1
|
Basso L, Sudre G, Albertini D, Rahbé Y, David L. Chitosan surface interaction platform for protein binding quantification by fluorescence microscopy, application to the specificity of CBD proteins. Carbohydr Polym 2025; 354:123321. [PMID: 39978923 DOI: 10.1016/j.carbpol.2025.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Surface-proteins interactions play key roles in many domains such as biomedicine, nanotechnology and the biology of plant-insect interactions. This article proposes a platform that allows to quantify surface interaction of proteins with chitin and chitosans to further discriminate and study specific interactions of proteins with chitin-binding domains (CBD). The platform consists in covalently grafted chitosan thin films of various degrees of acetylation (DA) through surface silanisation, spin-coating and water-temperature treatment. The obtained films were thoroughly characterized by infrared spectroscopy, contact angle measurements, atomic force microscopy and wide and small-angle X-ray scattering. Protein affinity to coated surfaces of reacetylated chitosans with degrees of acetylation ranging from 0.5 % to 76 % was evaluated by fluorescence microscopy. The specific affinity of lectins with a CBD was evidenced in comparison to proteins without CBD. As expected, the affinity was stronger at higher DAs, suggesting that the acetylation pattern play a part in specific lectin binding. In conclusion, chitosan films were fully characterized, and the elaborated platform shows promising results in screening protein interactions to chitin. This protein interaction platform is reportedly the first method able to differentiate the interactions of proteins containing a CBD and proteins which do not contain one, with whole chain "chitin-like" chitosans, by means of a simple and direct fluorescent microscopy quantification. This platform could further be used for other types of chitin-binding proteins or applied to other polysaccharide-protein interactions.
Collapse
Affiliation(s)
- Lisa Basso
- Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères (IMP), F-69622 Villeurbanne Cédex, France
| | - Guillaume Sudre
- Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères (IMP), F-69622 Villeurbanne Cédex, France
| | - David Albertini
- CNRS, INSA Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France
| | - Yvan Rahbé
- Universite Claude Bernard Lyon 1, INSA Lyon, INRAE, CNRS UMR5240, Microbiologie, Adaptation et Pathogénie (MAP), F-69621 Villeurbanne, France
| | - Laurent David
- Universite Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, CNRS UMR 5223, Ingénierie des Matériaux Polymères (IMP), F-69622 Villeurbanne Cédex, France.
| |
Collapse
|
2
|
Sukhikh N, Golyaev V, Laboureau N, Clavijo G, Rustenholz C, Marmonier A, Chesnais Q, Ogliastro M, Drucker M, Brault V, Pooggin MM. Deep Sequencing Analysis of Virome Components, Viral Gene Expression and Antiviral RNAi Responses in Myzus persicae Aphids. Int J Mol Sci 2024; 25:13199. [PMID: 39684909 DOI: 10.3390/ijms252313199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The green peach aphid (Myzus persicae) is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family Parvoviridae), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5'- and 3'-inverted terminal repeats. These sRNAs likely represent Dicer-dependent small interfering (si)RNAs, whose double-stranded RNA precursors are produced by readthrough transcription beyond poly(A) signals of the converging leftward and rightward transcription units, mapped here with Illumina reads. Additionally, the densovirus produced 26-28 nucleotide sRNAs, comprising those enriched in 5'-terminal uridine and mostly derived from readthrough transcripts and those enriched in adenosine at position 10 from their 5'-end and mostly derived from viral mRNAs. These sRNAs likely represent PIWI-interacting RNAs generated by a ping-pong mechanism. A novel ssRNA virus, reconstructed from sRNAs and classified into the family Flaviviridae, co-persisted with the densovirus and produced 22 nucleotide siRNAs from the entire genome. Aphids fed on plants versus artificial diets exhibited distinct RNAi responses affecting densovirus transcription and flavivirus subgenomic RNA production. In aphids vectoring turnip yellows virus (family Solemoviridae), a complete virus genome was reconstituted from 21, 22 and 24 nucleotide viral siRNAs likely acquired with plant phloem sap. Collectively, deep-sequencing analysis allowed for the identification and de novo reconstruction of M. persicae virome components and uncovered RNAi mechanisms regulating viral gene expression and replication.
Collapse
Affiliation(s)
- Natalia Sukhikh
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | - Victor Golyaev
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | - Nathalie Laboureau
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | | | | | | | | | - Mylène Ogliastro
- DGIMI, INRAE, Université de Montpellier, 34095 Montpellier, France
| | - Martin Drucker
- SVQV, INRAE, Université de Strasbourg, 68000 Colmar, France
| | | | - Mikhail M Pooggin
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| |
Collapse
|
3
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
4
|
Falla EK, Cunniffe NJ. Why aphid virus retention needs more attention: Modelling aphid behaviour and virus manipulation in non-persistent plant virus transmission. PLoS Comput Biol 2024; 20:e1012479. [PMID: 39352908 PMCID: PMC11469505 DOI: 10.1371/journal.pcbi.1012479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Plant viruses threaten food security and are often transmitted by insect vectors. Non-persistently transmitted (NPT) plant viruses are transmitted almost exclusively by aphids. Because virions attach to the aphid's stylet (mouthparts) and are acquired and inoculated via brief epidermal probes, the aphid-virus interaction is highly transient, with a very short aphid virus retention time. Many NPT viruses manipulate their host plant's phenotype to change aphid behaviour to optimise virus transmission. Epidemiological models of this have overlooked a key feature of aphid NPT virus retention: probing or feeding on a plant causes aphids to lose the virus. Furthermore, experimental studies suggest aphids could possibly inoculate multiple healthy plants within one infective period if they do not feed. Consequences of this for virus manipulation of host plant phenotype have not been explored. Our new compartmental epidemiological model includes both behaviour-based aphid dispersal and infectivity loss rates, and the ability of infective aphids to probe multiple plants before virus loss. We use our model to explore how NPT virus-induced host phenotypes affect epidemic outcomes, comparing these results to representative previous models. We find that previous models behave fundamentally differently and underestimate the benefit of an 'attract-and-deter' phenotype, where the virus induces increased aphid attraction to infected plants but deters them from prolonged feeding. Our results also highlight the importance of characterising NPT virus retention upon the aphid during probing. Allowing for multiple infective probes increases disease incidence and the effectiveness of virus manipulation, with implications for epidemic prediction and control.
Collapse
Affiliation(s)
- Elin K. Falla
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nik J. Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Bleau JR, Gaur N, Fu Y, Bos JIB. Unveiling the Slippery Secrets of Saliva: Effector Proteins of Phloem-Feeding Insects. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:211-219. [PMID: 38148271 DOI: 10.1094/mpmi-10-23-0167-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Phloem-feeding insects include many important agricultural pests that cause crop damage globally, either through feeding-related damage or upon transmission of viruses and microbes that cause plant diseases. With genetic crop resistances being limited to most of these pests, control relies on insecticides, which are costly and damaging to the environment and to which insects can develop resistance. Like other plant parasites, phloem-feeding insects deliver effectors inside their host plants to promote susceptibility, most likely by a combination of suppressing immunity and promoting nutrient availability. The recent emergence of the effector paradigm in plant-insect interactions is highlighted by increasing availability of effector repertoires for a range of species and a broadening of our knowledge concerning effector functions. Here, we focus on recent progress made toward identification of effector repertoires from phloem-feeding insects and developments in effector biology that will advance functional characterization studies. Importantly, identification of effector activities from herbivorous insects promises to provide new avenues toward development of crop protection strategies. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jade R Bleau
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Namami Gaur
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Yao Fu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD2 5DA, U.K
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| |
Collapse
|
6
|
Zheng X, Wan Y, Tao M, Yuan J, Zhang K, Wang J, Zhang Y, Liang P, Wu Q. Obstructor, a Frankliniella occidentalis protein, promotes transmission of tomato spotted wilt orthotospovirus. INSECT SCIENCE 2023; 30:741-757. [PMID: 36342042 DOI: 10.1111/1744-7917.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast β-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jing Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Maurastoni M, Han J, Whitfield AE, Rotenberg D. A call to arms: novel strategies for thrips and tospovirus control. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101033. [PMID: 37030512 DOI: 10.1016/j.cois.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Thrips and the tospoviruses they transmit are some of the most significant threats to food and ornamental crop production globally. Control of the insect and virus is challenging and new strategies are needed. Characterizing the thrips-virus interactome provides new targets for disrupting the transmission cycle. Viral and insect determinants of vector competence are being defined, including the viral attachment protein and its structure as well as thrips proteins that interact with and respond to tospovirus infection. Additional thrips control strategies such as RNA interference need further refinement and field-applicable delivery systems, but they show promise for the knockdown of essential genes for thrips survival and virus transmission. The identification of a toxin that acts to deter thrips oviposition on cotton also presents new opportunities for control of this important pest.
