1
|
Abstract
The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Li Y, Chen M, Chang W. Roles of the nucleus in leukocyte migration. J Leukoc Biol 2022; 112:771-783. [PMID: 35916042 DOI: 10.1002/jlb.1mr0622-473rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocytes patrol our bodies in search of pathogens and migrate to sites of injury in response to various stimuli. Rapid and directed leukocyte motility is therefore crucial to our immunity. The nucleus is the largest and stiffest cellular organelle and a mechanical obstacle for migration through constrictions. However, the nucleus is also essential for 3D cell migration. Here, we review the roles of the nucleus in leukocyte migration, focusing on how cells deform their nuclei to aid cell motility and the contributions of the nucleus to cell migration. We discuss the regulation of the nuclear biomechanics by the nuclear lamina and how it, together with the cytoskeleton, modulates the shapes of leukocyte nuclei. We then summarize the functions of nesprins and SUN proteins in leukocytes and discuss how forces are exerted on the nucleus. Finally, we examine the mechanical roles of the nucleus in cell migration, including its roles in regulating the direction of migration and path selection.
Collapse
Affiliation(s)
- Yutao Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Mengqi Chen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wakam Chang
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
3
|
Dharan A, Campbell EM. Teaching old dogmas new tricks: recent insights into the nuclear import of HIV-1. Curr Opin Virol 2022; 53:101203. [PMID: 35121335 PMCID: PMC9175559 DOI: 10.1016/j.coviro.2022.101203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/08/2023]
Abstract
A hallmark feature of lentiviruses, which separates them from other members of the retrovirus family, is their ability to infect non-dividing cells by traversing the nuclear pore complex. The viral determinant that mediates HIV-1 nuclear import is the viral capsid (CA) protein, which forms the conical core protecting the HIV-1 genome in a mature virion. Recently, a series of novel approaches developed to monitor post-fusion events in infection have challenged previous textbook models of the viral life cycle, which envisage reverse transcription and disassembly of the capsid core as events that complete in the cytoplasm. In this review, we summarize these recent findings and describe their implications on our understanding of the spatiotemporal staging of HIV-1 infection with a focus on the nuclear import and its implications in other aspects of the viral lifecycle.
Collapse
Affiliation(s)
- Adarsh Dharan
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA.
| |
Collapse
|
4
|
Shen Q, Wu C, Freniere C, Tripler TN, Xiong Y. Nuclear Import of HIV-1. Viruses 2021; 13:2242. [PMID: 34835048 PMCID: PMC8619967 DOI: 10.3390/v13112242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The delivery of the HIV-1 genome into the nucleus is an indispensable step in retroviral infection of non-dividing cells, but the mechanism of HIV-1 nuclear import has been a longstanding debate due to controversial experimental evidence. It was commonly believed that the HIV-1 capsid would need to disassemble (uncoat) in the cytosol before nuclear import because the capsid is larger than the central channel of nuclear pore complexes (NPCs); however, increasing evidence demonstrates that intact, or nearly intact, HIV-1 capsid passes through the NPC to enter the nucleus. With the protection of the capsid, the HIV-1 core completes reverse transcription in the nucleus and is translocated to the integration site. Uncoating occurs while, or after, the viral genome is released near the integration site. These independent discoveries reveal a compelling new paradigm of this important step of the HIV-1 life cycle. In this review, we summarize the recent studies related to HIV-1 nuclear import, highlighting the spatial-temporal relationship between the nuclear entry of the virus core, reverse transcription, and capsid uncoating.
