1
|
Toure A, Koffi JR, Etchian OA, Doukoure B, Toure AO, Dufour S. Estimating poultry aspergillosis prevalence and diagnostic accuracy of histopathological and mycological culture in Côte d'Ivoire using Bayesian latent class analysis. Mycology 2024; 15:120-128. [PMID: 38558837 PMCID: PMC10977016 DOI: 10.1080/21501203.2023.2301001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 04/04/2024] Open
Abstract
This study aimed to estimate the prevalence of poultry aspergillosis and evaluate the accuracy of histopathology (test under evaluation) and mycological culture (an imperfect reference test). Farms raising layer and breeder or broiler birds, with suspected aspergillosis cases, clinical or subclinical, were eligible and visited for sampling. After necropsy, histopathology and mycological culture examinations were conducted by two evaluators. A Bayesian latent class model was used to estimate the accuracy of histopathology when compared to the imperfect reference test, mycological culture. A total of 142 chicken farms, 96 laying and breeding hen farms, and 46 broiler farms were used for the study. True aspergillosis median prevalence was estimated at 63.7% (95% credibility intervals, CrI: 53.8%, 73.0%) in layers and breeders and at 65.2% (95% CrI: 50.2%, 78.3%) in the broiler farms' population. The median diagnostic sensitivity of histopathology and culture were estimated at, respectively, 98.8% (95% CrI: 94.6%, 100.0%) and 90.4% (95% CrI: 83.6%, 95.3%). Tests' diagnostic specificity was estimated at, respectively, 97.3% (95% CrI: 87.7%, 99.9%) and 95.7% (95% CrI: 91.8%, 98.2%). Both tests had very high and comparable positive predictive values, but, in a population where disease prevalence was 25%, histopathology had a higher negative predictive value than culture.
Collapse
Affiliation(s)
- Alassane Toure
- LANADA/Laboratoire Central Vétérinaire de Bingerville, Bingerville, Côte d’Ivoire
- UFR Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| | - Josepha Ruth Koffi
- UFR Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire
| | | | - Brahima Doukoure
- UFR Sciences Médicales, Université Felix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | - André Offianan Toure
- Département de Parasitologie et de Mycologie, Institut Pasteur de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Simon Dufour
- Faculté de Médecine Vétérinaire, Département de Pathologie et Microbiologie, Université de Montréal, Montreal, Canada
| |
Collapse
|
2
|
Alqarihi A, Kontoyiannis DP, Ibrahim AS. Mucormycosis in 2023: an update on pathogenesis and management. Front Cell Infect Microbiol 2023; 13:1254919. [PMID: 37808914 PMCID: PMC10552646 DOI: 10.3389/fcimb.2023.1254919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Mucormycosis (MCR) is an emerging and frequently lethal fungal infection caused by the Mucorales family, with Rhizopus, Mucor, and Lichtheimia, accounting for > 90% of all cases. MCR is seen in patients with severe immunosuppression such as those with hematologic malignancy or transplantation, Diabetes Mellitus (DM) and diabetic ketoacidosis (DKA) and immunocompetent patients with severe wounds. The recent SARS COV2 epidemy in India has resulted in a tremendous increase in MCR cases, typically seen in the setting of uncontrolled DM and corticosteroid use. In addition to the diversity of affected hosts, MCR has pleiotropic clinical presentations, with rhino-orbital/rhino-cerebral, sino-pulmonary and necrotizing cutaneous forms being the predominant manifestations. Major insights in MCR pathogenesis have brought into focus the host receptors (GRP78) and signaling pathways (EGFR activation cascade) as well as the adhesins used by Mucorales for invasion. Furthermore, studies have expanded on the importance of iron availability and the complex regulation of iron homeostasis, as well as the pivotal role of mycotoxins as key factors for tissue invasion. The molecular toolbox to study Mucorales pathogenesis remains underdeveloped, but promise is brought by RNAi and CRISPR/Cas9 approaches. Important recent advancements have been made in early, culture-independent molecular diagnosis of MCR. However, development of new potent antifungals against Mucorales remains an unmet need. Therapy of MCR is multidisciplinary and requires a high index of suspicion for initiation of early Mucorales-active antifungals. Reversal of underlying immunosuppression, if feasible, rapid DKA correction and in selected patients, surgical debulking are crucial for improved outcomes.
Collapse
Affiliation(s)
- Abdullah Alqarihi
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States
| | - Ashraf S Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
3
|
Lavkor I, Ay T, Sobucovali S, Var I, Saghrouchni H, Salamatullah AM, Mekonnen AB. Non-Aflatoxigenic Aspergillus flavus: A Promising Biological Control Agent against Aflatoxin Contamination of Corn. ACS OMEGA 2023; 8:16779-16788. [PMID: 37214674 PMCID: PMC10193414 DOI: 10.1021/acsomega.3c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023]
Abstract
Aflatoxins (AFs) are a family of mycotoxins produced by molds in agricultural products. To deal with this problem, one of the control methods is the biological solution using a non-pathogenic strain Aspergillus flavus NRRL 21882 (Afla-Guard). This study was conducted to evaluate the potential of A. flavus NRRL 21882 to control the AF contamination of corn in the field and during storage in 2018 and 2019. The experimental design consists of treatment at different vegetative stages of infested corn in the field trial. After the field has been harvested, half the corn kernels from both treated and control plots were treated with biopesticide; the other half of the kernels from each group were not treated and used as the control of the storage. Consequently, storage applications consisted of kernels: (1) not treated at all; (2) treated prior to storage; (3) field-treated; and (4) treated both in the field and prior to storage. After field trials, the AF content was very low in the treated plots, ranging from 0.50 to 1.04 μg/kg and from 0.50 to 0.73 μg/kg in 2018 and 2019, respectively, while the AF content in the control was 98.3 and 73.9 μg/kg in 2018 and 2019, respectively. After storage, corn kernels from field plots that were treated with the biopesticide (treated/control) showed low levels of AFs, even after they have been stored under conditions conducive to AF contamination. The biopesticide effect ranged from 98 to 99% and from 69 to 99% in the field and during storage, respectively. This paper has provided the first indications on AF biocontrol based on a competitive exclusion in the corn-growing region of Turkey. The data showed that spraying during the storage period did not provide any further prevention of AF contamination, and only treatment in the field had a significant effect on AFs that occurred in storage.