Collapse
Affiliation(s)
- Marlonni Maurastoni
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
Verdier M, Chesnais Q, Pirolles E, Blanc S, Drucker M. The cauliflower mosaic virus transmission helper protein P2 modifies directly the probing behavior of the aphid vector Myzus persicae to facilitate transmission. PLoS Pathog 2023; 19:e1011161. [PMID: 36745680 PMCID: PMC9934384 DOI: 10.1371/journal.ppat.1011161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that plant viruses manipulate their hosts and vectors in ways that increase transmission. However, to date only few viral components underlying these phenomena have been identified. Here we show that cauliflower mosaic virus (CaMV) protein P2 modifies the feeding behavior of its aphid vector. P2 is necessary for CaMV transmission because it mediates binding of virus particles to the aphid mouthparts. We compared aphid feeding behavior on plants infected with the wild-type CaMV strain Cabb B-JI or with a deletion mutant strain, Cabb B-JIΔP2, which does not produce P2. Only aphids probing Cabb B-JI infected plants doubled the number of test punctures during the first contact with the plant, indicating a role of P2. Membrane feeding assays with purified P2 and virus particles confirmed that these viral products alone are sufficient to cause the changes in aphid probing. The behavior modifications were not observed on plants infected with a CaMV mutant expressing P2Rev5, unable to bind to the mouthparts. These results are in favor of a virus manipulation, where attachment of P2 to a specific region in the aphid stylets-the acrostyle-exercises a direct effect on vector behavior at a crucial moment, the first vector contact with the infected plant, which is essential for virus acquisition.
Collapse
Affiliation(s)
- Maxime Verdier
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France
| | - Quentin Chesnais
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| | - Elodie Pirolles
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Stéphane Blanc
- PHIM, INRAE Centre Occitanie–Montpellier, CIRAD, IRD, Université Montpellier, Institut Agro, Montferrier-sur-Lez, France
| | - Martin Drucker
- SVQV UMR 1131 INRAE Centre Grand Est–Colmar, Université Strasbourg, Colmar, France,* E-mail: (QC); (MD)
| |
Collapse
|
9
|
A New Perspective on the Co-Transmission of Plant Pathogens by Hemipterans. Microorganisms 2023; 11:microorganisms11010156. [PMID: 36677448 PMCID: PMC9865879 DOI: 10.3390/microorganisms11010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Co-infection of plants by pathogens is common in nature, and the interaction of the pathogens can affect the infection outcome. There are diverse ways in which viruses and bacteria are transmitted from infected to healthy plants, but insects are common vectors. The present review aims to highlight key findings of studies evaluating the co-transmission of plant pathogens by insects and identify challenges encountered in these studies. In this review, we evaluated whether similar pathogens might compete during co-transmission; whether the changes in the pathogen titer in the host, in particular associated with the co-infection, could influence its transmission; and finally, we discussed the pros and cons of the different approaches used to study co-transmission. At the end of the review, we highlighted areas of study that need to be addressed. This review shows that despite the recent development of techniques and methods to study the interactions between pathogens and their insect vectors, there are still gaps in the knowledge of pathogen transmission. Additional laboratory and field studies using different pathosystems will help elucidate the role of host co-infection and pathogen co-transmission in the ecology and evolution of infectious diseases.
Collapse
|
10
|
Deshoux M, Monsion B, Pichon E, Jiménez J, Moreno A, Cayrol B, Thébaud G, Mugford ST, Hogenhout SA, Blanc S, Fereres A, Uzest M. Role of Acrostyle Cuticular Proteins in the Retention of an Aphid Salivary Effector. Int J Mol Sci 2022; 23:ijms232315337. [PMID: 36499662 PMCID: PMC9736059 DOI: 10.3390/ijms232315337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022] Open
Abstract
To avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown. The acrostyle, a cuticular organ located at the tip of maxillary stylets that transiently binds plant viruses via its stylin proteins, may participate in this specific delivery process. Here, we demonstrate that Mp10, a saliva effector released into the plant cytoplasm during aphid probing, binds to the acrostyles of Acyrthosiphon pisum and Myzus persicae. The effector probably interacts with Stylin-03 as a lowered Mp10-binding to the acrostyle was observed upon RNAi-mediated reduction in Stylin-03 production. In addition, Stylin-03 and Stylin-01 RNAi aphids exhibited changes in their feeding behavior as evidenced by electrical penetration graph experiments showing longer aphid probing behaviors associated with watery saliva release into the cytoplasm of plant cells. Taken together, these data demonstrate that the acrostyle also has effector binding capacity and supports its role in the delivery of aphid effectors into plant cells.
Collapse
Affiliation(s)
- Maëlle Deshoux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Baptiste Monsion
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Elodie Pichon
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Jaime Jiménez
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
| | - Bastien Cayrol
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Sam T. Mugford
- John Innes Centre, Department of Crop Genetics, Norwich NR4 7UH, UK
| | | | - Stéphane Blanc
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA), Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 115dpdo, 28806 Madrid, Spain
- Correspondence: (A.F.); (M.U.)
| | - Marilyne Uzest
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000 Montpellier, France
- Correspondence: (A.F.); (M.U.)
| |
Collapse
|
11
|
Bhoi TK, Samal I, Majhi PK, Komal J, Mahanta DK, Pradhan AK, Saini V, Nikhil Raj M, Ahmad MA, Behera PP, Ashwini M. Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Front Microbiol 2022; 13:1001454. [PMID: 36504828 PMCID: PMC9729956 DOI: 10.3389/fmicb.2022.1001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Potato, the world's most popular crop is reported to provide a food source for nearly a billion people. It is prone to a number of biotic stressors that affect yield and quality, out of which Potato Virus Y (PVY) occupies the top position. PVY can be transmitted mechanically and by sap-feeding aphid vectors. The application of insecticide causes an increase in the resistant vector population along with detrimental effects on the environment; genetic resistance and vector-virus control are the two core components for controlling the deadly PVY. Using transcriptomic tools together with differential gene expression and gene discovery, several loci and genes associated with PVY resistance have been widely identified. To combat this virus we must increase our understanding on the molecular response of the PVY-potato plant-aphid interaction and knowledge of genome organization, as well as the function of PVY encoded proteins, genetic diversity, the molecular aspects of PVY transmission by aphids, and transcriptome profiling of PVY infected potato cultivars. Techniques such as molecular and bioinformatics tools can identify and monitor virus transmission. Several studies have been conducted to understand the molecular basis of PVY resistance/susceptibility interactions and their impact on PVY epidemiology by studying the interrelationship between the virus, its vector, and the host plant. This review presents current knowledge of PVY transmission, epidemiology, genome organization, molecular to bioinformatics responses, and its effective management.
Collapse
Affiliation(s)
- Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India,J. Komal
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India,*Correspondence: Deepak Kumar Mahanta
| | - Asit Kumar Pradhan
- Social Science Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Varun Saini
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | | | - Mangali Ashwini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
12
|
Arnoldi I, Mancini G, Fumagalli M, Gastaldi D, D'Andrea L, Bandi C, Di Venere M, Iadarola P, Forneris F, Gabrieli P. A salivary factor binds a cuticular protein and modulates biting by inducing morphological changes in the mosquito labrum. Curr Biol 2022; 32:3493-3504.e11. [PMID: 35835123 DOI: 10.1016/j.cub.2022.06.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
The mosquito proboscis is an efficient microelectromechanical system, which allows the insect to feed on vertebrate blood quickly and painlessly. Its efficiency is further enhanced by the insect saliva, although through unclear mechanisms. Here, we describe the initial trigger of an unprecedented feedback signaling pathway in Aedes mosquitoes affecting feeding behavior. We identified LIPS proteins in the saliva of Aedes mosquitoes that promote feeding in the vertebrate skin. LIPS show a new all-helical protein fold constituted by two domains. The N-terminal domain interacts with a cuticular protein (Cp19) located at the tip of the mosquito labrum. Upon interaction, the morphology of the labral cuticle changes, and this modification is most likely sensed by proprioceptive neurons. Our study identifies an additional role of mosquito saliva and underlines that the external cuticle is a possible site of key molecular interactions affecting the insect biology and its vector competence.
