1
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
2
|
Human Cytomegalovirus IE2 Both Activates and Represses Initiation and Modulates Elongation in a Context-Dependent Manner. mBio 2022; 13:e0033722. [PMID: 35579393 PMCID: PMC9239164 DOI: 10.1128/mbio.00337-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional transcription factor that is essential for lytic HCMV infection. IE2 functions as an activator of viral early genes, negatively regulates its own promoter, and is required for viral replication. The mechanisms by which IE2 executes these distinct functions are incompletely understood. Using PRO-Seq, which profiles nascent transcripts, and a recently developed DFF-chromatin immunoprecipitation (DFF-ChIP; employs chromatin digestion by the endonuclease DNA fragmentation factor prior to IP) approach that resolves occupancy and local chromatin environment, we show that IE2 controls viral gene transcription in three distinct capacities during late HCMV infection and reveal mechanisms that involve direct binding of IE2 to viral DNA. IE2 represses a subset of viral promoters by binding within their core promoter regions and blocking the assembly of preinitiation complexes (PICs). Remarkably, IE2 forms a repressive complex at the major immediate-early promoter region involving direct association of IE2 with nucleosomes and TBP. IE2 stimulates transcription by binding nearby, but not within, core promoter regions. In addition, IE2 functions as a direct roadblock to transcription elongation. At one locus, this function of IE2 appears to be important for the synthesis of a spliced viral RNA. Consistent with the minimal observed effects of IE2 depletion on host gene transcription, IE2 does not functionally engage the host genome. Our results reveal mechanisms of transcriptional control by IE2, uncover a previously unknown function of IE2 as a Pol II elongation modulator, and demonstrate that DFF-ChIP is a useful tool for probing transcription factor occupancy and interactions between transcription factors and nucleosomes at high resolution.
Collapse
|
3
|
Tyl MD, Betsinger CN, Cristea IM. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr Opin Virol 2022; 52:135-147. [PMID: 34923282 PMCID: PMC8844139 DOI: 10.1016/j.coviro.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a pervasive β-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA,Corresponding author and lead contact: Ileana M. Cristea, 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, Tel: 6092589417, Fax: 6092584575,
| |
Collapse
|
4
|
Lai S, Xu M, Wang Y, Li R, Xia C, Xia S, Chen J. Site-specific SUMOylation of viral polymerase processivity factor: a way of localizingtoND10 subnuclear domains for restricted and self-controlled reproduction of herpesvirus. Virulence 2021; 12:2883-2901. [PMID: 34747321 PMCID: PMC8923073 DOI: 10.1080/21505594.2021.2000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lytic replication of human cytomegalovirus (HCMV), a member of β-herpesvirus, is a highly complicated and organized process that requires its DNA polymerase processivity factor, UL44, the first-reported HCMV replication protein subjected to SUMO post-translational modification (PTM). SUMOylation plays a pleiotropic role in protein functions of host cells and infecting viruses. Particularly, formation of herpesviral replication compartments (RCs) upon infection is induced in proximity to ND10 subnuclear domains, the host cell’s intrinsic antiviral immune devices and hot SUMOylation spots, relying just on SUMOylation of their protein components to become mature and functional in restriction of the viral replication. In this study, to unveil the exact role of SUMO PTM on UL44 involved in HCMV replication, we screened and identified PIAS3, an annotated E3 SUMO ligase, as a novel UL44-interacting protein engaged in cellular SUMOylation pathway. Co-existence of PIAS3 could enhance the UBC9-based SUMO modification of UL44 specifically at its conserved 410lysine residue lying within the single canonical ψKxE SUMO Conjugation Motif (SCM). Intriguingly, we found this SCM-specific SUMOylation contributes to UL44 co-localization and interaction with subnuclear ND10 domains during infection, which in turn exerts an inhibitory effect on HCMV replication and growth. Together, these results highlight the importance of SUMOylation in regulating viral protein subnuclear localization, representing a novel way of utilizing ND10-based restriction to achieve the self-controlled slower replication and reproduction of herpesviruses.
Collapse
Affiliation(s)
- Shuyan Lai
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Mengqiong Xu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaohao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ruilin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Chuan Xia
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Sisi Xia
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
| |
Collapse
|
5
|
Tripathi V, Chatterjee KS, Das R. Non-covalent Interaction With SUMO Enhances the Activity of Human Cytomegalovirus Protein IE1. Front Cell Dev Biol 2021; 9:662522. [PMID: 34055792 PMCID: PMC8155523 DOI: 10.3389/fcell.2021.662522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022] Open
Abstract
Viruses interact with the host cellular pathways to optimize cellular conditions for replication. The Human Cytomegalovirus (HCMV) Immediate-Early protein 1 (IE1) is the first viral protein to express during infection. It is a multifunctional and conditionally essential protein for HCMV infection. SUMO signaling regulates several cellular pathways that are also targets of IE1. Consequently, IE1 exploits SUMO signaling to regulate these pathways. The covalent interaction of IE1 and SUMO (IE1-SUMOylation) is well studied. However, the non-covalent interactions between SUMO and IE1 are unknown. We report two SUMO-Interacting Motifs (SIMs) in IE1, one at the end of the core domain and another in the C-terminal domain. NMR titrations showed that IE1-SIMs bind to SUMO1 but not SUMO2. Two critical functions of IE1 are inhibition of SUMOylation of Promyelocytic leukemia protein (PML) and transactivation of viral promoters. Although the non-covalent interaction of IE1 and SUMO is not involved in the inhibition of PML SUMOylation, it contributes to the transactivation activity. The transactivation activity of IE1 was previously correlated to its ability to inhibit PML SUMOylation. Our results suggest that transactivation and inhibition of PML SUMOylation are independent activities of IE1.
