1
|
Wei S, Zhao S, Yang W, Zhou J, Xu G, Zhang C, Wang M, Xiao H, Feng Y, Shang L, Pan C, Yu C, Chen M, Ma Y. EHF promotes liver cancer progression by meditating IL-6 secretion through transcription regulation of KDM2B in TAMs. Cell Signal 2025; 129:111670. [PMID: 39971220 DOI: 10.1016/j.cellsig.2025.111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Macrophages are key immune cell types in liver, which are thought to be involved in tumor development. Recent studies indicated that TAMs exhibit M2 phenotypes. However, the mechanism of macrophages related to tumor progression in liver cancer is largely unknown. We aim to investigate the mechanism of EHF in TAMs associated with liver cancer progression. METHODS The differently expressed genes of M0, M1, and M2 macrophages were analyzed by RNA sequencing. Cytokine array was used to detect the differently expressed cytokines in M2 macrophages. We performed CUT-Tag analysis for the identification of promoter regions that interacting with EHF protein. ChIP and luciferase analysis were used to verify the interaction between EHF and KDM2B. RESULTS EHF was overexpressed in M2 macrophages. Knockdown of EHF in M2 macrophages could inhibit migration and invasion of MHCC97-L cells co-cultured with M2 macrophages in vitro and in vivo. The level of IL-6 was decreased in M2 macrophages with lower expression of EHF. EHF could bind the promoter region of KDM2B. The transcription level of KDM2B was down-regulated by knockdown of EHF in M2 macrophages. The results of this study indicated that EHF could promote liver cancer cell metastasis by IL-6 through regulating the transcription level of KDM2B in M2 macrophages. CONCLUSION Our study revealed a novel aspect of macrophages in liver cancer and showed EHF could be a promising therapeutic target of liver cancer.
Collapse
Affiliation(s)
- Song Wei
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Siqi Zhao
- Department of Surgery, the Second Afliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Weijun Yang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gaoxin Xu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chenwei Zhang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hua Xiao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yongheng Feng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Longcheng Shang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Pan
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Yu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - MinJie Chen
- Department of Surgery, the Second Afliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yong Ma
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Caloian AD, Cristian M, Calin E, Pricop AR, Mociu SI, Seicaru L, Deacu S, Ciufu N, Suceveanu AI, Suceveanu AP, Mazilu L. Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment. Biomedicines 2025; 13:853. [PMID: 40299416 PMCID: PMC12024808 DOI: 10.3390/biomedicines13040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
DLBCL is a testament to the complexity of nature. It is characterized by remarkable diversity in its molecular and pathological subtypes and clinical manifestations. Despite the strides made in DLBCL treatment and the introduction of innovative drugs, around one-third of patients face a relapse or develop refractory disease. Recent findings over the past ten years have highlighted the critical interplay between the evolution of DLBCL and various epigenetic mechanisms, including chromatin remodeling, DNA methylation, histone modifications, and the regulatory roles of non-coding RNAs. These epigenetic alterations are integral to the pathways of oncogenesis, tumor progression, and the development of therapeutic resistance. In the past decade, the identification of dysregulated epigenetic mechanisms in lymphomas has paved the way for an exciting field of epigenetic therapies. Crucially, these epigenetic transformations span beyond tumor cells to include the sophisticated network within the tumor microenvironment (TME). While the exploration of epigenetic dysregulation in lymphoma cells is thriving, the mechanisms affecting the functions of immune cells in the TME invite further investigation. This review is dedicated to weaving together the narrative of epigenetic alterations impacting both lymphoma cells with a focus on their infiltrating immune companions.
Collapse
Affiliation(s)
- Andreea-Daniela Caloian
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Miruna Cristian
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Forensic Medicine, “Sf. Apostol Andrei” Emergency County Hospital, 900439 Constanta, Romania
| | - Elena Calin
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Andreea-Raluca Pricop
- Department of Dermatology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Stelian-Ilie Mociu
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Liliana Seicaru
- Department of Clinical Patology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Sorin Deacu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Clinical Patology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Nicolae Ciufu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Andra-Iulia Suceveanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Gastroenterology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Adrian-Paul Suceveanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Gastroenterology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Laura Mazilu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| |
Collapse
|
3
|
Hu W, Zang L, Feng X, Zhuang S, Chang L, Liu Y, Huang J, Zhang Y. Advances in epigenetic therapies for B-cell non-hodgkin lymphoma. Ann Hematol 2024; 103:5085-5101. [PMID: 39652169 DOI: 10.1007/s00277-024-06131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025]
Abstract
B-cell non-Hodgkin lymphomas (B-NHLs) constitute a varied group of cancers originating from B lymphocytes. B-NHLs can occur at any stage of normal B-cell development, with most arising from germinal centres (e.g. diffuse large B-cell lymphoma, DLBCL and follicular lymphoma, FL). The standard initial treatment usually involves the chemoimmunotherapy regimen. Although there is a high initial response rate, 30-40% of high-risk patients often face relapsed or refractory lymphoma due to drug resistance. Recent research has uncovered a significant link between the development of B-NHLs and various epigenetic processes, such as DNA methylation, histone modification, regulation by non-coding RNAs, and chromatin remodeling. Therapies targeting these epigenetic changes have demonstrated considerable potential in clinical studies. This article examines the influence of epigenetic regulation on the onset and progression of B-NHLs. It discusses the current therapeutic targets and agents linked to these epigenetic mechanisms, with the goal of offering new perspectives and approaches for targeted therapies and combination chemotherapy in treating B-NHLs.
