1
|
Wang T, Park B, Anderson G, Shaller B, Budvytiene I, Banaei N. Application of Diagnostic Stewardship to Fungal Polymerase Chain Reaction: Low Yield of Follow-up Testing on Plasma and Bronchoalveolar Lavage After a Negative Result. Clin Infect Dis 2024; 79:944-952. [PMID: 39162527 DOI: 10.1093/cid/ciae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Early diagnosis of invasive fungal disease is essential for optimizing management. Although the clinical utility of fungal polymerase chain reaction (PCR) testing on plasma and bronchoalveolar lavage (BAL) has been established, the role of follow-up testing remains unclear. METHODS This was a retrospective single-center study. The yield of follow-up PCR for Aspergillus species, Mucorales agents, Fusarium species, Scedosporium species, dimorphic fungi, Pneumocystis jirovecii, and Candida species on plasma and/or BAL was measured at intervals of 1, 2, 3, and 4 weeks following a negative result. RESULTS A total of 1389 follow-up tests on 406 plasma specimens from 264 patients and 983 BAL specimens from 431 patients were evaluated. Overall, the positivity rate at 1, 2, 3, and 4 weeks was 2.7% (4/148), 3.3% (4/123), 5.1% (4/78), and 3.5% (2/57), respectively, on plasma, and 0% (0/333), 0.3% (1/288), 0.4% (1/228), and 0.7% (1/134), respectively, on BAL. Conversions occurred with Aspergillus species, Mucorales agents, and Fusarium species PCR on plasma and Aspergillus species and P jirovecii PCR on BAL. All patients who converted were immunocompromised. Within 1 week of a prior negative test, 2 Aspergillus and 2 Mucorales PCRs were positive on plasma, and zero tests were positive on BAL. In week 1, only 1 Aspergillus species that was positive on day 7 was classified as probable fungal disease. CONCLUSIONS Fungal PCR follow-up testing on plasma and BAL within 4 weeks of a prior negative result was of low yield and rarely generated a positive result considered clinically significant in the first week.
Collapse
Affiliation(s)
- Tong Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Bosung Park
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gavin Anderson
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Brian Shaller
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, California, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Lamoth F, Kontoyiannis DP. PCR diagnostic platforms for non- Aspergillus mold infections: ready for routine implementation in the clinic? Expert Rev Mol Diagn 2024; 24:273-282. [PMID: 38501431 DOI: 10.1080/14737159.2024.2326474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION While Aspergillus spp. remain the predominant cause of invasive mold infections, non-Aspergillus molds, such as the Mucorales or Fusarium spp., account for an increasing proportion of cases. The diagnosis of non-Aspergillus invasive mold infections (NAIMI) is challenging because of the low sensitivity and delay of conventional microbiological tests. Therefore, there is a particular interest to develop molecular tools for their early detection in blood or other clinical samples. AREAS COVERED This extensive review of the literature discusses the performance of Mucorales-specific PCR and other genus-specific or broad-range fungal PCR that can be used for the diagnosis of NAIMI in diverse clinical samples, with a focus on novel technologies. EXPERT OPINION PCR currently represents the most promising approach, combining good sensitivity/specificity and ability to detect NAIMI in clinical samples before diagnosis by conventional cultures and histopathology. Several PCR assays have been designed for the detection of Mucorales in particular, but also Fusarium spp. or Scedosporium/Lomentospora spp. Some commercial Mucorales PCRs are now available. While efforts are still needed for standardized protocols and the development of more rapid and simpler techniques, PCR is on the way to becoming an essential test for the early diagnosis of mucormycosis and possibly other NAIMIs.