Collapse
Affiliation(s)
- Irene Arnoldi
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Giulia Mancini
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Dario Gastaldi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Luca D'Andrea
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Claudio Bandi
- Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Monica Di Venere
- Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Paolo Iadarola
- Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Paolo Gabrieli
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.
| |
Collapse
|
13
|
Pacheco ID, Walling LL, Atkinson PW. Gene Editing and Genetic Control of Hemipteran Pests: Progress, Challenges and Perspectives. Front Bioeng Biotechnol 2022; 10:900785. [PMID: 35747496 PMCID: PMC9209771 DOI: 10.3389/fbioe.2022.900785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous hemipterans their mouthparts (stylets) are elegant structures that enable voracious feeding from plant xylem or phloem. This adaptation has resulted in some hemipteran species becoming globally significant pests of agriculture resulting in significant annual crop losses. Due to the reliance on chemical insecticides for the control of insect pests in agricultural settings, many hemipteran pests have evolved resistance to insecticides resulting in an urgent need to develop new, species-specific and environmentally friendly methods of pest control. The rapid advances in CRISPR/Cas9 technologies in model insects such as Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and Aedes aegypti has spurred a new round of innovative genetic control strategies in the Diptera and Lepidoptera and an increased interest in assessing genetic control technologies for the Hemiptera. Genetic control approaches in the Hemiptera have, to date, been largely overlooked due to the problems of introducing genetic material into the germline of these insects. The high frequency of CRISPR-mediated mutagenesis in model insect species suggest that, if the delivery problem for Hemiptera could be solved, then gene editing in the Hemiptera might be quickly achieved. Significant advances in CRISPR/Cas9 editing have been realized in nine species of Hemiptera over the past 4 years. Here we review progress in the Hemiptera and discuss the challenges and opportunities for extending contemporary genetic control strategies into species in this agriculturally important insect orderr.
Collapse
Affiliation(s)
- Inaiara D. Pacheco
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Linda L. Walling
- Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Peter W. Atkinson
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Peter W. Atkinson,
| |
Collapse
|
14
|
Marmonier A, Velt A, Villeroy C, Rustenholz C, Chesnais Q, Brault V. Differential gene expression in aphids following virus acquisition from plants or from an artificial medium. BMC Genomics 2022; 23:333. [PMID: 35488202 PMCID: PMC9055738 DOI: 10.1186/s12864-022-08545-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Poleroviruses, such as turnip yellows virus (TuYV), are plant viruses strictly transmitted by aphids in a persistent and circulative manner. Acquisition of either virus particles or plant material altered by virus infection is expected to induce gene expression deregulation in aphids which may ultimately alter their behavior. RESULTS By conducting an RNA-Seq analysis on viruliferous aphids fed either on TuYV-infected plants or on an artificial medium containing purified virus particles, we identified several hundreds of genes deregulated in Myzus persicae, despite non-replication of the virus in the vector. Only a few genes linked to receptor activities and/or vesicular transport were common between the two modes of acquisition with, however, a low level of deregulation. Behavioral studies on aphids after virus acquisition showed that M. persicae locomotion behavior was affected by feeding on TuYV-infected plants, but not by feeding on the artificial medium containing the purified virus particles. Consistent with this, genes potentially involved in aphid behavior were deregulated in aphids fed on infected plants, but not on the artificial medium. CONCLUSIONS These data show that TuYV particles acquisition alone is associated with a moderate deregulation of a few genes, while higher gene deregulation is associated with aphid ingestion of phloem from TuYV-infected plants. Our data are also in favor of a major role of infected plant components on aphid behavior.
Collapse
Affiliation(s)
- Aurélie Marmonier
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Amandine Velt
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Claire Villeroy
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Camille Rustenholz
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Quentin Chesnais
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Véronique Brault
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France.
| |
Collapse
|
15
|
Jayasinghe WH, Akhter MS, Nakahara K, Maruthi MN. Effect of aphid biology and morphology on plant virus transmission. PEST MANAGEMENT SCIENCE 2022; 78:416-427. [PMID: 34478603 DOI: 10.1002/ps.6629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Aphids severely affect crop production by transmitting many plant viruses. Viruses are obligate intracellular pathogens that mostly depend on vectors for their transmission and survival. A majority of economically important plant viruses are transmitted by aphids. They transmit viruses either persistently (circulative or non-circulative) or non-persistently. Plant virus transmission by insects is a process that has evolved over time and is strongly influenced by insect morphological features and biology. Over the past century, a large body of research has provided detailed knowledge of the molecular processes underlying virus-vector interactions. In this review, we discuss how aphid biology and morphology can affect plant virus transmission. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wikum H Jayasinghe
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Md Shamim Akhter
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Plant Pathology Division, Bangladesh Agricultural Research Institute (BARI), Joydebpur, Bangladesh
| | - Kenji Nakahara
- Laboratory of Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
16
|
Jayasinghe WH, Kim H, Nakada Y, Masuta C. A plant virus satellite RNA directly accelerates wing formation in its insect vector for spread. Nat Commun 2021; 12:7087. [PMID: 34873158 PMCID: PMC8648847 DOI: 10.1038/s41467-021-27330-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Cucumber mosaic virus (CMV) often accompanies a short RNA molecule called a satellite RNA (satRNA). When infected with CMV in the presence of Y-satellite RNA (Y-sat), tobacco leaves develop a green mosaic, then turn yellow. Y-sat has been identified in the fields in Japan. Here, we show that the yellow leaf colour preferentially attracts aphids, and that the aphids fed on yellow plants, which harbour Y-sat-derived small RNAs (sRNAs), turn red and subsequently develop wings. In addition, we found that leaf yellowing did not necessarily reduce photosynthesis, and that viral transmission was not greatly affected despite the low viral titer in the Y-sat-infected plants. Y-sat-infected plants can therefore support a sufficient number of aphids to allow for efficient virus transmission. Our results demonstrate that Y-sat directly alters aphid physiology via Y-sat sRNAs to promote wing formation, an unprecedented survival strategy that enables outward spread via the winged insect vector.
Collapse
Affiliation(s)
- Wikum H Jayasinghe
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9 Nishi 9, Sapporo, 060-8589, Japan
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Hangil Kim
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Yusuke Nakada
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9 Nishi 9, Sapporo, 060-8589, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Kita 9 Nishi 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
17
|
Tungadi T, Watt LG, Groen SC, Murphy AM, Du Z, Pate AE, Westwood JH, Fennell TG, Powell G, Carr JP. Infection of Arabidopsis by cucumber mosaic virus triggers jasmonate-dependent resistance to aphids that relies partly on the pattern-triggered immunity factor BAK1. MOLECULAR PLANT PATHOLOGY 2021; 22:1082-1091. [PMID: 34156752 PMCID: PMC8358999 DOI: 10.1111/mpp.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/06/2023]
Abstract
Many aphid-vectored viruses are transmitted nonpersistently via transient attachment of virus particles to aphid mouthparts and are most effectively acquired or transmitted during brief stylet punctures of epidermal cells. In Arabidopsis thaliana, the aphid-transmitted virus cucumber mosaic virus (CMV) induces feeding deterrence against the polyphagous aphid Myzus persicae. This form of resistance inhibits prolonged phloem feeding but promotes virus acquisition by aphids because it encourages probing of plant epidermal cells. When aphids are confined on CMV-infected plants, feeding deterrence reduces their growth and reproduction. We found that CMV-induced inhibition of growth as well as CMV-induced inhibition of reproduction of M. persicae are dependent upon jasmonate-mediated signalling. BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) is a co-receptor enabling detection of microbe-associated molecular patterns and induction of pattern-triggered immunity (PTI). In plants carrying the mutant bak1-5 allele, CMV induced inhibition of M. persicae reproduction but not inhibition of aphid growth. We conclude that in wildtype plants CMV induces two mechanisms that diminish performance of M. persicae: a jasmonate-dependent and PTI-dependent mechanism that inhibits aphid growth, and a jasmonate-dependent, PTI-independent mechanism that inhibits reproduction. The growth of two crucifer specialist aphids, Lipaphis erysimi and Brevicoryne brassicae, was not affected when confined on CMV-infected A. thaliana. However, B. brassicae reproduction was inhibited on CMV-infected plants. This suggests that in A. thaliana CMV-induced resistance to aphids, which is thought to incentivize virus vectoring, has greater effects on polyphagous than on crucifer specialist aphids.