Collapse
Affiliation(s)
- Weiwen Hu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Lanlan Zang
- Pharmaceutical laboratory, Department of Pharmacy, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Xiaoxi Feng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Shuhui Zhuang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Liudi Chang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China
| | - Yongjing Liu
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Jinyan Huang
- Biomedical Big Data Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong Second Medical University, Linyi, 276000, Shandong, China.
| |
Collapse
|
4
|
Mouchtaris Michailidis T, De Saeger S, Khoueiry R, Odongo GA, Bader Y, Dhaenens M, Herceg Z, De Boevre M. The interplay of dietary mycotoxins and oncogenic viruses toward human carcinogenesis: a scoping review. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39422902 DOI: 10.1080/10408398.2024.2414828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mycotoxins, fungal metabolites prevalent in many foods, are recognized for their role in carcinogenesis, especially when interacting with oncogenic viruses. OBJECTIVES This scoping review synthesizes current evidence on the human cancer risk associated with mycotoxin exposure and oncogenic virus infections. METHODS Searches were conducted on PubMed, Embase, and Web of Science. Studies were selected based on the PECOS framework. Data extraction involved narrative and qualitative presentation of findings, with meta-analysis where feasible. Risk of bias and outcome quality were assessed using the OHAT tool and GRADE approach. RESULTS From 25 included studies, 18 focused on aflatoxins and hepatitis viruses in hepatocellular carcinoma (HCC). Four studies examined aflatoxin B1 (AFB1) and human papilloma virus (HPV) in cervical cancer, while three investigated AFB1 with Epstein-Barr virus (EBV) in lymphomagenesis. The review highlights a significant synergistic effect between AFB1 and hepatitis B and C viruses in HCC development. Significant interactions between AFB1 and HPV, as well as AFB1 and EBV, were observed, but further research is needed. CONCLUSIONS The synergistic impact of mycotoxins and oncogenic viruses is a critical public health concern. Future research, especially prospective cohort studies and investigations into molecular mechanisms, is essential to address this complex issue.
Collapse
Affiliation(s)
- Thanos Mouchtaris Michailidis
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Grace A Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Institute of Cancer Research and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Yasmine Bader
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Marthe De Boevre
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
5
|
Chen G, Zhang L, Wang R, Xie Z. Histone methylation in Epstein-Barr virus-associated diseases. Epigenomics 2024; 16:865-877. [PMID: 38869454 PMCID: PMC11370928 DOI: 10.1080/17501911.2024.2345040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Epstein-Barr virus (EBV) infection is linked to various human diseases, including both noncancerous conditions like infectious mononucleosis and cancerous diseases such as lymphoma and nasopharyngeal carcinoma. After the initial infection, EBV establishes a lifelong presence and remains latent in specific cells. This latent infection causes changes in the epigenetic marks known as histone methylation. Many studies have examined the role of histone methylation in different EBV-associated diseases, and understanding how EBV affects histone methylation can help us identify potential targets for epigenetic therapies. This review focuses on the research progress made in understanding histone methylation in well-studied EBV-associated diseases, intending to provide insights into potential strategies based on histone methylation to combat EBV-related ailments.
Collapse
Affiliation(s)
- Guanglian Chen
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| |
Collapse
|
6
|
Maroui MA, Odongo GA, Mundo L, Manara F, Mure F, Fusil F, Jay A, Gheit T, Michailidis TM, Ferrara D, Leoncini L, Murray P, Manet E, Ohlmann T, De Boevre M, De Saeger S, Cosset FL, Lazzi S, Accardi R, Herceg Z, Gruffat H, Khoueiry R. Aflatoxin B1 and Epstein-Barr virus-induced CCL22 expression stimulates B cell infection. Proc Natl Acad Sci U S A 2024; 121:e2314426121. [PMID: 38574017 PMCID: PMC11032484 DOI: 10.1073/pnas.2314426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.
Collapse
Affiliation(s)
- Mohamed Ali Maroui
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Grace Akinyi Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Lucia Mundo
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Francesca Manara
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Fabrice Mure
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Floriane Fusil
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Antonin Jay
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Thanos M. Michailidis
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Domenico Ferrara
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Paul Murray
- Limerick Digital Cancer Research Centre, Health Research Institute, Bernal Institute and School of Medicine, University of Limerick, LimerickV94 T9PX, Ireland
| | - Evelyne Manet
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Théophile Ohlmann
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent9000, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Gauteng2028, South Africa
| | - François-Loïc Cosset
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena53100, Italy
| | - Rosita Accardi
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| | - Henri Gruffat
- Centre International de Recherche en Infectiologie, University Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure, Lyon69366 Cedex 07, France
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, Lyon69366 Cedex 07, France
| |
Collapse
|
7
|
Dong W, Wang H, Li M, Li P, Ji S. Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis. Front Cell Infect Microbiol 2024; 14:1359766. [PMID: 38572321 PMCID: PMC10987825 DOI: 10.3389/fcimb.2024.1359766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Virus-induced genomic remodeling and altered gene expression contribute significantly to cancer development. Some oncogenic viruses such as Human papillomavirus (HPV) specifically trigger certain cancers by integrating into the host's DNA, disrupting gene regulation linked to cell growth and migration. The effect can be through direct integration of viral genomes into the host genome or through indirect modulation of host cell pathways/proteins by viral proteins. Viral proteins also disrupt key cellular processes like apoptosis and DNA repair by interacting with host molecules, affecting signaling pathways. These disruptions lead to mutation accumulation and tumorigenesis. This review focuses on recent studies exploring virus-mediated genomic structure, altered gene expression, and epigenetic modifications in tumorigenesis.