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Mah J, Nicholas V, Tayyar R, Moreno A, Murugesan K, Budvytiene I, Banaei N. Superior Accuracy of Aspergillus Plasma Cell-Free DNA Polymerase Chain Reaction Over Serum Galactomannan for the Diagnosis of Invasive Aspergillosis. Clin Infect Dis 2023; 77:1282-1290. [PMID: 37450614 DOI: 10.1093/cid/ciad420] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) in immunocompromised hosts carries high morbidity and mortality. Diagnosis is often delayed because definitive diagnosis requires invasive specimen collection, while noninvasive testing with galactomannan is moderately accurate. Plasma cell-free DNA polymerase chain reaction (cfDNA PCR) represents a novel testing modality for the noninvasive diagnosis of invasive fungal disease (IFD). We directly compared the performance of Aspergillus plasma cfDNA PCR with serum galactomannan for the diagnosis of IA during routine clinical practice. METHODS We conducted a retrospective study of all patients with suspected IFD who had Aspergillus plasma cfDNA PCR testing at Stanford Health Care from 1 September 2020 to 30 October 2022. Patients were categorized into proven, probable, possible, and no IA based on the EORTC/MSG definitions. Primary outcomes included the clinical sensitivity and specificity for Aspergillus plasma cfDNA PCR and galactomannan. RESULTS Overall, 238 unique patients with Aspergillus plasma cfDNA PCR test results, including 63 positives and 175 nonconsecutive negatives, were included in this study. The majority were immunosuppressed (89.9%) with 22.3% 30-day all-cause mortality. The overall sensitivity and specificity of Aspergillus plasma cfDNA PCR were 86.0% (37 of 43; 95% confidence interval [CI], 72.7-95.7) and 93.1% (121 of 130; 95% CI, 87.4-96.3), respectively. The sensitivity and specificity of serum galactomannan in hematologic malignancies/stem cell transplants were 67.9% (19 of 28; 95% CI, 49.3-82.1) and 89.8% (53 of 59; 95% CI, 79.5-95.3), respectively. The sensitivity of cfDNA PCR was 93.0% (40 of 43; 95% CI, 80.9-98.5) in patients with a new diagnosis of IA. CONCLUSIONS Aspergillus plasma cfDNA PCR represents a more sensitive alternative to serum galactomannan for noninvasive diagnosis of IA.
Collapse
Affiliation(s)
- Jordan Mah
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Veronica Nicholas
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Ralph Tayyar
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Angel Moreno
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kanagavel Murugesan
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Indre Budvytiene
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Niaz Banaei
- Division of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Microbiology Laboratory, Stanford Health Care, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
4
|
Jenks JD, White PL, Kidd SE, Goshia T, Fraley SI, Hoenigl M, Thompson GR. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev Mol Diagn 2023; 23:1135-1152. [PMID: 37801397 PMCID: PMC10842420 DOI: 10.1080/14737159.2023.2267977] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Invasive fungal infections cause millions of infections annually, but diagnosis remains challenging. There is an increased need for low-cost, easy to use, highly sensitive and specific molecular assays that can differentiate between colonized and pathogenic organisms from different clinical specimens. AREAS COVERED We reviewed the literature evaluating the current state of molecular diagnostics for invasive fungal infections, focusing on current and novel molecular tests such as polymerase chain reaction (PCR), digital PCR, high-resolution melt (HRM), and metagenomics/next generation sequencing (mNGS). EXPERT OPINION PCR is highly sensitive and specific, although performance can be impacted by prior/concurrent antifungal use. PCR assays can identify mutations associated with antifungal resistance, non-Aspergillus mold infections, and infections from endemic fungi. HRM is a rapid and highly sensitive diagnostic modality that can identify a wide range of fungal pathogens, including down to the species level, but multiplex assays are limited and HRM is currently unavailable in most healthcare settings, although universal HRM is working to overcome this limitation. mNGS offers a promising approach for rapid and hypothesis-free diagnosis of a wide range of fungal pathogens, although some drawbacks include limited access, variable performance across platforms, the expertise and costs associated with this method, and long turnaround times in real-world settings.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - P. Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, United Kingdom and Centre for trials research/Division of Infection/Immunity, Cardiff University, Cardiff, UK
| | - Sarah E. Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Tyler Goshia
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, California, United States of America
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
5
|
Current and Future Pathways in Aspergillus Diagnosis. Antibiotics (Basel) 2023; 12:antibiotics12020385. [PMID: 36830296 PMCID: PMC9952630 DOI: 10.3390/antibiotics12020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores.