Collapse
Affiliation(s)
- Trisna Tungadi
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- NIAB EMREast MallingUK
| | - Lewis G. Watt
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Simon C. Groen
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Department of BiologyNew York UniversityNew YorkNew YorkUSA
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Zhiyou Du
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Institute of BioengineeringZhejiang Sci‐Tech UniversityHangzhouChina
| | | | - Jack H. Westwood
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
- Present address:
Walder FoundationSkokieIllinoisUSA
| | - Thea G. Fennell
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | | | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
18
|
Yordanov S, Drucker M, Butt HJ, Koynov K. Real-time monitoring of biomechanical activity in aphids by laser speckle contrast imaging. OPTICS EXPRESS 2021; 29:28461-28480. [PMID: 34614977 DOI: 10.1364/oe.431989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Studying in vivo feeding and other behaviors of small insects, such as aphids, is important for understanding their lifecycle and interaction with the environment. In this regard, the EPG (electrical penetration graph) technique is widely used to study the feeding activity in aphids. However, it is restricted to recording feeding of single insects and requires wiring insects to an electrode, impeding free movement. Hence, easy and straightforward collective observations, e.g. of groups of aphids on a plant, or probing other aphid activities in various body parts, is not possible. To circumvent these drawbacks, we developed a method based on an optical technique called laser speckle contrast imaging (LSCI). It has the potential for direct, non-invasive and contactless monitoring of a broad range of internal and external activities such as feeding, hemolymph cycling and muscle contractions in aphids or other insects. The method uses a camera and coherent light illumination of the sample. The camera records the laser speckle dynamics due to the scattering and interference of light caused by moving scatters in a probed region of the insect. Analyzing the speckle contrast allowed us to monitor and extract the activity information during aphid feeding on leaves or on artificial medium containing tracer particles. We present evidence that the observed speckle dynamics might be caused by muscle contractions, movement of hemocytes in the circulatory system or food flows in the stylets. This is the first time such a remote sensing method has been applied for optical mapping of the biomechanical activities in aphids.
Collapse
|
19
|
Chesnais Q, Verdier M, Burckbuchler M, Brault V, Pooggin M, Drucker M. Cauliflower mosaic virus protein P6-TAV plays a major role in alteration of aphid vector feeding behaviour but not performance on infected Arabidopsis. MOLECULAR PLANT PATHOLOGY 2021; 22:911-920. [PMID: 33993609 PMCID: PMC8295513 DOI: 10.1111/mpp.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Emerging evidence suggests that viral infection modifies host plant traits that in turn alter behaviour and performance of vectors colonizing the plants in a way conducive for transmission of both nonpersistent and persistent viruses. Similar evidence for semipersistent viruses like cauliflower mosaic virus (CaMV) is scarce. Here we compared the effects of Arabidopsis infection with mild (CM) and severe (JI) CaMV isolates on the feeding behaviour (recorded by the electrical penetration graph technique) and fecundity of the aphid vector Myzus persicae. Compared to mock-inoculated plants, feeding behaviour was altered similarly on CM- and JI-infected plants, but only aphids on JI-infected plants had reduced fecundity. To evaluate the role of the multifunctional CaMV protein P6-TAV, aphid feeding behaviour and fecundity were tested on transgenic Arabidopsis plants expressing wild-type (wt) and mutant versions of P6-TAV. In contrast to viral infection, aphid fecundity was unchanged on all transgenic lines, suggesting that other viral factors compromise fecundity. Aphid feeding behaviour was modified on wt P6-CM-, but not on wt P6-JI-expressing plants. Analysis of plants expressing P6 mutants identified N-terminal P6 domains contributing to modification of feeding behaviour. Taken together, we show that CaMV infection can modify both aphid fecundity and feeding behaviour and that P6 is only involved in the latter.
Collapse
Affiliation(s)
- Quentin Chesnais
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Maxime Verdier
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Myriam Burckbuchler
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Véronique Brault
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
| | - Mikhail Pooggin
- DEFENSIRNA, PHIM, INRAECIRADSupAgroIRDMUSEINRAE Centre Occitanie‐MontpellierMontferrier‐sur‐LezFrance
| | - Martin Drucker
- Virus Vection, SVQV, UMR 1131 INRAEUniversité de StrasbourgINRAE Centre Grand Est‐ColmarColmarFrance
- Present address:
Insect Models of Innate Immunity, IBMCUniversité de StrasbourgInstitut de Biologie Moléculaire et Cellulaire2 allée Konrad Roentgen67084 Strasbourg cedexFrance
| |
Collapse
|
20
|
DeBlasio SL, Wilson JR, Tamborindeguy C, Johnson RS, Pinheiro PV, MacCoss MJ, Gray SM, Heck M. Affinity Purification-Mass Spectrometry Identifies a Novel Interaction between a Polerovirus and a Conserved Innate Immunity Aphid Protein that Regulates Transmission Efficiency. J Proteome Res 2021; 20:3365-3387. [PMID: 34019426 DOI: 10.1021/acs.jproteome.1c00313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vast majority of plant viruses are transmitted by insect vectors, with many crucial aspects of the transmission process being mediated by key protein-protein interactions. Still, very few vector proteins interacting with viruses have been identified and functionally characterized. Potato leafroll virus (PLRV) is transmitted most efficiently by Myzus persicae, the green peach aphid, in a circulative, non-propagative manner. Using affinity purification coupled to high-resolution mass spectrometry (AP-MS), we identified 11 proteins from M. persicaedisplaying a high probability of interaction with PLRV and an additional 23 vector proteins with medium confidence interaction scores. Three of these aphid proteins were confirmed to directly interact with the structural proteins of PLRV and other luteovirid species via yeast two-hybrid. Immunolocalization of one of these direct PLRV-interacting proteins, an orthologue of the human innate immunity protein complement component 1 Q subcomponent-binding protein (C1QBP), shows that MpC1QBP partially co-localizes with PLRV in cytoplasmic puncta and along the periphery of aphid gut epithelial cells. Artificial diet delivery to aphids of a chemical inhibitor of C1QBP leads to increased PLRV acquisition by aphids and subsequently increased titer in inoculated plants, supporting a role for C1QBP in the acquisition and transmission efficiency of PLRV by M. persicae. This study presents the first use of AP-MS for the in vivo isolation of a functionally relevant insect vector-virus protein complex. MS data are available from ProteomeXchange.org using the project identifier PXD022167.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States
| | - Jennifer R Wilson
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cecilia Tamborindeguy
- Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Richard S Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Patricia V Pinheiro
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Stewart M Gray
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, USDA Agricultural Research Service, Ithaca, New York 14853, United States.,Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, United States.,Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Combined Transcriptomic and Proteomic Analysis of Myzus persicae, the Green Peach Aphid, Infected with Cucumber Mosaic Virus. INSECTS 2021; 12:insects12050372. [PMID: 33919000 PMCID: PMC8142985 DOI: 10.3390/insects12050372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV (cucumber mosaic virus) by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control Myzus persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription. Abstract Aphids transmit CMV (cucumber mosaic virus) in a non-persistent manner. However, little is known about the mechanism of CMV transmission. In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control M. persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription.
Collapse
|
22
|
Rajarapu SP, Ullman DE, Uzest M, Rotenberg D, Ordaz NA, Whitfield AE. Plant–Virus–Vector Interactions. Virology 2021. [DOI: 10.1002/9781119818526.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Niu R, Gao X, Luo J, Wang L, Zhang K, Li D, Ji J, Cui J, Zhu X, Zhang S. Mitochondrial genome of Aphis gossypii Glover cucumber biotype (Hemiptera: Aphididae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:922-924. [PMID: 33796683 PMCID: PMC7971299 DOI: 10.1080/23802359.2021.1888328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The complete mitochondrial genome of Aphis gossypii Glover cucumber biotype was sequenced using traditional PCR amplification coupled with Sanger sequencing. The genome is 15,870 bp long, with 83.7% AT content (MW048625). The genome encodes 37 typical mitochondrial genes, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNAs, a repeat region of 784 bp, and a control region of 627 bp. The base composition of the genome is A (45.4%), T (38.3%), C (10.5%), and G (5.8%). An analysis of two biotypes A. gossypii mitogenomes identified 77 single nucleotide polymorphisms and 1 insertion and deletion.