Collapse
Affiliation(s)
- Vasvi Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Kiran Sankar Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research (TIFR), Bengaluru, India
| |
Collapse
|
6
|
Collin V, Gravel A, Kaufer BB, Flamand L. The Promyelocytic Leukemia Protein facilitates human herpesvirus 6B chromosomal integration, immediate-early 1 protein multiSUMOylation and its localization at telomeres. PLoS Pathog 2020; 16:e1008683. [PMID: 32658923 PMCID: PMC7394443 DOI: 10.1371/journal.ppat.1008683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/31/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Human herpesvirus 6B (HHV-6B) is a betaherpesvirus capable of integrating its genome into the telomeres of host chromosomes. Until now, the cellular and/or viral proteins facilitating HHV-6B integration have remained elusive. Here we show that a cellular protein, the promyelocytic leukemia protein (PML) that forms nuclear bodies (PML-NBs), associates with the HHV-6B immediate early 1 (IE1) protein at telomeres. We report enhanced levels of SUMOylated IE1 in the presence of PML and have identified a putative SUMO Interacting Motif (SIM) within IE1, essential for its nuclear distribution, overall SUMOylation and association with PML to nuclear bodies. Furthermore, using PML knockout cell lines we made the original observation that PML is required for efficient HHV-6B integration into host chromosomes. Taken together, we could demonstrate that PML-NBs are important for IE1 multiSUMOylation and that PML plays an important role in HHV-6B integration into chromosomes, a strategy developed by this virus to maintain its genome in its host over long periods of time. Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that can be life threatening in immunocompromised patients. HHV-6B is among a few other herpesviruses that integrate their genome in host chromosomes as a mean to establish dormancy. Integration of HHV-6B occurs in host telomeres, a region that protects our genome from deterioration and controls the cellular lifespan. To date, the mechanisms leading to HHV-6B integration remain elusive. Our laboratory has identified that the IE1 protein of HHV-6B associates with PML, a cellular protein that is responsible for the regulation of important cellular mechanisms including DNA recombination and repair. With the objective of understanding how IE1 is brought to PML, we discovered that PML aids the SUMOylation of IE1. This finding led us to identify a putative SUMO interaction motif on IE1 that is essentials for both its SUMOylation and IE1 oligomerization with PML-NBs. We next studied the role of PML on HHV-6B integration and identified that cells that are deficient for PML were less susceptible to HHV-6B integration. These results correlate with the fact that PML influences IE1 localization at telomeres, the site of HHV-6B integration. Our study further contributes to our understanding of the mechanisms leading to HHV-6B chromosomal integration.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | | | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
7
|
Li M, Ball CB, Collins G, Hu Q, Luse DS, Price DH, Meier JL. Human cytomegalovirus IE2 drives transcription initiation from a select subset of late infection viral promoters by host RNA polymerase II. PLoS Pathog 2020; 16:e1008402. [PMID: 32251483 PMCID: PMC7162547 DOI: 10.1371/journal.ppat.1008402] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/16/2020] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Herpesvirus late promoters activate gene expression after viral DNA synthesis has begun. Alphaherpesviruses utilize a viral immediate-early protein to do this, whereas beta- and gammaherpesviruses primarily use a 6-member set of viral late-acting transcription factors (LTF) that are drawn to a TATT sequence in the late promoter. The betaherpesvirus, human cytomegalovirus (HCMV), produces three immediate-early 2 protein isoforms, IE2-86, IE2-60, IE2-40, late in infection, but whether they activate late viral promoters is unknown. Here, we quickly degrade the IE2 proteins in late infection using dTag methodology and analyze effects on transcription using customized PRO-Seq and computational methods combined with multiple validation methods. We discover that the IE2 proteins selectively drive RNA Pol II transcription initiation at a subset of viral early-late and late promoters common to different HCMV strains, but do not substantially affect Pol II transcription of the 9,942 expressed host genes. Most of the IE2-activated viral late infection promoters lack the TATT sequence bound by the HCMV UL87-encoded LTF. The HCMV TATT-binding protein is not mechanistically involved in late RNA expression from the IE2-activated TATT-less UL83 (pp65) promoter, as it is for the TATT-containing UL82 (pp71) promoter. While antecedent viral DNA synthesis is necessary for transcription from the late infection viral promoters, continued viral DNA synthesis is unnecessary. We conclude that in late infection the IE2 proteins target a distinct subset of HCMV early-late and late promoters for transcription initiation by RNA Pol II. Commencement of viral DNA replication renders the HCMV genome late promoters susceptible to late-acting viral transcription factors. The herpesvirus subfamilies differ in the viral proteins used in generating the cascade of viral immediate-early, early, early-late, or late gene transcription. With the application of advanced technologies, we discovered that the betaherpesvirus, human cytomegalovirus, has evolved strategies analogous to those used by both alpha- and gammaherpesviruses to bring about RNA Pol II transcription from its late infection promoters. Like alphaherpesviruses, human cytomegalovirus purposes a pivotal immediate-early viral transcription factor to initiate transcription from early, early-late, and late viral promoters. However, the cytomegalovirus transcription factor only targets a select set of viral early-late and late promoters without appreciably affecting host promoters at late times. Most of these late infection viral promoters are structurally and mechanistically different from promoters activated by the 6-member viral transcription factor complex that is analogous to the transcription factor complex utilized by gammaherpesviruses. Human cytomegalovirus genome amplification must first take place, but need not continue, to enable the two different mechanisms of late viral promoter activation.