Collapse
Affiliation(s)
- Weixia Dong
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Huiqin Wang
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Menghui Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Ping Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
8
|
Al-Khreisat MJ, Ismail NH, Tabnjh A, Hussain FA, Mohamed Yusoff AA, Johan MF, Islam MA. Worldwide Prevalence of Epstein-Barr Virus in Patients with Burkitt Lymphoma: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2023; 13:2068. [PMID: 37370963 DOI: 10.3390/diagnostics13122068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Burkitt lymphoma (BL) is a form of B-cell malignancy that progresses aggressively and is most often seen in children. While Epstein-Barr virus (EBV) is a double-stranded DNA virus that has been linked to a variety of cancers, it can transform B lymphocytes into immortalized cells, as shown in BL. Therefore, the estimated prevalence of EBV in a population may assist in the prediction of whether this population has a high risk of increased BL cases. This systematic review and meta-analysis aimed to estimate the prevalence of Epstein-Barr virus in patients with Burkitt lymphoma. Using the appropriate keywords, four electronic databases were searched. The quality of the included studies was assessed using the Joanna Briggs Institute's critical appraisal tool. The results were reported as percentages with a 95% confidence interval using a random-effects model (CI). PROSPERO was used to register the protocol (CRD42022372293), and 135 studies were included. The prevalence of Epstein-Barr virus in patients with Burkitt lymphoma was 57.5% (95% CI: 51.5 to 63.4, n = 4837). The sensitivity analyses demonstrated consistent results, and 65.2% of studies were of high quality. Egger's test revealed that there was a significant publication bias. EBV was found in a significantly high proportion of BL patients (more than 50% of BL patients). This study recommends EBV testing as an alternative for predictions and the assessment of the clinical disease status of BL.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Abedelmalek Tabnjh
- Department of Applied Dental Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women's Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Chen S, Zhang P, Feng J, Li R, Chen J, Zheng WV, Zhang H, Yao P. LMP1 mediates tumorigenesis through persistent epigenetic modifications and PGC1β upregulation. Oncol Rep 2023; 49:53. [PMID: 36734290 PMCID: PMC9926514 DOI: 10.3892/or.2023.8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Latent membrane protein 1 (LMP1), which is encoded by the Epstein‑Barr virus (EBV), has been considered as an oncogene, although the detailed mechanism behind its function remains unclear. It has been previously reported that LMP1 promotes tumorigenesis by upregulation of peroxisome proliferator‑activated receptor‑γ coactivator‑1β (PGC1β). The present study aimed to investigate the potential mechanism for transient EBV/LMP1 exposure‑mediated persistent PGC1β expression and subsequent tumorigenesis through modification of mitochondrial function. Luciferase reporter assay, chromatin immunoprecipitation and DNA mutation techniques were used to evaluate the PGC1β‑mediated expression of dynamin‑related protein 1 (DRP1). Tumorigenesis was evaluated by gene expression, oxidative stress, mitochondrial function and in vitro cellular proliferation assays. The potential effects of EBV, LMP1 and PGC1β on tumor growth were evaluated in an in vivo xenograft mouse model. The present in vitro experiments showed that LMP1 knockdown did not affect PGC1β expression or subsequent cell proliferation in EBV‑positive tumor cells. PGC1β regulated DRP1 expression by coactivation of GA‑binding protein α and nuclear respiratory factor 1 located on the DRP1 promoter, subsequently modulating mitochondrial fission. Transient exposure of either EBV or LMP1 in human hematopoietic stem cells caused persistent epigenetic changes and PGC1β upregulation after long‑term cell culture even in the absence of EBV/LMP1, which decreased oxidative stress, and potentiated mitochondrial function and cell proliferation in vitro. Enhanced tumor growth and shortened survival were subsequently observed in vivo. It was concluded that PGC1β expression and subsequent cell proliferation were independent from LMP1 in EBV‑positive tumor cells. PGC1β modulated mitochondria fission by regulation of DRP1 expression. Transient EBV/LMP1 exposure caused persistent PGC1β expression, triggering tumor growth in the absence of LMP1. The present study proposes a novel mechanism for transient EBV/LMP1 exposure‑mediated tumorigenesis through persistent epigenetic changes and PGC1β upregulation, uncovering the reason why numerous forms of lymphoma exhibit upregulated PGC1β expression, but are devoid of EBV/LMP1.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Ping Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Rui Li
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Dr Paul Yao or Dr Hongyu Zhang, Department of Hematology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Dr Paul Yao or Dr Hongyu Zhang, Department of Hematology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
10
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Kawasaki T, Takeda Y, Edahiro R, Shirai Y, Nogami-Itoh M, Matsuki T, Kida H, Enomoto T, Hara R, Noda Y, Adachi Y, Niitsu T, Amiya S, Yamaguchi Y, Murakami T, Kato Y, Morita T, Yoshimura H, Yamamoto M, Nakatsubo D, Miyake K, Shiroyama T, Hirata H, Adachi J, Okada Y, Kumanogoh A. Next-generation proteomics of serum extracellular vesicles combined with single-cell RNA sequencing identifies MACROH2A1 associated with refractory COVID-19. Inflamm Regen 2022; 42:53. [PMID: 36451245 PMCID: PMC9709739 DOI: 10.1186/s41232-022-00243-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. METHODS To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. RESULTS Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as "estrogen signaling pathway," "p160 steroid receptor coactivator (SRC) signaling pathway," and "transcriptional regulation by STAT" were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. CONCLUSIONS Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes.
