1
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
2
|
Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M, Oler AJ, Yedavalli VRK, Buckler-White A, Hartley JW, Kozak CA. Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 2017; 91:e00855-17. [PMID: 28794032 PMCID: PMC5640873 DOI: 10.1128/jvi.00855-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Tromas N, Zwart MP, Poulain M, Elena SF. Estimation of the in vivo recombination rate for a plant RNA virus. J Gen Virol 2013; 95:724-732. [PMID: 24362963 DOI: 10.1099/vir.0.060822-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phylogenomic evidence suggested that recombination is an important evolutionary force for potyviruses, one of the larger families of plant RNA viruses. However, mixed-genotype potyvirus infections are marked by low levels of cellular coinfection, precluding template switching and recombination events between virus genotypes during genomic RNA replication. To reconcile these conflicting observations, we evaluated the in vivo recombination rate (rg) of Tobacco etch virus (TEV; genus Potyvirus, family Potyviridae) by coinfecting plants with pairs of genotypes marked with engineered restriction sites as neutral markers. The recombination rate was then estimated using two different approaches: (i) a classical approach that assumed recombination between marked genotypes can occur in the whole virus population, rendering an estimate of rg = 7.762 × 10(-8) recombination events per nucleotide site per generation, and (ii) an alternative method that assumed recombination between marked genotypes can occur only in coinfected cells, rendering a much higher estimate of rg = 3.427 × 10(-5) recombination events per nucleotide site per generation. This last estimate is similar to the TEV mutation rate, suggesting that recombination should be at least as important as point mutation in creating variability. Finally, we compared our mutation and recombination rate estimates to those reported for animal RNA viruses. Our analysis suggested that high recombination rates may be an unavoidable consequence of selection for fast replication at the cost of low fidelity.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Mark P Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| | - Maïté Poulain
- Genoscreen, 1 Rue du Professeur Calmette, 59000 Lille, France
| | - Santiago F Elena
- The Santa Fe Institute, Santa Fe, NM 87501, USA.,Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain
| |
Collapse
|
4
|
Latent HIV-1 can be reactivated by cellular superinfection in a Tat-dependent manner, which can lead to the emergence of multidrug-resistant recombinant viruses. J Virol 2013; 87:9620-32. [PMID: 23804632 DOI: 10.1128/jvi.01165-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 latent reservoir represents an important source of genetic diversity that could contribute to viral evolution and multidrug resistance following latent virus reactivation. This could occur by superinfection of a latently infected cell. We asked whether latent viruses might be reactivated when their host cells are superinfected, and if so, whether they could contribute to the generation of recombinant viruses. Using populations of latently infected Jurkat cells, we found that latent viruses were efficiently reactivated upon superinfection. Pathways leading to latent virus reactivation via superinfection might include gp120-CD4/CXCR4-induced signaling, modulation of the cellular environment by Nef, and/or the activity of Tat produced upon superinfection. Using a range of antiviral compounds and genetic approaches, we show that gp120 and Nef are not required for latent virus reactivation by superinfection, but this process depends on production of functional Tat by the superinfecting virus. In a primary cell model of latency in unstimulated CD4 T cells, superinfection also led to latent virus reactivation. Drug-resistant latent viruses were also reactivated following superinfection in Jurkat cells and were able to undergo recombination with the superinfecting virus. Under drug-selective pressure, this generated multidrug-resistant recombinants that were identified by unique restriction digestion band patterns and by population-level sequencing. During conditions of poor drug adherence, treatment interruption or treatment failure, or in drug-impermeable sanctuary sites, reactivation of latent viruses by superinfection or other means could provide for the emergence or spread of replicatively fit viruses in the face of strong selective pressures.
Collapse
|
5
|
Song H, Pavlicek JW, Cai F, Bhattacharya T, Li H, Iyer SS, Bar KJ, Decker JM, Goonetilleke N, Liu MKP, Berg A, Hora B, Drinker MS, Eudailey J, Pickeral J, Moody MA, Ferrari G, McMichael A, Perelson AS, Shaw GM, Hahn BH, Haynes BF, Gao F. Impact of immune escape mutations on HIV-1 fitness in the context of the cognate transmitted/founder genome. Retrovirology 2012; 9:89. [PMID: 23110705 PMCID: PMC3496648 DOI: 10.1186/1742-4690-9-89] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 10/07/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method. RESULTS The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations which restored viral replication fitness were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but V247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region. CONCLUSIONS These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.