Collapse
|
6
|
White PL, Alanio A, Brown L, Cruciani M, Hagen F, Gorton R, Lackner M, Millon L, Morton CO, Rautemaa-Richardson R, Barnes RA, Donnelly JP, Loffler J. An overview of using fungal DNA for the diagnosis of invasive mycoses. Expert Rev Mol Diagn 2022; 22:169-184. [PMID: 35130460 DOI: 10.1080/14737159.2022.2037423] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Fungal PCR has undergone considerable standardization and together with the availability of commercial assays, external quality assessment schemes and extensive performance validation data, is ready for widespread use for the screening and diagnosis of invasive fungal disease (IFD). AREAS COVERED Drawing on the experience and knowledge of the leads of the various working parties of the Fungal PCR initiative, this review will address general considerations concerning the use of molecular tests for the diagnosis of IFD, before focussing specifically on the technical and clinical aspects of molecular testing for the main causes of IFD and recent technological developments. EXPERT OPINION For infections caused by Aspergillus, Candida and Pneumocystis jirovecii, PCR testing is recommended, combination with serological testing will likely enhance the diagnosis of these diseases. For other IFD (e.g. Mucormycosis) molecular diagnostics, represent the only non-classical mycological approach towards diagnoses and continued performance validation and standardization has improved confidence in such testing. The emergence of antifungal resistance can be diagnosed, in part, through molecular testing. Next-generation sequencing has the potential to significantly improve our understanding of fungal phylogeny, epidemiology, pathogenesis, mycobiome/microbiome and interactions with the host, while identifying novel and existing mechanisms of antifungal resistance and novel diagnostic/therapeutic targets.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, Cardiff, UK CF14 4XW
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Université de Paris, Paris, France.,Institut Pasteur, CNRS UMR2000, Unité de Mycologie Moléculaire, Centre National de Reference Mycoses invasives et Antifongiques, Paris, France
| | - Lottie Brown
- NHS Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Wythenshawe Hospital; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands & Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rebecca Gorton
- Dept. of Infection Sciences, Health Services Laboratories (HSL) LLP, London, UK
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Department of Hygiene, Medical Microbiology and Publics Health, Medical University Innsbruck, Innsbruck, Austria
| | - Laurence Millon
- Parasitology-Mycology Department, University Hospital of Besançon, 25000 Besançon, France.,UMR 6249 CNRS Chrono-Environnement, University of Bourgogne Franche-Comté, 25000 Besançon, France
| | - C Oliver Morton
- Western Sydney University, School of Science, Campbelltown, NSW 2560, Australia
| | - Riina Rautemaa-Richardson
- NHS Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Wythenshawe Hospital; and Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | | | - Juergen Loffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
7
|
Douglas AP, Smibert OC, Bajel A, Halliday CL, Lavee O, McMullan B, Yong MK, Hal SJ, Chen SC. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern Med J 2021; 51 Suppl 7:143-176. [DOI: 10.1111/imj.15591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abby P. Douglas
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Olivia. C. Smibert
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Ashish Bajel
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- Department of Clinical Haematology Peter MacCallum Cancer Centre and The Royal Melbourne Hospital Melbourne Victoria Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
| | - Orly Lavee
- Department of Haematology St Vincent's Hospital Sydney New South Wales Australia
| | - Brendan McMullan
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Sydney New South Wales Australia
- School of Women's and Children's Health University of New South Wales Sydney New South Wales Australia
| | - Michelle K. Yong
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Victorian Infectious Diseases Service Royal Melbourne Hospital Melbourne Victoria Australia
| | - Sebastiaan J. Hal
- Sydney Medical School University of Sydney Sydney New South Wales Australia
- Department of Microbiology and Infectious Diseases Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Sharon C.‐A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
- Sydney Medical School University of Sydney Sydney New South Wales Australia
| | | |
Collapse
|
8
|
Zhang SX, Babady NE, Hanson KE, Harrington AT, Larkin PMK, Leal SM, Luethy PM, Martin IW, Pancholi P, Procop GW, Riedel S, Seyedmousavi S, Sullivan KV, Walsh TJ, Lockhart SR. Recognition of Diagnostic Gaps for Laboratory Diagnosis of Fungal Diseases: Expert Opinion from the Fungal Diagnostics Laboratories Consortium (FDLC). J Clin Microbiol 2021; 59:e0178420. [PMID: 33504591 PMCID: PMC8218742 DOI: 10.1128/jcm.01784-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungal infections are a rising threat to our immunocompromised patient population, as well as other nonimmunocompromised patients with various medical conditions. However, little progress has been made in the past decade to improve fungal diagnostics. To jointly address this diagnostic challenge, the Fungal Diagnostics Laboratory Consortium (FDLC) was recently created. The FDLC consists of 26 laboratories from the United States and Canada that routinely provide fungal diagnostic services for patient care. A survey of fungal diagnostic capacity among the 26 members of the FDLC was recently completed, identifying the following diagnostic gaps: lack of molecular detection of mucormycosis; lack of an optimal diagnostic algorithm incorporating fungal biomarkers and molecular tools for early and accurate diagnosis of Pneumocystis pneumonia, aspergillosis, candidemia, and endemic mycoses; lack of a standardized molecular approach to identify fungal pathogens directly in formalin-fixed paraffin-embedded tissues; lack of robust databases to enhance mold identification with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; suboptimal diagnostic approaches for mold blood cultures, tissue culture processing for Mucorales, and fungal respiratory cultures for cystic fibrosis patients; inadequate capacity for fungal point-of-care testing to detect and identify new, emerging or underrecognized, rare, or uncommon fungal pathogens; and performance of antifungal susceptibility testing. In this commentary, the FDLC delineates the most pressing unmet diagnostic needs and provides expert opinion on how to fulfill them. Most importantly, the FDLC provides a robust laboratory network to tackle these diagnostic gaps and ultimately to improve and enhance the clinical laboratory's capability to rapidly and accurately diagnose fungal infections.