Collapse
Affiliation(s)
- Takahiro Kawasaki
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, 565-0871 Japan
| | - Yoshito Takeda
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Ryuya Edahiro
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Shirai
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mari Nogami-Itoh
- grid.482562.fLaboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085 Japan
| | - Takanori Matsuki
- grid.416803.80000 0004 0377 7966Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552 Japan
| | - Hiroshi Kida
- grid.416803.80000 0004 0377 7966Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka, Osaka 560-8552 Japan
| | - Takatoshi Enomoto
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Reina Hara
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yoshimi Noda
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yuichi Adachi
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayuki Niitsu
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Saori Amiya
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yuta Yamaguchi
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Teruaki Murakami
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Yasuhiro Kato
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayoshi Morita
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Hanako Yoshimura
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Makoto Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Daisuke Nakatsubo
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Kotaro Miyake
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Takayuki Shiroyama
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Haruhiko Hirata
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Jun Adachi
- grid.482562.fLaboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka, 567-0085 Japan
| | - Yukinori Okada
- grid.136593.b0000 0004 0373 3971Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsushi Kumanogoh
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Immunopathology, World Premier International Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka Japan ,grid.136593.b0000 0004 0373 3971Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan ,grid.480536.c0000 0004 5373 4593Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan ,grid.136593.b0000 0004 0373 3971Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
12
|
EBV persistence in gastric cancer cases conventionally classified as EBER-ISH negative. Infect Agent Cancer 2022; 17:57. [DOI: 10.1186/s13027-022-00469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
The Epstein-Barr virus (EBV) causes various B-cell lymphomas and epithelial malignancies, including gastric cancer (GC) at frequencies ranging from 5 to 10% in adenocarcinomas (ADK) to 80% in GC with lymphoid stroma (GCLS). Using high-sensitivity methods, we recently detected EBV traces in a large cohort of EBV-negative B-cell lymphomas, suggesting a hit-and-run mechanism.
Methods
Here, we used routine and higher-sensitivity methods [droplet digital PCR (ddPCR) for EBV segments on microdissected tumour cells and RNAscope for EBNA1 mRNA] to assess EBV infection in a cohort of 40 GCs (28 ADK and 12 GCLS).
Results
ddPCR documented the presence of EBV nucleic acids in rare tumour cells of several cases conventionally classified as EBV-negative (ADK, 8/26; GCLS, 6/7). Similarly, RNAscope confirmed EBNA1 expression in rare tumour cells (ADK, 4/26; GCLS, 3/7). Finally, since EBV induces epigenetic changes that are heritable and retained after complete loss of the virus from the host cell, we studied the methylation pattern of EBV-specifically methylated genes (Timp2, Eya1) as a mark of previous EBV infection. Cases with EBV traces showed a considerable level of methylation in Timp2 and Eya1 genes that was similar to that observed in EBER-ISH positive cases and greater than cases not featuring any EBV traces.
Conclusions
These findings suggest that: (a) EBV may contribute to gastric pathogenesis more widely than currently acknowledged and (b) indicate the methylation changes as a mechanistic framework for how EBV can act in a hit-and-run manner. Finally, we found that the viral state was of prognostic significance in univariate and multivariate analyses.
Collapse
|
13
|
Scholl A, De S. Epigenetic Regulation by Polycomb Complexes from Drosophila to Human and Its Relation to Communicable Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms232012285. [PMID: 36293135 PMCID: PMC9603650 DOI: 10.3390/ijms232012285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Although all cells in the human body are made of the same DNA, these cells undergo differentiation and behave differently during development, through integration of external and internal stimuli via 'specific mechanisms.' Epigenetics is one such mechanism that comprises DNA/RNA, histone modifications, and non-coding RNAs that regulate transcription without changing the genetic code. The discovery of the first Polycomb mutant phenotype in Drosophila started the study of epigenetics more than 80 years ago. Since then, a considerable number of Polycomb Group (PcG) genes in Drosophila have been discovered to be preserved in mammals, including humans. PcG proteins exert their influence through gene repression by acting in complexes, modifying histones, and compacting the chromatin within the nucleus. In this article, we discuss how our knowledge of the PcG repression mechanism in Drosophila translates to human communicable disease research.