Collapse
Affiliation(s)
- Ming Li
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States of America
| | - Christopher B. Ball
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States of America
| | - Geoffrey Collins
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States of America
| | - Qiaolin Hu
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States of America
| | - Donal S. Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - David H. Price
- Department of Biochemistry, University of Iowa, Iowa City, IA, United States of America
| | - Jeffery L. Meier
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Tripathi V, Chatterjee KS, Das R. Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2. J Biol Chem 2019; 294:14546-14561. [PMID: 31371453 DOI: 10.1074/jbc.ra119.009601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Indexed: 11/06/2022] Open
Abstract
Many viral factors manipulate the host post-translational modification (PTM) machinery for efficient viral replication. In particular, phosphorylation and SUMOylation can distinctly regulate the activity of the human cytomegalovirus (HCMV) transactivator immediate early 2 (IE2). However, the molecular mechanism of this process is unknown. Using various structural, biochemical, and cell-based approaches, here we uncovered that IE2 exploits a cross-talk between phosphorylation and SUMOylation. A scan for small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) revealed two SIMs in IE2, and a real-time SUMOylation assay indicated that the N-terminal SIM (IE2-SIM1) enhances IE2 SUMOylation up to 4-fold. Kinetic analysis and structural studies disclosed that IE2 is a SUMO cis-E3 ligase. We also found that two putative casein kinase 2 (CK2) sites adjacent to IE2-SIM1 are phosphorylated in vitro and in cells. The phosphorylation drastically increased IE2-SUMO affinity, IE2 SUMOylation, and cis-E3 activity of IE2. Additional salt bridges between the phosphoserines and SUMO accounted for the increased IE2-SUMO affinity. Phosphorylation also enhanced the SUMO-dependent transactivation activity and auto-repression activity of IE2. Together, our findings highlight a novel mechanism whereby SUMOylation and phosphorylation of the viral cis-E3 ligase and transactivator protein IE2 work in tandem to enable transcriptional regulation of viral gene.
Collapse
Affiliation(s)
- Vasvi Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | - Kiran Sankar Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| |
Collapse
|
9
|
Chatterjee KS, Tripathi V, Das R. A conserved and buried edge-to-face aromatic interaction in small ubiquitin-like modifier (SUMO) has a role in SUMO stability and function. J Biol Chem 2019; 294:6772-6784. [PMID: 30824543 PMCID: PMC6497963 DOI: 10.1074/jbc.ra118.006642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Aromatic amino acids buried at a protein's core are often involved in mutual paired interactions. Ab initio energy calculations have highlighted that the conformational orientations and the effects of substitutions are important for stable aromatic interactions among aromatic rings, but studies in the context of a protein's fold and function are elusive. Small ubiquitin-like modifier (SUMO) is a common post-translational modifier that affects diverse cellular processes. Here, we report that a highly conserved aromatic triad of three amino acids, Phe36-Tyr51-Phe64, is a unique SUMO signature that is absent in other ubiquitin-like homologous folds. We found that a specific edge-to-face conformation between the Tyr51-Phe64 pair of interacting aromatics is vital to the fold and stability of SUMO. Moreover, the noncovalent binding of SUMO-interacting motif (SIM) at the SUMO surface was critically dependent on the paired aromatic interactions buried at the core. NMR structural studies revealed that perturbation of the Tyr51-Phe64 conformation disrupts several long-range tertiary contacts in SUMO, leading to a heterogeneous and dynamic protein with attenuated SUMOylation both in vitro and in cells. A subtle perturbation of the edge-to-face conformation by a Tyr to Phe substitution significantly decreased stability, SUMO/SIM affinity, and the rate of SUMOylation. Our results highlight that absolute co-conservation of specific aromatic pairs inside the SUMO protein core has a role in its stability and function.
Collapse
Affiliation(s)
- Kiran Sankar Chatterjee
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Vasvi Tripathi
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Ranabir Das
- From the National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
10
|
Li YJ, Du L, Wang J, Vega R, Lee TD, Miao Y, Aldana-Masangkay G, Samuels ER, Li B, Ouyang SX, Colayco SA, Bobkova EV, Divlianska DB, Sergienko E, Chung TDY, Fakih M, Chen Y. Allosteric Inhibition of Ubiquitin-like Modifications by a Class of Inhibitor of SUMO-Activating Enzyme. Cell Chem Biol 2019; 26:278-288.e6. [PMID: 30581133 PMCID: PMC6524651 DOI: 10.1016/j.chembiol.2018.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/20/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022]
Abstract
Ubiquitin-like (Ubl) post-translational modifications are potential targets for therapeutics. However, the only known mechanism for inhibiting a Ubl-activating enzyme is through targeting its ATP-binding site. Here we identify an allosteric inhibitory site in the small ubiquitin-like modifier (SUMO)-activating enzyme (E1). This site was unexpected because both it and analogous sites are deeply buried in all previously solved structures of E1s of ubiquitin-like modifiers (Ubl). The inhibitor not only suppresses SUMO E1 activity, but also enhances its degradation in vivo, presumably due to a conformational change induced by the compound. In addition, the lead compound increased the expression of miR-34b and reduced c-Myc levels in lymphoma and colorectal cancer cell lines and a colorectal cancer xenograft mouse model. Identification of this first-in-class inhibitor of SUMO E1 is a major advance in modulating Ubl modifications for therapeutic aims.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Li Du
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianghai Wang
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Ramir Vega
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Terry D Lee
- Department of Immunology, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, USA
| | - Yunan Miao
- Department of Immunology, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, USA
| | - Grace Aldana-Masangkay
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Eric R Samuels
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Baozong Li
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - S Xiaohu Ouyang
- SUMO Biosciences, Inc., 2265 E Foothill Boulevard, Pasadena, CA 91107, USA
| | - Sharon A Colayco
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Ekaterina V Bobkova
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Daniela B Divlianska
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Eduard Sergienko
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas D Y Chung
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Marwan Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuan Chen
- Department of Molecular Medicine, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA; Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, USA.
| |
Collapse
|
11
|
Lv Z, Yuan L, Atkison JH, Williams KM, Vega R, Sessions EH, Divlianska DB, Davies C, Chen Y, Olsen SK. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun 2018; 9:5145. [PMID: 30514846 PMCID: PMC6279746 DOI: 10.1038/s41467-018-07015-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
E1 enzymes activate ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) in the first step of Ub/Ubl conjugation cascades and represent potential targets for therapeutic intervention in cancer and other life-threatening diseases. Here, we report the crystal structure of the E1 enzyme for the Ubl SUMO in complex with a recently discovered and highly specific covalent allosteric inhibitor (COH000). The structure reveals that COH000 targets a cryptic pocket distinct from the active site that is completely buried in all previous SUMO E1 structures and that COH000 binding to SUMO E1 is accompanied by a network of structural changes that altogether lock the enzyme in a previously unobserved inactive conformation. These structural changes include disassembly of the active site and a 180° rotation of the catalytic cysteine-containing SCCH domain, relative to conformational snapshots of SUMO E1 poised to catalyze adenylation. Altogether, our study provides a molecular basis for the inhibitory mechanism of COH000 and its SUMO E1 specificity, and also establishes a framework for potential development of molecules targeting E1 enzymes for other Ubls at a cryptic allosteric site.