Collapse
Affiliation(s)
- Sean X. Zhang
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - N. Esther Babady
- Clinical Microbiology Service and Infectious Disease Service, Departments of Laboratory Medicine and Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Kimberly E. Hanson
- Department of Pathology, Section of Clinical Microbiology, University of Utah and ARUP Laboratories, Salt Lake City, Utah, USA
| | - Amanda T. Harrington
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| | - Paige M. K. Larkin
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Sixto M. Leal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul M. Luethy
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Isabella W. Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Preeti Pancholi
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Gary W. Procop
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stefan Riedel
- Clinical Microbiology Laboratories, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seyedmojtaba Seyedmousavi
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaede V. Sullivan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Temple University Health System, Philadelphia, Pennsylvania, USA
| | - Thomas J. Walsh
- Division of Infectious Diseases, Weill Cornell Medicine of Cornell University, New York-Presbyterian Hospital, New York City, New York, USA
| | - Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Egger M, Jenks JD, Hoenigl M, Prattes J. Blood Aspergillus PCR: The Good, the Bad, and the Ugly. J Fungi (Basel) 2020; 6:jof6010018. [PMID: 32012787 PMCID: PMC7151127 DOI: 10.3390/jof6010018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Invasive Aspergillosis (IA) is one of the most common invasive fungal diseases and is accompanied by high morbidity and mortality. In order to maximize patient outcomes and survival, early and rapid diagnosis has been shown to be pivotal. Hence, diagnostic tools aiding and improving the diagnostic process are ambitiously searched for. In this context, polymerase chain reaction (PCR) may represent a potential candidate. Its additional value and benefits in diagnosis have been demonstrated and are scientifically established. Nevertheless, standardized and widespread usage is sparse because several factors influence diagnostic quality and need to be considered in order to optimize diagnostic performance and outcome. In the following review, the current role of PCR in the diagnosis of IA is explored, with special focus on the strengths and limitations of PCR in different settings.
Collapse
Affiliation(s)
- Matthias Egger
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria; (M.E.); (M.H.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Clinical and Translational Fungal Research Group, University of California San Diego, San Diego, CA 92093, USA
| | - Martin Hoenigl
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria; (M.E.); (M.H.)
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Clinical and Translational Fungal Research Group, University of California San Diego, San Diego, CA 92093, USA
| | - Juergen Prattes
- Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, 8036 Graz, Austria; (M.E.); (M.H.)
- Correspondence: ; Tel.: +43-316-385-30046
| |
Collapse
|
10
|
Young BA, Hanson KE, Gomez CA. Molecular Diagnostic Advances in Transplant Infectious Diseases. Curr Infect Dis Rep 2019; 21:52. [PMID: 31773290 DOI: 10.1007/s11908-019-0704-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The infectious complications of transplantation can have devastating consequences for patients. Early and accurate diagnosis is essential to good outcomes. This review describes recent advances in pathogen-directed diagnostic testing and discusses the role of new methods for transplant infectious diseases. RECENT FINDINGS Several molecular assays have been introduced into clinical practice in recent years. When the results of rapid testing are linked to patient-specific interventions, improved outcomes can be realized. Syndromic testing along with metagenomic next-generation sequencing (mNGS) represents novel approaches to infection diagnosis. However, the optimal use of these tests for transplant patients along with an overall assessment of cost-effectiveness demands further study. Molecular diagnostics are revolutionizing transplant care. Clinicians need to be aware of the current diagnostic landscape and have a working knowledge of the nuances related to test performance, result interpretation, and cost.