Collapse
Affiliation(s)
- Hongshuo Song
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey W Pavlicek
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shilpa S Iyer
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie M Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nilu Goonetilleke
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Michael KP Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Anna Berg
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark S Drinker
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Josh Eudailey
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Joy Pickeral
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Andrew McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, England, OX3 9DS, UK
| | - Alan S Perelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Smyth RP, Davenport MP, Mak J. The origin of genetic diversity in HIV-1. Virus Res 2012; 169:415-29. [PMID: 22728444 DOI: 10.1016/j.virusres.2012.06.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
One of the hallmarks of HIV infection is the rapid development of a genetically complex population (quasispecies) from an initially limited number of infectious particles. Genetic diversity remains one of the major obstacles to eradication of HIV. The viral quasispecies can respond rapidly to selective pressures, such as that imposed by the immune system and antiretroviral therapy, and frustrates vaccine design efforts. Two unique features of retroviral replication are responsible for the unprecedented variation generated during infection. First, mutations are frequently introduced into the viral genome by the error prone viral reverse transcriptase and through the actions of host cellular factors, such as the APOBEC family of nucleic acid editing enzymes. Second, the HIV reverse transcriptase can utilize both copies of the co-packaged viral genome in a process termed retroviral recombination. When the co-packaged viral genomes are genetically different, retroviral recombination can lead to the shuffling of mutations between viral genomes in the quasispecies. This review outlines the stages of the retroviral life cycle where genetic variation is introduced, focusing on the principal mechanisms of mutation and recombination. Understanding the mechanistic origin of genetic diversity is essential to combating HIV.
Collapse
Affiliation(s)
- Redmond P Smyth
- Centre for Virology, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | |
Collapse
|
7
|
Sfanos KS, Aloia AL, De Marzo AM, Rein A. XMRV and prostate cancer--a 'final' perspective. Nat Rev Urol 2012; 9:111-8. [PMID: 22231291 DOI: 10.1038/nrurol.2011.225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
XMRV was first described in 2006, when it was identified in samples isolated from prostate cancer tissues. However, studies have since shown that XMRV arose in the laboratory and was formed by genetic recombination between two viral genomes carried in the germline DNA of mice used during serial transplantation of the CWR22 prostate cancer xenograft. These new findings strongly imply that XMRV does not circulate in humans, but is only present in the laboratory. Thus, there is no reason to believe that it has any role in the etiology of prostate cancer or other diseases.
Collapse
Affiliation(s)
- Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
8
|
Endogenous Murine Leukemia Viruses: Relationship to XMRV and Related Sequences Detected in Human DNA Samples. Adv Virol 2011; 2011:940210. [PMID: 22312358 PMCID: PMC3265319 DOI: 10.1155/2011/940210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/07/2011] [Indexed: 11/17/2022] Open
Abstract
Xenotropic-murine-leukemia-virus-related virus (XMRV) was the first gammaretrovirus to be reported in humans. The sequence similarity between XMRV and murine leukemia viruses (MLVs) was consistent with an origin of XMRV from one or more MLVs present as endogenous proviruses in mouse genomes. Here, we review the relationship of the human and mouse virus isolates and discuss the potential complications associated with the detection of MLV-like sequences from clinical samples.
Collapse
|
9
|
Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS. Mechanisms and factors that influence high frequency retroviral recombination. Viruses 2011; 3:1650-1680. [PMID: 21994801 PMCID: PMC3187697 DOI: 10.3390/v3091650] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/25/2023] Open
Abstract
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.