Collapse
|
14
|
Manara F, Jay A, Odongo GA, Mure F, Maroui MA, Diederichs A, Sirand C, Cuenin C, Granai M, Mundo L, Hernandez-Vargas H, Lazzi S, Khoueiry R, Gruffat H, Herceg Z, Accardi R. Epigenetic Alteration of the Cancer-Related Gene TGFBI in B Cells Infected with Epstein-Barr Virus and Exposed to Aflatoxin B1: Potential Role in Burkitt Lymphoma Development. Cancers (Basel) 2022; 14:1284. [PMID: 35267594 PMCID: PMC8909323 DOI: 10.3390/cancers14051284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023] Open
Abstract
Burkitt lymphoma (BL) is a malignant B cell neoplasm that accounts for almost half of pediatric cancers in sub-Saharan African countries. Although the BL endemic prevalence is attributable to the combination of Epstein-Barr virus (EBV) infection with malaria and environmental carcinogens exposure, such as the food contaminant aflatoxin B1 (AFB1), the molecular determinants underlying the pathogenesis are not fully understood. Consistent with the role of epigenetic mechanisms at the interface between the genome and environment, AFB1 and EBV impact the methylome of respectively leukocytes and B cells specifically. Here, we conducted a thorough investigation of common epigenomic changes following EBV or AFB1 exposure in B cells. Genome-wide DNA methylation profiling identified an EBV-AFB1 common signature within the TGFBI locus, which encodes for a putative tumor suppressor often altered in cancer. Subsequent mechanistic analyses confirmed a DNA-methylation-dependent transcriptional silencing of TGFBI involving the recruitment of DNMT1 methyltransferase that is associated with an activation of the NF-κB pathway. Our results reveal a potential common mechanism of B cell transformation shared by the main risk factors of endemic BL (EBV and AFB1), suggesting a key determinant of disease that could allow the development of more efficient targeted therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Manara
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Antonin Jay
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Grace Akinyi Odongo
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Universite Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, 69007 Lyon, France; (F.M.); (M.A.M.)
| | - Mohamed Ali Maroui
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Universite Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, 69007 Lyon, France; (F.M.); (M.A.M.)
| | - Audrey Diederichs
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Cecilia Sirand
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Cyrille Cuenin
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Massimo Granai
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy; (M.G.); (S.L.)
| | - Lucia Mundo
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | | | - Stefano Lazzi
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy; (M.G.); (S.L.)
| | - Rita Khoueiry
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, RNA Expression in Viruses and Eukaryotes Group, Universite Claude Bernard Lyon I, INSERM U1111, CNRS UMR5308, ENS Lyon, 69007 Lyon, France; (F.M.); (M.A.M.)
| | - Zdenko Herceg
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| | - Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, 69000 Lyon, France; (F.M.); (A.J.); (G.A.O.); (A.D.); (C.S.); (C.C.); (R.K.)
| |
Collapse
|
15
|
Wei Z, Luo L, Hu S, Tian R, Liu Z. KDM2B overexpression prevents myocardial ischemia‑reperfusion injury in rats through regulating inflammatory response via the TLR4/NF‑κB p65 axis. Exp Ther Med 2021; 23:154. [PMID: 35069835 PMCID: PMC8753960 DOI: 10.3892/etm.2021.11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/05/2022] Open
Abstract
Histone modifier lysine-specific demethylase 2B (KDM2B) has been previously reported to activate the inflammatory response by transcription initiation of the IL-6 gene. However, the effects of KDM2B on the inflammatory response during myocardial ischemia-reperfusion (I/R) injury and corresponding mechanisms remain poorly understood. The present study aimed to investigate the role and mechanism of KDM2B in myocardial I/R injury. Therefore, a myocardial I/R injury model was established in rats through coronary artery ligation. Adeno-associated virus-encoding KDM2B and small interfering RNA-KDM2B were designed to determine the effects of KDM2B on myocardial I/R injury using H&E staining and a TUNEL assay in the myocardial tissues. Reverse transcription-quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of KDM2B, toll-like receptor 4 (TLR4), NF-κB p65 and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3). ELISA was used to detect the levels of TNF-α, IL-6 and IL-1β in the peripheral blood samples. Pathological analysis demonstrated that the cells in the model group were disordered, with a large area of necrosis and neutrophil infiltration. Knocking down KDM2B expression significantly upregulated the mRNA and protein expression levels of TLR4, NLRP3, NF-κB p65 and the ratio of phosphorylated (p)-p65 to p65. KDM2B knockdown also significantly increased the levels of IL-1β, IL-6 and TNF-α in the peripheral blood, which aggravated myocardial injury and promoted the apoptosis of myocardial cells. However, overexpression of KDM2B downregulated the mRNA and protein expression levels of TLR4, NLRP3, NF-κB P65, the ratio of p-p65 to p65 whilst reducing the levels of IL-1β, IL-6 and TNF-α in the peripheral blood, which markedly improved myocardial injury and significantly inhibited the apoptosis of cells in myocardial tissue. In conclusion, the results indicated that overexpression of KDM2B may prevent myocardial I/R injury in rats by reducing the inflammatory response through regulation of the TLR4/NF-κB p65 axis.