Collapse
Affiliation(s)
- Brittany A Young
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,Associated Regional and University Pathologists Laboratories (ARUP), Salt Lake City, UT, USA
| | - Kimberly E Hanson
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.,Associated Regional and University Pathologists Laboratories (ARUP), Salt Lake City, UT, USA.,Department of Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, UT, USA
| | - Carlos A Gomez
- Department of Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, UT, USA. .,University of Utah School of Medicine, 30 North 1900 East, Room 4B319, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
11
|
del Rocío Reyes-Montes M, Duarte-Escalante E, Guadalupe Frías-De-León M, Obed Martínez-Herrera E, Acosta-Altamirano G. Molecular Diagnosis of Invasive Aspergillosis. Mol Med 2019. [DOI: 10.5772/intechopen.78694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
12
|
|
13
|
Barnes RA, White PL, Morton CO, Rogers TR, Cruciani M, Loeffler J, Donnelly JP. Diagnosis of aspergillosis by PCR: Clinical considerations and technical tips. Med Mycol 2018; 56:60-72. [PMID: 29087518 DOI: 10.1093/mmy/myx091] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022] Open
Abstract
Standardization of Aspergillus polymerase chain reaction (PCR) protocols has progressed, and analytical validity of blood-based assays has been formally established. It remains necessary to consider how the tests can be used in practice to maximize clinical utility. To determine the optimal diagnostic strategies and influence on patient management, several factors require consideration, including the patient population, incidence of invasive aspergillosis (and other fungal disease), and the local antifungal prescribing policy. Technical issues such as specimen type, ease of sampling, frequency of testing, access to testing centers, and time to reporting will also influence the use of PCR in clinical practice. Interpretation of all diagnostic tests is dependent on the clinical context and molecular assays are no exception, but with the proposal to incorporate Aspergillus PCR into the second revision of the consensus guidelines for defining invasive fungal disease the acceptance and understanding of molecular tests should improve.
Collapse
Affiliation(s)
| | - P Lewis White
- Public Health Wales Microbiology Cardiff, Cardiff, UK
| | | | | | - Mario Cruciani
- Center of Community Medicine and Infectious Diseases Service, ULSS 20 Verona
| | | | | |
Collapse
|
14
|
Ashu EE, Xu J. Strengthening the One Health Agenda: The Role of Molecular Epidemiology in Aspergillus Threat Management. Genes (Basel) 2018; 9:genes9070359. [PMID: 30029491 PMCID: PMC6071254 DOI: 10.3390/genes9070359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
The United Nations’ One Health initiative advocates the collaboration of multiple sectors within the global and local health authorities toward the goal of better public health management outcomes. The emerging global health threat posed by Aspergillus species is an example of a management challenge that would benefit from the One Health approach. In this paper, we explore the potential role of molecular epidemiology in Aspergillus threat management and strengthening of the One Health initiative. Effective management of Aspergillus at a public health level requires the development of rapid and accurate diagnostic tools to not only identify the infecting pathogen to species level, but also to the level of individual genotype, including drug susceptibility patterns. While a variety of molecular methods have been developed for Aspergillus diagnosis, their use at below-species level in clinical settings has been very limited, especially in resource-poor countries and regions. Here we provide a framework for Aspergillus threat management and describe how molecular epidemiology and experimental evolution methods could be used for predicting resistance through drug exposure. Our analyses highlight the need for standardization of loci and methods used for molecular diagnostics, and surveillance across Aspergillus species and geographic regions. Such standardization will enable comparisons at national and global levels and through the One Health approach, strengthen Aspergillus threat management efforts.
Collapse
Affiliation(s)
- Eta E Ashu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, Ontario, ON L8S 4K1, Canada.
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main St. W, Hamilton, Ontario, ON L8S 4K1, Canada.