Collapse
Affiliation(s)
- Isilay Lavkor
- Biological
Control Research Institute, Kisla Cad., 01321 Yüregir, Adana, Türkiye
| | - Tahsin Ay
- Biological
Control Research Institute, Kisla Cad., 01321 Yüregir, Adana, Türkiye
| | - Suat Sobucovali
- Sunar
Mısır Entegre Tesisleri San. ve Tic. A.Ş, Turhan
Cemal Beriker Blv. Yolgeçen mh., Seyhan, 565 01355 Adana, Türkiye
| | - Isil Var
- Molecular
Biology Department, Sussex University, BN1 9RH Brighton, U.K.
| | - Hamza Saghrouchni
- Department
of Biotechnology, Graduate School of Natural and Applied Sciences, Çukurova University, Balcalı, 01250 Adana, Türkiye
| | - Ahmad Mohammad Salamatullah
- Department
of Food Science & Nutrition, College of Food and Agricultural
Sciences, King Saud University, 11 P.O. Box 2460, 11451 Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Cheng GS, Crothers K, Aliberti S, Bergeron A, Boeckh M, Chien JW, Cilloniz C, Cohen K, Dean N, Dela Cruz CS, Dickson RP, Greninger AL, Hage CA, Hohl TM, Holland SM, Jones BE, Keane J, Metersky M, Miller R, Puel A, Ramirez J, Restrepo MI, Sheshadri A, Staitieh B, Tarrand J, Winthrop KL, Wunderink RG, Evans SE. Immunocompromised Host Pneumonia: Definitions and Diagnostic Criteria: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2023; 20:341-353. [PMID: 36856712 PMCID: PMC9993146 DOI: 10.1513/annalsats.202212-1019st] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Pneumonia imposes a significant clinical burden on people with immunocompromising conditions. Millions of individuals live with compromised immunity because of cytotoxic cancer treatments, biological therapies, organ transplants, inherited and acquired immunodeficiencies, and other immune disorders. Despite broad awareness among clinicians that these patients are at increased risk for developing infectious pneumonia, immunocompromised people are often excluded from pneumonia clinical guidelines and treatment trials. The absence of a widely accepted definition for immunocompromised host pneumonia is a significant knowledge gap that hampers consistent clinical care and research for infectious pneumonia in these vulnerable populations. To address this gap, the American Thoracic Society convened a workshop whose participants had expertise in pulmonary disease, infectious diseases, immunology, genetics, and laboratory medicine, with the goal of defining the entity of immunocompromised host pneumonia and its diagnostic criteria.
Collapse
|
5
|
Liu H, Zhang K, Jang YO, Qiao Z, Jin J, Thi Dao TN, Koo B, Park CO, Shin Y. Homobifunctional imidoester-modified zinc nano-spindle attenuated hyphae growth of Aspergillus against hypersensitivity responses. iScience 2023; 26:105922. [PMID: 36866037 PMCID: PMC9971823 DOI: 10.1016/j.isci.2022.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Fungi cause various forms of invasive fungal disease (IFD), and fungal sensitization can contribute to the development of asthma, asthma severity, and other hypersensitivity diseases, such as atopic dermatitis (AD). In this study, we introduce a facile and controllable approach, using homobifunctional imidoester-modified zinc nano-spindle (HINS), for attenuating hyphae growth of fungi and reducing the hypersensitivity response complications in fungi-infected mice. To extend the study of the specificity and immune mechanisms, we used HINS-cultured Aspergillus extract (HI-AsE) and common agar-cultured Aspergillus extract (Con-AsE) as the refined mouse models. HINS composites within the safe concentration range inhibited the hyphae growth of fungi but also reduce the number of fungal pathogens. Through the evaluation of lung and skin tissues from the mice, asthma pathogenesis (lung) and the hypersensitivity response (skin) to invasive aspergillosis were least severe in HI-AsE-infected mice. Therefore, HINS composites attenuate asthma and the hypersensitivity response to invasive aspergillosis.
Collapse
Affiliation(s)
- Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - KeLun Zhang
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jie Jin
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Thuy Nguyen Thi Dao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Chang Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea,Corresponding author
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea,Corresponding author
| |
Collapse
|
6
|
Taking a Closer Look: Clinical and Histopathological Characteristics of Culture-Positive versus Culture-Negative Pulmonary Mucormycosis. J Fungi (Basel) 2022; 8:jof8040380. [PMID: 35448611 PMCID: PMC9030790 DOI: 10.3390/jof8040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
The cultural recovery of Mucorales from hyphae-laden tissue is poor, and the clinical implications of culture positivity are scarcely studied. Therefore, we compared clinical and histopathological characteristics of culture-positive and culture-negative histology-proven pulmonary mucormycosis cases among cancer patients. Histology specimens were blindly reviewed by a thoracic pathologist and graded on four histopathologic features: hyphal quantity, tissue necrosis, tissue invasion, and vascular invasion. Twenty cases with a corresponding fungal culture were identified; five were culture-positive, and fifteen were culture-negative. Although no statistically significant differences were found, culture-positive patients were more likely to exhibit a high burden of necrosis and have a high burden of hyphae but tended to have less vascular invasion than culture-negative patients. In terms of clinical characteristics, culture-positive patients were more likely to have acute myeloid leukemia (60% vs. 27%, p = 0.19), a history of hematopoietic cell transplant (80% vs. 53%, p = 0.31), severe lymphopenia (absolute lymphocyte count ≤ 500/µL, 100% vs. 73%, p = 0.36), and monocytopenia (absolute monocyte count ≤100/µL, 60% vs. 20%, p = 0.11). Forty-two-day all-cause mortality was comparable between culture-positive and culture-negative patients (60% and 53%, p = 0.80). This pilot study represents the first comprehensive histopathological scoring method to examine the relationship between histopathologic features, culture positivity, and clinical features of pulmonary mucormycosis.