Collapse
Affiliation(s)
| | | | | | | | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA; (Q.S.); (C.W.); (C.F.); (T.N.T.)
| |
Collapse
|
5
|
Bhargava A, Williart A, Maurin M, Davidson PM, Jouve M, Piel M, Lahaye X, Manel N. Inhibition of HIV infection by structural proteins of the inner nuclear membrane is associated with reduced chromatin dynamics. Cell Rep 2021; 36:109763. [PMID: 34592156 DOI: 10.1016/j.celrep.2021.109763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022] Open
Abstract
The human immunodeficiency virus (HIV) enters the nucleus to establish infection, but the role of nuclear envelope proteins in this process is incompletely understood. Inner nuclear transmembrane proteins SUN1 and SUN2 connect nuclear lamins to the cytoskeleton and participate in the DNA damage response (DDR). Increased levels of SUN1 or SUN2 potently restrict HIV infection through an unresolved mechanism. Here, we find that the antiviral activities of SUN1 and SUN2 are distinct. HIV-1 and HIV-2 are preferentially inhibited by SUN1 and SUN2, respectively. We identify DNA damage inducers that stimulate HIV-1 infection and show that SUN1, but not SUN2, neutralizes this effect. Finally, we show that chromatin movements and nuclear rotations are associated with the effects of SUN proteins and Lamin A/C on infection. These results reveal an emerging role of chromatin dynamics and the DDR in the control of HIV infection by structural components of the nuclear envelope.
Collapse
Affiliation(s)
- Anvita Bhargava
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Alice Williart
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Patricia M Davidson
- Laboratoire Physico-Chimie Curie, Institut Curie, CNRS UMR168, Sorbonne Université, PSL Research University, Paris, France
| | | | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Xavier Lahaye
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
6
|
Nuclear restriction of HIV-1 infection by SUN1. Sci Rep 2021; 11:19128. [PMID: 34580332 PMCID: PMC8476499 DOI: 10.1038/s41598-021-98541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
Overexpression of the human Sad-1-Unc-84 homology protein 2 (SUN2) blocks HIV-1 infection in a capsid-dependent manner. In agreement, we showed that overexpression of SUN1 (Sad1 and UNC-84a) also blocks HIV-1 infection in a capsid-dependent manner. SUN2 and the related protein SUN1 are transmembrane proteins located in the inner membrane of the nuclear envelope. The N-terminal domains of SUN1/2 localizes to the nucleoplasm while the C-terminal domains are localized in the nuclear lamina. Because the N-terminal domains of SUN1/2 are located in the nucleoplasm, we hypothesized that SUN1/2 might be interacting with the HIV-1 replication complex in the nucleus leading to HIV-1 inhibition. Our results demonstrated that SUN1/2 interacts with the HIV-1 capsid, and in agreement with our hypothesis, the use of N-terminal deletion mutants showed that SUN1/2 proteins bind to the viral capsid by using its N-terminal domain. SUN1/2 deletion mutants correlated restriction of HIV-1 with capsid binding. Interestingly, the ability of SUN1/2 to restrict HIV-1 also correlated with perinuclear localization of these proteins. In agreement with the notion that SUN proteins interact with the HIV-1 capsid in the nucleus, we found that restriction of HIV-1 by overexpression of SUN proteins do not block the entry of the HIV-1 core into the nucleus. Our results showed that HIV-1 restriction is mediated by the interaction of SUN1/2N-terminal domains with the HIV-1 core in the nuclear compartment.
Collapse
|
7
|
Pawar S, Kutay U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb Perspect Biol 2021; 13:a040477. [PMID: 33753404 PMCID: PMC8411953 DOI: 10.1101/cshperspect.a040477] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nuclear compartment is delimited by a specialized expanded sheet of the endoplasmic reticulum (ER) known as the nuclear envelope (NE). Compared to the outer nuclear membrane and the contiguous peripheral ER, the inner nuclear membrane (INM) houses a unique set of transmembrane proteins that serve a staggering range of functions. Many of these functions reflect the exceptional position of INM proteins at the membrane-chromatin interface. Recent research revealed that numerous INM proteins perform crucial roles in chromatin organization, regulation of gene expression, genome stability, and mediation of signaling pathways into the nucleus. Other INM proteins establish mechanical links between chromatin and the cytoskeleton, help NE remodeling, or contribute to the surveillance of NE integrity and homeostasis. As INM proteins continue to gain prominence, we review these advancements and give an overview on the functional versatility of the INM proteome.