Collapse
Affiliation(s)
- Ruichang Niu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Xueke Gao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Junyu Luo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Li Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Kaixin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Dongyang Li
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Jichao Ji
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Jinjie Cui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Xiangzhen Zhu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China
| | - Shuai Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang, Henan, China.,School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
24
|
Then C, Bak A, Morisset A, Dáder B, Ducousso M, Macia JL, Drucker M. The N-terminus of the cauliflower mosaic virus aphid transmission protein P2 is involved in transmission body formation and microtubule interaction. Virus Res 2021; 297:198356. [PMID: 33667624 DOI: 10.1016/j.virusres.2021.198356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/01/2023]
Abstract
Cauliflower mosaic virus (CaMV) is transmitted by aphids using the non-circulative transmission mode: when the insects feed on infected leaves, virus particles from infected cells attach rapidly to their stylets and are transmitted to a new host when the aphids change plants. Mandatory for CaMV transmission, the viral helper protein P2 mediates as a molecular linker binding of the virus particles to the aphid stylets. P2 is available in infected plant cells in a viral inclusion that is specialized for transmission and named the transmission body (TB). When puncturing an infected leaf cell, the aphid triggers an ultra-rapid viral response, necessary for virus acquisition and called transmission activation: The TB disrupts and P2 is redistributed onto cortical microtubules, together with virus particles that are simultaneously set free from virus factories and join P2 on the microtubules to form the so-called mixed networks (MNs). The MNs are the predominant structure from which CaMV is acquired by aphids. However, the P2 domains involved in microtubule interaction are not known. To identify P2 regions involved in its functions, we generated a set of P2 mutants by alanine scanning and analyzed them in the viral context for their capacity to form a TB, to interact with microtubules and to transmit CaMV. Our results show that contrary to the previously characterized P2-P2 and P2-virion binding sites in its C-terminus, the microtubule binding site is contained in the N-terminal half of P2. Further, this region is important for TB formation since some P2 mutant proteins did not accumulate in TBs but were retained in the viral factories where P2 is translated. Taken together, the N-terminus of P2 is not only involved in vector interaction as previously reported, but also in interaction with microtubules and in formation of TBs.
Collapse
Affiliation(s)
| | - Aurélie Bak
- INRAE Centre Occitanie - Montpellier, France
| | | | | | | | | | - Martin Drucker
- INRAE Centre Occitanie - Montpellier, France; INRAE Centre Grand Est - Colmar, France.
| |
Collapse
|
25
|
Elston KM, Perreau J, Maeda GP, Moran NA, Barrick JE. Engineering a Culturable Serratia symbiotica Strain for Aphid Paratransgenesis. Appl Environ Microbiol 2021; 87:AEM.02245-20. [PMID: 33277267 PMCID: PMC7851701 DOI: 10.1128/aem.02245-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Aphids are global agricultural pests and important models for bacterial symbiosis. To date, none of the native symbionts of aphids have been genetically manipulated, which limits our understanding of how they interact with their hosts. Serratia symbiotica CWBI-2.3T is a culturable, gut-associated bacterium isolated from the black bean aphid. Closely related Serratia symbiotica strains are facultative aphid endosymbionts that are vertically transmitted from mother to offspring during embryogenesis. We demonstrate that CWBI-2.3T can be genetically engineered using a variety of techniques, plasmids, and gene expression parts. Then, we use fluorescent protein expression to track the dynamics with which CWBI-2.3T colonizes the guts of multiple aphid species, and we measure how this bacterium affects aphid fitness. Finally, we show that we can induce heterologous gene expression from engineered CWBI-2.3T in living aphids. These results inform the development of CWBI-2.3T for aphid paratransgenesis, which could be used to study aphid biology and enable future agricultural technologies.IMPORTANCE Insects have remarkably diverse and integral roles in global ecosystems. Many harbor symbiotic bacteria, but very few of these bacteria have been genetically engineered. Aphids are major agricultural pests and an important model system for the study of symbiosis. This work describes methods for engineering a culturable aphid symbiont, Serratia symbiotica CWBI-2.3T These approaches and genetic tools could be used in the future to implement new paradigms for the biological study and control of aphids.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Julie Perreau
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| |
Collapse
|
26
|
Agranovsky A. Enhancing Capsid Proteins Capacity in Plant Virus-Vector Interactions and Virus Transmission. Cells 2021; 10:cells10010090. [PMID: 33430410 PMCID: PMC7827187 DOI: 10.3390/cells10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/02/2022] Open
Abstract
Vector transmission of plant viruses is basically of two types that depend on the virus helper component proteins or the capsid proteins. A number of plant viruses belonging to disparate groups have developed unusual capsid proteins providing for interactions with the vector. Thus, cauliflower mosaic virus, a plant pararetrovirus, employs a virion associated p3 protein, the major capsid protein, and a helper component for the semi-persistent transmission by aphids. Benyviruses encode a capsid protein readthrough domain (CP-RTD) located at one end of the rod-like helical particle, which serves for the virus transmission by soil fungal zoospores. Likewise, the CP-RTD, being a minor component of the luteovirus icosahedral virions, provides for persistent, circulative aphid transmission. Closteroviruses encode several CPs and virion-associated proteins that form the filamentous helical particles and mediate transmission by aphid, whitefly, or mealybug vectors. The variable strategies of transmission and evolutionary ‘inventions’ of the unusual capsid proteins of plant RNA viruses are discussed.
Collapse
|
27
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
28
|
Rhee S, Watt LG, Bravo AC, Murphy AM, Carr JP. Effects of the cucumber mosaic virus 2a protein on aphid-plant interactions in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2020; 21:1248-1254. [PMID: 32725725 PMCID: PMC7411660 DOI: 10.1111/mpp.12975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 05/23/2023]
Abstract
The cucumber mosaic virus (CMV) 2a RNA-dependent RNA polymerase protein has an additional function in Arabidopsis thaliana, which is to stimulate feeding deterrence (antixenosis) against aphids. Antixenosis is thought to increase the probability that aphids, after acquiring CMV particles from brief probes of an infected plant's epidermal cells, will be discouraged from settling and instead will spread inoculum to neighbouring plants. The amino acid sequences of 2a proteins encoded by a CMV strain that induces antixenosis in A. thaliana (Fny-CMV) and one that does not (LS-CMV) were compared to identify residues that might determine the triggering of antixenosis. These data were used to design reassortant viruses comprising Fny-CMV RNAs 1 and 3, and recombinant CMV RNA 2 molecules encoding chimeric 2a proteins containing sequences derived from LS-CMV and Fny-CMV. Antixenosis induction was detected by measuring the mean relative growth rate and fecundity of aphids (Myzus persicae) confined on infected and on mock-inoculated plants. An amino acid sequence determining antixenosis induction by CMV was found to reside between 2a protein residues 200 and 300. Subsequent mutant analysis delineated this to residue 237. We conjecture that the Fny-CMV 2a protein valine-237 plays some role in 2a protein-induced antixenosis.
Collapse
Affiliation(s)
- Sun‐Ju Rhee
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Lewis G. Watt
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Ana Cazar Bravo
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
29
|
Francis F, Chen J, Yong L, Bosquee E. Aphid Feeding on Plant Lectins Falling Virus Transmission Rates: A Multicase Study. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1635-1639. [PMID: 32515475 DOI: 10.1093/jee/toaa104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 06/11/2023]
Abstract
Aphids are insect vectors that have piercing-sucking mouthparts supporting diversified patterns of virus-vector interactions. Aphids primarily retain circulative viruses in the midgut/hindgut, whereas noncirculative viruses tend to be retained in the stylet. Most viruses, and many proteins from animals, have carbohydrate or carbohydrate-binding sites. Lectins vary in their specificity, of which some are able to bind to viral glycoproteins. To assess the potential competition between lectins and viral particles in virus transmission by aphids, this study examined how feeding plant lectins to aphids affects the transmission efficiency of viruses. Sitobion avenae (F, 1794) (Homoptera: Aphididae) aphids fed with Pisum sativum lectin (PSL) transmitted Barley yellow dwarf virus with significantly lower efficiency (four-fold ratio). Pea enation mosaic virus was significantly reduced in Acyrthosiphon pisum Harris (Homoptera: Aphididae) aphids fed with the lectin Concanavalin A. In comparison, the transmission of Potato virus Y was significantly reduced when Myzus persicae Sultzer (Homoptera: Aphididae) aphids were fed with PSL. Thus, lectin could be used as a blocking agent of plant viruses, facilitating an alternative approach for crop protection.