Collapse
|
7
|
Ortiz SC, Pennington K, Thomson DD, Bertuzzi M. Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host-Pathogen Interactions during Infection. J Fungi (Basel) 2022; 8:264. [PMID: 35330266 PMCID: PMC8954776 DOI: 10.3390/jof8030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Katie Pennington
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Darren D. Thomson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK;
| | - Margherita Bertuzzi
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| |
Collapse
|
8
|
Mendonça A, Santos H, Franco-Duarte R, Sampaio P. Fungal infections diagnosis - Past, present and future. Res Microbiol 2022; 173:103915. [PMID: 34863883 PMCID: PMC8634697 DOI: 10.1016/j.resmic.2021.103915] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/07/2023]
Abstract
Despite the scientific advances observed in the recent decades and the emergence of new methodologies, the diagnosis of systemic fungal infections persists as a problematic issue. Fungal cultivation, the standard method that allows a proven diagnosis, has numerous disadvantages, as low sensitivity (only 50% of the patients present positive fungal cultures), and long growth time. These are factors that delay the patient's treatment and, consequently, lead to higher hospital costs. To improve the accuracy and quickness of fungal infections diagnosis, several new methodologies attempt to be implemented in clinical microbiology laboratories. Most of these innovative methods are independent of pathogen isolation, which means that the diagnosis goes from being considered proven to probable. In spite of the advantage of being culture-independent, the majority of the methods lack standardization. PCR-based methods are becoming more and more commonly used, which has earned them an important place in hospital laboratories. This can be perceived now, as PCR-based methodologies have proved to be an essential tool fighting against the COVID-19 pandemic. This review aims to go through the main steps of the diagnosis for systemic fungal infection, from diagnostic classifications, through methodologies considered as "gold standard", to the molecular methods currently used, and finally mentioning some of the more futuristic approaches.
Collapse
|
9
|
Li Y, Li H, Sun T, Ding C. Pathogen-Host Interaction Repertoire at Proteome and Posttranslational Modification Levels During Fungal Infections. Front Cell Infect Microbiol 2021; 11:774340. [PMID: 34926320 PMCID: PMC8674643 DOI: 10.3389/fcimb.2021.774340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host–pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host–pathogen interactions.
Collapse
Affiliation(s)
- Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
10
|
Ross BS, Lofgren LA, Ashare A, Stajich JE, Cramer RA. Aspergillus fumigatus In-Host HOG Pathway Mutation for Cystic Fibrosis Lung Microenvironment Persistence. mBio 2021; 12:e0215321. [PMID: 34465017 PMCID: PMC8406193 DOI: 10.1128/mbio.02153-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
The prevalence of Aspergillus fumigatus colonization in individuals with cystic fibrosis (CF) and subsequent fungal persistence in the lung is increasingly recognized. However, there is no consensus for clinical management of A. fumigatus in CF individuals, due largely to uncertainty surrounding A. fumigatus CF pathogenesis and virulence mechanisms. To address this gap in knowledge, a longitudinal series of A. fumigatus isolates from an individual with CF were collected over 4.5 years. Isolate genotypes were defined with whole-genome sequencing that revealed both transitory and persistent A. fumigatus in the lung. Persistent lineage isolates grew most readily in a low-oxygen culture environment, and conidia were more sensitive to oxidative stress-inducing conditions than those from nonpersistent isolates. Closely related persistent isolates harbored a unique allele of the high-osmolarity glycerol (HOG) pathway mitogen-activated protein kinase kinase, Pbs2 (pbs2C2). Data suggest this novel pbs2C2 allele arose in vivo and is necessary for the fungal response to osmotic stress in a low-oxygen environment through hyperactivation of the HOG (SakA) signaling pathway. Hyperactivation of the HOG pathway through pbs2C2 comes at the cost of decreased conidial stress resistance in the presence of atmospheric oxygen levels. These novel findings shed light on pathoadaptive mechanisms of A. fumigatus in CF, lay the foundation for identifying persistent A. fumigatus isolates that may require antifungal therapy, and highlight considerations for successful culture of persistent Aspergillus CF isolates. IMPORTANCE Aspergillus fumigatus infection causes a spectrum of clinical manifestations. For individuals with cystic fibrosis (CF), allergic bronchopulmonary aspergillosis (ABPA) is an established complication, but there is a growing appreciation for A. fumigatus airway persistence in CF disease progression. There currently is little consensus for clinical management of A. fumigatus long-term culture positivity in CF. A better understanding of A. fumigatus pathogenesis mechanisms in CF is expected to yield insights into when antifungal therapies are warranted. Here, a 4.5-year longitudinal collection of A. fumigatus isolates from a patient with CF identified a persistent lineage that harbors a unique allele of the Pbs2 mitogen-activated protein kinase kinase (MAPKK) necessary for unique CF-relevant stress phenotypes. Importantly for A. fumigatus CF patient diagnostics, this allele provides increased fitness under CF lung-like conditions at a cost of reduced in vitro growth under standard laboratory conditions. These data illustrate a molecular mechanism for A. fumigatus CF lung persistence with implications for diagnostics and antifungal therapy.