- Public Research Laboratory, Hainan Medical University, Haikou, Hainan 571199, China.
| |
Collapse
|
15
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 926] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
16
|
Otašević S, Momčilović S, Stojanović NM, Skvarč M, Rajković K, Arsić-Arsenijević V. Non-culture based assays for the detection of fungal pathogens. J Mycol Med 2018; 28:236-248. [PMID: 29605542 PMCID: PMC7110445 DOI: 10.1016/j.mycmed.2018.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 01/05/2023]
Abstract
Traditional, culture based methods for the diagnosis of fungal infections are still considered as gold standard, but they are time consuming and low sensitive. Therefore, in order to overcome the limitations, many researchers have focused on the development of new immunological and molecular based rapid assays that could enable early diagnosis of infection and accurate identification of fungal pathogens causing superficial and invasive infection. In this brief review, we highlighted the advantages and disadvantages of conventional diagnostic methods and possibility of non-culture based assays in diagnosis of superficial fungal infections and presented the overview on currently available immunochromatographic assays as well as availability of biomarkers detection by immunodiagnostic procedures in prompt and accurate diagnosis of invasive fungal infections. In addition, we presented diagnostic efficiency of currently available molecular panels and researches in this area.
Collapse
Affiliation(s)
- S Otašević
- Center of Microbiology and Parasitology, Public Health Institute Niš, Serbia, boulevard Zorana Djindjica 50, 18000 Niš, Serbia; Department of Microbiology and Immunology, Faculty of Medicine, University of Niš, Serbia, boulevard Zorana Djindjica 81, 18000 Niš, Serbia.
| | - S Momčilović
- Department of Microbiology and Immunology, Faculty of Medicine, University of Niš, Serbia, boulevard Zorana Djindjica 81, 18000 Niš, Serbia
| | - N M Stojanović
- Faculty of Medicine, University of Niš, Serbia, boulevard Zorana Djindjica 81, 18000 Niš, Serbia
| | - M Skvarč
- University of Ljubljana, Faculty of Medicine, Institute of Microbiology and Immunology, Zaloska 4, Ljubljana, Slovenia
| | - K Rajković
- High Chemical and Technological School for Professional Studies, Kosančićeva 36, 37000 Kruševac, Serbia
| | - V Arsić-Arsenijević
- Department for Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Serbia, Dr Subotića 1, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Challenges and Solution of Invasive Aspergillosis in Non-neutropenic Patients: A Review. Infect Dis Ther 2017; 7:17-27. [PMID: 29273978 PMCID: PMC5840102 DOI: 10.1007/s40121-017-0183-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 12/31/2022] Open
Abstract
Invasive aspergillosis (IA) is a serious opportunistic infection, which has increasingly been recognized as an emerging disease of non-neutropenic patients. In this group of patients, the diagnosis of IA can be challenging owing to the lack of specificity of symptoms, the difficulty in discriminating colonization from infection, and the lower sensitivity of microbiological and radiological tests compared with immunocompromised patients. The aim of this article is to present to clinicians a critical review on the management of IA in non-neutropenic patients.
Collapse
|
18
|
Molecular Diagnosis of Invasive Aspergillosis and Detection of Azole Resistance by a Newly Commercialized PCR Kit. J Clin Microbiol 2017; 55:3210-3218. [PMID: 28814586 DOI: 10.1128/jcm.01032-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 02/02/2023] Open
Abstract
Aspergillus fumigatus is the main species responsible for aspergillosis in humans. The diagnosis of aspergillosis remains difficult, and the rapid emergence of azole resistance in A. fumigatus is worrisome. The aim of this study was to validate the new MycoGENIE A. fumigatus real-time PCR kit and to evaluate its performance on clinical samples for the detection of A. fumigatus and its azole resistance. This multiplex assay detects DNA from the A. fumigatus species complex by targeting the multicopy 28S rRNA gene and specific TR34 and L98H mutations in the single-copy-number cyp51A gene of A. fumigatus The specificity of cyp51A mutation detection was assessed by testing DNA samples from 25 wild-type or mutated clinical A. fumigatus isolates. Clinical validation was performed on 88 respiratory samples obtained from 62 patients and on 69 serum samples obtained from 16 patients with proven or probable aspergillosis and 13 patients without aspergillosis. The limit of detection was <1 copy for the Aspergillus 28S rRNA gene and 6 copies for the cyp51A gene harboring the TR34 and L98H alterations. No cross-reactivity was detected with various fungi and bacteria. All isolates harboring the TR34 and L98H mutations were accurately detected by quantitative PCR (qPCR) analysis. With respiratory samples, qPCR results showed a sensitivity and specificity of 92.9% and 90.1%, respectively, while with serum samples, the sensitivity and specificity were 100% and 84.6%, respectively. Our study demonstrated that this new real-time PCR kit enables sensitive and rapid detection of A. fumigatus DNA and azole resistance due to TR34 and L98H mutations in clinical samples.