Collapse
Affiliation(s)
- Frederic Francis
- Functional and Evolutionary Entomology, TERRA, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Passage des Deportes, Belgium
- College of Plant Protection, Shandong Agricultural University, Taian, PR China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Liu Yong
- College of Plant Protection, Shandong Agricultural University, Taian, PR China
| | - Emilie Bosquee
- Functional and Evolutionary Entomology, TERRA, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Passage des Deportes, Belgium
| |
Collapse
|
30
|
A Lectin Disrupts Vector Transmission of a Grapevine Ampelovirus. Viruses 2020; 12:v12080843. [PMID: 32752299 PMCID: PMC7472352 DOI: 10.3390/v12080843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Grapevine leafroll disease is one of the most important virus diseases of grapevines and occurs in every major grape-growing region of the world. The vector-transmission mechanisms of the causative agent, Grapevine leafroll-associated virus 3 (GLRaV-3), remain poorly understood. We show that the vine mealybug, Planococcus ficus, feeds through a membrane feeding system on GLRaV-3 viral purifications from both V. vinifera and N. benthamiana and transmits the virus to test plants from plants from both species. Building on this strategy, we used an immunofluorescence approach to localize virions to two retention sites in P. ficus mouthparts. Assays testing molecules capable of blocking virus transmission demonstrated that GLRaV-3-transmission by P. ficus could be disrupted. Our results indicate that our membrane feeding system and transmission-blocking assays are a valid approach and can be used to screen other candidate blocking molecules.
Collapse
|
31
|
Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus. Viruses 2020; 12:v12070773. [PMID: 32708998 PMCID: PMC7411817 DOI: 10.3390/v12070773] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission, and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid-transmitted potyviruses to global agriculture.
Collapse
|
32
|
Giordano R, Donthu RK, Zimin AV, Julca Chavez IC, Gabaldon T, van Munster M, Hon L, Hall R, Badger JH, Nguyen M, Flores A, Potter B, Giray T, Soto-Adames FN, Weber E, Marcelino JAP, Fields CJ, Voegtlin DJ, Hill CB, Hartman GL. Soybean aphid biotype 1 genome: Insights into the invasive biology and adaptive evolution of a major agricultural pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103334. [PMID: 32109587 DOI: 10.1016/j.ibmb.2020.103334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 05/12/2023]
Abstract
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae) is a serious pest of the soybean plant, Glycine max, a major world-wide agricultural crop. We assembled a de novo genome sequence of Ap. glycines Biotype 1, from a culture established shortly after this species invaded North America. 20.4% of the Ap. glycines proteome is duplicated. These in-paralogs are enriched with Gene Ontology (GO) categories mostly related to apoptosis, a possible adaptation to plant chemistry and other environmental stressors. Approximately one-third of these genes show parallel duplication in other aphids. But Ap. gossypii, its closest related species, has the lowest number of these duplicated genes. An Illumina GoldenGate assay of 2380 SNPs was used to determine the world-wide population structure of Ap. Glycines. China and South Korean aphids are the closest to those in North America. China is the likely origin of other Asian aphid populations. The most distantly related aphids to those in North America are from Australia. The diversity of Ap. glycines in North America has decreased over time since its arrival. The genetic diversity of Ap. glycines North American population sampled shortly after its first detection in 2001 up to 2012 does not appear to correlate with geography. However, aphids collected on soybean Rag experimental varieties in Minnesota (MN), Iowa (IA), and Wisconsin (WI), closer to high density Rhamnus cathartica stands, appear to have higher capacity to colonize resistant soybean plants than aphids sampled in Ohio (OH), North Dakota (ND), and South Dakota (SD). Samples from the former states have SNP alleles with high FST values and frequencies, that overlap with genes involved in iron metabolism, a crucial metabolic pathway that may be affected by the Rag-associated soybean plant response. The Ap. glycines Biotype 1 genome will provide needed information for future analyses of mechanisms of aphid virulence and pesticide resistance as well as facilitate comparative analyses between aphids with differing natural history and host plant range.
Collapse
Affiliation(s)
- Rosanna Giordano
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA.
| | - Ravi Kiran Donthu
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA.
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Irene Consuelo Julca Chavez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain
| | - Toni Gabaldon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manuella van Munster
- CIRAD-INRA-Montpellier SupAgro, TA A54/K, Campus International de Baillarguet, Montpellier, France
| | | | | | - Jonathan H Badger
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Minh Nguyen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Alejandra Flores
- College of Liberal Arts and Sciences, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL, USA
| | - Bruce Potter
- University of Minnesota, Southwest Research and Outreach Center, Lamberton, MN, USA
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico, San Juan, PR, USA
| | - Felipe N Soto-Adames
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Entomology, Gainesville, FL, USA
| | | | - Jose A P Marcelino
- Puerto Rico Science, Technology and Research Trust, San Juan, PR, USA; Know Your Bee, Inc. San Juan, PR, USA; Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Christopher J Fields
- HPCBio, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA
| | - David J Voegtlin
- Illinois Natural History Survey, University of Illinois, Urbana, IL, USA
| | | | - Glen L Hartman
- USDA-ARS and Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
33
|
Deshoux M, Masson V, Arafah K, Voisin S, Guschinskaya N, van Munster M, Cayrol B, Webster CG, Rahbé Y, Blanc S, Bulet P, Uzest M. Cuticular Structure Proteomics in the Pea Aphid Acyrthosiphon pisum Reveals New Plant Virus Receptor Candidates at the Tip of Maxillary Stylets. J Proteome Res 2020; 19:1319-1337. [PMID: 31991085 PMCID: PMC7063574 DOI: 10.1021/acs.jproteome.9b00851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/21/2022]
Abstract
Aphids are phloem-feeding insects known as major pests in agriculture that are able to transmit hundreds of plant viruses. The majority of these viruses, classified as noncirculative, are retained and transported on the inner surface of the cuticle of the needle-like mouthparts while the aphids move from plant to plant. Identification of receptors of viruses within insect vectors is a key challenge because they are promising targets for alternative control strategies. The acrostyle, an organ discovered earlier within the common food/salivary canal at the tip of aphid maxillary stylets, displays proteins at the cuticle-fluid interface, some of which are receptors of noncirculative viruses. To assess the presence of stylet- and acrostyle-specific proteins and identify putative receptors, we have developed a comprehensive comparative analysis of the proteomes of four cuticular anatomical structures of the pea aphid, stylets, antennae, legs, and wings. In addition, we performed systematic immunolabeling detection of the cuticular proteins identified by mass spectrometry in dissected stylets. We thereby establish the first proteome of stylets of an insect and determine the minimal repertoire of the cuticular proteins composing the acrostyle. Most importantly, we propose a short list of plant virus receptor candidates, among which RR-1 proteins are remarkably predominant. The data are available via ProteomeXchange (PXD016517).
Collapse
Affiliation(s)
- Maëlle Deshoux
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Victor Masson
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
- CR
University of Grenoble-Alpes, Institute
for Advances Biosciences, Inserm U1209, CNRS UMR 5309, 38058 Grenoble, France
| | - Karim Arafah
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
| | | | | | - Manuella van Munster
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Bastien Cayrol
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Craig G. Webster
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Yvan Rahbé
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
- INRAE,
INSA Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France
- University
of Lyon, 69007 Lyon, France
| | - Stéphane Blanc
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| | - Philippe Bulet
- Plateforme
BioPark d’Archamps, 74160 Archamps, France
- CR
University of Grenoble-Alpes, Institute
for Advances Biosciences, Inserm U1209, CNRS UMR 5309, 38058 Grenoble, France
| | - Marilyne Uzest
- BGPI, University of Montpellier, INRAE, CIRAD, Montpellier SupAgro, 34000 Montpellier, France
| |
Collapse
|
34
|
Liu S, Jaouannet M, Dempsey DA, Imani J, Coustau C, Kogel KH. RNA-based technologies for insect control in plant production. Biotechnol Adv 2020; 39:107463. [DOI: 10.1016/j.biotechadv.2019.107463] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
|
35
|
Guschinskaya N, Ressnikoff D, Arafah K, Voisin S, Bulet P, Uzest M, Rahbé Y. Insect Mouthpart Transcriptome Unveils Extension of Cuticular Protein Repertoire and Complex Organization. iScience 2020; 23:100828. [PMID: 32000126 PMCID: PMC7033635 DOI: 10.1016/j.isci.2020.100828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022] Open
Abstract
Insects have developed intriguing cuticles with very specific structures and functions, including microstructures governing their interactions with transmitted microbes, such as in aphid mouthparts harboring virus receptors within such microstructures. Here, we provide the first transcriptome analysis of an insect mouthpart cuticle (“retort organs” [ROs], the stylets' precursors). This analysis defined stylets as a complex composite material. The retort transcriptome also allowed us to propose an algorithmic definition of a new cuticular protein (CP) family with low complexity and biased amino acid composition. Finally, we identified a differentially expressed gene encoding a pyrokinin (PK) neuropeptide precursor and characterizing the mandibular glands. Injection of three predicted synthetic peptides PK1/2/3 into aphids prior to ecdysis caused a molt-specific phenotype with altered head formation. Our study provides the most complete description to date of the potential protein composition of aphid stylets, which should improve the understanding of the transmission of stylet-borne viruses. First transcriptome of aphid retort glands and stylet cuticular protein composition A pyrokinin transcript is mandibular gland specific at the onset of adult moult Stylet cuticle is of higher protein complexity than other insect cuticles A new class of low-complexity cuticular proteins is predicted
Collapse
Affiliation(s)
- Natalia Guschinskaya
- Insa de Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France; Université de Lyon
| | - Denis Ressnikoff
- CIQLE, Centre d'imagerie Quantitative Lyon-Est, UCB Lyon 1, Lyon, France; Université de Lyon
| | | | | | - Philippe Bulet
- Platform BioPark Archamps, Archamps, France; CR University of Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, La Tronche, France
| | - Marilyne Uzest
- BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France
| | - Yvan Rahbé
- Insa de Lyon, UMR5240 MAP CNRS-UCBL, 69622 Villeurbanne, France; BGPI, Univ Montpellier, INRA, CIRAD, Montpellier SupAgro, Montpellier, France; Université de Lyon.