Collapse
Affiliation(s)
- Brandon S. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
11
|
Godinho G, Abreu I, Alves G, Vaz R, Leal V, Carvalho AC, Sarmento A, Falcão-Reis F. Orbital Apex Syndrome due to Orbital Mucormycosis after Teeth Infection: A Successful Case Report. Case Rep Ophthalmol 2021; 12:110-115. [PMID: 33976666 PMCID: PMC8077525 DOI: 10.1159/000510389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Rhino-orbital-cerebral mucormycosis is a severe and rapidly progressive fungal infection associated with low survival rates. Early diagnosis and proper management are mandatory. We report the case of a 20-year-old female with diabetic ketoacidosis and teeth infection, who presented with sudden orbital apex syndrome. Several surgical procedures were necessary to provide a definite histopathological diagnosis of the fungal infection. Ultimately, given the progressive aggravation of the infection and the ineffectiveness of antifungal and antibiotic agents, an orbital exenteration was performed. A mycobacteriological examination revealed a polymicrobial culture with Mucorales. One year after the initial presentation, the patient is alive and with a good general health condition.
Collapse
Affiliation(s)
- Gonçalo Godinho
- Ophthalmology Department, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Isabel Abreu
- Infectious Diseases Department, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Gonçalo Alves
- Neuroradiology Department, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Ricardo Vaz
- ORL Department, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Vitor Leal
- Ophthalmology Department, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Ana Cláudia Carvalho
- Infectious Diseases Department, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - António Sarmento
- Infectious Diseases Department, Centro Hospitalar e Universitário São João, Porto, Portugal
| | - Fernando Falcão-Reis
- Ophthalmology Department, Centro Hospitalar e Universitário São João, Porto, Portugal
| |
Collapse
|
12
|
Establishment of a New PNA-FISH Method for Aspergillus fumigatus Identification: First Insights for Future Use in Pulmonary Samples. Microorganisms 2020; 8:microorganisms8121950. [PMID: 33316925 PMCID: PMC7763223 DOI: 10.3390/microorganisms8121950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 01/01/2023] Open
Abstract
Aspergillus fumigatus is the main causative agent of Invasive Aspergillosis. This mold produces conidia that when inhaled by immunocompromized hosts can be deposited in the lungs and germinate, triggering disease. In this paper, the development of a method using peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) is described. The PNA-FISH probe was tested in several strains and a specificity and sensitivity of 100% was obtained. Detection of A. fumigatussensu stricto was then achieved in artificial sputum medium (ASM) pre-inoculated with 1 × 102 conidia·mL-1-1 × 103 conidia·mL-1, after a germination step of 24 h. The PNA-FISH method was evaluated in 24 clinical samples (10 sputum, 8 bronchoalveolar lavage (BAL), and 6 bronchial lavage (BL)) that were inoculated with 1 × 104 conidia·mL-1 in sputum; 1 × 103 conidia·mL-1 in BL and BAL, for 24 h. Despite a specificity of 100%, the sensitivity was 79%. This relatively low sensitivity can be explained by the fact that hyphae can yield "fungal ball" clusters, hindering pipetting procedures and subsequent detection, leading to false negative results. Nonetheless, this study showed the potential of the PNA-FISH method for A. fumigatussensu stricto detection since it takes only 1 h 30 m to perform the procedure with a pre-enrichment step of 6 h (pure cultures) and 24 h (clinical samples), and might provide a suitable alternative to the existing methods for studies in pure cultures and in clinical settings.
Collapse
|
13
|
Tribble DR, Ganesan A, Rodriguez CJ. Combat trauma-related invasive fungal wound infections. CURRENT FUNGAL INFECTION REPORTS 2020; 14:186-196. [PMID: 32665807 DOI: 10.1007/s12281-020-00385-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of review This review highlights research from the past five years on combat trauma-related invasive fungal wound infections (IFIs) with a focus on risk stratification to aid patient management, microbiology, and diagnostics. Recent Findings A revised classification scheme stratifies wounds into three risk groups: IFI, High Suspicion of IFI, and Low Suspicion of IFI. This stratification is based on persistence of wound necrosis and laboratory fungal evidence, presence of signs/symptoms of deep soft-tissue infections, and the need for antifungals. Use of this classification could allow for prioritization of antifungal therapy. Further, IFIs delay wound healing, particularly when caused by fungi of the order Mucorales. Lastly, molecular sequencing offers promising and complimentary results to the gold standard histopathology. Summary Optimal management of combat-related IFIs depends on early tissue-based diagnosis with aggressive surgical debridement and concomitant dual antifungal therapy. Further research on clinical decision support tools and rapid diagnostics are needed.
Collapse
Affiliation(s)
- David R Tribble
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Anuradha Ganesan
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda MD 20817.,Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889
| | | |
Collapse
|
14
|
|
15
|
Sanguinetti M, Posteraro B. Diagnostic of Fungal Infections Related to Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 931:63-82. [PMID: 27300347 DOI: 10.1007/5584_2016_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fungal biofilm-related infections, most notably those caused by the Candida and Aspergillus genera, need to be diagnosed accurately and rapidly to avoid often unfavorable outcomes. Despite diagnosis of these infections is still based on the traditional histopathology and culture, the use of newer, rapid methods has enormously enhanced the diagnostic capability of a modern clinical mycology laboratory. Thus, while accurate species-level identification of fungal isolates can be achieved with turnaround times considerably shortened, nucleic acid-based or antigen-based detection methods can be considered useful adjuncts for the diagnosis of invasive forms of candidiasis and aspergillosis. Furthermore, simple, reproducible, and fast methods have been developed to quantify biofilm production by fungal isolates in vitro. In this end, isolates can be categorized as low, moderate, or high biofilm-forming, and this categorization may reflect their differential response to the conventional antifungal therapy. By means of drug susceptibility testing performed on fungal biofilm-growing isolates, it is now possible to evaluate not only the activity of conventional antifungal agents, but also of novel anti-biofilm agents. Despite this, future diagnostic methods need to target specific biofilm components/molecules, in order to provide a direct proof of the presence of this growth phenotype on the site of infection. In the meantime, our knowledge of the processes underlying the adaptive drug resistance within the biofilm has put into evidence biofilm-specific molecules that could be potentially helpful as therapeutic targets. Surely, the successful management of clinically relevant fungal biofilms will rely upon the advancement and/or refinement of these approaches.