Collapse
Affiliation(s)
- Zongyang Lv
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Lingmin Yuan
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - James H Atkison
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Katelyn M Williams
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Ramir Vega
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, 91010, CA, USA
| | - E Hampton Sessions
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, 32827, FL, USA
| | - Daniela B Divlianska
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, 32827, FL, USA
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Yuan Chen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, 91010, CA, USA.
| | - Shaun K Olsen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA.
| |
Collapse
|
12
|
Reuter N, Reichel A, Stilp AC, Scherer M, Stamminger T. SUMOylation of IE2p86 is required for efficient autorepression of the human cytomegalovirus major immediate-early promoter. J Gen Virol 2018; 99:369-378. [PMID: 29458530 DOI: 10.1099/jgv.0.001021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human cytomegalovirus (HCMV) IE2p86 protein is pivotal for coordinated regulation of viral gene expression. Besides functioning as a promiscuous transactivator, IE2p86 is also known to negatively regulate its own transcription. This occurs via direct binding of IE2p86 to a 14-bp palindromic DNA element located between the TATA box and the transcription start site of the major immediate-early promoter (MIEP), which is referred to as the cis repression signal (CRS). However, the exact mechanism of IE2p86-based autorepression is still unclear. By testing a series of IE2p86 mutants in transient expression assays, we found that not only did a DNA binding-deficient mutant of IE2p86 fail to repress the MIEP, but SUMOylation-negative mutants also failed to repress it. This finding was further supported by infection studies with primary fibroblasts harbouring a MIEP-driven transgene as a reporter. Here, we observed that a recombinant HCMV expressing SUMOylation-negative IE2p86 was defective in transgene downregulation, in contrast to wild-type HCMV. Interestingly, however, a double-mutant virus in which both the SUMO acceptor sites and the SUMO interaction motif (SIM) of IE2p86 were inactivated regained the ability to silence the MIEP. This correlated with increased expression levels of the IE2 isoforms IE2p40 and IE2p60, suggesting that these late proteins may contribute to MIEP suppression, thus compensating for the loss of IE2p86 SUMOylation. In summary, our results show that autorepression of the MIEP is not only regulated by late isoforms of IE2, but also depends on posttranslational SUMO modification, revealing a novel mechanism to fine-tune the expression of this important viral gene region.
Collapse
Affiliation(s)
- Nina Reuter
- Institute of Clinical and Molecular Virology, Friedrich Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Anna Reichel
- Institute of Clinical and Molecular Virology, Friedrich Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Anne-Charlotte Stilp
- Institute of Clinical and Molecular Virology, Friedrich Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
13
|
Wilson VG. Viral Interplay with the Host Sumoylation System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:359-388. [PMID: 28197923 PMCID: PMC7121812 DOI: 10.1007/978-3-319-50044-7_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses have evolved elaborate means to regulate diverse cellular pathways in order to create a cellular environment that facilitates viral survival and reproduction. This includes enhancing viral macromolecular synthesis and assembly, as well as preventing antiviral responses, including intrinsic, innate, and adaptive immunity. There are numerous mechanisms by which viruses mediate their effects on the host cell, and this includes targeting various cellular post-translational modification systems, including sumoylation. The wide-ranging impact of sumoylation on cellular processes such as transcriptional regulation, apoptosis, stress response, and cell cycle control makes it an attractive target for viral dysregulation. To date, proteins from both RNA and DNA virus families have been shown to be modified by SUMO conjugation, and this modification appears critical for viral protein function. More interestingly, members of the several viral families have been shown to modulate sumoylation, including papillomaviruses, adenoviruses, herpesviruses, orthomyxoviruses, filoviruses, and picornaviruses. This chapter will focus on mechanisms by which sumoylation both impacts human viruses and is used by viruses to promote viral infection and disease.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX, 77807-1359, USA.