Collapse
Affiliation(s)
- Sumit Pawar
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Betancor G, Jimenez-Guardeño JM, Lynham S, Antrobus R, Khan H, Sobala A, Dicks MDJ, Malim MH. MX2-mediated innate immunity against HIV-1 is regulated by serine phosphorylation. Nat Microbiol 2021; 6:1031-1042. [PMID: 34282309 PMCID: PMC7611661 DOI: 10.1038/s41564-021-00937-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/17/2021] [Indexed: 01/24/2023]
Abstract
The antiviral cytokine interferon activates expression of interferon-stimulated genes to establish an antiviral state. Myxovirus resistance 2 (MX2, also known as MxB) is an interferon-stimulated gene that inhibits the nuclear import of HIV-1 and interacts with the viral capsid and cellular nuclear transport machinery. Here, we identified the myosin light chain phosphatase (MLCP) subunits myosin phosphatase target subunit 1 (MYPT1) and protein phosphatase 1 catalytic subunit-β (PPP1CB) as positively-acting regulators of MX2, interacting with its amino-terminal domain. We demonstrated that serine phosphorylation of the N-terminal domain at positions 14, 17 and 18 suppresses MX2 antiviral function, prevents interactions with the HIV-1 capsid and nuclear transport factors, and is reversed by MLCP. Notably, serine phosphorylation of the N-terminal domain also impedes MX2-mediated inhibition of nuclear import of cellular karyophilic cargo. We also found that interferon treatment reduces levels of phosphorylation at these serine residues and outline a homeostatic regulatory mechanism in which repression of MX2 by phosphorylation, together with MLCP-mediated dephosphorylation, balances the deleterious effects of MX2 on normal cell function with innate immunity against HIV-1.
Collapse
Affiliation(s)
- Gilberto Betancor
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, The James Black Centre, King's College London, London, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hataf Khan
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Andrew Sobala
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Matthew D J Dicks
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
9
|
Guedán A, Caroe ER, Barr GCR, Bishop KN. The Role of Capsid in HIV-1 Nuclear Entry. Viruses 2021; 13:1425. [PMID: 34452291 PMCID: PMC8402913 DOI: 10.3390/v13081425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 can infect non-dividing cells. The nuclear envelope therefore represents a barrier that HIV-1 must traverse in order to gain access to the host cell chromatin for integration. Hence, nuclear entry is a critical step in the early stages of HIV-1 replication. Following membrane fusion, the viral capsid (CA) lattice, which forms the outer face of the retroviral core, makes numerous interactions with cellular proteins that orchestrate the progress of HIV-1 through the replication cycle. The ability of CA to interact with nuclear pore proteins and other host factors around the nuclear pore determines whether nuclear entry occurs. Uncoating, the process by which the CA lattice opens and/or disassembles, is another critical step that must occur prior to integration. Both early and delayed uncoating have detrimental effects on viral infectivity. How uncoating relates to nuclear entry is currently hotly debated. Recent technological advances have led to intense discussions about the timing, location, and requirements for uncoating and have prompted the field to consider alternative uncoating scenarios that presently focus on uncoating at the nuclear pore and within the nuclear compartment. This review describes recent advances in the study of HIV-1 nuclear entry, outlines the interactions of the retroviral CA protein, and discusses the challenges of investigating HIV-1 uncoating.