Collapse
Affiliation(s)
| | - Brunella Posteraro
- Institute of Public Health (Section of Hygiene), Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev 2015; 27:490-526. [PMID: 24982319 DOI: 10.1128/cmr.00091-13] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Invasive fungal infections constitute a serious threat to an ever-growing population of immunocompromised individuals and other individuals at risk. Traditional diagnostic methods, such as histopathology and culture, which are still considered the gold standards, have low sensitivity, which underscores the need for the development of new means of detecting fungal infectious agents. Indeed, novel serologic and molecular techniques have been developed and are currently under clinical evaluation. Tests like the galactomannan antigen test for aspergillosis and the β-glucan test for invasive Candida spp. and molds, as well as other antigen and antibody tests, for Cryptococcus spp., Pneumocystis spp., and dimorphic fungi, have already been established as important diagnostic approaches and are implemented in routine clinical practice. On the other hand, PCR and other molecular approaches, such as matrix-assisted laser desorption ionization (MALDI) and fluorescence in situ hybridization (FISH), have proved promising in clinical trials but still need to undergo standardization before their clinical use can become widespread. The purpose of this review is to highlight the different diagnostic approaches that are currently utilized or under development for invasive fungal infections and to identify their performance characteristics and the challenges associated with their use.
Collapse
|
17
|
ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog 2014; 10:e1004487. [PMID: 25375670 PMCID: PMC4223079 DOI: 10.1371/journal.ppat.1004487] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
Abstract
The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence. Despite improvements in diagnostics and antifungal drug treatments, mortality rates from invasive mold infections remain high. Defining the fungal adaptation and growth mechanisms at the infection site microenvironment is one research focus that is expected to improve treatment of established invasive fungal infections. The Aspergillus fumigatus transcription factor SrbA is a major regulator of the fungal response to hypoxia found at sites of invasive fungal growth in vivo. In this study, new insights into how SrbA mediates hypoxia adaptation and virulence were revealed through identification of direct transcriptional targets of SrbA under hypoxic conditions. A major novel finding from these studies is the identification of a critical role in fungal hypoxia adaptation and virulence of an SrbA target gene, srbB, which is also in the SREBP family. SrbB plays a major role in regulation of heme biosynthesis and carbohydrate metabolism early in the response to hypoxia. The discovery of SrbA-dependent regulation of srbB gene expression, and the target genes they regulate opens new avenues to understand how SREBPs and their target genes mediate adaptation to the in vivo infection site microenvironment and responses to current antifungal therapies.
Collapse
|
18
|
Badiee P, Arastefar A, Jafarian H. Comparison of histopathological analysis, culture and polymerase chain reaction assays to detect mucormycosis in biopsy and blood specimens. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:406-10. [PMID: 25848513 PMCID: PMC4385169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to compare direct microscopic examination with culture and PCR for the diagnosis of Mucorales infection in blood and tissue specimens. MATERIAL AND METHODS Blood samples and tissue specimens were obtained from 28 patients (total 58 samples) with suspected invasive fungal infection and cultured on proper media. Direct smear of tissue samples was done with potassium hydroxide, hematoxylin and eosin, and methenamine silver staining. DNA extracted from blood and tissue specimens were used for semi-nested PCR targeting 18S rDNA of Mucorales species. RESULTS Mucormycosis was documented in 7/28 (25%) of tissue specimens with positive findings by direct smear, of which PCR and culture were positive in 6 (86%) and 5 (70%) specimens, respectively. The etiologic agents were Mucor spp. and Rhizopus spp. However, culture and PCR results for all blood specimens were negative. CONCLUSIONS As the orders of Mucorales do not have well growth in culture media, PCR with tissue specimens is more sensitive than tissue or blood culture methods. Unfortunately, there is no alternative method for direct smear, which is an invasive method. Molecular methods may be helpful in these cases.
Collapse
Affiliation(s)
- Parisa Badiee
- Corresponding author: Parisa Badiee Ph.D, Address: Prof. Alborzi Clinical Microbiology Research Center, Nemazi Hospital, Zand Ave, Shiraz, Iran, Tel: +98-711-6474292, Fax: +98-711 6474303
| | | | | |
Collapse
|
19
|
Lewis RE, Cahyame-Zuniga L, Leventakos K, Chamilos G, Ben-Ami R, Tamboli P, Tarrand J, Bodey GP, Luna M, Kontoyiannis DP. Epidemiology and sites of involvement of invasive fungal infections in patients with haematological malignancies: a 20-year autopsy study. Mycoses 2013; 56:638-45. [PMID: 23551865 DOI: 10.1111/myc.12081] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/13/2013] [Accepted: 03/17/2013] [Indexed: 01/12/2023]
Abstract
Autopsy studies remain an essential tool for understanding the patterns of fungal disease not detected ante mortem with current diagnostic approaches. We collected data concerning the microbiological trends, patient clinical characteristics and sites of involvement for invasive fungal infections (IFIs) identified at autopsy in a single large cancer treatment centre over a 20-year period (1989-2008). The autopsy rate and IFI prevalence both declined significantly during the study period. The prevalence of Aspergillus spp. decreased significantly from the first 15 years of the study (from 0.12 to 0.14 cases per 100 autopsies to 0.07 in 2004-2008; P = 0.04), with only Mucorales accounting for a greater proportion of IFIs over the duration of the study period (0.06 to 0.2 cases per 100 autopsies, P = 0.04). After 2003, moulds accounted for the majority of infections identified at autopsy in the spleen, kidney, heart and gastrointestinal tract. Despite a trend of decreasing prevalence from 1989 to 2004, invasive candidiasis increased in prevalence during later periods 2004-2008 (0.02-0.05 per 100 autopsies) with decreasing kidney, heart and spleen involvement. Despite a declining autopsy rate, these data suggest a decreasing prevalence overall of IFIs with changing patterns of dissemination in patients with haematological malignancies.