Collapse
Affiliation(s)
- Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Andrea Galli
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Olga Nikolaitchik
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
| | - Helene Mens
- Department of Epidemic Diseases, Rigshospitalet, København 2100, Denmark; E-Mail:
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-1250; Fax: +1-301-846-6013
| |
Collapse
|
10
|
Origin of XMRV and its demise as a human pathogen associated with chronic fatigue syndrome. Viruses 2011; 3:1312-9. [PMID: 21994780 PMCID: PMC3185801 DOI: 10.3390/v3081312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/04/2011] [Accepted: 07/14/2011] [Indexed: 11/17/2022] Open
Abstract
Retroviruses are well known pathogens of mammals, birds and fish. Their potential to induce cancer in chickens was already described almost 100 years ago and murine retroviruses have been a subject of study for 50 years. The first human retroviruses, HTLV and HIV, were discovered more than 30 years ago, surprising researchers and physicians by the profound differences in the diseases they cause. HTLV-1 is able to induce, after decades of infection, lymphomas/leukemia or neuroimmune disorders whereas untreated HIV infection leads almost inevitably to AIDS. The recently described XMRV (xenotropic murine leukemia virus-related virus) appeared to possess many of the features known for HTLV and was regarded by some to be the third human retrovirus. However, recent publications by Knox et al. [1] and Paprotka et al. [2] have shed new light on this gammaretrovirus. Knox and colleagues clearly demonstrate that XMRV is absent in patients belonging to a chronic fatigue syndrome cohort who had previously been reported to be XMRV-positive [3]. This supports the growing suspicion that laboratory contamination was responsible for the postulated link between XMRV and the disease. Furthermore, Paprotka et al’s identification of XMRV’s origin and the phylogenetic analysis of known XMRV sequences are further nails in the coffin to the notion that XMRV is a clinically relevant infectious human retrovirus.
Collapse
|
11
|
Paprotka T, Delviks-Frankenberry KA, Cingöz O, Martinez A, Kung HJ, Tepper CG, Hu WS, Fivash MJ, Coffin JM, Pathak VK. Recombinant origin of the retrovirus XMRV. Science 2011; 333:97-101. [PMID: 21628392 DOI: 10.1126/science.1205292] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The retrovirus XMRV (xenotropic murine leukemia virus-related virus) has been detected in human prostate tumors and in blood samples from patients with chronic fatigue syndrome, but these findings have not been replicated. We hypothesized that an understanding of when and how XMRV first arose might help explain the discrepant results. We studied human prostate cancer cell lines CWR22Rv1 and CWR-R1, which produce XMRV virtually identical to the viruses recently found in patient samples, as well as their progenitor human prostate tumor xenograft (CWR22) that had been passaged in mice. We detected XMRV infection in the two cell lines and in the later passage xenografts, but not in the early passages. In particular, we found that the host mice contained two proviruses, PreXMRV-1 and PreXMRV-2, which share 99.92% identity with XMRV over >3.2-kilobase stretches of their genomes. We conclude that XMRV was not present in the original CWR22 tumor but was generated by recombination of two proviruses during tumor passaging in mice. The probability that an identical recombinant was generated independently is negligible (~10(-12)); our results suggest that the association of XMRV with human disease is due to contamination of human samples with virus originating from this recombination event.
Collapse
Affiliation(s)
- Tobias Paprotka
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Simon-Loriere E, Martin DP, Weeks KM, Negroni M. RNA structures facilitate recombination-mediated gene swapping in HIV-1. J Virol 2010; 84:12675-82. [PMID: 20881047 PMCID: PMC3004330 DOI: 10.1128/jvi.01302-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/21/2010] [Indexed: 11/20/2022] Open
Abstract
Many viruses, including retroviruses, undergo frequent recombination, a process which can increase their rate of adaptive evolution. In the case of HIV, recombination has been responsible for the generation of numerous intersubtype recombinant variants with epidemiological importance in the AIDS pandemic. Although it is known that fragments of genetic material do not combine randomly during the generation of recombinant viruses, the mechanisms that lead to preferential recombination at specific sites are not fully understood. Here we reanalyze recent independent data defining (i) the structure of a complete HIV-1 RNA genome and (ii) favorable sites for recombination. We show that in the absence of selection acting on recombinant genomes, regions harboring RNA structures in the NL4-3 model strain are strongly predictive of recombination breakpoints in the HIV-1 env genes of primary isolates. In addition, we found that breakpoints within recombinant HIV-1 genomes sampled from human populations, which have been acted upon extensively by natural selection, also colocalize with RNA structures. Critically, junctions between genes are enriched in structured RNA elements and are also preferred sites for generating functional recombinant forms. These data suggest that RNA structure-mediated recombination allows the virus to exchange intact genes rather than arbitrary subgene fragments, which is likely to increase the overall viability and replication success of the recombinant HIV progeny.