Collapse
Affiliation(s)
| | | | | | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK; (A.G.); (E.R.C.); (G.C.R.B.)
| |
Collapse
|
10
|
Betancor G, Dicks MDJ, Jimenez-Guardeño JM, Ali NH, Apolonia L, Malim MH. The GTPase Domain of MX2 Interacts with the HIV-1 Capsid, Enabling Its Short Isoform to Moderate Antiviral Restriction. Cell Rep 2020; 29:1923-1933.e3. [PMID: 31722207 PMCID: PMC7391006 DOI: 10.1016/j.celrep.2019.10.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/18/2019] [Accepted: 10/02/2019] [Indexed: 01/27/2023] Open
Abstract
Myxovirus resistance 2 (MX2/MXB) is an interferon (IFN)-induced HIV-1 restriction factor that inhibits viral nuclear DNA accumulation. The amino-terminal domain of MX2 binds the viral capsid and is essential for inhibition. Using in vitro assembled Capsid-Nucleocapsid (CANC) complexes as a surrogate for the HIV-1 capsid lattice, we reveal that the GTPase (G) domain of MX2 contains a second, independent capsid-binding site. The importance of this interaction was addressed in competition assays using the naturally occurring non-antiviral short isoform of MX2 that lacks the amino-terminal 25 amino acids. Specifically, these experiments show that the G domain enhances MX2 function, and the foreshortened isoform acts as a functional suppressor of the full-length protein in a G-domain-dependent manner. The interaction of MX2 with its HIV-1 capsid substrate is therefore multi-faceted: there are dual points of contact that, together with protein oligomerization, contribute to the complexity of MX2 regulation. MX2 interacts with the HIV-1 capsid via N-terminal and GTPase (G) domains The G-domain interaction enhances MX2 binding to the viral capsid The MX2 short isoform is not antiviral and binds the capsid through its G domain The MX2 short isoform suppresses the antiviral activity of the long isoform
Collapse
Affiliation(s)
- Gilberto Betancor
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Matthew D J Dicks
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Nabil H Ali
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Luis Apolonia
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK.
| |
Collapse
|
11
|
Abstract
From cellular deposition of the HIV-1 capsid to integration of the viral genome, the capsid constitutes a primary target of a variety of host proteins that work to either promote or inhibit HIV-1 infection. Successful progression of HIV-1 infection depends on interactions between the capsid and host factors involved in stability, cellular transport, nuclear import, and genome integration. The virus must also guard its reverse-transcribing genome inside the capsid from host restriction factors that bind the capsid and suppress infection. Understanding the structure and dynamics of the capsid protein (CA) component and the assembled capsid sheds light on the molecular underpinnings of overall capsid stability, architecture, and flexibility that govern HIV-1 capsid–host interactions. The vast majority of these interactions are mediated through recognition of higher order interfaces only present in the assembled capsid lattice. Patterns formed at these interfaces serve as signposts for capsid-binders. Here we provide a graphical summary of the intricate interactions between host factors and the HIV-1 capsid while highlighting recent research. Insights into how host proteins interact with the capsid is crucial for understanding the HIV-1 replication cycle and developing antiviral therapeutics to prevent viral genome integration.
Collapse
|
12
|
Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating. Nat Microbiol 2019; 4:1840-1850. [PMID: 31611641 DOI: 10.1038/s41564-019-0575-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 08/30/2019] [Indexed: 01/05/2023]
Abstract
The initial steps of HIV replication in host cells prime the virus for passage through the nuclear pore and drive the establishment of a productive and irreparable infection1,2. The timely release of the viral genome from the capsid-referred to as uncoating-is emerging as a critical parameter for nuclear import, but the triggers and mechanisms that orchestrate these steps are unknown. Here, we identify β-karyopherin Transportin-1 (TRN-1) as a cellular co-factor of HIV-1 infection, which binds to incoming capsids, triggers their uncoating and promotes viral nuclear import. Depletion of TRN-1, which we characterized by mass spectrometry, significantly reduced the early steps of HIV-1 infection in target cells, including primary CD4+ T cells. TRN-1 bound directly to capsid nanotubes and induced dramatic structural damage, indicating that TRN-1 is necessary and sufficient for uncoating in vitro. Glycine 89 on the capsid protein, which is positioned within a nuclear localization signal in the cyclophilin A-binding loop, is critical for engaging the hydrophobic pocket of TRN-1 at position W730. In addition, TRN-1 promotes the efficient nuclear import of both viral DNA and capsid protein. Our study suggests that TRN-1 mediates the timely release of the HIV-1 genome from the capsid protein shell and efficient viral nuclear import.