| |
Collapse
|
14
|
Kwon KM, Oh SE, Kim YE, Han TH, Ahn JH. Cooperative inhibition of RIP1-mediated NF-κB signaling by cytomegalovirus-encoded deubiquitinase and inactive homolog of cellular ribonucleotide reductase large subunit. PLoS Pathog 2017; 13:e1006423. [PMID: 28570668 PMCID: PMC5469499 DOI: 10.1371/journal.ppat.1006423] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/13/2017] [Accepted: 05/22/2017] [Indexed: 11/19/2022] Open
Abstract
Several viruses have been found to encode a deubiquitinating protease (DUB). These viral DUBs are proposed to play a role in regulating innate immune or inflammatory signaling. In human cytomegalovirus (HCMV), the largest tegument protein encoded by UL48 contains DUB activity, but its cellular targets are not known. Here, we show that UL48 and UL45, an HCMV-encoded inactive homolog of cellular ribonucleotide reductase (RNR) large subunit (R1), target receptor-interacting protein kinase 1 (RIP1) to inhibit NF-κB signaling. Transfection assays showed that UL48 and UL45, which binds to UL48, interact with RIP1 and that UL48 DUB activity and UL45 cooperatively suppress RIP1-mediated NF-κB activation. The growth of UL45-null mutant virus was slightly impaired with showing reduced accumulation of viral late proteins. Analysis of a recombinant virus expressing HA-UL45 showed that UL45 interacts with both UL48 and RIP1 during virus infection. Infection with the mutant viruses also revealed that UL48 DUB activity and UL45 inhibit TNFα-induced NF-κB activation at late times of infection. UL48 cleaved both K48- and K63-linked polyubiquitin chains of RIP1. Although UL45 alone did not affect RIP1 ubiquitination, it could enhance the UL48 activity to cleave RIP1 polyubiquitin chains. Consistently, UL45-null virus infection showed higher ubiquitination level of endogenous RIP1 than HA-UL45 virus infection at late times. Moreover, UL45 promoted the UL48-RIP1 interaction and re-localization of RIP1 to the UL48-containing virion assembly complex. The mouse cytomegalovirus (MCMV)-encoded DUB, M48, interacted with mouse RIP1 and M45, an MCMV homolog of UL45. Collectively, our data demonstrate that cytomegalovirus-encoded DUB and inactive R1 homolog target RIP1 and cooperatively inhibit RIP1-mediated NF-κB signaling at the late stages of HCMV infection. Activation of NF-κB signaling leads to expression of proinflammatory cytokines and chemokines and plays a key role in regulating innate immune response and inflammation to virus infection. HCMV upregulates and downregulates NF-κB signaling during the course of infection. Upregulation of NF-κB signaling may promote viral gene expression or viral dissemination, but its downregulation may be necessary for suppression of excessive immune responses. Recently, it was demonstrated that viral late functions downregulate TNFα- and IL-1β-induced NF-κB activation. However, the viral proteins involved and the underlying mechanisms are not understood. In the present study, we demonstrate that two HCMV proteins, the largest tegument protein harboring deubiquitinase activity and the inactive homolog of cellular ribonucleotide reductase large subunit, cooperatively inhibit RIP1-mediated NF-κB signaling at the late stages of infection. This study for the first time identified RIP1 as a substrate of viral deubiquitinase and highlights the importance of the negative regulation of NF-κB during virus infection.
Collapse
Affiliation(s)
- Ki Mun Kwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Se Eun Oh
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young Eui Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Tae-Hee Han
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Hornig J, Choi KY, McGregor A. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting. Virology 2017; 504:122-140. [PMID: 28189970 DOI: 10.1016/j.virol.2017.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/02/2023]
Abstract
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234-474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.
Collapse
Affiliation(s)
- Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - K Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States.
| |
Collapse
|
16
|
SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication. J Virol 2016; 90:10472-10485. [PMID: 27630238 DOI: 10.1128/jvi.01756-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication.
Collapse
|
17
|
Kim YJ, Kim ET, Kim YE, Lee MK, Kwon KM, Kim KI, Stamminger T, Ahn JH. Consecutive Inhibition of ISG15 Expression and ISGylation by Cytomegalovirus Regulators. PLoS Pathog 2016; 12:e1005850. [PMID: 27564865 PMCID: PMC5001722 DOI: 10.1371/journal.ppat.1005850] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) encodes an ubiquitin-like protein that covalently conjugates protein. Protein modification by ISG15 (ISGylation) is known to inhibit the replication of many viruses. However, studies on the viral targets and viral strategies to regulate ISGylation-mediated antiviral responses are limited. In this study, we show that human cytomegalovirus (HCMV) replication is inhibited by ISGylation, but the virus has evolved multiple countermeasures. HCMV-induced ISG15 expression was mitigated by IE1, a viral inhibitor of interferon signaling, however, ISGylation was still strongly upregulated during virus infection. RNA interference of UBE1L (E1), UbcH8 (E2), Herc5 (E3), and UBP43 (ISG15 protease) revealed that ISGylation inhibits HCMV growth by downregulating viral gene expression and virion release in a manner that is more prominent at low multiplicity of infection. A viral regulator pUL26 was found to interact with ISG15, UBE1L, and Herc5, and be ISGylated. ISGylation of pUL26 regulated its stability and inhibited its activities to suppress NF-κB signaling and complement the growth of UL26-null mutant virus. Moreover, pUL26 reciprocally suppressed virus-induced ISGylation independent of its own ISGylation. Consistently, ISGylation was more pronounced in infections with the UL26-deleted mutant virus, whose growth was more sensitive to IFNβ treatment than that of the wild-type virus. Therefore, pUL26 is a viral ISG15 target that also counteracts ISGylation. Our results demonstrate that ISGylation inhibits HCMV growth at multiple steps and that HCMV has evolved countermeasures to suppress ISG15 transcription and protein ISGylation, highlighting the importance of the interplay between virus and ISGylation in productive viral infection. Type I IFN response is a front-line defense against virus infection. Activation of type I IFN signaling leads to expression of a subset of cellular proteins encoded by interferon-stimulated genes (ISGs). ISG15 encodes an ubiquitin-like protein that is covalently conjugated to protein lysine residues. ISG15 modification (ISGylation) of a protein causes changes of protein function. ISGylation is known to inhibit the replication of many viruses, although pro-viral effects of ISGylation are also reported. Given that ISG15 and the enzymes involved in ISGylation are strongly induced upon virus infection, understanding the interplay between virus and ISGylation is an important issue in virus-host interaction. Nevertheless, viral substrates of ISG15 and viral strategies to regulate ISGylation-mediated antiviral responses are limited to only a few examples. In this study we demonstrate that ISGylation suppresses human cytomegalovirus (HCMV) infection but the virus is armed with countermeasures that consecutively reduce ISG15 transcription and protein ISGylation. Interestingly, a viral ISG15 target is found to inhibit ISGylation. This study highlights that ISGylation is a critical innate immune response against HCMV infection and interfering with ISG15-mediated anti-viral immunity is critical for productive viral infection.
