threat posed by diphtheria reemergence.
Collapse
|
19
|
Guglielmini J, Hennart M, Badell E, Toubiana J, Criscuolo A, Brisse S. Genomic Epidemiology and Strain Taxonomy of Corynebacterium diphtheriae. J Clin Microbiol 2021; 59:e0158121. [PMID: 34524891 PMCID: PMC8601238 DOI: 10.1128/jcm.01581-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Corynebacterium diphtheriae is highly transmissible and can cause large diphtheria outbreaks where vaccination coverage is insufficient. Sporadic cases or small clusters are observed in high-vaccination settings. The phylogeography and short timescale evolution of C. diphtheriae are not well understood, in part due to a lack of harmonized analytical approaches of genomic surveillance and strain tracking. We combined 1,305 genes with highly reproducible allele calls into a core genome multilocus sequence typing (cgMLST) scheme. We analyzed cgMLST gene diversity among 602 isolates from sporadic clinical cases, small clusters, or large outbreaks. We defined sublineages based on the phylogenetic structure within C. diphtheriae and strains based on the highest number of cgMLST mismatches within documented outbreaks. We performed time-scaled phylogenetic analyses of major sublineages. The cgMLST scheme showed high allele call rate in C. diphtheriae and the closely related species C. belfantii and C. rouxii. We demonstrate its utility to delineate epidemiological case clusters and outbreaks using a 25 mismatches threshold and reveal a number of cryptic transmission chains, most of which are geographically restricted to one or a few adjacent countries. Subcultures of the vaccine strain PW8 differed by up to 20 cgMLST mismatches. Phylogenetic analyses revealed a short-timescale evolutionary gain or loss of the diphtheria toxin and biovar-associated genes. We devised a genomic taxonomy of strains and deeper sublineages (defined using a 500-cgMLST-mismatch threshold), currently comprising 151 sublineages, only a few of which are geographically widespread based on current sampling. The cgMLST genotyping tool and nomenclature was made publicly accessible (https://bigsdb.pasteur.fr/diphtheria). Standardized genome-scale strain genotyping will help tracing transmission and geographic spread of C. diphtheriae. The unified genomic taxonomy of C. diphtheriae strains provides a common language for studies of ecology, evolution, and virulence heterogeneity among C. diphtheriae sublineages.
Collapse
Affiliation(s)
- Julien Guglielmini
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Melanie Hennart
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Edgar Badell
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
- Université de Paris, Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Department of Computational Biology, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université de Paris, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
- National Reference Center for the Corynebacteria of the Diphtheriae Complex, Paris, France
| |
Collapse
|
20
|
Schlez K, Eisenberg T, Rau J, Dubielzig S, Kornmayer M, Wolf G, Berger A, Dangel A, Hoffmann C, Ewers C, Sing A. Corynebacterium rouxii, a recently described member of the C. diphtheriae group isolated from three dogs with ulcerative skin lesions. Antonie van Leeuwenhoek 2021; 114:1361-1371. [PMID: 34170418 PMCID: PMC8379122 DOI: 10.1007/s10482-021-01605-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Corynebacterium (C.) diphtheriae is one of the two etiological pathogens for human diphtheria with significant morbidity and mortality. Recently, members of its biovar Belfanti have been described as two novel species, C. belfantii and C. rouxii. The most important virulence factor and also the premise to cause diphtheria is the isolate’s capacity to encode and express the diphtheria toxin (DT). In contrast to C. ulcerans, which represents a potentially zoonotic pathogen, C. diphtheriae (incl. the novel deduced species) has almost exclusively been found to comprise a human pathogen. We here report three rare cases of C. rouxii isolation from dogs suffering from disseminated poly-bacterial exsudative to purulent dermatitis and a traumatic labial defect, respectively. The isolates were identified as C. diphtheriae based on commercial biochemistry and matrix-assisted laser desorption/ionisation–time of flight mass spectrometry (MALDI-TOF MS) analysis. However, recently described specific spectral peaks were highly similar to spectra of C. rouxii, which was confirmed by whole genome sequencing. Further investigations of the dog isolates for the presence of DT by tox gene qPCR revealed negative results. The findings from this study point out that skin infections in companion animals can be colonized by uncommon and so believed human specific pathogens, thereby resembling the clinical signs of cutaneous diphtheria.