Collapse
Affiliation(s)
- Etienne Simon-Loriere
- Institut de Biologie Moleculaire et Cellulaire, CNRS, Université de Strasbourg, Strasbourg, France, Centre for High-Performance Computing, Rosebank, Cape Town, South Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Darren P. Martin
- Institut de Biologie Moleculaire et Cellulaire, CNRS, Université de Strasbourg, Strasbourg, France, Centre for High-Performance Computing, Rosebank, Cape Town, South Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Kevin M. Weeks
- Institut de Biologie Moleculaire et Cellulaire, CNRS, Université de Strasbourg, Strasbourg, France, Centre for High-Performance Computing, Rosebank, Cape Town, South Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Matteo Negroni
- Institut de Biologie Moleculaire et Cellulaire, CNRS, Université de Strasbourg, Strasbourg, France, Centre for High-Performance Computing, Rosebank, Cape Town, South Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa, Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
13
|
Affiliation(s)
- Silas F. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
14
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
15
|
Gärtner K, Wiktorowicz T, Park J, Mergia A, Rethwilm A, Scheller C. Accuracy estimation of foamy virus genome copying. Retrovirology 2009; 6:32. [PMID: 19348676 PMCID: PMC2678077 DOI: 10.1186/1742-4690-6-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 04/06/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Foamy viruses (FVs) are the most genetically stable viruses of the retrovirus family. This is in contrast to the in vitro error rate found for recombinant FV reverse transcriptase (RT). To investigate the accuracy of FV genome copying in vivo we analyzed the occurrence of mutations in HEK 293T cell culture after a single round of reverse transcription using a replication-deficient vector system. Furthermore, the frequency of FV recombination by template switching (TS) and the cross-packaging ability of different FV strains were analyzed. RESULTS We initially sequenced 90,000 nucleotides and detected 39 mutations, corresponding to an in vivo error rate of approximately 4 x 10-4 per site per replication cycle. Surprisingly, all mutations were transitions from G to A, suggesting that APOBEC3 activity is the driving force for the majority of mutations detected in our experimental system. In line with this, we detected a late but significant APOBEC3G and 3F mRNA by quantitative PCR in the cells. We then analyzed 170,000 additional nucleotides from experiments in which we co-transfected the APOBEC3-interfering foamy viral bet gene and observed a significant 50% drop in G to A mutations, indicating that APOBEC activity indeed contributes substantially to the foamy viral replication error rate in vivo. However, even in the presence of Bet, 35 out of 37 substitutions were G to A, suggesting that residual APOBEC activity accounted for most of the observed mutations. If we subtract these APOBEC-like mutations from the total number of mutations, we calculate a maximal intrinsic in vivo error rate of 1.1 x 10-5 per site per replication. In addition to the point mutations, we detected one 49 bp deletion within the analyzed 260000 nucleotides.Analysis of the recombination frequency of FV vector genomes revealed a 27% probability for a template switching (TS) event within a 1 kilobase (kb) region. This corresponds to a 98% probability that FVs undergo at least one additional TS event per replication cycle. We also show that a given FV particle is able to cross-transfer a heterologous FV genome, although at reduced efficiency than the homologous vector. CONCLUSION Our results indicate that the copying of the FV genome is more accurate than previously thought. On the other hand recombination among FV genomes appears to be a frequent event.