Collapse
Affiliation(s)
- Zijie Wei
- Department of Cardiac Intensive Care, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lihua Luo
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Shuo Hu
- Department of Cardiac Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Rongcheng Tian
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Ziyou Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
16
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
17
|
De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses 2021; 13:v13081470. [PMID: 34452335 PMCID: PMC8402699 DOI: 10.3390/v13081470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Herpesviruses persist in the form of a latent infection in specialized cell types. During latency, the herpesvirus genomes associate with cellular histone proteins and the viral lytic genes assemble into transcriptionally repressive heterochromatin. Although there is divergence in the nature of heterochromatin on latent herpesvirus genomes, in general, the genomes assemble into forms of heterochromatin that can convert to euchromatin to permit gene expression and therefore reactivation. This reversible form of heterochromatin is known as facultative heterochromatin and is most commonly characterized by polycomb silencing. Polycomb silencing is prevalent on the cellular genome and plays a role in developmentally regulated and imprinted genes, as well as X chromosome inactivation. As herpesviruses initially enter the cell in an un-chromatinized state, they provide an optimal system to study how de novo facultative heterochromatin is targeted to regions of DNA and how it contributes to silencing. Here, we describe how polycomb-mediated silencing potentially assembles onto herpesvirus genomes, synergizing what is known about herpesvirus latency with facultative heterochromatin targeting to the cellular genome. A greater understanding of polycomb silencing of herpesviruses will inform on the mechanism of persistence and reactivation of these pathogenic human viruses and provide clues regarding how de novo facultative heterochromatin forms on the cellular genome.
Collapse
|
18
|
KDM2B Overexpression Facilitates Lytic De Novo KSHV Infection by Inducing AP-1 Activity Through Interaction with the SCF E3 Ubiquitin Ligase Complex. J Virol 2021; 95:JVI.00331-21. [PMID: 33692209 PMCID: PMC8139688 DOI: 10.1128/jvi.00331-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is still largely unknown what host factors are involved in controlling the expression of the lytic viral gene RTA during primary infection, which determines if Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latent or lytic infection. We have recently identified the histone demethylase KDM2B as a repressor of RTA expression during both de novo KSHV infection and latency based on an epigenetic factor siRNA screen. Here, we report that surprisingly, KDM2B overexpression can promote lytic de novo infection by using a mechanism that differs from what is needed for its repressor function. Our study revealed that while the DNA-binding and demethylase activities of KDM2B linked to its transcription repressive function are dispensable, its C-terminal F-box and LRR domains are required for the lytic infection-inducing function of KDM2B. We found that overexpressed KDM2B increases the half-life of the AP-1 subunit c-Jun protein and induces the AP-1 signaling pathway. This effect is dependent upon the binding of KDM2B to the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex via its F-box domain. Importantly, the inhibition of AP-1 reduces KDM2B-mediated lytic de novo KSHV infection. Overall, our findings indicate that KDM2B may induce the degradation of some host factors by using the SCF complex resulting in the enrichment of c-Jun. This leads to increased AP-1 transcriptional activity, which facilitates lytic gene expression following de novo infection interfering with the establishment of viral latency.SignificanceThe expression of epigenetic factors is often dysregulated in cancers or upon specific stress signals, which often results in a display of non-canonical functions of the epigenetic factors that are independent from their chromatin-modifying roles. We have previously demonstrated that KDM2B normally inhibits KSHV lytic cycle using its histone demethylase activity. Surprisingly, we found that KDM2B overexpression can promote lytic de novo infection, which does not require its histone demethylase or DNA-binding functions. Instead, KDM2B uses the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex to induce AP-1 transcriptional activity, which promotes lytic gene expression. This is the first report that demonstrates a functional link between SFCKDM2B and AP-1 in the regulation of KSHV lytic cycle.
Collapse
|
19
|
Mundo L, Del Porro L, Granai M, Siciliano MC, Mancini V, Santi R, Marcar L, Vrzalikova K, Vergoni F, Di Stefano G, Schiavoni G, Segreto G, Onyango N, Nyagol JA, Amato T, Bellan C, Anagnostopoulos I, Falini B, Leoncini L, Tiacci E, Lazzi S. Frequent traces of EBV infection in Hodgkin and non-Hodgkin lymphomas classified as EBV-negative by routine methods: expanding the landscape of EBV-related lymphomas. Mod Pathol 2020; 33:2407-2421. [PMID: 32483241 PMCID: PMC7685982 DOI: 10.1038/s41379-020-0575-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
The Epstein-Barr virus (EBV) is linked to various B-cell lymphomas, including Burkitt lymphoma (BL), classical Hodgkin lymphoma (cHL) and diffuse large B-cell lymphoma (DLBCL) at frequencies ranging, by routine techniques, from 5 to 10% of cases in DLBCL to >95% in endemic BL. Using higher-sensitivity methods, we recently detected EBV traces in a few EBV-negative BL cases, possibly suggesting a "hit-and-run" mechanism. Here, we used routine and higher-sensitivity methods (qPCR and ddPCR for conserved EBV genomic regions and miRNAs on microdissected tumor cells; EBNA1 mRNA In situ detection by RNAscope) to assess EBV infection in a larger lymphoma cohort [19 BL, 34 DLBCL, 44 cHL, 50 follicular lymphomas (FL), 10 T-lymphoblastic lymphomas (T-LL), 20 hairy cell leukemias (HCL), 10 mantle cell lymphomas (MCL)], as well as in several lymphoma cell lines (9 cHL and 6 BL). qPCR, ddPCR, and RNAscope consistently documented the presence of multiple EBV nucleic acids in rare tumor cells of several cases EBV-negative by conventional methods that all belonged to lymphoma entities clearly related to EBV (BL, 6/9 cases; cHL, 16/32 cases; DLBCL, 11/30 cases), in contrast to fewer cases (3/47 cases) of FL (where the role of EBV is more elusive) and no cases (0/40) of control lymphomas unrelated to EBV (HCL, T-LL, MCL). Similarly, we revealed traces of EBV infection in 4/5 BL and 6/7 HL cell lines otherwise conventionally classified as EBV negative. Interestingly, additional EBV-positive cases (1 DLBCL, 2 cHL) relapsed as EBV-negative by routine methods while showing EBNA1 expression in rare tumor cells by RNAscope. The relapse specimens were clonally identical to their onset biopsies, indicating that the lymphoma clone can largely loose the EBV genome over time but traces of EBV infection are still detectable by high-sensitivity methods. We suggest EBV may contribute to lymphoma pathogenesis more widely than currently acknowledged.