Collapse
|
13
|
Jimenez-Guardeño JM, Apolonia L, Betancor G, Malim MH. Immunoproteasome activation enables human TRIM5α restriction of HIV-1. Nat Microbiol 2019; 4:933-940. [PMID: 30886358 DOI: 10.1038/s41564-019-0402-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Type 1 interferon suppresses viral replication by upregulating the expression of interferon-stimulated genes with diverse antiviral properties1. The replication of human immunodeficiency virus type 1 (HIV-1) is naturally inhibited by interferon, with the steps between viral entry and chromosomal integration of viral DNA being notably susceptible2-5. The interferon-stimulated gene myxovirus resistance 2 has been defined as an effective postentry inhibitor of HIV-1, but is only partially responsible for interferon's suppressive effect6-8. Using small interfering RNA-based library screening in interferon-α-treated cells, we sought to characterize further interferon-stimulated genes that target the pre-integration phases of HIV-1 infection, and identified human tripartite-containing motif 5α (TRIM5α) as a potent anti-HIV-1 restriction factor. Human TRIM5α, in contrast with many nonhuman orthologues, has not generally been ascribed substantial HIV-1 inhibitory function, a finding attributed to ineffective recognition of cytoplasmic viral capsids by TRIM5α2,9,10. Here, we demonstrate that interferon-α-mediated stimulation of the immunoproteasome, a proteasome isoform mainly present in immune cells and distinguished from the constitutive proteasome by virtue of its different catalytic β-subunits, as well as the proteasome activator 28 regulatory complex11-13, and the associated accelerated turnover of TRIM5α underpin the reprogramming of human TRIM5α for effective capsid-dependent inhibition of HIV-1 DNA synthesis and infection. These observations identify a mechanism for regulating human TRIM5α antiviral function in human cells and rationalize how TRIM5α participates in the immune control of HIV-1 infection.
Collapse
Affiliation(s)
- Jose M Jimenez-Guardeño
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Luis Apolonia
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Gilberto Betancor
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
SUN1 Regulates HIV-1 Nuclear Import in a Manner Dependent on the Interaction between the Viral Capsid and Cellular Cyclophilin A. J Virol 2018; 92:JVI.00229-18. [PMID: 29643244 DOI: 10.1128/jvi.00229-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can infect nondividing cells via passing through the nuclear pore complex. The nuclear membrane-imbedded protein SUN2 was recently reported to be involved in the nuclear import of HIV-1. Whether SUN1, which shares many functional similarities with SUN2, is involved in this process remained to be explored. Here we report that overexpression of SUN1 specifically inhibited infection by HIV-1 but not that by simian immunodeficiency virus (SIV) or murine leukemia virus (MLV). Overexpression of SUN1 did not affect reverse transcription but led to reduced accumulation of the 2-long-terminal-repeat (2-LTR) circular DNA and integrated viral DNA, suggesting a block in the process of nuclear import. HIV-1 CA was mapped as a determinant for viral sensitivity to SUN1. Treatment of SUN1-expressing cells with cyclosporine (CsA) significantly reduced the sensitivity of the virus to SUN1, and an HIV-1 mutant containing CA-G89A, which does not interact with cyclophilin A (CypA), was resistant to SUN1 overexpression. Downregulation of endogenous SUN1 inhibited the nuclear entry of the wild-type virus but not that of the G89A mutant. These results indicate that SUN1 participates in the HIV-1 nuclear entry process in a manner dependent on the interaction of CA with CypA.IMPORTANCE HIV-1 infects both dividing and nondividing cells. The viral preintegration complex (PIC) can enter the nucleus through the nuclear pore complex. It has been well known that the viral protein CA plays an important role in determining the pathways by which the PIC enters the nucleus. In addition, the interaction between CA and the cellular protein CypA has been reported to be important in the selection of nuclear entry pathways, though the underlying mechanisms are not very clear. Here we show that both SUN1 overexpression and downregulation inhibited HIV-1 nuclear entry. CA played an important role in determining the sensitivity of the virus to SUN1: the regulatory activity of SUN1 toward HIV-1 relied on the interaction between CA and CypA. These results help to explain how SUN1 is involved in the HIV-1 nuclear entry process.