| |
Collapse
|
36
|
Kolliopoulou A, Kontogiannatos D, Swevers L. The Use of Engineered Plant Viruses in a Trans-Kingdom Silencing Strategy Against Their Insect Vectors. FRONTIERS IN PLANT SCIENCE 2020; 11:917. [PMID: 32733507 PMCID: PMC7360853 DOI: 10.3389/fpls.2020.00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/04/2020] [Indexed: 05/04/2023]
Abstract
Plants, plant viruses, and their vectors are co-evolving actors that co-exist and interact in nature. Insects are the most important vectors of plant viruses, serving as both carriers and hosts for the virus. This trans-kingdom interaction can be harnessed for the production of recombinant plant viruses designed to target insect genes via the RNAi machinery. The selection of the adequate viruses is important since they must infect and preferentially replicate in both the host plant and the insect vector. The routes of transmission that determine the extent of the infection inside the insect vary among different plant viruses. In the context of the proposed strategy, plant viruses that are capable of transversing the insect gut-hemocoel barrier and replicating in insect tissues are attractive candidates. Thus, the transmission of such viruses in a persistent and propagative manner is considered as a prerequisite for this strategy to be feasible, a characteristic that is found in viruses from the families Bunyaviridae, Reoviridae, and Rhabdoviridae. In addition, several RNA viruses are known that replicate in both plant and insect tissues via a yet unclarified transmission route. In this review, advances in knowledge of trans-kingdom transmission of plant viruses and future perspectives for their engineering as silencing vectors are thoroughly discussed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
- Department of Biomedical Sciences, University of West Attica, Egaleo, Greece
- *Correspondence: Anna Kolliopoulou,
| | - Dimitrios Kontogiannatos
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
| | - Luc Swevers
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
| |
Collapse
|
37
|
Carr JP, Tungadi T, Donnelly R, Bravo-Cazar A, Rhee SJ, Watt LG, Mutuku JM, Wamonje FO, Murphy AM, Arinaitwe W, Pate AE, Cunniffe NJ, Gilligan CA. Modelling and manipulation of aphid-mediated spread of non-persistently transmitted viruses. Virus Res 2019; 277:197845. [PMID: 31874210 PMCID: PMC6996281 DOI: 10.1016/j.virusres.2019.197845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Aphids vector many plant viruses in a non-persistent manner i.e., virus particles bind loosely to the insect mouthparts (stylet). This means that acquisition of virus particles from infected plants, and inoculation of uninfected plants by viruliferous aphids, are rapid processes that require only brief probes of the plant's epidermal cells. Virus infection alters plant biochemistry, which causes changes in emission of volatile organic compounds and altered accumulation of nutrients and defence compounds in host tissues. These virus-induced biochemical changes can influence the migration, settling and feeding behaviours of aphids. Working mainly with cucumber mosaic virus and several potyviruses, a number of research groups have noted that in some plants, virus infection engenders resistance to aphid settling (sometimes accompanied by emission of deceptively attractive volatiles, that can lead to exploratory penetration by aphids without settling). However, in certain other hosts, virus infection renders plants more susceptible to aphid colonisation. It has been suggested that induction of resistance to aphid settling encourages transmission of non-persistently transmitted viruses, while induction of susceptibility to settling retards transmission. However, recent mathematical modelling indicates that both virus-induced effects contribute to epidemic development at different scales. We have also investigated at the molecular level the processes leading to induction, by cucumber mosaic virus, of feeding deterrence versus susceptibility to aphid infestation. Both processes involve complex interactions between specific viral proteins and host factors, resulting in manipulation or suppression of the plant's immune networks.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lewis G Watt
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - J Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; International Centre of Insect Physiology and Ecology, 30772-00100 Nairobi, Kenya
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
38
|
Chen Y, Dessau M, Rotenberg D, Rasmussen DA, Whitfield AE. Entry of bunyaviruses into plants and vectors. Adv Virus Res 2019; 104:65-96. [PMID: 31439153 DOI: 10.1016/bs.aivir.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The majority of plant-infecting viruses are transmitted by arthropod vectors that deliver them directly into a living plant cell. There are diverse mechanisms of transmission ranging from direct binding to the insect stylet (non-persistent transmission) to persistent-propagative transmission in which the virus replicates in the insect vector. Despite this diversity in interactions, most arthropods that serve as efficient vectors have feeding strategies that enable them to deliver the virus into the plant cell without extensive damage to the plant and thus effectively inoculate the plant. As such, the primary virus entry mechanism for plant viruses is mediated by the biological vector. Remarkably, viruses that are transmitted in a propagative manner (bunyaviruses, rhabdoviruses, and reoviruses) have developed an ability to replicate in hosts from two kingdoms. Viruses in the order Bunyavirales are of emerging importance and with the advent of new sequencing technologies, we are getting unprecedented glimpses into the diversity of these viruses. Plant-infecting bunyaviruses are transmitted in a persistent, propagative manner must enter two unique types of host cells, plant and insect. In the insect phase of the virus life cycle, the propagative viruses likely use typical cellular entry strategies to traverse cell membranes. In this review, we highlight the transmission and entry strategies of three genera of plant-infecting bunyaviruses: orthotospoviruses, tenuiviruses, and emaraviruses.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
39
|
Le Trionnaire G, Tanguy S, Hudaverdian S, Gleonnec F, Richard G, Cayrol B, Monsion B, Pichon E, Deshoux M, Webster C, Uzest M, Herpin A, Tagu D. An integrated protocol for targeted mutagenesis with CRISPR-Cas9 system in the pea aphid. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:34-44. [PMID: 31015023 DOI: 10.1016/j.ibmb.2019.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
CRISPR-Cas9 technology is a very efficient functional analysis tool and has been developed in several insects to edit their genome through injection of eggs with guide RNAs targeting coding sequences of genes of interest. However, its implementation in aphids is more challenging. Aphids are major pests of crops worldwide that alternate during their life cycle between clonality and sexual reproduction. The production of eggs after mating of sexual individuals is a single yearly event and is necessarily triggered by a photoperiod decrease. Fertilized eggs then experience an obligate 3-month diapause period before hatching as new clonal colonies. Taking into consideration these particularities, we developed in the pea aphid Acyrthosiphon pisum a step-by-step protocol of targeted mutagenesis based on the microinjection within fertilized eggs of CRISPR-Cas9 components designed for the editing of a cuticular protein gene (stylin-01). This protocol includes the following steps: i) the photoperiod-triggered induction of sexual morphs (2 months), ii) the mating and egg collection step (2 weeks), iii) egg microinjection and melanization, iv) the 3-month obligate diapause, v) the hatching of new lineages from injected eggs (2 weeks) and vi) the maintenance of stable lineages (2 weeks). Overall, this 7-month long procedure was applied to three different crosses in order to estimate the impact of the choice of the genetic combination on egg production dynamics by females as well as hatching rates after diapause. Mutation rates within eggs before diapause were estimated at 70-80%. The hatching rate of injected eggs following diapause ranged from 1 to 11% depending on the cross and finally a total of 17 stable lineages were obtained and maintained clonally. Out of these, 6 lineages were mutated at the defined sgRNAs target sites within stylin-01 coding sequence, either at the two alleles (2 lineages) or at one allele (4 lineages). The final germline transmission rate of the mutations was thus around 35%. Our protocol of an efficient targeted mutagenesis opens the avenue for functional studies through genome editing in aphids.