Collapse
Affiliation(s)
- Lucia Mundo
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Leonardo Del Porro
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Massimo Granai
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Maria Chiara Siciliano
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Virginia Mancini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Raffaella Santi
- Section of Pathology, University of Florence, Florence, Italy
| | - Lynnette Marcar
- BioMaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
- Ireland, Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Katerina Vrzalikova
- Institute of immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | | | - Gianluca Schiavoni
- Section of Haematology and Clinical Immunology, Department of Medicine, University and Hospital of Perugia, Perugia, Italy
| | - Giovanna Segreto
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Noel Onyango
- Department of Clinical Medicine and Therapeutics, Unit of Medical Oncology, University of Nairobi, Nairobi, Kenya
| | - Joshua Akelo Nyagol
- Department of Clinical Medicine and Therapeutics, Unit of Medical Oncology, University of Nairobi, Nairobi, Kenya
| | - Teresa Amato
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Cristiana Bellan
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | | - Brunangelo Falini
- Section of Haematology and Clinical Immunology, Department of Medicine, University and Hospital of Perugia, Perugia, Italy
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Enrico Tiacci
- Section of Haematology and Clinical Immunology, Department of Medicine, University and Hospital of Perugia, Perugia, Italy.
| | - Stefano Lazzi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy.
| |
Collapse
|
20
|
Epigenetic factor siRNA screen during primary KSHV infection identifies novel host restriction factors for the lytic cycle of KSHV. PLoS Pathog 2020; 16:e1008268. [PMID: 31923286 PMCID: PMC6977772 DOI: 10.1371/journal.ppat.1008268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/23/2020] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Establishment of viral latency is not only essential for lifelong Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, but it is also a prerequisite of viral tumorigenesis. The latent viral DNA has a complex chromatin structure, which is established in a stepwise manner regulated by host epigenetic factors during de novo infection. However, despite the importance of viral latency in KSHV pathogenesis, we still have limited information about the repertoire of epigenetic factors that are critical for the establishment and maintenance of KSHV latency. Therefore, the goal of this study was to identify host epigenetic factors that suppress lytic KSHV genes during primary viral infection, which would indicate their role in latency establishment. We performed an siRNA screen targeting 392 host epigenetic factors during primary infection and analyzed which ones affect the expression of the viral replication and transcription activator (RTA) and/or the latency-associated nuclear antigen (LANA), which are viral genes essential for lytic replication and latency, respectively. As a result, we identified the Nucleosome Remodeling and Deacetylase (NuRD) complex, Tip60 and Tip60-associated co-repressors, and the histone demethylase KDM2B as repressors of KSHV lytic genes during both de novo infection and the maintenance of viral latency. Furthermore, we showed that KDM2B rapidly binds to the incoming viral DNA as early as 8 hpi, and can limit the enrichment of activating histone marks on the RTA promoter favoring the downregulation of RTA expression even prior to the polycomb proteins-regulated heterochromatin establishment on the viral genome. Strikingly, KDM2B can also suppress viral gene expression and replication during lytic infection of primary gingival epithelial cells, revealing that KDM2B can act as a host restriction factor of the lytic cycle of KSHV during both latent and lytic infections in multiple different cell types. Latent viral infection of cancer cells in KSHV-associated tumors is critical for the growth and survival of the cancer. Thus, revealing how lytic viral genes get suppressed through epigenetic regulation following de novo KSHV infection, resulting in the establishment of latency, is central to understanding the pathogenesis of KSHV infection. Importantly, the epigenetic factors that we identified as suppressors of KSHV lytic genes are not only crucial for the establishment and maintenance of KSHV latency in different cell types, but also several of them can block lytic KSHV infection in oral epithelial cells. Since herpesviruses often rely on similar sets of host epigenetic factors, the characterization of these newly identified epigenetic factors in KSHV infection may help to better understand fundamental epigenetic mechanisms that may also be utilized by other herpesviruses to establish latency following primary infection.