Collapse
Affiliation(s)
- Russell E Lewis
- Departments of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Georgiadou SP, Kontoyiannis DP. The impact of azole resistance on aspergillosis guidelines. Ann N Y Acad Sci 2012; 1272:15-22. [DOI: 10.1111/j.1749-6632.2012.06795.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Tissue Diagnosis of Invasive Fungal Infections: Current Limitations and the Emerging Use of Molecular Techniques. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0098-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Grahl N, Puttikamonkul S, Macdonald JM, Gamcsik MP, Ngo LY, Hohl TM, Cramer RA. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog 2011; 7:e1002145. [PMID: 21811407 PMCID: PMC3141044 DOI: 10.1371/journal.ppat.1002145] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/17/2011] [Indexed: 01/09/2023] Open
Abstract
Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and (1)H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses.
Collapse
Affiliation(s)
- Nora Grahl
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Srisombat Puttikamonkul
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Jeffrey M. Macdonald
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, United States of America
| | - Michael P. Gamcsik
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lisa Y. Ngo
- Infectious Disease Sciences, Vaccine and Infectious Disease Division, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Tobias M. Hohl
- Infectious Disease Sciences, Vaccine and Infectious Disease Division, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Robert A. Cramer
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
23
|
Van Der Linden JWM, Warris A, Verweij PE. Aspergillusspecies intrinsically resistant to antifungal agents. Med Mycol 2011; 49 Suppl 1:S82-9. [DOI: 10.3109/13693786.2010.499916] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Vödisch M, Scherlach K, Winkler R, Hertweck C, Braun HP, Roth M, Haas H, Werner ER, Brakhage AA, Kniemeyer O. Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin A biosynthesis gene cluster in response to hypoxia. J Proteome Res 2011; 10:2508-24. [PMID: 21388144 PMCID: PMC3091480 DOI: 10.1021/pr1012812] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The mold Aspergillus fumigatus is the most important airborne fungal pathogen. Adaptation to hypoxia represents an important virulence attribute for A. fumigatus. Therefore, we aimed at obtaining a comprehensive overview about this process on the proteome level. To ensure highly reproducible growth conditions, an oxygen-controlled, glucose-limited chemostat cultivation was established. Two-dimensional gel electrophoresis analysis of mycelial and mitochondrial proteins as well as two-dimensional Blue Native/SDS-gel separation of mitochondrial membrane proteins led to the identification of 117 proteins with an altered abundance under hypoxic in comparison to normoxic conditions. Hypoxia induced an increased activity of glycolysis, the TCA-cycle, respiration, and amino acid metabolism. Consistently, the cellular contents in heme, iron, copper, and zinc increased. Furthermore, hypoxia induced biosynthesis of the secondary metabolite pseurotin A as demonstrated at proteomic, transcriptional, and metabolite levels. The observed and so far not reported stimulation of the biosynthesis of a secondary metabolite by oxygen depletion may also affect the survival of A. fumigatus in hypoxic niches of the human host. Among the proteins so far not implicated in hypoxia adaptation, an NO-detoxifying flavohemoprotein was one of the most highly up-regulated proteins which indicates a link between hypoxia and the generation of nitrosative stress in A. fumigatus. Aspergillus fumigatus is a ubiquitously distributed filamentous fungus and an important human pathogen. To colonize the human lung, A. fumigatus has to adapt to low oxygen concentrations. We analyzed the cytosolic and mitochondrial proteome of A. fumigatus under normoxic in comparison to hypoxic conditions using an oxygen-controlled chemostat. Hypoxia led to an increased respiratory capacity, induction of the biosynthesis of the secondary metabolite pseurotin A and presumably nitrosative stress.
Collapse
Affiliation(s)
- Martin Vödisch
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute and Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Grahl N, Cramer RA. Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi? Med Mycol 2010; 48:1-15. [PMID: 19462332 DOI: 10.3109/13693780902947342] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Over the past two decades, the incidence of fungal infections has dramatically increased. This is primarily due to increases in the population of immunocompromised individuals attributed to the HIV/AIDS pandemic and immunosuppression therapies associated with organ transplantation, cancer, and other diseases where new immunomodulatory therapies are utilized. Significant advances have been made in understanding how fungi cause disease, but clearly much remains to be learned about the pathophysiology of these often lethal infections. Fungal pathogens face numerous environmental challenges as they colonize and infect mammalian hosts. Regardless of a pathogen's complexity, its ability to adapt to environmental changes is critical for its survival and ability to cause disease. For example, at sites of fungal infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments to which both the pathogen and host cells must adapt in order to survive. However, our current knowledge of how pathogenic fungi adapt to and survive in hypoxic conditions during fungal pathogenesis is limited. Recent studies have begun to observe that the ability to adapt to various levels of hypoxia is an important component of the virulence arsenal of pathogenic fungi. In this review, we focus on known oxygen sensing mechanisms that non-pathogenic and pathogenic fungi utilize to adapt to hypoxic microenvironments and their possible relation to fungal virulence.
Collapse
Affiliation(s)
- Nora Grahl
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, USA
| | | |
Collapse
|
26
|
|
27
|
Wezensky SJ, Cramer RA. Implications of hypoxic microenvironments during invasive aspergillosis. Med Mycol 2010; 49 Suppl 1:S120-4. [PMID: 20560863 DOI: 10.3109/13693786.2010.495139] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In order to cause disease, all pathogens must tolerate microenvironmental stresses encountered in vivo during infection. One microenvironmental stress that is known to occur at sites of tissue damage is hypoxia. Yet, the occurrence and impact of hypoxic microenvironments during invasive aspergillosis, caused by the mold Aspergillus fumigatus, are essentially unknown. Here, we briefly review the potential implications of hypoxic microenvironments on the Aspergillus-host interaction. We focus on three areas where hypoxia may play a role in determining the outcome of infection: fungal virulence, host immune responses, and efficacy of current antifungal drug treatments.