Collapse
Affiliation(s)
- Ye Ji Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Eui Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Myoung Kyu Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ki Mun Kwon
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, University of Erlangen-Nuremberg, Schlossgarten, Erlangen, Germany
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Gan J, Qiao N, Strahan R, Zhu C, Liu L, Verma SC, Wei F, Cai Q. Manipulation of ubiquitin/SUMO pathways in human herpesviruses infection. Rev Med Virol 2016; 26:435-445. [DOI: 10.1002/rmv.1900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/03/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Jin Gan
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| | - Niu Qiao
- Department of Medical Systems Biology, School of Basic Medical Sciences; Department of Translational Medicine, Shanghai Public Health Clinical Center; Institutes of Biomedical Sciences, Fudan University; Shanghai China
| | - Roxanne Strahan
- Department of Microbiology & Immunology; University of Nevada, Reno School of Medicine; Reno NV USA
| | - Caixia Zhu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| | - Lei Liu
- Department of Medical Systems Biology, School of Basic Medical Sciences; Department of Translational Medicine, Shanghai Public Health Clinical Center; Institutes of Biomedical Sciences, Fudan University; Shanghai China
| | - Subhash C. Verma
- Department of Microbiology & Immunology; University of Nevada, Reno School of Medicine; Reno NV USA
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai China
| | - Qiliang Cai
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College; Fudan University; Shanghai China
| |
Collapse
|
19
|
Yang WS, Hsu HW, Campbell M, Cheng CY, Chang PC. K-bZIP Mediated SUMO-2/3 Specific Modification on the KSHV Genome Negatively Regulates Lytic Gene Expression and Viral Reactivation. PLoS Pathog 2015. [PMID: 26197391 PMCID: PMC4510548 DOI: 10.1371/journal.ppat.1005051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SUMOylation is associated with epigenetic regulation of chromatin structure and transcription. Epigenetic modifications of herpesviral genomes accompany the transcriptional switch of latent and lytic genes during the virus life cycle. Here, we report a genome-wide comparison of SUMO paralog modification on the KSHV genome. Using chromatin immunoprecipitation in conjunction with high-throughput sequencing, our study revealed highly distinct landscape changes of SUMO paralog genomic modifications associated with KSHV reactivation. A rapid and widespread deposition of SUMO-2/3, compared with SUMO-1, modification across the KSHV genome upon reactivation was observed. Interestingly, SUMO-2/3 enrichment was inversely correlated with H3K9me3 mark after reactivation, indicating that SUMO-2/3 may be responsible for regulating the expression of viral genes located in low heterochromatin regions during viral reactivation. RNA-sequencing analysis showed that the SUMO-2/3 enrichment pattern positively correlated with KSHV gene expression profiles. Activation of KSHV lytic genes located in regions with high SUMO-2/3 enrichment was enhanced by SUMO-2/3 knockdown. These findings suggest that SUMO-2/3 viral chromatin modification contributes to the diminution of viral gene expression during reactivation. Our previous study identified a SUMO-2/3-specific viral E3 ligase, K-bZIP, suggesting a potential role of this enzyme in regulating SUMO-2/3 enrichment and viral gene repression. Consistent with this prediction, higher K-bZIP binding on SUMO-2/3 enrichment region during reactivation was observed. Moreover, a K-bZIP SUMO E3 ligase dead mutant, K-bZIP-L75A, in the viral context, showed no SUMO-2/3 enrichment on viral chromatin and higher expression of viral genes located in SUMO-2/3 enriched regions during reactivation. Importantly, virus production significantly increased in both SUMO-2/3 knockdown and KSHV K-bZIP-L75A mutant cells. These results indicate that SUMO-2/3 modification of viral chromatin may function to counteract KSHV reactivation. As induction of herpesvirus reactivation may activate cellular antiviral regimes, our results suggest that development of viral SUMO E3 ligase specific inhibitors may be an avenue for anti-virus therapy.
Collapse
Affiliation(s)
- Wan-Shan Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Hung-Wei Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Mel Campbell
- UC Davis Cancer Center, University of California, Davis, Davis, California, United States of America
| | - Chia-Yang Cheng
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
20
|
Kim ET, Kim YE, Kim YJ, Lee MK, Hayward GS, Ahn JH. Analysis of human cytomegalovirus-encoded SUMO targets and temporal regulation of SUMOylation of the immediate-early proteins IE1 and IE2 during infection. PLoS One 2014; 9:e103308. [PMID: 25050850 PMCID: PMC4106884 DOI: 10.1371/journal.pone.0103308] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/27/2014] [Indexed: 12/30/2022] Open
Abstract
Post-translational modification of proteins by members of the small ubiquitin-like modifier (SUMO) is involved in diverse cellular functions. Many viral proteins are SUMO targets and also interact with the cellular SUMOylation system. During human cytomegalovirus (HCMV) infection, the immediate-early (IE) proteins IE1 and IE2 are covalently modified by SUMO. IE2 SUMOylation promotes its transactivation activity, whereas the role of IE1 SUMOylation is not clear. We performed in silico, genome-wide analysis to identify possible SUMOylation sites in HCMV-encoded proteins and evaluated their modification using the E. coli SUMOylation system and in vitro assays. We found that only IE1 and IE2 are substantially modified by SUMO in E. coli, although US34A was also identified as a possible SUMO target in vitro. We also found that SUMOylation of IE1 and IE2 is temporally regulated during viral infection. Levels of SUMO-modified form of IE1 were increased during the early phase of infection, but decreased in the late phase when IE2 and its SUMO-modified forms were expressed at high levels. IE2 expression inhibited IE1 SUMOylation in cotransfection assays. As in IE2 SUMOylation, PIAS1, a SUMO E3 ligase, interacted with IE1 and enhanced IE1 SUMOylation. In in vitro assays, an IE2 fragment that lacked covalent and non-covalent SUMO attachment sites, but was sufficient for PIAS1 binding, effectively inhibited PIAS1-mediated SUMOylation of IE1, indicating that IE2 expression negatively regulates IE1 SUMOylation. We also found that the IE2-mediated downregulation of IE1 SUMOylation correlates with the IE1 activity to repress the promoter containing the interferon stimulated response elements. Taken together, our data demonstrate that IE1 and IE2 are the main viral SUMO targets in HCMV infection and that temporal regulation of their SUMOylation may be important in the progression of this infection.