Collapse
|
15
|
Bhargava A, Lahaye X, Manel N. Let me in: Control of HIV nuclear entry at the nuclear envelope. Cytokine Growth Factor Rev 2018. [PMID: 29526438 DOI: 10.1016/j.cytogfr.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nuclear envelope is a physical barrier that isolates the cellular DNA from the rest of the cell, thereby limiting pathogen invasion. The Human Immunodeficiency Virus (HIV) has a remarkable ability to enter the nucleus of non-dividing target cells such as lymphocytes, macrophages and dendritic cells. While this step is critical for replication of the virus, it remains one of the less understood aspects of HIV infection. Here, we review the viral and host factors that favor or inhibit HIV entry into the nucleus, including the viral capsid, integrase, the central viral DNA flap, and the host proteins CPSF6, TNPO3, Nucleoporins, SUN1, SUN2, Cyclophilin A and MX2. We review recent perspectives on the mechanism of action of these factors, and formulate fundamental questions that remain. Overall, these findings deepen our understanding of HIV nuclear import and strengthen the favorable position of nuclear HIV entry for antiviral targeting.
Collapse
Affiliation(s)
- Anvita Bhargava
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| |
Collapse
|
16
|
Sumner RP, Thorne LG, Fink DL, Khan H, Milne RS, Towers GJ. Are Evolution and the Intracellular Innate Immune System Key Determinants in HIV Transmission? Front Immunol 2017; 8:1246. [PMID: 29056936 PMCID: PMC5635324 DOI: 10.3389/fimmu.2017.01246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/19/2017] [Indexed: 01/05/2023] Open
Abstract
HIV-1 is the single most important sexually transmitted disease in humans from a global health perspective. Among human lentiviruses, HIV-1 M group has uniquely achieved pandemic levels of human-to-human transmission. The requirement to transmit between hosts likely provides the strongest selective forces on a virus, as without transmission, there can be no new infections within a host population. Our perspective is that evolution of all of the virus-host interactions, which are inherited and perpetuated from host-to-host, must be consistent with transmission. For example, CXCR4 use, which often evolves late in infection, does not favor transmission and is therefore lost when a virus transmits to a new host. Thus, transmission inevitably influences all aspects of virus biology, including interactions with the innate immune system, and dictates the biological niche in which the virus exists in the host. A viable viral niche typically does not select features that disfavor transmission. The innate immune response represents a significant selective pressure during the transmission process. In fact, all viruses must antagonize and/or evade the mechanisms of the host innate and adaptive immune systems that they encounter. We believe that viewing host-virus interactions from a transmission perspective helps us understand the mechanistic details of antiviral immunity and viral escape. This is particularly true for the innate immune system, which typically acts from the very earliest stages of the host-virus interaction, and must be bypassed to achieve successful infection. With this in mind, here we review the innate sensing of HIV, the consequent downstream signaling cascades and the viral restriction that results. The centrality of these mechanisms to host defense is illustrated by the array of countermeasures that HIV deploys to escape them, despite the coding constraint of a 10 kb genome. We consider evasion strategies in detail, in particular the role of the HIV capsid and the viral accessory proteins highlighting important unanswered questions and discussing future perspectives.
Collapse
Affiliation(s)
- Rebecca P. Sumner
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Lucy G. Thorne
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Doug L. Fink
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Hataf Khan
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Richard S. Milne
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Greg J. Towers
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|