Collapse
|
19
|
Lamoth F, Calandra T. Early diagnosis of invasive mould infections and disease. J Antimicrob Chemother 2017; 72:i19-i28. [PMID: 28355464 DOI: 10.1093/jac/dkx030] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Invasive mould infections (IMIs), such as invasive aspergillosis or mucormycosis, are a major cause of death in patients with haematological cancer and in patients receiving long-term immunosuppressive therapy. Early diagnosis and prompt initiation of antifungal therapy are crucial steps in the management of patients with IMI. The diagnosis of IMI remains a major challenge, with an increased spectrum of fungal pathogens and a diversity of clinical and radiological presentations within the expanding spectrum of immunocompromised hosts. Diagnosis is difficult to establish and is expressed on a scale of probability (proven, probable and possible). Imaging (CT scan), microbiological tools (direct examination, culture, PCR, fungal biomarkers) and histopathology are the pillars of the diagnostic work-up of IMI. None of the currently available diagnostic tests provides sufficient sensitivity and specificity alone, so the optimal approach relies on a combination of multiple diagnostic strategies, including imaging, fungal biomarkers (galactomannan and 1,3-β-d-glucan) and molecular tools. In recent years, the development of PCR for filamentous fungi (primarily Aspergillus or Mucorales) and the progress made in the standardization of fungal PCR technology, may lead to future advances in the field. The appropriate diagnostic approach for IMI should be individualized to each centre, taking into account the local epidemiology of IMI and the availability of diagnostic tests.
Collapse
Affiliation(s)
- Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Buchheidt D, Reinwald M, Hofmann WK, Boch T, Spiess B. Evaluating the use of PCR for diagnosing invasive aspergillosis. Expert Rev Mol Diagn 2017; 17:603-610. [PMID: 28460550 DOI: 10.1080/14737159.2017.1325735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Aspergillus species, primarily Aspergillus fumigatus, are still the most emerging fungal pathogens. Within recent years, novel molecular methods have been developed to improve the diagnosis of life-threatening invasive aspergillosis in high risk patients. Especially patients with malignant hematological diseases undergoing intensive chemotherapy are at risk and mortality rates are exceptionally high, in part due to difficulties and delays in establishing a microbiologic diagnosis. Early diagnosis and treatment are crucial for an adequate therapeutical management, but, however, are hardly achieved in the clinical setting because most of the current conventional diagnostic tools either lack specificity or acceptable sensitivity at the critical early phase of the infection. Areas covered: To review the clinical value, advantages and problems as well as drawbacks of molecular approaches, especially polymerase chain reaction (PCR)-based assays to detect genomic DNA of Aspergillus species in clinical samples of immunocompromised, especially hematological patients at high risk for IA, a comprehensive review of the literature was performed and expert opinion was expressed. Expert commentary: The results of numerous attempts to diagnose invasive aspergillosis by PCR-based detection of fungal genome in clinical samples highlight the potential of the PCR technique to improve early diagnosis of invasive aspergillosis in patients with hematological malignancies during intensive antineoplastic treatment, combined with imaging surveillance and serologic diagnostic tools. Further comparative validation of reliable assays in prospective multicenter studies is mandatory and urgently needed in order to establish a harmonization and standardization, so that 'gold standard assays' may be incorporated into diagnostic and therapeutic algorithms that improve the prognosis of patients with life-threatening infections caused by Aspergillus species.