Collapse
Affiliation(s)
- Eui Tae Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Young-Eui Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Ye Ji Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Myoung Kyu Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Gary S. Hayward
- Viral Oncology Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
21
|
Gu SY, Kim YE, Kwon KM, Han TH, Ahn JH. Biphasic regulation of A20 gene expression during human cytomegalovirus infection. Virol J 2014; 11:124. [PMID: 25005727 PMCID: PMC4104738 DOI: 10.1186/1743-422x-11-124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/28/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The A20 ubiquitin-editing enzyme is a target of nuclear factor kappa B (NF-κB) and also plays a key role in regulating the NF-κB signaling pathway. NF-κB activity is increased during human cytomegalovirus (HCMV) infection and HCMV appears to be adapted to this change. To better understand the regulation of NF-κB signaling during HCMV infection, we investigated how A20 expression is controlled during HCMV infection. METHODS The expression level of A20 in human fibroblast cells infected with HCMV or UV-inactivated virus (UV-HCMV) was measured by immunoblot analysis, cell staining, and quantitative real-time PCR. Changes of histone modifications on the A20 promoter were determined by chromatin immunoprecipitation assays. Lentiviral vectors were used to knockdown A20 in fibroblast cells. RESULTS A20 expression was increased at early times after HCMV infection. This increase of the A20 protein level was promoted by viral gene expression under low viral load conditions. The viral IE1 protein, which is known to activate NF-κB, increased the A20 promoter activity through the upstream NF-κB sites in reporter assays, suggesting that IE1 is at least partly involved in A20 induction. Analysis of A20 expression with a high viral load demonstrated that the A20 regulation by HCMV was biphasic; both A20 protein and mRNA levels were increased at the early stage of infection, but decreased at the late stage. Under high viral load conditions, A20 upregulation was more profound with UV-HCMV than with HCMV, indicating a role of the viral gene product(s) in limiting A20 induction. Consistently, more histone modifications for euchromatin were found on the A20 promoter during UV-HCMV infection than with HCMV infection. A20 knockdown by shRNA reduced HCMV growth. CONCLUSION These results suggest that the biphasic regulation of A20 expression may be important for productive HCMV infection.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seoburo, Suwon 440-746, Republic of Korea.
| |
Collapse
|
22
|
Bund T, Spoden GA, Koynov K, Hellmann N, Boukhallouk F, Arnold P, Hinderberger D, Florin L. An L2 SUMO interacting motif is important for PML localization and infection of human papillomavirus type 16. Cell Microbiol 2014; 16:1179-200. [PMID: 24444361 DOI: 10.1111/cmi.12271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 11/27/2022]
Abstract
Human papillomaviruses (HPV) induce warts and cancers on skin and mucosa. The HPV16 capsid is composed of the proteins L1 and L2. After cell entry and virus disassembly, the L2 protein accompanies the viral DNA to promyelocytic leukaemia nuclear bodies (PML-NBs) within the host nuclei enabling viral transcription and replication. Multiple components of PML-NBs are regulated by small ubiquitin-like modifiers (SUMOs) either based on covalent SUMO modification (SUMOylation), or based on non-covalent SUMO interaction via SUMO interacting motifs (SIMs). We show here that the HPV16 L2 comprises at least one SIM, which is crucial for the L2 interaction with SUMO2 in immunoprecipitation and colocalization with SUMO2 in PML-NBs. Biophysical analysis confirmed a direct L2 interaction with SUMO substantiated by identification of potential L2-SUMO interaction structures in molecular dynamics simulations. Mutation of the SIM resulted in absence of the L2-DNA complex at PML-NB and in a loss of infectivity of mutant HPV16 pseudoviruses. In contrast, we found that L2 SUMOylation has no effect on L2 localization in PML-NBs and SUMO interaction. Our data suggest that the L2 SIM is important for L2 interaction with SUMO and/or SUMOylated proteins, which is indispensable for the delivery of viral DNA to PML-NBs and efficient HPV infection.
Collapse
Affiliation(s)
- Timo Bund
- Max Planck Institute for Polymer Research, Mainz, Germany; Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mattoscio D, Segré CV, Chiocca S. Viral manipulation of cellular protein conjugation pathways: The SUMO lesson. World J Virol 2013; 2:79-90. [PMID: 24175232 PMCID: PMC3785051 DOI: 10.5501/wjv.v2.i2.79] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 02/05/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a key post-translational modification mechanism that controls the function of a plethora of proteins and biological processes. Given its central regulatory role, it is not surprising that it is widely exploited by viruses. A number of viral proteins are known to modify and/or be modified by the SUMOylation system to exert their function, to create a cellular environment more favorable for virus survival and propagation, and to prevent host antiviral responses. Since the SUMO pathway is a multi-step cascade, viral proteins engage with it at many levels, to advance and favor each stage of a typical infection cycle: replication, viral assembly and immune evasion. Here we review the current knowledge on the interplay between the host SUMO system and viral lifecycle.
Collapse
|
24
|
Everett RD, Boutell C, Hale BG. Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 2013; 11:400-11. [PMID: 23624814 DOI: 10.1038/nrmicro3015] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Post-translational modification by members of the small ubiquitin-like modifier (SUMO) family of proteins is important for the regulation of many cellular proteins and pathways. As obligate parasites, viruses must engage with the host cell throughout their replication cycles, and it is therefore unsurprising that there are many examples of interplay between viral proteins and the host sumoylation system. This article reviews recent advances in this field, summarizing information on sumoylated viral proteins, the varied ways in which viruses engage with SUMO-related pathways, and the consequences of these interactions for viral replication and engagement with innate and intrinsic immunity.