Collapse
Affiliation(s)
- Sara J Wezensky
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
28
|
Billen F, Clercx C, Le Garérrès A, Massart L, Mignon B, Peeters D. Effect of sampling method and incubation temperature on fungal culture in canine sinonasal aspergillosis. J Small Anim Pract 2008; 50:67-72. [PMID: 19037883 DOI: 10.1111/j.1748-5827.2008.00672.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate the most appropriate sampling procedure and the effect of incubation temperature on fungal culture in the diagnosis of canine sinonasal aspergillosis (SNA). METHODS Sixteen dogs with SNA and 20 dogs with non-fungal nasal disease entered a prospective study. Nasal secretions and mucosal biopsies were collected in all dogs. Fungal plaques were also sampled in dogs with SNA. Each specimen was taken in duplicate from each dog and incubated at room temperature and 37 degrees C. RESULTS In dogs with SNA, nasal secretions, mucosal biopsies and fungal plaques yielded fungal growth at room temperature in one, one and seven dogs, respectively, whereas fungal growth was obtained at 37 degrees C in three, 12 and 14 dogs, respectively. No specimen collected from any dog with non-fungal nasal disease yielded fungal growth at room temperature or at 37 degrees C. CLINICAL SIGNIFICANCE The diagnosis of canine SNA is more likely to be confirmed following culture of mucosal biopsies or fungal plaques than nasal secretions sampled blindly with swabs. Incubating cultures at 37 degrees C is more likely to provide a diagnostic outcome than when samples are cultured at room temperature. Fungal culture of nasal specimens has good specificity for the diagnosis of SNA in dogs.
Collapse
Affiliation(s)
- F Billen
- Department of Clinical Sciences, University of Liège, Boulevard de Colonster, Liège, Belgium
| | | | | | | | | | | |
Collapse
|
29
|
A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog 2008; 4:e1000200. [PMID: 18989462 PMCID: PMC2572145 DOI: 10.1371/journal.ppat.1000200] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/09/2008] [Indexed: 11/19/2022] Open
Abstract
At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive. Currently, whether hypoxia adaptation is an important virulence attribute of opportunistic pathogenic molds is unknown. Here we report the characterization of a sterol-regulatory element binding protein, SrbA, in the opportunistic pathogenic mold, Aspergillus fumigatus. Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA). Transcriptional profiling revealed 87 genes that are affected by loss of SrbA function. Annotation of these genes implicated SrbA in maintaining sterol biosynthesis and hyphal morphology. Further examination of the SrbA null mutant consequently revealed that SrbA plays a critical role in ergosterol biosynthesis, resistance to the azole class of antifungal drugs, and in maintenance of cell polarity in A. fumigatus. Significantly, the SrbA null mutant was highly susceptible to fluconazole and voriconazole. Thus, these findings present a new function of SREBP proteins in filamentous fungi, and demonstrate for the first time that hypoxia adaptation is likely an important virulence attribute of pathogenic molds. The incidence of potentially lethal infections caused by normally benign molds has increased tremendously over the last two decades. One disease in particular, invasive pulmonary aspergillosis (IPA), caused by the common mold Aspergillus fumigatus, has become the leading cause of death due to invasive mycoses. Currently, we have a limited understanding of how this opportunistic pathogen causes disease in immunocompromised patients. In this study, we discover a previously unexplored mechanism required by this mold to cause disease, hypoxia (low oxygen) adaptation. We report that hypoxia adaptation in A. fumigatus is mediated in part by a highly conserved transcription factor, SrbA, a protein in the sterol regulatory element binding protein family. A null mutant of SrbA was unable to grow in hypoxia, displayed increased susceptibility to the azole class of antifungal drugs, and was avirulent in two distinct murine models of IPA. Importantly, we report the discovery of a novel function of SrbA in molds related to maintenance of cell polarity. The finding that SrbA regulates resistance to the azole class of antifungal drugs presents an opportunity to uncover new mechanisms of antifungal drug resistance in A. fumigatus.
Collapse
|
30
|
Susceptibility testing of anidulafungin and voriconazole alone and in combination against conidia and hyphae of Aspergillus spp. under hypoxic conditions. Antimicrob Agents Chemother 2008; 52:1873-5. [PMID: 18347112 DOI: 10.1128/aac.01572-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MICs and fractional inhibitory concentrations were evaluated for anidulafungin and voriconazole alone and in combination against conidia and hyphae under hypoxic (1% oxygen-5% CO(2)-94% nitrogen) conditions against 31 Aspergillus isolates. Anidulafungin exhibited excellent activity against conidia and hyphae of Aspergillus spp. The visual reading of the MIC for anidulafungin was optimal under hypoxic conditions.
Collapse
|
31
|
Abstract
Sinonasal aspergillosis is a frequent cause of nasal discharge that occurs in otherwise healthy, young to middle-aged dogs. A local immune dysfunction is suspected in affected animals, and the role of increased interleukin-10 mRNA expression in the nasal mucosa of affected dogs is currently under investigation. Despite recent advances in imaging techniques, the "gold standard" for diagnosing the disease is direct visualization of fungal plaques during endoscopy or observation of fungal elements on cytology or histopathologic examination. Treatment can be challenging; however, the use of topical enilconazole or clotrimazole through noninvasive techniques has increased the success of treatment and decreased the morbidity and duration of hospitalization.