Collapse
Affiliation(s)
- Kathleen Gärtner
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Tatiana Wiktorowicz
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Jeonghae Park
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Ayalew Mergia
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| | - Carsten Scheller
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str 7, 97078, Würzburg, Germany
| |
Collapse
|
16
|
Duggal NK, Goo L, King SR, Telesnitsky A. Effects of identity minimization on Moloney murine leukemia virus template recognition and frequent tertiary template-directed insertions during nonhomologous recombination. J Virol 2007; 81:12156-68. [PMID: 17804514 PMCID: PMC2168973 DOI: 10.1128/jvi.01591-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homology requirements for Moloney murine leukemia virus recombination were addressed in this study by monitoring titer defects observed when acceptor/donor template identity lengths were systematically reduced. Recombination acceptors with at least 16 contiguous bases of donor template identity were recognized as efficiently as longer acceptors. In contrast, a sharp 1-log titer drop was observed for an acceptor of only 15 bases long, with an additional 1-log titer decline for an 8-base acceptor and further decreases for shorter acceptors. Eighty-three independent nonhomologous recombination products were sequenced to examine recombination template selection in the absence of significant sequence identity. These replication products contained a total of 152 nonhomologous crossover junctions. Forced copy choice models predict that forced nonhomologous recombination should result in DNA synthesis to the donor template's 5' end, followed by microidentity-guided acceptor template selection. However, only a single product displayed this structure. The majority of examined nonhomologous recombination products contained junction-associated sequence insertions. Most insertions resulted from the use of one or more tertiary templates, recognizable as discontiguous portions of viral or host RNA or minus-strand DNA. The donor/acceptor template microidentity evident at most crossovers reconfirmed the remarkable capability of the reverse transcription machinery to recognize short regions of sequence identity. These results demonstrate that recruitment of discontiguous host or viral sequences is a common way for retroviruses to resolve nonhomologous recombination junctions and provide experimental support for the role of splinting templates in the generation of retroviral insertions.
Collapse
Affiliation(s)
- Nisha K Duggal
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | | | |
Collapse
|
17
|
Chen J, Powell D, Hu WS. High frequency of genetic recombination is a common feature of primate lentivirus replication. J Virol 2006; 80:9651-8. [PMID: 16973569 PMCID: PMC1617242 DOI: 10.1128/jvi.00936-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies indicate that human immunodeficiency virus type 1 (HIV-1) recombines at exceedingly high rates, approximately 1 order of magnitude more frequently than simple gammaretroviruses such as murine leukemia virus and spleen necrosis virus. We hypothesize that this high frequency of genetic recombination is a common feature of primate lentiviruses. Alternatively, it is possible that HIV-1 is unique among primate lentiviruses in possessing high recombination rates. Among other primate lentiviruses, only the molecular mechanisms of HIV-2 replication have been extensively studied. There are reported differences between the replication mechanisms of HIV-1 and those of HIV-2, such as preferences for RNA packaging in cis and properties of reverse transcriptase and RNase H activities. These biological disparities could lead to differences in recombination rates between the two viruses. Currently, HIV-1 is the only primate lentivirus in which recombination rates have been measured. To test our hypothesis, we established recombination systems to measure the recombination rates of two other primate lentiviruses, HIV-2 and simian immunodeficiency virus from African green monkeys (SIVagm), in one round of viral replication. We determined that, for markers separated by 588, 288, and 90 bp, HIV-2 recombined at rates of 7.4%, 5.5%, and 2.4%, respectively, whereas SIVagm recombined at rates of 7.8%, 5.6%, and 2.7%, respectively. These high recombination rates are within the same range as the previously measured HIV-1 recombination rates. Taken together, our results indicate that HIV-1, HIV-2, and SIVagm all possess high recombination frequencies; hence, the high recombination potential is most likely a common feature of primate lentivirus replication.
Collapse
Affiliation(s)
- Jianbo Chen
- HIV Drug Resistance Program, NCI-Frederick, P.O. Box B, Building 535, Room 336, Frederick, MD 21702, USA
| | | | | |
Collapse
|
18
|
Mukherjee S, Lee HLR, Ron Y, Dougherty JP. Proviral progeny of heterodimeric virions reveal a high crossover rate for human immunodeficiency virus type 2. J Virol 2006; 80:12402-7. [PMID: 17020945 PMCID: PMC1676297 DOI: 10.1128/jvi.01709-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS in humans, exhibits a very high rate of recombination. Bearing in mind the significant epidemiological and clinical contrast between HIV-2 and HIV-1 as well as the critical role that recombination plays in viral evolution, we examined the nature of HIV-2 recombination. Towards this end, a strategy was devised to measure the rate of crossover of HIV-2 by evaluating recombinant progeny produced exclusively by heterodimeric virions. The results showed that HIV-2 exhibits a crossover rate similar to that of HIV-1 and murine leukemia virus, indicating that the extremely high rate of crossover is a common retroviral feature.
Collapse
Affiliation(s)
- Sayandip Mukherjee
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|