Collapse
Affiliation(s)
- Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK.
| | | | | |
Collapse
|
25
|
SUMO-conjugating enzyme E2 UBC9 mediates viral immediate-early protein SUMOylation in crayfish to facilitate reproduction of white spot syndrome virus. J Virol 2012; 87:636-47. [PMID: 23097446 DOI: 10.1128/jvi.01671-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Successful viruses have evolved superior strategies to escape host defenses or exploit host biological pathways. Most of the viral immediate-early (ie) genes are essential for viral infection and depend solely on host proteins; however, the molecular mechanisms are poorly understood. In this study, we focused on the modification of viral IE proteins by the crayfish small ubiquitin-related modifier (SUMO) and investigated the role of SUMOylation during the viral life cycle. SUMO and SUMO ubiquitin-conjugating enzyme 9 (UBC9) involved in SUMOylation were identified in red swamp crayfish (Procambarus clarkii). Both SUMO and UBC9 were upregulated in crayfish challenged with white spot syndrome virus (WSSV). Replication of WSSV genes increased in crayfish injected with recombinant SUMO or UBC9, but injection of mutant SUMO or UBC9 protein had no effect. Subsequently, we analyzed the mechanism by which crayfish SUMOylation facilitates WSSV replication. Crayfish UBC9 bound to all three WSSV IE proteins tested, and one of these IE proteins (WSV051) was covalently modified by SUMO in vitro. The expression of viral ie genes was affected and that of late genes was significantly inhibited in UBC9-silenced or SUMO-silenced crayfish, and the inhibition effect was rescued by injection of recombinant SUMO or UBC9. The results of this study demonstrate that viral IE proteins can be modified by crayfish SUMOylation, prompt the expression of viral genes, and ultimately benefit WSSV replication. Understanding of the mechanisms by which viruses exploit host components will greatly improve our knowledge of the virus-host "arms race" and contribute to the development of novel methods against virulent viruses.
Collapse
|
26
|
Wilson VG. Sumoylation at the host-pathogen interface. Biomolecules 2012; 2:203-27. [PMID: 23795346 PMCID: PMC3685863 DOI: 10.3390/biom2020203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 12/11/2022] Open
Abstract
Many viral proteins have been shown to be sumoylated with corresponding regulatory effects on their protein function, indicating that this host cell modification process is widely exploited by viral pathogens to control viral activity. In addition to using sumoylation to regulate their own proteins, several viral pathogens have been shown to modulate overall host sumoylation levels. Given the large number of cellular targets for SUMO addition and the breadth of critical cellular processes that are regulated via sumoylation, viral modulation of overall sumoylation presumably alters the cellular environment to ensure that it is favorable for viral reproduction and/or persistence. Like some viruses, certain bacterial plant pathogens also target the sumoylation system, usually decreasing sumoylation to disrupt host anti-pathogen responses. The recent demonstration that Listeria monocytogenes also disrupts host sumoylation, and that this is required for efficient infection, extends the plant pathogen observations to a human pathogen and suggests that pathogen modulation of host sumoylation may be more widespread than previously appreciated. This review will focus on recent aspects of how pathogens modulate the host sumoylation system and how this benefits the pathogen.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX 77807-1359
| |
Collapse
|
27
|
Abstract
The eukaryotic ubiquitin family encompasses nearly 20 proteins that are involved in the posttranslational modification of various macromolecules. The ubiquitin-like proteins (UBLs) that are part of this family adopt the β-grasp fold that is characteristic of its founding member ubiquitin (Ub). Although structurally related, UBLs regulate a strikingly diverse set of cellular processes, including nuclear transport, proteolysis, translation, autophagy, and antiviral pathways. New UBL substrates continue to be identified and further expand the functional diversity of UBL pathways in cellular homeostasis and physiology. Here, we review recent findings on such novel substrates, mechanisms, and functions of UBLs.
Collapse
|
28
|
SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 2012; 86:5412-21. [PMID: 22398289 DOI: 10.1128/jvi.00314-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An Epstein-Barr virus (EBV) protein microarray was used to screen for proteins binding noncovalently to the small ubiquitin-like modifier SUMO2. Among the 11 SUMO binding proteins identified was the conserved protein kinase BGLF4. The mutation of potential SUMO interaction motifs (SIMs) in BGLF4 identified N- and C-terminal SIMs. The mutation of both SIMs changed the intracellular localization of BGLF4 from nuclear to cytoplasmic, while BGLF4 mutated in the N-terminal SIM remained predominantly nuclear. The mutation of the C-terminal SIM yielded an intermediate phenotype with nuclear and cytoplasmic staining. The transfer of BGLF4 amino acids 342 to 359 to a nuclear green fluorescent protein (GFP)-tagged reporter protein led to the relocalization of the reporter to the cytoplasm. Thus, the C-terminal SIM lies adjacent to a nuclear export signal, and coordinated SUMO binding by the N- and C-terminal SIMs blocks export and allows the nuclear accumulation of BGLF4. The mutation of either SIM prevented SUMO binding in vitro. The ability of BGLF4 to abolish the SUMOylation of the EBV lytic cycle transactivator ZTA was dependent on both BGLF4 SUMO binding and BGLF4 kinase activity. The global profile of SUMOylated cell proteins was also suppressed by BGLF4 but not by the SIM or kinase-dead BGLF4 mutant. The effective BGLF4-mediated dispersion of promyelocytic leukemia (PML) bodies was dependent on SUMO binding. The SUMO binding function of BGLF4 was also required to induce the cellular DNA damage response and to enhance the production of extracellular virus during EBV lytic replication. Thus, SUMO binding by BGLF4 modulates BGLF4 function and affects the efficiency of lytic EBV replication.
Collapse
|
29
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|
30
|
Sung KS, Lee YA, Kim ET, Lee SR, Ahn JH, Choi CY. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53. Exp Cell Res 2010; 317:1060-70. [PMID: 21192925 DOI: 10.1016/j.yexcr.2010.12.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/01/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis.
Collapse
Affiliation(s)
- Ki Sa Sung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | |
Collapse
|