Collapse
Affiliation(s)
- Dominique Peeters
- Department of Veterinary Clinical Sciences, Small Animal Internal Medicine, University of Liège, 4000 Liège, Belgium.
| | | |
Collapse
|
32
|
Carmen Rubio M, Rezusta A, Gil J, Benito R, José Revillo M. Diagnóstico de laboratorio de las micosis invasoras por hongos filamentosos en pacientes inmunodeprimidos. Enferm Infecc Microbiol Clin 2007. [DOI: 10.1157/13111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Rickerts V, Mousset S, Lambrecht E, Tintelnot K, Schwerdtfeger R, Presterl E, Jacobi V, Just-Nübling G, Bialek R. Comparison of histopathological analysis, culture, and polymerase chain reaction assays to detect invasive mold infections from biopsy specimens. Clin Infect Dis 2007; 44:1078-83. [PMID: 17366453 DOI: 10.1086/512812] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 01/05/2007] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND With the advent of new antifungal agents, the identification of a causative pathogen is crucial to guide the antifungal treatment of invasive mold infection. However, tissue cultures often fail to grow a fungal pathogen in cases of suspected mold infection. METHODS In a prospective multicenter study, we compared the results of histopathological analysis, culture, and 2 seminested polymerase chain reaction assays identifying Aspergillus species and Zygomycetes as causative agents of invasive mold infections using respiratory tract biopsy samples obtained from 56 immunocompromised patients who had suspected mold infection. RESULTS Mold hyphae were detected histopathologically in 27 (48%) of the tissue specimens. Hyphae corresponded to either aspergillosis (n=18) or zygomycosis (n=6) or could not be further specified (n=3). A mold was cultured from 14 of 18 samples with aspergillus hyphae, 2 of 6 samples with Zygomycetes hyphae, and 1 of 3 samples with unspecified hyphae. Polymerase chain reaction was superior to culture in detecting the infecting mold (26 of 27 samples vs. 17 of 27 samples, respectively; P=.006) from histopathologically positive samples. Genus or species identification by sequencing of the polymerase chain reaction products were in accordance with culture results in 16 of 18 culture-positive samples. Both polymerase chain reaction assays failed to detect fungal DNA in 1 sample that had unspecified hyphae and negative culture results. CONCLUSION The PCR assays offer a reliable etiologic diagnosis that is superior to culture in patients with proven invasive mold infection. This may improve patient management through tailored antifungal therapy when cultures fail to grow a pathogen.
Collapse
Affiliation(s)
- Volker Rickerts
- Department of Internal Medicine II, University Hospital, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Toxigenic and pathogenic fungi in Norway rat (Rattus norvegicus Berk., 1769) from natural populations in semiagricultural habitats. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2007. [DOI: 10.2298/zmspn0713267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this study, the presence of toxigenic and pathogenic fungi was detected in individuals of natural populations of Norway rats from semiagricultural habitats. The presence of fungi was noted in 19 out of 30 (63%) individuals examined. Six fungal species were isolated and identified, of which majority belonged to Hyphomycetes (Deuteromycotina) and Mucor racemosus from Zygomycotina. All of detected species are of public health importance and some of them might influence animals health.
Collapse
|
35
|
Characteristics of local pulmonary response following intranasal application of Aspergillus fumigatus conidia. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2007. [DOI: 10.2298/zmspn0713243z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this study, histopathology of local pulmonary response following intranasal inoculation of different doses of Aspergillus fumigatus conidia in laboratory rats was evaluated. Development of response was evaluated on days seven and twenty one, following conidia inoculation by cell infiltration and by presence of A. fumigatus conidia in homogenates of lung tissue. Total and differential peripheral blood leukocyte counts and state of leukocyte adhesion/aggregation were monitored to estimate the presence of systemic response in infected individuals. Mycological examination revealed the presence of conidia in lung tissue homogenates of infected animals, with high number of non-germinating spores on day twenty one, following the inoculation of lower conidia dose. Histopathological examination revealed the presence of lymphocytes perivascularly and in vascular lumen in the lungs. Presented data demonstrate pulmonary immune response following A. fumigatus conidia administration.
Collapse
|
36
|
First record of the presence of pathogenic and toxigenic fungi in Norway rat populations from urban and suburban habitats in Serbia. ARCH BIOL SCI 2007. [DOI: 10.2298/abs070349pk] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Chamilos G, Kontoyiannis DP. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus. Drug Resist Updat 2006; 8:344-58. [PMID: 16488654 DOI: 10.1016/j.drup.2006.01.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 01/09/2006] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis (IA) remains unacceptably high. Aspergillus fumigatus still accounts for the majority of cases of IA; however less susceptible to antifungals non-fumigatus aspergilli began to emerge. Antifungal drug resistance of Aspergillus might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, has brought resistance testing to the forefront of clinical mycology. In addition, molecular biology has started to shed light on the mechanisms of resistance of A. fumigatus to azoles and the echinocandins, while genome-based assays show promise for high-throughput screening for genotypic antifungal resistance. Several problems remain, however, in the study of this complex area. Large multicenter clinical studies--point prevalence or longitudinal--to capture the incidence and prevalence of antifungal resistance in A. fumigatus isolates are lacking. Correlation of in vitro susceptibility with clinical outcome and susceptibility breakpoints has not been established. In addition, the issue of cross-resistance between the newer triazoles is of concern. Furthermore, in vitro resistance testing for polyenes and echinocandins is difficult, and their mechanisms of resistance are largely unknown. This review examines challenges in the diagnosis, epidemiology, and mechanisms of antifungal drug resistance in A. fumigatus.
Collapse
Affiliation(s)
- G Chamilos
- Department of Infectious Diseases, Infection Control and Employee Health, Unit 402, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | |
Collapse
|
38
|
Chamilos G, Kontoyiannis DP. Defining the diagnosis of invasive aspergillosis. Med Mycol 2006; 44:S163-S173. [DOI: 10.1080/13693780600823258] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/11/2006] [Indexed: 12/23/2022] Open
|