Collapse
Affiliation(s)
- G Le Trionnaire
- UMR 1349 IGEPP (INRA, University Rennes 1, Agrocampus Ouest), Rennes, France.
| | - S Tanguy
- UMR 1349 IGEPP (INRA, University Rennes 1, Agrocampus Ouest), Rennes, France
| | - S Hudaverdian
- UMR 1349 IGEPP (INRA, University Rennes 1, Agrocampus Ouest), Rennes, France
| | - F Gleonnec
- UMR 1349 IGEPP (INRA, University Rennes 1, Agrocampus Ouest), Rennes, France
| | - G Richard
- UMR 1349 IGEPP (INRA, University Rennes 1, Agrocampus Ouest), Rennes, France
| | - B Cayrol
- UMR BGPI (University Montpellier, CIRAD, INRA, Montpellier SupAgro), Montpellier, France
| | - B Monsion
- UMR BGPI (University Montpellier, CIRAD, INRA, Montpellier SupAgro), Montpellier, France
| | - E Pichon
- UMR BGPI (University Montpellier, CIRAD, INRA, Montpellier SupAgro), Montpellier, France
| | - M Deshoux
- UMR BGPI (University Montpellier, CIRAD, INRA, Montpellier SupAgro), Montpellier, France
| | - C Webster
- UMR BGPI (University Montpellier, CIRAD, INRA, Montpellier SupAgro), Montpellier, France
| | - M Uzest
- UMR BGPI (University Montpellier, CIRAD, INRA, Montpellier SupAgro), Montpellier, France
| | | | - D Tagu
- UMR BGPI (University Montpellier, CIRAD, INRA, Montpellier SupAgro), Montpellier, France
| |
Collapse
|
40
|
Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathog 2019; 15:e1007655. [PMID: 30921434 PMCID: PMC6456217 DOI: 10.1371/journal.ppat.1007655] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022] Open
Abstract
Many persistent transmitted plant viruses, including rice stripe virus (RSV), cause serious damage to crop production worldwide. Although many reports have indicated that a successful insect-mediated virus transmission depends on a proper interaction between the virus and its insect vector, the mechanism(s) controlling this interaction remained poorly understood. In this study, we used RSV and its small brown planthopper (SBPH) vector as a working model to elucidate the molecular mechanisms underlying the entrance of RSV virions into SBPH midgut cells for virus circulative and propagative transmission. We have determined that this non-enveloped tenuivirus uses its non-structural glycoprotein NSvc2 as a helper component to overcome the midgut barrier(s) for RSV replication and transmission. In the absence of this glycoprotein, purified RSV virions were unable to enter SBPH midgut cells. In the RSV-infected cells, this glycoprotein was processed into two mature proteins: an amino-terminal protein (NSvc2-N) and a carboxyl-terminal protein (NSvc2-C). Both NSvc2-N and NSvc2-C interact with RSV virions. Our results showed that the NSvc2-N could bind directly to the surface of midgut lumen via its N-glycosylation sites. Upon recognition, the midgut cells underwent endocytosis followed by compartmentalization of RSV virions and NSvc2 into early and then late endosomes. The NSvc2-C triggered cell membrane fusion via its highly conserved fusion loop motifs under the acidic condition inside the late endosomes, leading to the release of RSV virions from endosomes into cytosol. In summary, our results showed for the first time that a rice tenuivirus utilized its glycoprotein NSvc2 as a helper component to ensure a proper interaction between its virions and SBPH midgut cells for its circulative and propagative transmission. Over 75% of the known plant viruses are insect transmitted. Understanding how plant viruses interact with their insect vectors during virus transmission is a key step towards the successful management of plant viruses worldwide. Several models for the direct or indirect virus–insect vector interactions have been proposed for the non-persistent or semi-persistent virus transmissions. However, the mechanisms controlling the interactions between viruses and their insect vector midgut barriers are poorly understood. In this study, we demonstrated that the circulative and propagative transmitted rice stripe virus (RSV) utilized its glycoprotein NSvc2 as a helper component to ensure a specific interaction between its virions and SBPH midgut cells to overcome the midgut barriers inside this vector. This is the first report of a viral helper component mediated mechanism for persistent-propagative virus transmission. Our new findings and working model should expand our knowledge on the molecular mechanism(s) controlling the interaction between virus and its insect vector during virus circulative and propagative transmission in nature.
Collapse
|
41
|
Guo H, Gu L, Liu F, Chen F, Ge F, Sun Y. Aphid-borne Viral Spread Is Enhanced by Virus-induced Accumulation of Plant Reactive Oxygen Species. PLANT PHYSIOLOGY 2019; 179:143-155. [PMID: 30381318 PMCID: PMC6324229 DOI: 10.1104/pp.18.00437] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/23/2018] [Indexed: 05/24/2023]
Abstract
Most known plant viruses are spread from plant to plant by insect vectors. There is strong evidence that nonpersistently transmitted viruses manipulate the release of plant volatiles to attract insect vectors, thereby promoting virus spread. The mechanisms whereby aphid settling and feeding is altered on plants infected with these viruses, however, are unclear. Here we employed loss-of-function mutations in cucumber mosaic virus (CMV) and one of its host plants, tobacco (Nicotiana tabacum), to elucidate such mechanisms. We show that, relative to a CMVΔ2b strain with a deletion of the viral suppressor of RNAi 2b protein in CMV, plants infected with wild-type CMV produce higher concentrations of the reactive oxygen species (ROS) H2O2 in plant tissues. Aphids on wild-type CMV-infected plants engage in shorter probes, less phloem feeding, and exhibit other changes, as detected by electrical penetration graphing technology, relative to CMVΔ2b-infected plants. Therefore, the frequency of virus acquisition and the virus load per aphid were greater on CMV-infected plants than on CMVΔ2b-infected plants. Aphids also moved away from initial feeding sites more frequently on wild-type CMV infected versus CMVΔ2b-infected plants. The role of H2O2 in eliciting these effects on aphids was corroborated using healthy plants infused with H2O2 Finally, H2O2 levels were not elevated, and aphid behavior was unchanged, on CMV-infected RbohD-silenced tobacco plants, which are deficient in the induction of ROS production. These results suggest that CMV uses its viral suppressor of RNAi protein to increase plant ROS levels, thereby enhancing its acquisition and transmission by vector insects.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyuan Gu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fanqi Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fajun Chen
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Gallet R, Michalakis Y, Blanc S. Vector-transmission of plant viruses and constraints imposed by virus–vector interactions. Curr Opin Virol 2018; 33:144-150. [DOI: 10.1016/j.coviro.2018.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 11/26/2022]
|
43
|
Deshoux M, Monsion B, Uzest M. Insect cuticular proteins and their role in transmission of phytoviruses. Curr Opin Virol 2018; 33:137-143. [PMID: 30245214 PMCID: PMC6291435 DOI: 10.1016/j.coviro.2018.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
Abstract
Cuticular proteins play key roles in plant virus transmission. RR-1 and RR-2 are the main cuticular proteins involved in virus–vector interactions. RR-1 protein is involved in transmission of a noncirculative virus. RR-1 protein is involved in transmission of a circulative virus. The role of other cuticular proteins in virus transmission is poorly characterized.
Many viruses of agricultural importance are transmitted to host plants via insect vectors. Characterizing virus–vector interactions at the molecular level is essential if we are to fully understand the transmission mechanisms involved and develop new strategies to control viral spread. Hitherto, insect proteins involved in virus transmission have been characterized only poorly. Recent advances in this topic, however, have significantly filled this knowledge gap. Among the vector molecules identified, cuticular proteins have emerged as key molecules for plant virus transmission, regardless of transmission mode or vector considered. Here, we review recent evidence highlighting that the CPR family, and particularly RR-1 proteins, undoubtedly deserves special attention.
Collapse
Affiliation(s)
- Maëlle Deshoux
- BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Baptiste Monsion
- BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marilyne Uzest
- BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|