Collapse
Affiliation(s)
- Dieter Buchheidt
- a Department of Internal Medicine -Hematology and Oncology , Mannheim University Hospital, University of Heidelberg , Mannheim , Germany
| | - Mark Reinwald
- a Department of Internal Medicine -Hematology and Oncology , Mannheim University Hospital, University of Heidelberg , Mannheim , Germany
| | - Wolf-Karsten Hofmann
- a Department of Internal Medicine -Hematology and Oncology , Mannheim University Hospital, University of Heidelberg , Mannheim , Germany
| | - Tobias Boch
- a Department of Internal Medicine -Hematology and Oncology , Mannheim University Hospital, University of Heidelberg , Mannheim , Germany
| | - Birgit Spiess
- a Department of Internal Medicine -Hematology and Oncology , Mannheim University Hospital, University of Heidelberg , Mannheim , Germany
| |
Collapse
|
21
|
A Review of Diagnostic Methods for Invasive Fungal Diseases: Challenges and Perspectives. Infect Dis Ther 2017; 6:213-223. [PMID: 28357708 PMCID: PMC5446367 DOI: 10.1007/s40121-017-0154-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 02/08/2023] Open
Abstract
Invasive fungal diseases are associated with a high morbidity and mortality, particularly in the context of immunosuppression. Diagnosis of invasive fungal diseases is usually complicated by factors such as poor clinical suspicion and unspecific clinical findings. Access to modern diagnostic tools is frequently limited in developing countries. Here, we describe five real-life clinical cases from a Brazilian tertiary hospital, in order to illustrate how to best select diagnostic tests in patients with different fungal infections.
Collapse
|
22
|
McCarthy MW, Walsh TJ. Molecular diagnosis of invasive mycoses of the central nervous system. Expert Rev Mol Diagn 2016; 17:129-139. [PMID: 27936983 DOI: 10.1080/14737159.2017.1271716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION In September 2012, the Centers for Disease Control and Prevention (CDC) began investigating an outbreak of fungal meningitis among patients who had received contaminated preservative-free methyl prednisolone acetate injections from the New England Compounding Center in Framingham, Massachusetts. Thousands of patients were potentially exposed to tainted corticosteroids, but establishing the diagnosis of fungal meningitis during the nationwide outbreak was difficult because little was known about the natural history of the disease. Areas covered: The challenges associated with this outbreak highlighted the need for rapid and reliable methodologies to assist in the diagnosis of invasive mycoses of the central nervous system (IMCNS), which may be devastating and difficult to treat. In this paper, we review the causative agents of these potentially-lethal infections, which include cryptococcal meningitis, cerebral aspergillosis, and hematogenous Candida meningoencephalitis. Expert commentary: While microscopy, culture, and histopathologic identification of fungal pathogens remain the gold standard for diagnosis, new platforms and species-specific assays have recently emerged, including lateral flow immunoassays (LFA), matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and multiplex PCR in conjunction with magnetic resonance (MR) to potentially aid in the diagnosis of IMCNS.
Collapse
Affiliation(s)
- Matthew William McCarthy
- a Hospital Medicine , Joan and Sanford I Weill Medical College of Cornell University , New York , NY , USA
| | - Thomas J Walsh
- b Transplantation-Oncology Infectious Diseases Program , Weill Cornell Medical Center , New York , NY , USA
| |
Collapse
|
23
|
Barnes RA, White PL. PCR Technology for Detection of Invasive Aspergillosis. J Fungi (Basel) 2016; 2:jof2030023. [PMID: 29376940 PMCID: PMC5753136 DOI: 10.3390/jof2030023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 11/16/2022] Open
Abstract
The application of molecular technologies to aid diagnosis and management of infectious diseases has had a major impact and many assays are in routine use. Diagnosis of aspergillosis has lagged behind. Lack of standardization and limited commercial interest have meant that PCR was not included in consensus diagnostic criteria for invasive fungal disease. In the last ten years careful evaluation and validation by the Aspergillus European PCR initiative with the development of standardized extraction, amplification and detection protocols for various specimen types, has provided the opportunity for clinical utility to be investigated. PCR has the potential to not only exclude a diagnosis of invasive aspergillosis but in combination with antigen testing may offer an approach for the early diagnosis and treatment of invasive aspergillosis in high-risk populations, with the added benefit of detection of genetic markers associated with antifungal resistance.
Collapse
Affiliation(s)
- Rosemary A Barnes
- Department of Medical Microbiology and Infectious Diseases, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - P Lewis White
- Public Health Wales Microbiology, Cardiff CF14 4 XW, UK.
| |
Collapse
|
24
|
Abstract
The direct detection of Aspergillus nucleic acid in clinical specimens has the potential to improve the diagnosis of aspergillosis by offering more rapid and sensitive identification of invasive infections than is possible with traditional techniques, such as culture or histopathology. Molecular tests for Aspergillus have been limited historically by lack of standardization and variable sensitivities and specificities. Recent efforts have been directed at addressing these limitations and optimizing assay performance using a variety of specimen types. This review provides a summary of standardization efforts and outlines the complexities of molecular testing for Aspergillus in clinical mycology.
Collapse
|