Collapse
|
21
|
Günther T, Fröhlich J, Herrde C, Ohno S, Burkhardt L, Adler H, Grundhoff A. A comparative epigenome analysis of gammaherpesviruses suggests cis-acting sequence features as critical mediators of rapid polycomb recruitment. PLoS Pathog 2019; 15:e1007838. [PMID: 31671162 PMCID: PMC6932816 DOI: 10.1371/journal.ppat.1007838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 12/26/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022] Open
Abstract
Latent Kaposi sarcoma-associated herpesvirus (KSHV) genomes rapidly acquire distinct patterns of the activating histone modification H3K4-me3 as well as repressive H3K27-me3 marks, a modification linked to transcriptional silencing by polycomb repressive complexes (PRC). Interestingly, PRCs have recently been reported to restrict viral gene expression in a number of other viral systems, suggesting they may play a broader role in controlling viral chromatin. If so, it is an intriguing possibility that latency establishment may result from viral subversion of polycomb-mediated host responses to exogenous DNA. To investigate such scenarios we sought to establish whether rapid repression by PRC constitutes a general hallmark of herpesvirus latency. For this purpose, we performed a comparative epigenome analysis of KSHV and the related murine gammaherpesvirus 68 (MHV-68). We demonstrate that, while latently replicating MHV-68 genomes readily acquire distinct patterns of activation-associated histone modifications upon de novo infection, they fundamentally differ in their ability to efficiently attract H3K27-me3 marks. Statistical analyses of ChIP-seq data from in vitro infected cells as well as in vivo latency reservoirs furthermore suggest that, whereas KSHV rapidly attracts PRCs in a genome-wide manner, H3K27-me3 acquisition by MHV-68 genomes may require spreading from initial seed sites to which PRC are recruited as the result of an inefficient or stochastic recruitment, and that immune pressure may be needed to select for latency pools harboring PRC-silenced episomes in vivo. Using co-infection experiments and recombinant viruses, we also show that KSHV's ability to rapidly and efficiently acquire H3K27-me3 marks does not depend on the host cell environment or unique properties of the KSHV-encoded LANA protein, but rather requires specific cis-acting sequence features. We show that the non-canonical PRC1.1 component KDM2B, a factor which binds to unmethylated CpG motifs, is efficiently recruited to KSHV genomes, indicating that CpG island characteristics may constitute these features. In accord with the fact that, compared to MHV-68, KSHV genomes exhibit a fundamentally higher density of CpG motifs, we furthermore demonstrate efficient acquisition of H2AK119-ub by KSHV and H3K36-me2 by MHV-68 (but not vice versa), furthermore supporting the notion that KSHV genomes rapidly attract PRC1.1 complexes in a genome-wide fashion. Collectively, our results suggest that rapid PRC silencing is not a universal feature of viral latency, but that some viruses may rather have adopted distinct genomic features to specifically exploit default host pathways that repress epigenetically naive, CpG-rich DNA.
Collapse
Affiliation(s)
- Thomas Günther
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jacqueline Fröhlich
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina Herrde
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Shinji Ohno
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Lia Burkhardt
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Munich, Germany
- German Center of Lung Research (DZL), Giessen, Germany
- * E-mail: (HA); (AG)
| | - Adam Grundhoff
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail: (HA); (AG)
| |
Collapse
|
22
|
Interplay between the Epigenetic Enzyme Lysine (K)-Specific Demethylase 2B and Epstein-Barr Virus Infection. J Virol 2019; 93:JVI.00273-19. [PMID: 30996097 DOI: 10.1128/jvi.00273-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/04/2019] [Indexed: 02/08/2023] Open
Abstract
The histone modifier lysine (K)-specific demethylase 2B (KDM2B) plays a role in the differentiation of hematopoietic cells, and its expression appears to be deregulated in certain cancers of hematological and lymphoid origins. We have previously found that the KDM2B gene is differentially methylated in cell lines derived from Epstein-Barr virus (EBV)-associated endemic Burkitt lymphoma (eBL) compared with that in EBV-negative sporadic Burkitt lymphoma-derived cells. However, whether KDM2B plays a role in eBL development has not been previously investigated. Oncogenic viruses have been shown to hijack the host cell epigenome to complete their life cycle and to promote the transformation process by perturbing cell chromatin organization. Here, we investigated whether EBV alters KDM2B levels to enable its life cycle and promote B-cell transformation. We show that infection of B cells with EBV leads to downregulation of KDM2B levels. We also show that LMP1, one of the main EBV transforming proteins, induces increased DNMT1 recruitment to the KDM2B gene and augments its methylation. By altering KDM2B levels and performing chromatin immunoprecipitation in EBV-infected B cells, we show that KDM2B is recruited to the EBV gene promoters and inhibits their expression. Furthermore, forced KDM2B expression in immortalized B cells led to altered mRNA levels of some differentiation-related genes. Our data show that EBV deregulates KDM2B levels through an epigenetic mechanism and provide evidence for a role of KDM2B in regulating virus and host cell gene expression, warranting further investigations to assess the role of KDM2B in the process of EBV-mediated lymphomagenesis.IMPORTANCE In Africa, Epstein-Barr virus infection is associated with endemic Burkitt lymphoma, a pediatric cancer. The molecular events leading to its development are poorly understood compared with those leading to sporadic Burkitt lymphoma. In a previous study, by analyzing the DNA methylation changes in endemic compared with sporadic Burkitt lymphoma cell lines, we identified several differential methylated genomic positions in the proximity of genes with a potential role in cancer, and among them was the KDM2B gene. KDM2B encodes a histone H3 demethylase already shown to be involved in some hematological disorders. However, whether KDM2B plays a role in the development of Epstein-Barr virus-mediated lymphoma has not been investigated before. In this study, we show that Epstein-Barr virus deregulates KDM2B expression and describe the underlying mechanisms. We also reveal a role of the demethylase in controlling viral and B-cell gene expression, thus highlighting a novel interaction between the virus and the cellular epigenome.
Collapse
|