Collapse
Affiliation(s)
- Karen Schlez
- Hessian State Laboratory, Department of Veterinary Medicine, Hessisches Landeslabor, Schubertstr. 60, 35392, Giessen, Germany.
| | - Tobias Eisenberg
- Hessian State Laboratory, Department of Veterinary Medicine, Hessisches Landeslabor, Schubertstr. 60, 35392, Giessen, Germany.
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Frankfurter Str. 87-89, 35392, Giessen, Germany.
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency Stuttgart, Schaflandstr. 3/2, 70736, Fellbach, Germany
| | - Sabine Dubielzig
- Veterinary Practice for Pets, Wehrenpfad 3, 34560, Fritzlar, Germany
| | - Matthias Kornmayer
- Department for Clinical Veterinary Medicine, Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University, Veterinärstr. 13, 80539, Munich, Germany
| | - Georg Wolf
- Department of Veterinary Sciences, Institute of Infectious Diseases and Zoonoses, Faculty of Veterinary Medicine, Ludwig-Maximilian-University, Veterinärstr. 13, 80539, Munich, Germany
| | - Anja Berger
- National Consiliary Laboratory on Diphtheria, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Veterinärstr. 2, 85764, Oberschleißheim, Germany
| | - Alexandra Dangel
- National Consiliary Laboratory on Diphtheria, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Veterinärstr. 2, 85764, Oberschleißheim, Germany
| | - Christiane Hoffmann
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Frankfurter Str. 87-89, 35392, Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Frankfurter Str. 87-89, 35392, Giessen, Germany
| | - Andreas Sing
- National Consiliary Laboratory on Diphtheria, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Veterinärstr. 2, 85764, Oberschleißheim, Germany
| |
Collapse
|
21
|
Strauss RA, Herrera-Leon L, Guillén AC, Castro JS, Lorenz E, Carvajal A, Hernandez E, Navas T, Vielma S, Lopez N, Lopez MG, Aurenty L, Navas V, Rosas MA, Drummond T, Martínez JG, Hernández E, Bertuglia F, Andrade O, Torres J, May J, Herrera-Leon S, Eibach D. Molecular and epidemiologic characterization of the diphtheria outbreak in Venezuela. Sci Rep 2021; 11:6378. [PMID: 33737710 PMCID: PMC7973433 DOI: 10.1038/s41598-021-85957-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
In 2016, Venezuela faced a large diphtheria outbreak that extended until 2019. Nasopharyngeal or oropharyngeal samples were prospectively collected from 51 suspected cases and retrospective data from 348 clinical records was retrieved from 14 hospitals between November 2017 and November 2018. Confirmed pathogenic Corynebactrium isolates were biotyped. Multilocus Sequence Typing (MLST) was performed followed by next-generation-based core genome-MLST and minimum spanning trees were generated. Subjects between 10 and 19 years of age were mostly affected (n = 95; 27.3%). Case fatality rates (CFR) were higher in males (19.4%), as compared to females (15.8%). The highest CFR (31.1%) was observed among those under 5, followed by the 40 to 49 age-group (25.0%). Nine samples corresponded to C. diphtheriae and 1 to C. ulcerans. Two Sequencing Types (ST), ST174 and ST697 (the latter not previously described) were identified among the eight C. diphtheriae isolates from Carabobo state. Cg-MLST revealed only one cluster also from Carabobo. The Whole Genome Sequencing analysis revealed that the outbreak seemed to be caused by different strains with C. diphtheriae and C. ulcerans coexisting. The reemergence and length of this outbreak suggest vaccination coverage problems and an inadequate control strategy.
Collapse
Affiliation(s)
| | | | | | - Julio S Castro
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Eva Lorenz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ana Carvajal
- Hospital Universitario de Caracas, Caracas, Venezuela
| | | | - Trina Navas
- Hospital General Los Magallanes de Catia, Caracas, Venezuela
| | | | | | - Maria G Lopez
- Hospital de Niños José Manuel de Los Ríos, Caracas, Venezuela
| | - Lisbeth Aurenty
- Hospital de Niños José Manuel de Los Ríos, Caracas, Venezuela
| | - Valeria Navas
- Hospital Universitario de Maracaibo, Maracaibo, Venezuela
| | - Maria A Rosas
- Ciudad Hospitalaria Dr Henrique Tejera, Carabobo, Venezuela
| | | | | | | | | | - Omaira Andrade
- Centro Clinico-Materno Leopoldo Aguerrevere, Caracas, Venezuela
| | - Jaime Torres
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Jürgen May
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Daniel Eibach
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|